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Abstract

We first establish a lower bound on the size and spectral radius of a graph G to guarantee that G contains a
fractional perfect matching. Then, we determine an upper bound on the distance spectral radius of a graph
G to ensure that G has a fractional perfect matching. Furthermore, we construct some extremal graphs to
show all the bounds are best possible.
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1. Introduction

We deal only with finite and undirected graphs without loops or multiple edges. For
graph theoretic notation and terminology not defined here, we refer to [4, 13].

Let G be a graph with vertex set V(G) and edge set E(G). The order of G is
the number n = |V(G)| of its vertices and its size is the number m = |E(G)| of its
edges. A graph G is called trivial if |V(G)| = 1. Let V1 ⊆ V(G) and E1 ⊆ E(G). Then,
G − V1, G − E1 are the graphs formed from G by deleting the vertices in V1 and their
incident edges, or the edges in E1, respectively. For convenience, denote G − {v} and
G − {uv} by G − v and G − uv, respectively. For a given subset S ⊆ V(G), the subgraph
of G induced by S is denoted by G[S]. As usual, Pn and Kn denote the path and the
complete graph on n vertices.

For a vertex v ∈ V(G), let NG(v) be the set of all neighbours of v in G. Then, dG(v) =
|NG(v)| is the degree of v in G. A vertex v of G is called a pendant vertex if dG(v) = 1.
A quasi-pendant vertex is a vertex being adjacent to some pendant vertex. A graph is
r-regular if each vertex has the same degree r. The complement of a graph G is the
graph G with the same vertex set as G, in which any two distinct vertices are adjacent
if and only if they are nonadjacent in G. For two graphs G1 and G2, we define G1 ∪ G2
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to be their disjoint union. The join G1 ∨ G2 is obtained from G1 ∪ G2 by joining every
vertex of G1 with every vertex of G2 by an edge.

Let V(G) = {v1, . . . , vn}. The adjacency matrix A(G) = (aij) of G is an n × n matrix
in which the entry aij is 1 or 0 according to whether vi and vj are adjacent or not. The
eigenvalues of the adjacency matrix A(G) are also called eigenvalues of G. Note that
A(G) is a real symmetric nonnegative matrix. Hence, its eigenvalues are real and can
be arranged in nonincreasing order as λ1(G) � · · · � λn(G). The spectral radius of G is
equal to λ1(G), written as ρ(G).

Let G be a connected graph with vertex set V(G) = {v1, . . . , vn} and edge set E(G).
The distance between vi and vj, denoted by dij, is the length of a shortest path from
vi to vj. The Wiener index of G is defined as W(G) =

∑
i<j dij. The distance matrix

of G, denoted by D(G), is the n × n real symmetric matrix whose (i, j)-entry is dij.
We can order the eigenvalues of D(G) as λ1(D(G)) � λ2(D(G)) � · · · � λn(D(G)). By
the Perron–Frobenius theorem, λ1(D(G)) is always positive (unless G is trivial) and
λ1(D(G)) � |λi(D(G))| for i = 2, 3, . . . , n. We call λ1(D(G)) the distance spectral radius
of G, written as μ(G).

A subset S of V(G) (respectively E(G)) is called an independent set (respectively
a matching) if any two members of S are not adjacent in G. A matching with the
maximum size in G is called a maximum matching. The matching number α′(G) is the
size of a maximum matching in G. We call an edge subset S a perfect matching if each
vertex of G is incident with an edge in S.

Brouwer and Haemers [2] proved that if G is an r-regular graph without perfect
matchings, then G has at least three proper induced subgraphs H1, H2 and H3, which
are contained in the family

H = {H : |V(H)| is odd, r|V(H)| − r + 2 � 2|E(H)| � r|V(H)| − 1},

and that λ3(G) � min{ ρ(Hi) : i = 1, 2, 3} > min{2|E(H)|/|V(H)| : H ∈H }. Quite
recently, O [11] showed that there is a close relationship between the spectral radius
and prefect matching not only for regular graphs but also for general graphs. He
established sharp upper bounds on the number of edges and the spectral radius of a
graph without a perfect matching.

There are several interesting results on the distance spectral radius of G and
its matching number. Ilić [6] characterised n-vertex trees with a given matching
number which minimise the distance spectral radius. Liu [7] characterised graphs
with minimum distance spectral radius in connected graphs on n vertices with fixed
matching number. Zhang [15] and Lu and Luo [8] characterised unicyclic graphs with
a perfect matching and a given matching number which minimise the distance spectral
radius.

A fractional matching of a graph G is a function f giving each edge a number in
[0, 1] so that

∑
e∈Υ(v) f (e) � 1 for all v ∈ V(G), where Υ(v) is the set of edges incident

to v. The fractional matching number of G, written as α′f (G), is the maximum of∑
e∈E(G) f (e) over all fractional matchings f. If f (e) ∈ {0, 1} for every edge e, then f is

just a matching, or more precisely, the indicator function of a matching. A fractional

https://doi.org/10.1017/S0004972722001551 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722001551


[3] Fractional matchings in graphs 189

perfect matching is a fractional matching f with
∑

e∈E(G) f (e) = n/2. Scheinermann and
Ullman [12] showed that a graph G has a fractional perfect matching f if and only if∑

e∈Υ(v) f (e) = 1 for every v ∈ V(G).
Summing the inequality constraints for all vertices yields

∑
v∈V(G)

∑
e∈Υ(v) f (e) � n,

so we always have α′f (G) � n/2. Since every matching can be viewed as a fractional
matching, α′f (G) � α′(G) for all graphs G, but equality need not hold. For example,
α′f (G) = n/2 for an r-regular graph G by setting each edge weight to 1/r, but not every
r-regular graph has a perfect matching. In 2016, O [10] determined the connection
between the spectral radius and fractional matching number among connected graphs
with given minimum degree.

Motivated by [10–12], it is natural and interesting to give some sufficient conditions
to ensure that a graph contains a fractional perfect matching. Here, we focus on
sufficient conditions including a structure graph condition, adjacency spectral graph
condition and distance spectral graph condition.

Our first main result gives a sufficient condition to ensure a graph G contains a
fractional perfect matching according to the size of G.

THEOREM 1.1. Let G be an n-vertex connected graph. Then, G contains a fractional
perfect matching if

|E(G)| >

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
8 (n − 1)(3n − 1) if n = 3, 5, 7, 9, 11;
3
8 n(n − 2) if n = 4, 6, 8, 10;
2 +

(
n−2

2

)
if n � 12.

Our second main result gives a sufficient condition to ensure a graph G contains a
fractional perfect matching according to the adjacency spectral radius of G.

THEOREM 1.2. Let G be an n-vertex connected graph. Assume the largest roots
of x2 − 1

2 (n − 3)x − 1
4 (n2 − 1) = 0 and x3 − (n − 4)x2 − (n − 1)x + 2n − 8 = 0 are ξ1(n)

and ξ2(n), respectively. Then, G has a fractional perfect matching if

ρ(G) >

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
3 if n = 4;

1
2 (1 +

√
33) if n = 6;

ξ1(n) if n = 3, 5, 7, 9;
ξ2(n) if n = 8 or n � 10.

Our last main result gives a sufficient condition to ensure a graph G contains a
fractional perfect matching with respect to the distance spectral radius of G.

THEOREM 1.3. Let G be an n-vertex connected graph. Assume the largest roots of
x2 − 1

2 (3n − 5)x + 1
4 (n2 − 8n + 7) = 0, x2 − 1

2 (3n − 4)x + 1
4 (n2 − 8n + 4) = 0 and x3 −

(n − 2)x2 − (7n − 17)x − 4n + 10 = 0 are ζ1(n), ζ2(n) and ζ3(n), respectively. Then, G
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contains a fractional perfect matching if

μ(G) <

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ζ1(n) if n = 3, 5, 7, 9, 11;
ζ2(n) if n = 4, 6, 8;
ζ3(n) if n = 10 or n � 12.

The proof techniques in the paper for our main results follow the idea of O [11].
Our paper is organised as follows. In Section 2, we give some preliminary results. In
Section 3, we give the proofs of Theorems 1.1, 1.2 and 1.3. In the last section, we give
several extremal graphs to show that all the bounds are best possible.

2. Some preliminaries

In this section, we present some necessary preliminary results, which will be used
to prove our main results. The first one follows directly from [1, Theorem 6.8].

LEMMA 2.1 [1]. Let G be a connected graph and let H be a proper subgraph of G.
Then, ρ(G) > ρ(H).

Let M be a real symmetric matrix whose rows and columns are indexed by V =
{1, . . . , n}. Assume that M can be written as

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
M11 · · · M1s

...
. . .

...
Ms1 · · · Mss

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
according to the partition π : V = V1 ∪ · · · ∪ Vs, where Mij denotes the submatrix
(block) of M formed by the rows in Vi and the columns in Vj. Let qij denote the average
row sum of Mij. The matrix Mπ = (qij) is called the quotient matrix of M. If the row
sum of each block Mij is a constant, then the partition is equitable.

LEMMA 2.2 [3, 14]. Let M be a real matrix with an equitable partition π and let Mπ
be the corresponding quotient matrix. Then, every eigenvalue of Mπ is an eigenvalue
of M. Furthermore, the largest eigenvalues of M and Mπ are equal.

LEMMA 2.3 [9]. Let G be a connected graph with two nonadjacent vertices u, v ∈
V(G). Then, μ(G + uv) < μ(G).

The next lemma can be easily derived from the Rayleigh quotient [5].

LEMMA 2.4. Let G be a connected graph with order n. Then,

μ(G) = max
x�0

xTD(G)x
xTx

�
1TD(G)1

1T1
=

2W(G)
n

,

where 1 = (1, 1, . . . , 1)T .

Let I(G) be the set of isolated vertices of G and let i(G) = |I(G)|. The next lemma
gives a necessary and sufficient condition for a graph to contain a fractional perfect
matching.
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LEMMA 2.5 [12]. A graph G contains a fractional perfect matching if and only if
i(G − S) � |S| for every set S ⊆ V(G).

In 2021, O [11] gave two sufficient conditions to ensure that a graph G contains a
perfect matching according to the size and adjacent spectral radius of G. These results
simplify our proof.

LEMMA 2.6 [11]. Let G be an n-vertex connected graph. Then, G contains a perfect
matching if

|E(G)| >

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
9 if n = 6;
18 if n = 8;
2 +

(
n−2

2

)
if n = 4 or n � 10 is even.

LEMMA 2.7 [11]. Let G be an n-vertex connected graph. Assume the largest root of
x3 − (n − 4)x2 − (n − 1)x + 2n − 8 = 0 is ξ2(n). Then, G has a perfect matching if

ρ(G) >

⎧⎪⎪⎨⎪⎪⎩
1
2 (1 +

√
33) if n = 6;

ξ2(n) if n = 4 or n � 8 is even.

3. Proofs of our main results

In this section, we give the proofs of Theorems 1.1, 1.2 and 1.3.

PROOF OF THEOREM 1.1. A perfect matching is obviously a fractional perfect
matching of a graph. By Lemma 2.6, it is easy to see that our result is true when n
is even. Hence, in what follows, we consider the remaining case when n is odd.

Suppose to the contrary that G has no fractional perfect matching. Choose a
connected graph G whose size is as large as possible. By Lemma 2.5, there exists
a set S ⊆ V(G) such that i(G − S) � |S| + 1. According to the choice of G, both the
induced graph G[S] and each connected component of G − S are complete graphs.
Furthermore, G is just the graph G[S] ∨ (G − S).

Note that there is at most one nontrivial connected component in G − S. Otherwise,
we can add edges among all nontrivial connected components to get a larger nontrivial
connected component, which is a contradiction to the choice of G. For convenience,
let i(G − S) = i and |S| = s � 1. We proceed by considering two possible cases.

Case 1. G − S has only one nontrivial connected component, say G1.
Let |V(G1)| = n1 � 2. If i � s + 2, then we construct a new graph H1 obtained from

G by joining each vertex of G1 with one vertex in I(G − S) by an edge. Clearly,
i(H1 − S) = i − 1 � s + 1. By Lemma 2.5, H1 has no fractional perfect matching. Note
that |E(H1)| = |E(G)| + n1 > |E(G)|, giving a contradiction with the choice of G.

Since i � s + 1, we must have i = s + 1. Note that n = n1 + 2s + 1 � 2s + 3 � 5
and |E(G)| = s(s + 1) +

(
n−s−1

2

)
. Then, by a direct calculation,
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(
n − 2

2

)
+ 2 − |E(G)| = (s − 1)(2n − 3s − 8)

2

�
(s − 1)(4s + 6 − 3s − 8)

2
=

(s − 1)(s − 2)
2

� 0.

Thus, |E(G)| �
(

n−2
2

)
+ 2 for n � 5. This is a contradiction for n � 13.

For n = 5, 7, 9, 11, by a direct calculation,

1
8

(n − 1)(3n − 1) −
(
n − 2

2

)
− 2 = −1

8
n2 + 2n − 39

8
= − (n − 3)(n − 13)

8
> 0.

Thus, |E(G)| �
(

n−2
2

)
+ 2 < 1

8 (n − 1)(3n − 1), which is a contradiction.

Case 2. G − S has no nontrivial connected component.
If i � s + 3, we can create a new graph H2 by adding an edge in I(G − S).

Then, i(H2 − S) � s + 1 and H2 − S has exactly one nontrivial connected component.
Together with |E(G)| < |E(H2)| and Case 1, we obtain a contradiction. Thus, it suffices
to consider i = s + 1 in this case (since n = 2s + 2 is even if i = s + 2).

Assume i = s + 1. Then, n = 2s + 1 � 3 and |E(G)| =
(

s
2

)
+ s(s + 1) = 1

2 (3s2 + s).
Obviously, 1

8 (n − 1)(3n − 1)= 1
2 (3s2 + s). We get a contradiction when n=3, 5, 7, 9, 11.

Comparing |E(G)| with
(

n−2
2

)
+ 2 gives

(
2s − 1

2

)
+ 2 − |E(G)| = (s − 1)(s − 6)

2
.

Thus, |E(G)| �
(

n−2
2

)
+ 2 for s � 6, which is a contradiction for n � 13.

This completes the proof. �

Next, based on the idea in the proof of Theorem 1.1, we prove Theorem 1.2 by
comparing the spectral radius rather than the number of edges.

PROOF OF THEOREM 1.2. By a similar discussion as the proof of Theorem 1.1, we
only consider n odd (based on Lemma 2.7). Suppose to the contrary that G has no
fractional perfect matching. Choose a connected graph G of order n such that its
adjacency spectral radius is as large as possible.

Note that there does not exist a fractional perfect matching in G. Hence, by
Lemma 2.5, there exists a set S ⊆ V(G) satisfying i(G − S) � |S| + 1. Together with
Lemma 2.1 and the choice of G, the induced graph G[S] as well as each connected
component of G − S is a complete graph and G is the join of G[S] and G − S, that is,
G = G[S] ∨ (G − S).

For convenience, let i(G − S) = i and |S| = s. One may see that there exists at
most one nontrivial connected component in G − S. Otherwise, we can add edges
among all nontrivial connected components to get a nontrivial connected component
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of larger size, which gives a contradiction (based on Lemma 2.1). Hence, we proceed
by considering the following two possible cases.
Case 1. G − S has just one nontrivial connected component, say G1.

In this case, one has |V(G1)| = n1 � 2. If i � s + 2, we construct a new graph H1
obtained from G by joining each vertex of G1 with one vertex in I(G − S) by an
edge. Then, G is a proper subgraph of H1. By Lemma 2.1, ρ(G) < ρ(H1), which is
a contradiction.

Now, we assume i = s + 1. Then, n = n1 + 2s + 1 � 2s + 3 � 5. According to the
partition V(G) = S ∪ I(G − S) ∪ V(G1), the quotient matrix of A(G) equals

B1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
s − 1 s + 1 n − 2s − 1

s 0 0
s 0 n − 2s − 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Then, the characteristic polynomial of B1 is

ΦB1 (x) = x3 − (n − s − 3)x2 − (s2 + n − 2)x + s(s + 1)(n − 2s − 2).

Since the partition V(G) = S ∪ I(G − S) ∪ V(G1) is equitable, by Lemma 2.2, the
largest root, say θ1, of ΦB1 (x) = 0 equals the spectral radius of G.

Let f (x) = x3 − (n − 4)x2 − (n − 1)x + 2n − 8 and let ξ2(n) be the largest root of
f (x) = 0. Next, we aim to show f (θ1) < 0. Substituting θ1 for x in f (x) − ΦB1 (x),

f (θ1) − ΦB1 (θ1) = (1 − s)θ21 + (s2 − 1)θ1 − ns2 + 2s3 − sn + 4s2 + 2n + 2s − 8

= (1 − s)θ21 + (s − 1)(s + 1)θ1 − (s − 1)(sn − 2s2 + 2n − 6s − 8)

= (s − 1)[−θ1(θ1 − s − 1) − (s + 2)n + 2s2 + 6s + 8]

� (s − 1)[−θ1(θ1 − s − 1) − (s + 2)(2s + 3) + 2s2 + 6s + 8].

Note that Ks+2 is a proper subgraph of G. Hence, by Lemma 2.1, θ1 > s + 1. Then,

f (θ1) − ΦB1 (θ1) < (s − 1)[−(s + 2)(2s + 3) + 2s2 + 6s + 8] = (s − 1)(2 − s) � 0.

Bear in mind ΦB1 (θ1) = 0. So we obtain f (θ1) = f (θ1) − ΦB1 (θ1) < 0, which gives
ρ(G) = θ1 < ξ2(n) when n � 5. This is a contradiction for n � 11.

Now consider n = 5, 7, 9. Let f̄ (x) = x2 − 1
2 (n − 3)x − 1

4 (n2 − 1) and let ξ1(n) be the
largest root of f̄ (x) = 0. Since ρ(G) = θ1 < ξ2(n) when n � 5, we need to compare
ξ2(n) with ξ1(n). By a direct calculation, ξ2(5) ≈ 2.3429 < 3 = ξ1(5), ξ2(7) ≈ 4.1055 <
4.6056 ≈ ξ1(7), ξ2(9) ≈ 6.0492 < 6.2170 ≈ ξ1(9), which is a contradiction.
Case 2. G − S has no nontrivial connected component.

If i � s + 3, we can construct a new graph H2 by adding an edge in I(G − S). Then,
i(H2 − S) � s + 1 and H2 − S has one nontrivial connected component. Together with
Lemma 2.1 and Case 1, we have ρ(G) < ρ(H2) � ξ2(n), which is a contradiction. Thus,
it suffices to consider i = s + 1 in this case.
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Assume i = s + 1. Consider the partition V(G) = S ∪ I(G − S). The quotient matrix
of A(G) with respect to the partition S ∪ I(G − S) is equal to

B2 =

(
s − 1 s + 1

s 0

)

and the characteristic polynomial of B2 equals ΦB2 (x) = x2 − (s − 1)x − s(s + 1). It is
easy to see that the partition V(G) = S ∪ I(G − S) is equitable. By Lemma 2.2, the
largest root, say θ2, of ΦB2 (x) = 0 equals the spectral radius of G.

Note that n = 2s + 1. Then, ΦB2 (x) = f̄ (x) and θ2 = ξ1(n). This is a contradiction for
n = 3, 5, 7, 9. Next, we consider n � 11 so that s � 5. Substituting θ2 for x in f (x) −
xΦB2 (x) gives

f (θ2) − θ2ΦB2 (θ2) = (−n + s + 3)θ22 + (s2 + s − n + 1)θ2 + 2n − 8

= (2 − s)θ22 + (s2 − s)θ2 + 4s − 6

= θ2[(2 − s)θ2 + s2 − s] + 4s − 6.

Since θ2 = 1
2 (s − 1 +

√
5s2 + 2s + 1) > 1

2 (s − 1 +
√

4s2 + 4s + 1) = 3
2 s, we have

f (θ2) − θ2ΦB2 (θ2) < θ2
[
(2 − s)

3s
2
+ s2 − s

]
+ 4s − 6

= θ2

(
− 1

2
s2 + 2s

)
+ 4s − 6

< −3
4

s3 + 3s2 + 4s − 6.

Let p1(x) = − 3
4 x3 + 3x2 + 4x − 6. Then, we have p′1(x) = − 9

4 x2 + 6x + 4 and
p′1( 1

3 (4 ± 4
√

2)) = 0. Therefore, p1(x) is monotonically decreasing for x � 4 and
p1(s) � p1(5) = −4.75 < 0 when s � 5. Thus, f (θ2) = f (θ2) − θ2ΦB2 (θ2) < p1(s) < 0
for s � 5 and ρ(G) = θ2 < ξ2(n), which is a contradiction.

Together, Cases 1 and 2 complete the proof. �

Finally, we give the proof of Theorem 1.3, again using the idea in the proof of
Theorem 1.1.

PROOF OF THEOREM 1.3. Suppose to the contrary that G has no fractional perfect
matching. Choose a connected graph G of order n such that its distance spectral radius
is as small as possible.

Let

h(x) = x2 − 1
2 (3n − 5)x + 1

4 (n2 − 8n + 7),

h̄(x) = x2 − 1
2 (3n − 4)x + 1

4 (n2 − 8n + 4),

h̃(x) = x3 − (n − 2)x2 − (7n − 17)x − 4n + 10.

Assume that the largest roots of h(x) = 0, h̄(x) = 0 and h̃(x) = 0 are ζ1(n), ζ2(n) and
ζ3(n) (simply ζ1, ζ2 and ζ3), respectively.
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By Lemma 2.5, there exists a set S ⊆ V(G) satisfying i(G − S) � |S| + 1. Together
with Lemma 2.3 and the choice of G, the induced graph G[S] as well as each connected
component of G − S is a complete graph and G is the join of G[S] and G − S, that is,
G = G[S] ∨ (G − S).

For convenience, let i(G − S) = i and |S| = s. There exists at most one nontrivial
connected component in G − S. Otherwise, we can obtain a new graph G′ by adding
edges among all nontrivial connected components to get a larger nontrivial connected
component. By Lemma 2.3, we have μ(G) > μ(G′), which gives a contradiction with
our choice. So in what follows, we proceed by considering the two possible cases.
Case 1. There is just one nontrivial connected component, say G1, in G − S.

In this case, |V(G1)| = n1 � 2. If i � s + 2, we construct a new graph H1 obtained
from G by joining each vertex of G1 with one vertex in I(G − S) by an edge. Clearly,
i(H1 − S) = i − 1 � s + 1. By Lemma 2.5, H1 also has no fractional perfect matching.
In view of Lemma 2.3, μ(G) > μ(H1), which is a contradiction to our choice.

Now, we assume i = s + 1. Then, n = n1 + 2s + 1. We compare the distance spectral
radius of G with that of Fn, where Fn = K1 ∨ (Kn−3 ∪ 2K1) and μ(Fn) = ζ3(n) (see
Theorem 4.3 below). According to the partition V(G) = S ∪ V(G1) ∪ I(G − S), the
quotient matrix of D(G) equals

M1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
s − 1 n − 2s − 1 s + 1

s n − 2s − 2 2s + 2
s 2n − 4s − 2 2s

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the characteristic polynomial of M1 is

ΦM1 (x) = x3 − (n + s − 3)x2 − (2sn − 5s2 + 5n − 6s − 6)x + ns2

− 2s3 − sn + 2s2 − 4n + 6s + 4.

Since the partition V(G) = S ∪ V(G1) ∪ I(G − S) is equitable, by Lemma 2.2, the
largest root, say σ1, of ΦM1 (x) = 0 equals the distance spectral radius of G. Let

g1(x) = ΦM1 (x) − h̃(x) = (s − 1)[−x2 + (−2n + 5s + 11)x + ns − 2s2 + 6].

If s = 1, then ΦM1 (x) = h̃(x) and σ1 = ζ3. We aim to show g1(ζ3) < 0 when s � 2.
For s � 2, we get n = n1 + 2s + 1 � 2s + 3 � 7. By Lemma 2.4,

ζ3 = μ(Fn) �
2W(Fn)

n
=

n2 + 3n − 10
n

= n + 3 − 10
n
> n +

3
2

.

Let h1(x) = −x2 + (−2n + 5s + 11)x + ns − 2s2 + 6 be a real function in x, where x ∈
[n + 3

2 ,+∞). By a direct calculation, h′1(x) = −2x − 2n + 5s + 11 and h′′1 (x) = −2 < 0.
Hence, h′1(x) is a decreasing function. Consequently, h′1(x) � h′1(n + 3

2 ) = −4n + 8 + 5s.
Note that n � 2s + 3. Thus, h′1(x) � −3s − 4 < 0. That is to say, h1(x) is a decreasing
function on x ∈ [n + 3

2 ,+∞), and so

h1(ζ3) < h1(n + 3
2 ) = −3n2 + (6s + 5)n − 2s2 + 15

2 s + 81
4 .
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Let h2(x) = −3x2 + (6s + 5)x − 2s2 + 15/2s + 81/4 be a real function in x, where x ∈
[2s + 3,+∞). Then, h2(x) is monotonically decreasing for x � 2s + 3 and

h2(n) � h2(2s + 3) = −2s2 − 1
2

s +
33
4
= −2

(
s −
√

265 − 1
8

)(
s +

√
265 + 1

8

)
< 0

for s � 2. Therefore, g1(ζ3) < 0 for s � 2. Then, μ(G) = σ1 � ζ3 for n � 5, giving a
contradiction for n = 10 or n � 12.

For n = 5, 7, 9, 11, we only need to compare ζ3 with ζ1 by the proof above. Let
g2(x) = h̃(x) − xh(x). Then,

g2(x) =
1
2

(n − 1)x2 −
(n2

4
+ 5n − 61

4

)
x − 4n + 10.

By a direct calculation, ζ1 = 1
4 (3n − 5 +

√
(5n − 3)(n + 1)). Thus,

g2(ζ1) =
n − 3

8
[n

√
(5n − 3)(n + 1) + 2n2 − 11

√
(5n − 3)(n + 1) − 32n + 26]

=
n − 3

8
[(n − 11)

√
(5n − 3)(n + 1) + (2n2 − 32n + 26)]

=
n − 3

8
[(n − 11)

√
(5n − 3)(n + 1) + 2(n − 8 −

√
51)(n − 8 +

√
51)].

Since 5 � n � 11, we get g2(ζ1) < 0. Then, ζ3 > ζ1, and so μ(G) > ζ1, which is a
contradiction.

Similarly, for n = 6, 8, it suffices to compare ζ3 with ζ2. By a direct calculation,
we have ζ2(6) ≈ 7.2749 < 7.5546 ≈ ζ3(6) and ζ2(8) ≈ 9.8990 < 10.0839 ≈ ζ3(8). Then,
μ(G) > ζ2, which is a contradiction.

Case 2. There does not exist any nontrivial connected component in G − S.
If i � s + 3, we can construct a new graph H2 by adding an edge in I(G − S). Then,

i(H2 − S) � s + 1 and H2 − S has one nontrivial connected component. Together with
Lemma 2.3 and Case 1, we obtain a contradiction. Thus, it suffices to consider i = s + 1
and i = s + 2.

For i = s + 1, the quotient matrix of D(G) for the partition V(G) = S ∪ I(G − S) is

M2 =

(s − 1 s + 1
s 2s

)

and the characteristic polynomial of M2 equals ΦM2 (x) = x2 − (3s − 1)x + s2 − 3s.
Since the partition V(G) = S ∪ I(G − S) is equitable, by Lemma 2.2, the largest root,
say σ2, of ΦM2 (x) = 0 equals the distance spectral radius of G.

Note that n = 2s + 1. Then, ΦM2 (x) = h(x) and σ2 = ζ1. We can get a contradiction
when n = 3, 5, 7, 9, 11. For s = 6 (n = 13), one has μ(G)=σ2≈15.8655>15.8393≈ζ3.
Next, we consider s � 7. Note that n = 2s + 1 � 15. By Lemma 2.4, it follows that
ζ3 � n + 3 − 10/n > n + 2 = 2s + 3. Let ḡ(x) = xΦM2 (x) − h̃(x). Then,

ḡ(x) = − sx2 + (s2 + 11s − 10)x + 8s − 6.
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It is easy to check that ḡ(x) is a monotonically decreasing function for x � 2s + 3, and
so ḡ(ζ3) � ḡ(2s + 3) = −2s3 + 13s2 + 12s − 36.

Let h3(x) = −2x3 + 13x2 + 12x − 36, where x ∈ [7,+∞). Then, h′3(x) = −6x2 +

26x + 12 = −6(x − 1
6 (13 +

√
241))(x − 1

6 (13 −
√

241)) < 0 and ḡ(ζ3) � h3(s) � h3(7) =
−1 < 0 when s � 7. Thus, μ(G) > ζ3(n) for n � 13, which is a contradiction.

For i = s + 2, the quotient matrix of D(G) for the partition V(G) = S ∪ I(G − S) is

M3 =

(s − 1 s + 2
s 2s + 2

)

and the characteristic polynomial of the matrix M3 is ΦM3 (x) = x2 − (3s + 1)x + s2 −
2s − 2. Since the partition V(G) = S ∪ I(G − S) is equitable, by Lemma 2.2, the largest
root, say σ3, of ΦM3 (x) equals the distance spectral radius of G.

Recall that n = 2s + 2. It is easy to see that ΦM3 (x) = h̄(x) and σ3 = ζ2. Thus, we
get a contradiction when n = 4, 6, 8. If s = 4, then n = 10 and μ(G) = σ3 ≈ 12.5208 >
12.4504 ≈ ζ3(10). Next, we consider s � 5. Note that n � 12 and ζ3 � n + 3 − 10/n >
n + 2 = 2s + 4 by Lemma 2.4. Let

g̃(x) = xΦM3 (x) − h̃(x) = −(s + 1)x2 + (s2 + 12s − 5)x + 8s − 2.

By a direct calculation, g̃(x) is a monotonically decreasing function for x � 2s + 4 and
g̃(ζ3) < g̃(2s + 4) = −2s3 + 8s2 + 14s − 38.

Let h4(x) = −2x3 + 8x2 + 14x − 38 be a real function in x, where x ∈ [5,+∞).
Then, h′4(x) = −6s2 + 16s + 14 = −6(x − 1

3 (4 +
√

37))(x − 1
3 (4 −

√
37)) < 0 and g̃(ζ3) <

h4(s) � h4(5) = −18 < 0. Thus, μ(G) > ζ3(n) for n � 12 and n = 10, which is a contra-
diction.

Together, Case 1 and Case 2 complete the proof. �

4. Extremal graphs

In this section, we construct several graphs to show that the bounds established in
Theorems 1.1, 1.2 and 1.3 are sharp.

THEOREM 4.1. Let n be a positive integer.

(i) For n = 3, 5, 7, 9, 11, we have |E(K(n+1)/2 ∨ K(n−1)/2)| = 1
8 (n − 1)(3n − 1) and

K(n+1)/2 ∨ K(n−1)/2 has no fractional perfect matching.
(ii) For n = 4, 6, 8, 10, we have |E(K(n+2)/2 ∨ K(n−2)/2)| = 3

8 n(n − 2) and K(n+2)/2 ∨
K(n−2)/2 has no fractional perfect matching.

(iii) For n � 12, we have |E(K1 ∨ (Kn−3 ∪ 2K1))| =
(

n−2
2

)
+ 2 and K1 ∨ (Kn−3 ∪ 2K1)

has no fractional perfect matching.

PROOF. It is straightforward to check the sizes of graphs K(n+1)/2 ∨ K(n−1)/2, K(n+2)/2 ∨
K(n−2)/2 and K1 ∨ (Kn−3 ∪ 2K1). However, put S = V(K(n−1)/2), V(K(n−2)/2) and V(K1).
By Lemma 2.5, K(n+1)/2 ∨ K(n−1)/2, K(n+2)/2 ∨ K(n−2)/2 and K1 ∨ (Kn−3 ∪ 2K1)) have no
fractional perfect matching. �
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THEOREM 4.2. Let n be a positive integer.

(i) For n = 4, we have ρ(K3 ∨ K1) =
√

3 and K3 ∨ K1 has no fractional perfect
matching.

(ii) For n = 6, we have ρ(K4 ∨ K2) = 1
2 (1 +

√
33) and K4 ∨ K2 has no fractional

perfect matching.
(iii) For n = 3, 5, 7, 9, we have ρ(K(n+1)/2 ∨ K(n−1)/2) = ξ1(n) and K(n+1)/2 ∨ K(n−1)/2

has no fractional perfect matching, where ξ1(n) is the largest root of the
polynomial x2 − 1

2 (n − 3)x − 1
4 (n2 − 1) = 0.

(iv) For n = 8 or n � 10, we have ρ(K1 ∨ (Kn−3 ∪ 2K1)) = ξ2(n), and the graph K1 ∨
(Kn−3 ∪ 2K1) has no fractional perfect matching, where ξ2(n) is the largest root
of the polynomial x3 − (n − 4)x2 − (n − 1)x + 2n − 8 = 0.

PROOF. Here we only prove item (iv). A similar discussion shows items (i), (ii)
and (iii).

According to the partition V(2K1) ∪ V(K1) ∪ V(Kn−3), the quotient matrix of
A(K1 ∨ (Kn−3 ∪ 2K1)) can be written as

B(K1 ∨ (Kn−3 ∪ 2K1)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0
2 0 n − 3
0 1 n − 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

whose characteristic polynomial is x3 − (n − 4)x2 − (n − 1)x + 2n − 8. Since the vertex
partition is equitable, the largest root ξ2(n) of x3 − (n − 4)x2 − (n − 1)x + 2n − 8 = 0
is equal to the spectral radius of K1 ∨ (Kn−3 ∪ 2K1). Let S = V(K1). By Lemma 2.5,
K1 ∨ (Kn−3 ∪ 2K1) has no fractional perfect matching.

This completes the proof of item (iv). �

THEOREM 4.3. Let n be a positive integer.

(i) For n = 3, 5, 7, 9, 11, we have μ(K(n+1)/2 ∨ K(n−1)/2) = ζ1(n) and K(n+1)/2 ∨
K(n−1)/2 has no fractional perfect matching, where ζ1(n) is the largest root of
the polynomial x2 − 1

2 (3n − 5)x + 1
4 (n2 − 8n + 7) = 0.

(ii) For n = 4, 6, 8, we have μ(K(n+2)/2 ∨ K(n−2)/2) = ζ2(n) and K(n+2)/2 ∨ K(n−2)/2 has
no fractional perfect matching, where ζ2(n) is the largest root of the polynomial
x2 − 1

2 (3n − 4)x + 1
4 (n2 − 8n + 4) = 0.

(iii) For n = 10 and n � 12, we have μ(K1 ∨ (Kn−3 ∪ 2K1)) = ζ3(n) and the graph
K1 ∨ (Kn−3 ∪ 2K1) has no fractional perfect matching, where ζ3(n) is the largest
root of x3 − (n − 2)x2 − (7n − 17)x − 4n + 10 = 0.

PROOF. Here we only prove item (iii). A similar discussion shows items (i) and (ii).
According to the partition V(2K1) ∪ V(K1) ∪ V(Kn−3), the quotient matrix of

D(K1 ∨ (Kn−3 ∪ 2K1)) can be written as

B(K1 ∨ (Kn−3 ∪ 2K1)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 1 2n − 6
2 0 n − 3
4 1 n − 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
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whose characteristic polynomial is x3 − (n − 2)x2 − (7n − 17)x + −4n + 10. Since the
vertex partition is equitable, the largest root ζ3(n) of x3− (n−2)x2− (7n−17)x−4n+10
is equal to the spectral radius of K1 ∨ (Kn−3 ∪ 2K1). Let S = V(K1). By Lemma 2.5,
K1 ∨ (Kn−3 ∪ 2K1) has no fractional perfect matching.

This completes the proof of item (iii). �
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[6] A. Ilić, ‘Distance spectral radius of trees with given matching number’, Discrete Appl. Math. 158

(2010), 1799–1806.
[7] Z. Z. Liu, ‘On the spectral radius of the distance matrix’, Appl. Anal. Discrete Math. 4 (2010),

269–277.
[8] H. Y. Lu and J. Luo, ‘Extremal unicyclic graphs with minimal distance spectral radius’, Discuss.

Math. Graph Theory 34 (2014), 735–749.
[9] H. Minc, Nonnegative Matrices (Wiley, New York, 1988).

[10] S. O, ‘Spectral radius and fractional matchings in graphs’, European J. Combin. 55 (2016), 144–148.
[11] S. O, ‘Spectral radius and matchings in graphs’, Linear Algebra Appl. 614 (2021), 316–324.
[12] E. R. Scheinermann and D. H. Ullman, Fractional Graph Theory: A Rational Approach to the

Theory of Graphs (Wiley, New York, 1997).
[13] D. B. West, Introduction to Graph Theory (Prentice Hall, Inc., Upper Saddle River, NJ, 2001).
[14] L. H. You, M. Yang, W. So and W. G. Xi, ‘On the spectrum of an equitable quotient matrix and its

application’, Linear Algebra Appl. 577 (2019), 21–40.
[15] X. L. Zhang, ‘On the distance spectral radius of unicyclic graphs with perfect matching’, Electron.

J. Linear Algebra 27 (2014), 569–587.

SHUCHAO LI, Faculty of Mathematics and Statistics,
Central China Normal University, Wuhan 430079, PR China
e-mail: lscmath@ccnu.edu.cn

SHUJING MIAO, Faculty of Mathematics and Statistics,
Central China Normal University, Wuhan 430079, PR China
e-mail: sjmiao2020@sina.com

MINJIE ZHANG, School of Mathematics and Statistics,
Hubei University of Arts and Science, Xiangyang 441053, PR China
e-mail: zhangmj1982@qq.com

https://doi.org/10.1017/S0004972722001551 Published online by Cambridge University Press

mailto:lscmath@ccnu.edu.cn
mailto:sjmiao2020@sina.com
mailto:zhangmj1982@qq.com
https://doi.org/10.1017/S0004972722001551

	1 Introduction
	2 Some preliminaries
	3 Proofs of our main results
	4 Extremal graphs

