
Psychometrika (2025), 0, 1–27
doi:10.1017/psy.2024.18

T H E O R Y A N D M E T H O D S

A Family of Sequential Item Response Models for
Multiple-Choice, Multiple-Attempt Test Items

Yikai Lu1 , Jim Fowler2 and Ying Cheng1

1Department of Psychology, University of Notre Dame, Notre Dame, IN, USA; 2Department of Mathematics, The Ohio State
University, Columbus, OH, USA

Corresponding author: Ying Cheng; Email: ycheng4@nd.edu

(Received 30 October 2024; accepted 31 October 2024)

Abstract

We consider a test which allows students to attempt a multiple-choice question multiple times (i.e., multiple
attempts). The most extreme form of multiple attempts is the answer-until-correct (AUC) procedure. Pre-
vious research has demonstrated that multiple-attempt procedures such as AUC could potentially enhance
learning and increase reliability. However, for multiple-choice items, guessing is still non-ignorable.
Traditional models of sequential item response theory (SIRT) could model multiple-attempt procedures
but fail to take guessing into account. The purpose of this study is to propose SIRT models for multiple-
choice, multiple-attempt items (SIRT-MM). First, we defined a family of SIRT-MM models to account for
the idiosyncrasies of items, answer options, and examinee behavior. We also explained how these models
could improve person parameter estimates by taking into account partial (mis)information of examinees.
Second, we conducted model comparisons between the SIRT-MM models, the graded response model, and
the nominal response model. Third, we discussed how the item and person parameters can be estimated,
and evaluated item and person parameter recovery of SIRT-MM models under different conditions through
a simulation study. Finally, we applied the SIRT-MM models to a real dataset and demonstrated their utility
through model selection, person parameter recovery, and information functions.

Keywords: answer-until-correct; multiple attempts; multiple choice item; sequential item response theory

1. Introduction

Many tests employ two types of items: constructed-response items and multiple-choice items (Kastner
& Stangla, 2011; Lukhele et al., 1994). Constructed response questions require examinees to create
their own answers, which can take many forms, including short text responses, an essay, a diagram,
an explanation of a procedure, or the step-by-step solution of a mathematical problem (Kastner &
Stangla, 2011; Lukhele et al., 1994). Multiple-choice is an item format widely used in testing due to
its simplicity of scoring, which consists of answer choices (or alternatives) and in many cases one of
them is the correct choice.

Scoring of multiple-choice items can heavily depend on the state of an examinee. The simplest
example would be a completely ignorant examinee, who could guess the correct answer choice and
possibly receive credit by chance. Specifically, letting K be the total number of answer choices and
assuming the examinee does not have any knowledge of a test item, the probability of guessing the
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correct response, or the expected score when 0/1 (correct-or-incorrect) scoring is used, is 1
K . We refer

to this condition as complete ignorance. An examinee who could eliminate some distractors, or wrong
answer choices, will have a higher chance to earn a point. For example, the expected score will be
0.5 when an examinee could eliminate K − 2 distractors and leave two possible choices including the
correct answer choice. Davis (1964) referred to this condition, where an examinee guesses among some,
not all, correct and incorrect choices, as partial information (Frary, 1980). On the other hand, Davis
(1964) referred to a condition where an examinee is misinformed and eliminates the correct choice, as
misinformation (Frary, 1980). The amount of misinformation varies depending on how many choices,
including the correct choice, are believed to be incorrect. For instance, if an examinee believes that
the correct answer choice and K − 2 distractors are incorrect, he or she would select the remaining
distractor, getting 0 point by 0/1 scoring. On the other hand, if an examinee believes that the actual
correct choice is wrong but all the distractors are correct, he or she would select one of the distractors,
getting 0 point by 0/1 scoring as well. The former condition is referred to as partial misinformation
and the latter condition is referred to as complete misinformation (Frary, 1980). Intuitively, complete
misinformation should be penalized more than partial misinformation. Nevertheless, such conditions
are handled differently depending on scoring methods. For example, the simple 0/1 scoring method will
treat these two misinformation conditions equally, as both examinees would select one of the distractors.
However, an answer-until-correct (AUC) procedure, which is a popular multiple-attempt procedure that
lets an examinee continue to select answer options until the correct option is picked, tends to give higher
expected item scores with lower levels of misinformation (Frary, 1980, 1989; Kane & Moloney, 1978).
Frary (1980) gave a good summary of how these two misinformation conditions are handled in various
scoring methods including a multiple-attempt procedure, which is the focus of this article.

As a multiple-attempt procedure, AUC has been reported to have various advantages including: (1)
AUC can lead to higher reliability than 0/1 scoring by taking into account different levels of examinees’
partial (mis)information (Gilman & Ferry, 1972; Hanna, 1975; Slepkov & Godfrey, 2019), (2) AUC could
enhance learning by providing immediate corrective feedback between attempts (Epstein et al., 2001),
and (3) AUC is strongly preferred by examinees over only one attempt being allowed (DiBattista
et al., 2009). Importantly, Epstein et al. (2001) found that their AUC procedure significantly enhances
the retention of material from earlier exams. Specifically, in the final exam, students who had previously
experienced the AUC approach were twice as likely to answer previously incorrect questions correctly
compared to those who had used Scantron forms (Epstein et al., 2001).

Item scoring for a multiple-attempt procedure, including the AUC procedure, can be very simple:
K −u where u is the number of attempts an examinee makes. In this way, we can retrieve the levels of
partial misinformation by recording the number of attempts. For example, a completely misinformed
examinee would continuously select distractors until the last attempt, resulting in zero points, whereas
a partially misinformed examinee who believes that one distractor is correct and is unsure about the
other choices, would select that distractor at the first attempt and guess from the second attempt on.
Thus, the expected score of a partially misinformed examinee would be higher than that of a completely
misinformed examinee. A multiple-attempt procedure can also take into account the different levels
of partial information. For example, if a partially informed examinee could eliminate a number of
distractors and leave s remaining choices, they are guaranteed to have a score of K−s or better. Moreover,
different item scoring schemes are possible. Slepkov and Godfrey (2019) conducted analyses of the
reliability of several multiple-attempt tests using different item scoring schemes. In Slepkov and Godfrey
(2019), the most popular scoring scheme is one that grants full credit if the first attempt was successful,
half credit if the second attempt is successful, one-tenth credit if the third attempt was successful, and
no credit otherwise.

These scoring schemes are based on classical test theory. Classical test theory is a class of mea-
surement models that are based on the total sum of item scores, and typically each item is scored
by the 0/1 scoring. When such scoring schemes for a multiple-attempt procedure are used, we calculate
the total sum of item scores as an estimate of the ability of an examinee. Another approach to model
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the ability of an examinee is to use item response theory (IRT; De Ayala, 2009). Tutz (1990) proposed
sequential item response (SIRT) models, which are motivated by “a genuine stepwise approach” to
emphasize its difference from the partial credit model. Unlike the latter, SIRT models can model a
person’s consecutive attempts at an item, such as a test of psychomotor skills. One advantage of SIRT
models is that item parameters specific for future attempts do not affect ability estimation at the earlier
attempts (Tutz, 1990). Thus, SIRT models could be used for modeling a multiple-attempt procedure that
allows an unlimited or limited number of attempts.

More specifically, following the notations in Culpepper (2014), SIRT models could be formulated as
follows. Suppose a test item has a multiple-attempt procedure that allows an examinee to submit answers
until they reach the correct answer. Let Xj be a random variable representing the number of attempts an
examinee needed to submit a correct answer on item j and Yju represents a Bernoulli random variable
of whether the examinee submitted a correct or incorrect response on attempt u. In SIRT, P(Xj = u∣θ)
where u = 1,2, . . . could be constructed by assuming P(Yju = 1∣Yj(u−1) = 0) =Hj(θ,u) and

P(Xj = u∣θ) = P(Yju = 1∣Yj(u−1) = 0,θ)P(Yj(u−1) = 0∣Yj(u−2) = 0,θ)
...P(Yj2 = 0∣Yj1 = 0,θ)P(Yj1 = 0∣θ) (1)

=Hj(θ,u)
u−1
∏
k=1
[1−Hj(θ,k)].

We often assume that Hj(θ,u) is a function of item parameters, Hj(θ,u) = H(θ,Ωju), where Ωju is
item parameters for item j at attempt u. By assuming H(θ,Ωju) to be a Rasch model,

Hj(θ,u) =H(θ,Ωju) =
exp(θ−bju)

1+exp(θ−bju)
, (2)

where bju ∈Ωju, we get the Rasch sequential item response model, which was proposed by Tutz (1990).
However, one problem in using the Rasch sequential item response model for multiple-choice,

multiple-attempt test items is that it does not take into account guessing at each attempt, which can
be non-trivial especially at later attempts when some answer options have already been eliminated.
While existing SIRT models are suitable for a multiple-attempt procedure with constructed responses,
an appropriate model is yet to be proposed for a multiple-attempt procedure with multiple-choice
items. Thus, the goal of this study is to formally propose new SIRT models, which we call the “SIRT-
MM” models (MM stands for multiple-choice, multiple-mttempt), to effectively score multiple-attempt
responses for multiple-choice test items. This will be achieved by taking into account the structure of
a multiple-choice test item, especially considering the homogeneity or heterogeneity of distractors and
the process of elimination of answer choices after reattempts. As a result, we will address the issue of
guessing at each attempt. Subsequently, we will also (1) evaluate parameter recovery under various test
length and sample size conditions, (2) compare SIRT-MM models with competing models such as the
graded response model and the nominal response model for multiple attempts data, and (3) demonstrate
the usage of SIRT-MM models using real data.

2. Methods

2.1. The basic SIRT-MM model
In this section, we will suppress the subscript j denoting individual items for simplicity (e.g., denoting
Hj(θ,u) as H(θ,u)). Theoretically, to model items using SIRT models, we can design any function for
H(θ,u), and thus an infinite number of the variants of SIRT models could be created. In our context, we
need to consider a H(θ,u) suitable for multiple-choice test items. We begin by considering the structure
of a multiple-choice item. Suppose a multiple-choice item has K choices, including one correct choice
and K − 1 distractors, and its choice set as S = {v1,v2,...,vK}, which is a set of all K answer choices of
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a multiple-choice item. We allow K attempts because any examinee could reach a correct choice by
the Kth attempt by eliminating all the distractors. Technically speaking, we only need K −1 attempts.
However, for the sake of the clarity of our models, we will include the Kth attempt as a response category
to differentiate whether the (K −1)th attempt is successful or not.

We model multiple-choice, multiple-attempt test items following the discrete choice theory
(Agresti, 2013; Ben-Akiva, 1985; Benson et al., 2016; Luce, 1959). The fundamental principle of discrete
choice analysis is utility maximization, which assumes that a decision maker selects the option or
alternative with the highest utility among all available alternatives at the time (Ben-Akiva, 1985). In the
testing context, each answer option of a multiple-choice test item is considered an alternative, and an
examinee’s perceived correctness of an option is its utility. Utility maximization means an examinee
would always try to choose an answer option with the highest perceived correctness.

However, the deterministic view of the choice theory has a limitation in modeling examinees’
behavior using a single latent variable θ, because θ cannot fully explain the variations of item responses
and there always is some randomness not captured. Therefore, we will adopt the probabilistic choice
theory for modeling examinees’ behavior.

In probabilistic choice theory, the “choice axiom” (Ben-Akiva, 1985; Luce, 1959) states that the
probability of choosing any answer choice v from the choice set S would satisfy

P(v∣S) = P(v∣S̃ ⊂ S) = P(v∣S̃)P(S̃∣S), (3)

where S̃ is any subset of S and P(S̃∣S) is the probability of choosing an answer choice in S̃. The choice
axiom suggests that if some distractors are removed from the choice set, the relative probabilities for
the remaining options are unchanged (Ben-Akiva, 1985). The “choice axiom” implies independence from
irrelevant alternatives (IIA; Luce, 1959):

P(va∣S)
P(vb∣S)

= P(va∣S̃)
P(vb∣S̃)

, (4)

which suggests that the odds of choosing va over vb do not depend on the other options in the choice
set (Agresti, 2013).

The IIA assumption is widely used and discussed in statistics literature (Agresti, 2013; Benson
et al., 2016), such as in multinomial logit models, e.g., multinomial logistic regression (Agresti, 2013;
Ben-Akiva, 1985), and other “divide-by-total” models (Thissen & Steinberg, 1986), e.g., (generalized)
partial credit model (Masters, 1982; Muraki, 1992) and nominal response model (Bock, 1972). In fact,
the divide-by-total models can be derived under the IIA assumption. In other words, when IIA holds, a
utility model of P(v∣S̃) for any S̃ ⊆ S will be

P(v∣S̃) = w(v)
∑v′∈S̃ w(v′), (5)

where a utility measure for answer choice v is represented as a positive real valued function w(v), which
is directly proportional to the choice probability. In modeling a multiple-choice test item, utility measure
can be considered a function of the latent ability of an examinee, θ. Here, we take as the utility measure
the probability of the option v being perceived as true by an examinee with ability level of θ, i.e., w(v) =
pv(θ). As we assume the IIA, w(v) does not change after eliminating any other answer choice.

In sum, the IIA assumption implies that (1) the probability of making a choice can be expressed as a
utility (or divide-by-total) model and thus gets re-scaled proportionally at every attempt. In other words,
the probability of choosing an answer option is simply a scaling constant away from the utility measure
of the option, and can thus be treated as interchangeable; and (2) eliminating an answer choice does
not change the utilities of other alternatives, resulting in the unchanged relative choice probabilities. In
the context of multiple attempts, we call the latter implication attempt invariance, which means that the
utility measures will not change over attempts. This is a reasonable assumption as long as after every
attempt, feedback is only given regarding their previous choice being correct or incorrect, without any
additional information about the remaining answer choices. Later when we relax the attempt invariance
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assumption, we express the probability as pv(θ,u) at attempt u, indicating that the probability depends
on the number of attempts having been made.

To formulate the SIRT-MM model, we assume that pv(θ) could be sufficiently modeled by a single
latent variable θ and item parameters. Let T be the correct answer choice and pT(θ) be the probability
of considering the correct answer choice to be true. Let Du be the distractor with the u-th largest utility
for each examinee and pDu(θ) be the probability of endorsing the distractor at the u-th attempt, where
each examinee would select in the order of D1,D2,...,DK−1 when they consistently make failed attempts.
Note that we are not interested in specific choices of distractors for the ordering of D1,D2,...,DK−1 for
each examinee, but we are only interested in modeling the expected u-th highest utility of a distractor
at given θ (i.e., pDu(θ)), assuming that each examinee selects the answer choices with the highest utility
subjectively judged by them.

Recall that, in SIRT, P(X = u∣θ) where u = 1,2, . . . ,K could be constructed by assuming P(Yu =
1∣Yu−1 = 0,θ) =H(θ,u) and

P(X = u∣θ) = P(Yu = 1∣Yu−1 = 0,θ)P(Yu−1 = 0∣Yu−2 = 0,θ)
...P(Y2 = 0∣Y1 = 0,θ)P(Y1 = 0∣θ) (6)

=H(θ,u)
u−1
∏
k=1
[1−H(θ,k)].

Then, based on the utility model presented in Eq. (5), the probability of submitting a correct answer
on the first attempt is

H(θ,1) = P(Y1 = 1∣θ) = pT(θ)
∑K

v=1 pv(θ)
= pT(θ)

pT(θ)+∑K−1
k=1 pDk(θ)

. (7)

The conditional probability of submitting a correct answer at the second attempt is

H(θ,2) = P(Y2 = 1∣Y1 = 0,θ) = pT(θ)
[∑K

v=1 pv(θ)]−pD1(θ)
= pT(θ)

pT(θ)+∑K−1
k=2 pDk(θ)

, (8)

where a distractor D1 is initially mistakenly selected. This supports an intuition that H(θ,u) will be
higher as u gets larger by eliminating distractors.

We begin by deriving the simplest form of an SIRT-MM model. This simple model assumes that
all the distractors will are equally appealing to examinees, even after reattempts. In other words, we
assume that all the distractors have the same probability of being selected given θ (i.e., homogeneity of
distractors). Mathematically put, pD1(θ) = pD2(θ) = ... = pDK−1(θ) and we can simply denote pDu(θ) as
pD(θ). One advantage of assuming both IIA and homogeneity of distractors is that it allows us not to
assume a shape for H(θ,u) for u = 2, . . .. In fact, H(θ,u) for u = 2, . . . could be analytically derived from
H(θ,1). Therefore, by assuming the shape of H(θ,1) to be a 3PL logistic function, as the first attempt
is technically the same as the 0/1 scoring, the whole model could be derived. Later in this article, we
introduce parameterizations that allow us to relax both assumptions.

Now, for u = 1,2,...,K, H(θ,u) can be instead written as

H(θ,u) = pT(θ)
pT(θ)+∑K−1

k=u pDk(θ)
= pT(θ)

pT(θ)+(K −u)pD(θ)
. (9)

We can observe that the reciprocal of this probability, 1
H(θ,u) , decreases linearly by pD(θ)

pT(θ) as u increases
since:

1
H(θ,u) = 1+(K −u)pD(θ)

pT(θ)
. (10)

Finally, by assuming H(θ,1) to be a 3PL logistic function with a fixed pseudo-guessing param-
eter of 1

K , which we denote as the “2.5 PL” model as it is between the 2PL and 3PL models
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(Bizot & Goldman, 1994),

H(θ,1) = 1
K
+(1− 1

K
) exp(a(θ−b))

1+exp(a(θ−b)) =
pT(θ)

pT(θ)+(K −1)pD(θ)
. (11)

Thus,

pD(θ)
pT(θ)

=
1

H(θ,1) −1
K −1

= [K +K exp(a(θ−b))
1+K exp(a(θ−b)) −1]/[K −1] (12)

= 1
1+K exp(a(θ−b))

and

1
H(θ,u) = 1+(K −u)pD(θ)

pT(θ)

= 1+ K −u
1+K exp(a(θ−b)) . (13)

It is worth noting that we only model pD(θ)
pT(θ) in the equations, instead of directly modeling pD(θ) and

pT(θ), respectively. Finally, the unconditional probability of choosing the correct choice for item j at the
u-th attempt is derived as follows:

P(X = u∣θ) =H(θ,u)
u−1
∏
k=1
[1−H(θ,k)]

= (K −1)![1+K exp(a(θ−b))]
(K −u)!∏u

k=1[K −k+1+K exp(a(θ−b))], (14)

which is the simplest SIRT-MM model.
Figure 1 shows example item category response functions (i.e., P(X = u∣θ)) when a = 1.7,b = 0.0,

K = 5. As expected, we can observe that at any θ, ∑K
u=1 P(X = u∣θ) = 1, and P(X = 1∣θ) (or u = 1) has

the same shape as a 3PL logistic model. This figure also shows that conditioning on X = 2 (or u = 2), the
middle range of θ is the most likely when b = 0. This is intuitive as those who need exactly two attempts
to get the right answer likely do not have very low or high θ. Since we assume a fixed pseudo-guessing
parameter of 1

K , P(X = u∣θ) converges to 1
K as θ→ −∞, suggesting complete ignorance will occur as

θ→−∞. This figure also shows that P(X = 1∣θ) is the highest among all P(X = u∣θ) at any θ. To allow
P(X = u∣θ) for u = 2 or above to be larger than P(X = 1∣θ) for some θ, we need to relax the homogeneity
of distractors assumption and attempt invariance.

2.2. More general SIRT-MM models
Now, we turn to a more general case where distractors are not homogeneous, in particular, one distractor
being the most attractive. Consider examinees with ability θ who try to evaluate all answer options of
two test items. Let dk be the distractor k of an item, specified by its position within the item. Note that
dk is different from Du, which we introduced earlier to represent the distractor with the u-th largest
utility for each examinee. Suppose on average examinees with ability θ perceive the chance for the four
options of item 1 being the correct choice as (pT(θ),pd1(θ),pd2(θ),pd3(θ)) = (0.25,0.25,0.25,0.25),
and that of item 2 as (pT(θ),pd1(θ),pd2(θ),pd3(θ)) = (0.25,0.65,0.05,0.05). Table 1 presents the
probabilities of submitting a correct response at each attempt for the two items based on the utility
model. Obviously, the probability of submitting a correct response at the first attempt is 0.25 for both
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Figure 1. Item category response function: a = 1.7,b = 0.0,K = 5.

Table 1. Probabilities of submitting a correct response at each attempt for two hypothetical test items

Item with (pT(θ),pd1
(θ),pd2

(θ),pd3
(θ)) Condition Attempt

1 2 3 4

(0.25,0.25,0.25,0.25) Complete ignorance 0.25 0.25 0.25 0.25

(0.25,0.65,0.05,0.05) Partial (mis)information 0.25 0.49 0.21 0.05

items. However, the chance of submitting a correct response at the second attempt is different. For
the the first item, it is (1− 0.25) ⋅ 0.25

0.25+0.25+0.25 ≈ 0.25. For the second item it is 0.65∗ 0.25
0.25+0.05+0.05 +

2 ∗ 0.05 ∗ 0.25
0.25+0.65+0.05 ≈ 0.49. Note that the first term of the second equation, which calculates the

probability of choosing d1 first and then the correct answer choice, is 0.65∗ 0.25
0.25+0.05+0.05 ≈ 0.46, meaning

that when an examinee makes two attempts for the second item, they are likely tricked by the most
attractive distractor, d1, and select d1 at the first attempt. These results also suggest that a multiple-
attempt procedure penalizes complete ignorance more than partial (mis)information at the second
attempt. For the first item, the person considers the correct answer choice to be equally likely, while
for the second item, the person at least believes that the correct answer choice is more probable than d2
and d3. In the second case, partial information helps avoid needing more than two attempts to answer
the item correctly.

We also consider another general case where the utility of any answer choice will change over
reattempts. Suppose that the utility of answer choice v at attempt u is pv(θ,u). The IIA assumption
implies attempt invariance, which means that pv(θ,1) = pv(θ,2) = ... = pv(θ,K), allowing us to denote
pv(θ,u) as pv(θ). However, this could be a strong assumption in a multiple-attempt procedure because
the population changes after reattempts and specific characteristics of items might affect changes in
pv(θ,u) over reattempts. For example, a test item that requires certain factual knowledge (e.g., trivia
questions) to answer might divide examinees into those who know the answer with confidence and
those who do not know the answer at all. In such a case, conditioning on some θ, the population
could be divided into two groups by whether they know the requisite fact. For some value of θ, the
first group of examinees might believe (pT(θ),pd1(θ),pd2(θ),pd3(θ)) = (0.91,0.03,0.03,0.03), while
the second group of examinees might believe (pT(θ),pd1(θ),pd2(θ),pd3(θ)) = (0.25,0.25,0.25,0.25).
If there is an equal number of examinees from each group in the population, on average, pT(θ) would
be around 0.58 at the first attempt. However, after the first attempt, most likely only the latter group of
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examinees would proceed to the second attempt, leading to a much lower average pT(θ) at the second
attempt. A similar phenomenon was documented by Lyu et al. (2023)) in which they explain that certain
item characteristics can have a larger effect after reattempts, resulting in higher difficulty estimates for
multiple-attempt items.

To accommodate scenarios described above, we can formulate a more general SIRT-MM model
which relaxes both the homogeneity of distractors and the attempt-invariance assumptions by intro-
ducing more parameters to vary the average utility of all the unattempted distractors relative to that of
the correct answer choice across different attempts.

Recall that H(θ,u) can be expressed as follows

H(θ,u) = pT(θ,u)
pT(θ,u)+∑K−1

k=u pDk(θ,u)
. (15)

Thus,

1
H(θ,u) = 1+

K−1
∑
k=u

pDk(θ,u)
pT(θ,u)

. (16)

To model H(θ,u), we model the average of all the unattempted distractors at the uth attempt1:

pD(θ,u) =
1

K −u

K−1
∑
k=u

pDk(θ,u). (17)

Then,

1
H(θ,u) = 1+

K−1
∑
k=u

pDk(θ,u)
pT(θ,u)

= 1+(K −u)pD(θ,u)
pT(θ,u)

. (18)

In modeling pD(θ,u)
pT(θ,u) , as an extension of the simplest SIRT-MM model, which assumes

pD(θ)
pT(θ)

= 1
1+K exp(a(θ−b)), (19)

we propose to introduce the attempt-specific “difficulty-shift” parameter γu ∈ R for u = 2, . . . ,K for a
more general SIRT-MM model:

pD(θ,u)
pT(θ,u)

= 1
1+K exp(a(θ−b+γu))

. (20)

Therefore,

1
H(θ,u) = 1+(K −u)pD(θ,u)

pT(θ,u)

= 1+ K −u
1+K exp(a(θ−b+γu))

. (21)

1One approach to model H(θ,u) is to model pDk (θ)
pT(θ) directly as a function of item parameters and θ. However, an issue of

this parameterization is that H(θ,u) will depend on attempt-specific parameters from later attempts, which makes it not an
SIRT model anymore. Also, we cannot estimate the model when we do not have a large sample size or we set the maximum
number of attempts to be less than K where later attempts are not available.
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Figure 2. Item category response function: a = 1.7,b = 0.0,γ3 = 0.5,γ4 = 0, and K = 5 with different γ2.

This leads to:

P(X = u∣θ) =H(θ,u)
u−1
∏
k=1
[1−H(θ,k)]

= (K −1)![1+K exp(a(θ−b+γu))]
(K −u)!∏u

k=1[K −k+1+K exp(a(θ−b+γk))]
, (22)

where γ1 ≡ 0 and γK ≡ 0. This is the more general SIRT-MM model, of which the simplest SIRT-MM
model (Eq. (14)) is a special case.

We define non-zero γu parameters only for u = 2, . . . ,K − 1 because: (a) γ1 will lead to over-
parameterization due to the existence of b, and (b) γK is not necessary since only one answer choice
will be left after the K −1th attempt. Note that γu is item and attempt specific, but does not vary across
examinees. We could further relax pD(θ,u)

pT(θ,u) by allowing a to vary over each attempt at u (i.e., modeling
aju or (a+δju)). We discuss this extension in the Supplementary Material and discussion section.

2.3. Interpreting γ parameters
The simplest interpretation of γu is that γu regulates the probability of making a successful attempt at
the uth attempt. Specifically, when γu increases, P(X = u∣θ) increases. Similarly, when γu decreases,
P(X = u∣θ) is decreased.

Figure 2 shows example item category response functions (ICRFs) when a = 1.7,b = 0.0,K = 5,γ3 =
0.5,γ4 = 0 and two different γ2s. The left panel shows the ICRF with γ2 = 1 and the right panel shows the
ICRF with γ2 = −1. All parameters except for the γ parameters are the same as those for Figure 1. Note
that P(X = 1∣θ) is unaffected by any γu parameters, as non-zero γu are only defined for u = 2, . . . ,K −1,
which could not influence u = 1. The major difference between the two panels lies in P(X = 2∣θ), which
has a pronounced peak around θ =−0.5 when γ2 = 1 and is rather flat around θ =−0.5 when γ2 =−1. As a
result, P(X = u∣θ) for u > 2 are also affected accordingly, which are smaller when γ2 = 1 and larger when
γ2 =−1. This indicates that examinees with lower ability (e.g., θ <−1) are more likely to require only two
attempts to answer correctly when γ2 = 1, whereas they are more likely to require three attempts when
γ2 = −1. Therefore, by adjusting γ parameters, different types of item category response functions can
be captured.

More specifically, γu governs the change of probability ratio between the average of the unattempted
distractors and the correct answer option and at the uth attempt (i.e., pD(θ,u)

pT(θ,u) ) compared to the first
attempt.
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Figure 3.
pD(θ,u)
pT(θ,u) when a = 1.7,b = 0.0,γ2 = 1,γ3 = 0.1,K = 4.

Figure 3 shows pD(θ,u)
pT(θ,u) when a = 1.7,b = 0.0,K = 4,γ2 = 1,γ3 = 0.1. We set γ3 = 0.1 instead of γ3 = 0 to

prevent u = 1 and u = 3 lines from overlapping. We can observe that pD(θ,2)
pT(θ,2) is shifted to the left by γ2 = 1

compared to pD(θ,1)
pT(θ,1) . Similarly, pD(θ,3)

pT(θ,3) is shifted to the left by γ2 = 0.1 compared to pD(θ,1)
pT(θ,1)

2.4. Possible factors that affect γ parameters
Increasing γu parameters over attempts can be caused by the heterogeneity of distractors. This means
when γ2 > 0, pD1 > pD2 is expected. Furthermore, when γ3 > γ2, pD2 > pD3 is expected. For example,
when γ2 = 1.0,γ3 = 1.0, and K = 4 for an item, there is at least one attractive distractor that will make
examinees more likely to make two attempts. Numerically, a positive γu reduces pD(θ,u)

pT(θ,u) at the uth
attempt. Logically, increasing γu indicates knowledge gain through correcting partial misinformation
because after a failed attempt, a distractor with high utility will be eliminated, leading to pD(θ,u)

pT(θ,u) to
be smaller at later attempts and the correct answer option even more appealing. Therefore, increasing
γu could signify the heterogeneity of distractors. Increasing γu might also be caused by informative
feedback such as hints after a wrong response.

On the other hand, as we described earlier, decreasing γu parameters can be caused by the population
changes after reattempts and specific characteristics of items. In the example of an item requiring factual
knowledge, pT could decrease because the examinees who fails the first attempt would likely fail the
second attempt as well, and they represent the majority of those who need the second attempt. Thus,
pD(θ,u)
pT(θ,u) would increase from the first to second attempt, which would be captured by a negative γ2.

In addition, negative γ parameters could result from having a large number of examinees who are
being inattentive and fail to eliminate already selected distractors in reattempts. In this article, we assume
that examinees are attentive. However, if the system allows examinees to select the same wrong answer
option repeatedly, negative γu could result.

2.5. Setting the maximum number of attempts
One advantage of using an SIRT model is that we can limit the maximum number of attempts in a
test item, as it is not influenced by attempt-specific parameters such as γ parameters from later attempts
(Tutz, 1990). This is especially useful when a sample size is not large enough to reliably estimate attempt-
specific parameters for later attempts. In addition, thanks to the future-agnostic property of SIRT
models, we can also reuse the same item parameters and collapse certain categories when only a smaller
number of attempts is allowed.
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Figure 4. Item category response function when the maximum number of attempts is 3: a = 1.7,b = 0.0,γ2 = 1, and K = 5.

Table 2. Family of SIRT-MM models

Constraint No. of parameters Description

aju,bj, and γju are unconstrained 2M(K-1) The SIRT-MM model with the highest degrees of freedom

aju = au (M + 1)(K-1)

aju = aj MK The second SIRT-MM model we formulated (Eq. (22))

aju = aj,γju = 0 for all u = 3, . . . ,K−1 3M A reduced version of the second SIRT-MM model

aju = aj,γju = 0 for all u = 2, . . . ,K−1 2M The simplest SIRT-MM model we formulated (Eq. (14))∗

⋮

aj = 1,γju = 0 M The simplest SIRT-MM model with fixed aj parameters∗

Note: The second column shows the number of item parameters where M is the number of items and K is the number of answer choices. The
models with * at the end of description have the homogeneity of distractors and attempt-invariance assumptions.

For example, Figure 4 shows the item category response functions used in Figure 2a when we set the
maximum number of attempts to three. Simply, these are the item category response functions shown in
Figure 2a, but P(X = 3∣θ), P(X = 4∣θ), and P(X = 5∣θ) are collapsed into one category. In this example,
only γ2 is relevant, and no matter what true value of γ3 or γ4 would be, the SIRT-MM model yields
exactly the same model when the maximum number of attempts is three.

2.6. Summary of different parameterizations of SIRT-MM models
Bergner et al. (2019)) summarized existing SIRT models in a table. Similarly, we summarize in Table 2
a family of SIRT-MM models with different constraints. We denote the subject j for individual items
and u for the number of attempts. The number of parameters depends on constraints imposed or lifted.
The basic SIRT-MM model introduced first in this article is actually a constrained version of the more
general SIRT-MM models when γju ≡ 0. We recommend that a model should be selected based on the
sample size and model fit statistics such as likelihood ratio tests, Akaike information criterion (AIC;
Akaike, 1973) and Bayesian information criterion (BIC; Schwarz, 1978). Later we evaluate the accuracy
of model selection using AIC and BIC in the simulation study section.

2.7. Item parameter estimation of SIRT-MM
In this article, we implement marginal maximum likelihood estimation (MMLE) for estimating the item
parameters for SIRT-MM models (Bock & Aitkin, 1981). Once the item parameters are estimated, we
will estimate θ after treating estimated item parameters as fixed.
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In MMLE for item parameters, the likelihood function,

L = ∫
∞

−∞

N
∏
i=1

M
∏
j=1

P(Xij = uij∣θ)Φ(θ)dθ (23)

is maximized, where Xij is a random variable representing the number of attempts examinee i needed
to submit a correct answer on item j, uij is the actual number of attempts taken by examinee i to answer
item j correctly, N is the number of examinees, M is the number of items, and Φ(θ) is a probability
density function for the population. Typically, the standard normal distribution is used for Φ(θ).

To maximize the likelihood function, we use the log-likelihood, denoted as lnL, instead. Conse-
quently, we require the gradient and Hessian of lnP(Xij = uij∣θ) with respect to a parameter of interest
to apply Newton’s method for maximizing the likelihood function. However, computing the value of the
log-likelihood function is not straightforward because the equation contains an integral. In practice, an
EM algorithm that uses Gauss–Hermite quadratures is used to compute the marginal likelihood. One
should refer to the works by Bock and Aitkin (1981); Muraki (1992) for the details of implementing an
EM algorithm for parameter estimation. We will suppress the subscript i next for simplicity.

The generic solutions of the gradient and Hessian of lnP(Xj = u∣θ) are rather straightforward.
Suppose ϕ ∈ {a,b,γ} and ω ∈ {a,b,γ} are the parameters of interest:

∂

∂ϕ
lnP(Xj = u∣θ) = ∂zju

∂ϕ
Aju−

u
∑
k=1

∂zju

∂ϕ
Bju;

∂2

∂ϕ∂ω
lnP(Xj = u∣θ) = ∂

2zju

∂ϕ∂ω
Aju+

∂zju

∂ϕ
∂zju

∂ω
(Aju−A2

ju) (24)

−
u
∑
k=1
( ∂2zju

∂ϕ∂ω
Bju+

∂zju

∂ϕ
∂zju

∂ω
(Bju−B2

ju)),

where zju = aj(θ − bj + γju),Aju = K exp(zju)
1+K exp(zju)

, and Bju = K exp(zju)
K−i+1+K exp(zju)

. Especially, − ∂2

∂ϕ∂ω lnP(Xj =

u∣θ) is called the observed information function and −E[ ∂2

∂ϕ∂ω lnP(Xj = u∣θ)] = −∑K
u=1 P(Xj =

u∣θ) ∂2

∂ϕ∂ω lnP(Xj = u∣θ) is called the expected or Fisher information function of an item. In addition,
the Fisher information function of an item is often simply referred to as an item information function.
When we estimate a simple model with fewer parameters by setting γju = 0 for any u, we only need to
set these values to zero in zju = aj(θ−bj+γju) and use the same equations, Eq. (24).

2.8. Person parameter estimation
There exist three popular approaches for estimating person parameters: maximum likelihood estimation
(MLE), maximum A posteriori (MAP), and expected A posteriori (EAP) (De Ayala, 2009). MLE
maximizes the log-likelihood of a response pattern by Newton’s method, MAP uses the mode of the
posterior distribution of an θ estimate (typically the standard normal distribution is used for prior),
and EAP uses the mean of the posterior distribution of an θ estimate (De Ayala, 2009). In our model,
MLE could be obtained by maximizing

lnLResp =
M
∑
j=1

lnP(Xij = uij∣θi) (25)

with respect to θi where θi is the latent ability of examinee i, which could be done by Newton’s method
using Eq. (25). One issue in using MLE is that it cannot provide a θ estimate when a response pattern
is all 1 or K. Also, it is known that the mean squared error of θ estimates by EAP is smaller than that
obtained by using MLE although its estimation bias is increased (De Ayala, 2009; Lord, 1986). Thus, we
use EAP in our simulation study.
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Figure 5. Fisher information of SIRT-MM models with K = 4, b = 0, and γu = 0 for u = 2 and 3, and different a; and the corresponding

2.5PL models with γ1 ≡ 0.

2.9. Fisher information and standard errors
Under regularity conditions, the Fisher information of item parameter ϕ ∈ {a,b,γ} is −E[ ∂2

∂ϕ2 lnL] and
that of θ is −E[ ∂2

∂θ2 lnLResp]. Thus, we can calculate the standard errors of estimates in {θ,a,b,γ}, which
is inversely related to the square root of the corresponding Fisher information. Thus, the standard error
of item parameter ϕ is

SEϕ =
1√

−E[ ∂2

∂ϕ2 lnL]
. (26)

Similarly, the standard error of measurement (SEM), which is the standard error of θ is

SEM = 1√
−E[ ∂2

∂θ2 lnLResp]
. (27)

However, the SEM as defined in the above formula is based on MLE. In this study, since we use EAP,
we decide to capture the variation in the person parameter estimates using the empirical SE instead.

2.10. Item information
Item information is Fisher information computed with respect to θ for any single item, which is
a measure of how much an item contributes to reducing the uncertainty about θ estimates (De
Ayala, 2009). We can compare item information computed by using SIRT-MM models (which captures
information from multiple attempts) against its corresponding 2.5PL model (i.e., the 3PL model with a
fixed guessing parameter of 1/K) to demonstrate how much SIRT-MM models potentially improve the
accuracy of θ estimates. For example,

Figure 5 shows the item information of SIRT-MM models with b = 0,K = 4, and γu = 0 for u = 2 and 3,
two levels of a parameters (a = 0.482 in the left panel and and a = 0.75 in the right panel), and
its corresponding 2.5PL model. As with the 2.5PL model, SIRT-MM models provide more Fisher
information as the a parameter increases. It is noteworthy that for lower θ, SIRT-MM models can yield
more information than their 2.5PL counterparts. This is because though reattempts we can gain more
information about examinees who fail the first attempt, which is more likely to happen for examinees
with lower θ. Conversely, for higher θ, both models have similar information because examinees with
higher θ typically only need one attempt to reach the correct answer.

Figure 6 shows the item information of SIRT-MM models with a = 0.75,b = 0, and γu = 0 for u =
2 and 3, two levels of K parameters (K = 2 in the left panel and and K = 3 in the right panel), and its
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Figure 6. Fisher information of SIRT-MM models with a = 0.75, b = 0, γu = 0 for u = 2 and 3, and different K; and the corresponding

2.5PL models with γ1 ≡ 0.

Figure 7. Fisher information of SIRT-MM models with a= 0.75, b= 0, γ3 = 0, K = 4, and different γ2; and the corresponding 2.5PL models

with γ1 ≡ 0.

corresponding 2.5PL model. The left panel demonstrates that the 2.5PL models can be considered a
special case of SIRT-MM models when K = 2. Also, the comparison between the two panels shows that
the item information increases for both 2.5PL and SIRT-MM models when K increases because the
chance of guessing is reduced.

Figure 7 shows the item information of SIRT-MM models with a = 0.75, b = 0, and γ3 = 0 for
u = 2 and 3, K = 4, two levels of γ2 (γ2 = 2 on the left, and γ2 = −2 on the right), and the corresponding
2.5PL models. Changing the γ2 will affect the amount of item information in lower θ. When γ2 is
positive, we can gain more item information in lower θ than when it is negative because in the latter
case examinees with lower θ would not be able to differentiate among distractors and behave similarly
to random guessing after the first attempt, as in the example of factual knowledge item.

3. Simulation studies

3.1. Simulation design
We conducted three simulation studies on: model selection, item parameter recovery, and person
parameter recovery, respectively. A high-level description of the simulation design shared by these
simulation studies is provided here. First, we generated response matrices from the SIRT-MM models.
Second, item parameters were estimated by MMLE using an EM algorithm (Bock & Aitkin, 1981)
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implemented in R and C++. We provide the R package on GitHub https://github.com/luyikei/sirtmm to
fit the SIRT-MM models. A standard normal prior was used for θ in MMLE. Third, with the estimated
item parameters considered fixed, person parameters were estimated by EAP. Here, a standard normal
prior was used for θ again. Generally, our simulation design followed Reise and Yu (1990).

The first simulation evaluated model selection using AIC and BIC to identify the best model,
among SIRT-MM models with all combinations of freely estimated γ parameters to fit multiple attempt
data. In addition, we also compared SIRT-MM models in terms of model fit against Graded response
model (GRM; Samejima, 1969), since previous research showed that GRM could also be used for AUC
(Attali, 2011), as well as Nominal response model (NRM; Bock, 1972). The simulation conditions are
specified as N = 500 and 4,000, M = 30, K = 4, θ ∼ N(0,1), bj ∼Unif(−2,2), aj ∼Unif(0.75,1.33), and
γju ∼Unif(−1,1). We analyzed the impact of varying sample sizes, N = 500 and N = 4000, to assess how
differences in sample size influence model selection performance. For each replication, we simulated
responses from all possible SIRT-MM models and fit all candidate models (SIRT-MM, GRM, and NRM
models) to each response matrix. Over 100 replications, we were able to obtain model selection with
AIC and BIC.

Then, we conducted simulation studies to evaluate item and person parameter recovery of SIRT-
MM models. As item and person parameter estimations take place at different stages, we evaluated
them separately. The second simulation study investigates item parameter recovery of SIRT-MM models
under different sample sizes and test length conditions. The number of answer choices is K = 4. We
evaluated all the combinations of (1) the sample size: N = 250,500,1,000,2,000,4,000,8,000,16,000; (2)
the number of items: M = 15,20,25,30; and (3) the number of γju ∼Unif(−1,1). We also evaluated more
simulation conditions varying other factors; however, they are not fully crossed with conditions (1)–
(3), as it would result in an unrealistic number of simulation conditions. Specifically, we evaluated
conditions varying (4) θ distribution: normal (N(0,1)), uniform (Unif(−3,3)), and skewed normal
distribution sn(ξ = −1.5,ω = 2,α = 6) using sn package (Azzalini, 2022); (5) item discrimination
parameter, αj: sampled from low (Unif(0.44,0.75)), middle (Unif(0.58,0.98)), high (Unif(0.75,1.33)),
and all (Unif(0.44,1.33)) ranges; (6) item difficulty parameter: sampled from all (Unif(−2,2)) and
high (Unif(0,2)) ranges; and (7) setting the maximum number of attempts of 2 vs. 4. The simulation
conditions in (4)–(7) are evaluated with different sample sizes but share the same baseline condition,
which is specified as follows: M = 20, aj ∼ Unif(0.75,1.33), bj ∼ Unif(−2,2), for γju parameters, only
γj2 ∼ Unif(−1,1) is specified as a freely estimated parameter, and the θ distribution is the standard
normal distribution (θ ∼N(0,1)). The skewed distribution for θ is positively skewed in order to evaluate
the performance of person parameter recovery for a low-ability population, for which the SIRT-MM
models are good candidates. For the same reason, the item difficulty parameter has a condition where
only relatively difficult items exist. The convergence rate of item parameter estimation was reported for
each simulation condition. Standard errors (SE) for the item parameters, bias, and root mean square
error (RMSE) were used as primary indices to examine the quality of parameter estimates, which were
obtained for the converged conditions. Out of 100 replications, we calculated the averages of metrics
from all converged replications across all conditions.

The third simulation study evaluated person parameter recovery following the same baseline
condition as the first simulation: M = 20, aj ∼ Unif(0.75,1.33), bj ∼ Unif(−2,2). For γju parameters,
only γj2 ∼Unif(−1,1) is specified as a freely estimated parameter, and the θ distribution is the standard
normal distribution (θ ∼N(0,1)). θ was estimated by EAP treating item estimates as fixed. To evaluate
person parameter recovery, we used the 2.5PL model as a baseline for comparison since multiple-
attempt responses could be converted to 0/1 scoring if we only take first-attempt data. Note that model
fit and selection are evaluated in a different simulation study and the purpose of this comparison
is to show how much improvement in person parameter recovery could be gained by just allowing
multiple attempts using the same test items. We used mirt package for estimating the 2.5PL model
(Chalmers, 2012). In addition to bias and RMSE, the Pearson correlation coefficient was also used
to assess the recovery accuracy for θ. When we evaluate correlation, we also included the results of
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Figure 8. Model selection performance of AIC and BIC for SIRT-MM models when data are generated from SIRT-MM models with N= 500,

M= 30, K = 4, θ ∼N(0,1), bj ∼Unif(−2,2), aj ∼Unif(0.75,1.33), and γju ∼Unif(−1,1). The freely estimated γju are denoted as Ga where

a is the number of γju parameters for all u.

a popular scoring scheme in CTT which grants full credit for the successful first attempt to an item,
half credit for the successful second attempt, one-tenth credit for the successful third attempt, and zero
credit otherwise (Slepkov & Godfrey, 2019). Results were presented by taking the averages of metrics
calculated from 100 replications for all conditions.

3.2. Results
3.3. Model selection
Figures 8 and 9 present the model selection performance of AIC and BIC for SIRT-MM models with
N = 500 and N = 4,000. First, both AIC and BIC successfully select an SIRT-MM model over GRM or
NRM when responses are simulated from an SIRT-MM model. Second, for selecting the correct SIRT-
MM model from all the variants of SIRT-MM models, AIC selects the correct model the majority of
times regardless of N, and both AIC and BIC perform well with larger N. Specifically, when N = 500, AIC
could identify the correct model about 90% of the time and BIC could identify the correct model about
86% of the time from models with or without γj2. However, for the data generating model incorporating
both γj2 and γj3, a sample size of N = 500 results in AIC correctly identifying the model 60% of the time,
while BIC never identifies the correct model. When N = 4,000, AIC could identify the correct model
about 97% of the time and BIC could identify the correct model about 92% of the time from all the
models. Between the two, AIC seems to outperform BIC, as BIC could under-specify the model, though
in a small number of cases AIC could over-specify the model. Specifically, with N = 500, in 21 out of
a total of 300 generated cases across the conditions AIC over-specified the model while BIC under-
specifies the model with γj2 in 29 out of 100 cases and consistently under-specifies the model with both
γj2 and γj3 (i.e., 100 out of 100 cases). In contrast, AIC under-specifies the model containing both γj2 and
γj3 in 40 out of 100 cases. When N = 4,000, AIC identifies γj2 parameters when no γju was included in the
generating model in 2 out of 100 cases, and AIC identifies γj2 and γj3 when the generating model only
had γj2 parameter in 6 out of 100 cases. On the other hand, it is worth noting that there are 24 out of all
the generated cases (300) across the conditions where BIC identifies only γj2 parameters while the data
generating model includes both γj2 and γj3. In our simulation results under both sample size conditions,
AIC is more accurate in selecting the true model and BIC in some cases picks an over-simplified
model.
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Figure 9. Model selection performance of AIC and BIC for SIRT-MM models when data are generated from SIRT-MM models with N =
4,000, M = 30, K = 4, θ ∼ N(0,1), bj ∼ Unif(−2,2), aj ∼ Unif(0.75,1.33), and γju ∼ Unif(−1,1). The freely estimated γju are denoted as

Ga where a is the number of γju parameters for all u.

3.4. Item parameter recovery
Tables 3–5 present the item parameter recovery statistics varying sample size, number of items, and
number of effective γ parameters when θ ∼ N(0,1), aj ∼ Unif(0.75,1.33), bj ∼ Unif(−2,2). The results
show that, as N gets larger, the SE and RMSE for the item parameter estimates decrease and the bias
quickly converges to zero in all the conditions, suggesting that our estimation method could yield
satisfactory item parameter recovery for all conditions given a large enough N. Although M has a smaller
effect on item recovery statistics compared to N, generally larger M also leads to better item parameter
estimates.

Different SIRT-MM models tend to vary in their sample size requirements, and thus investigated
separately. Table 3 presents item parameter recovery results when all γju parameters are constrained to
be zero. This model has the fewest number of item parameters among all variants, as only aj and bj are
estimated. Please note that this is not the same as a 2.5PL model, because we simulated a maximum of
four attempts. Item parameter estimation converged in all conditions, except for one single case when
N = 250 and M = 20. The RMSE for the item parameter estimates are smaller than 0.6 in all N and M
conditions, smaller than 0.3 with N ≥ 500, and could be smaller than 0.1 with N ≥ 4,000. Overall, these
results show that the item parameters from the simplest SIRT-MM model can be recovered very well
when the model fits the data with a reasonable sample size (e.g., N = 500 or more).

Table 4 presents item recovery statistics when only γj2 ∼Unif(−1,1) is specified as a freely estimated
parameter. Item parameter estimation generally converged in all conditions although when N = 250,
there is a 2%–5% chance of non-convergence. The RMSE for the item parameter estimates are smaller
than 0.3 when N ≥ 1,000. However, if we can compromise the accuracy of γju a little bit, N ≥ 500 is
also acceptable since the RMSE for γju will not be larger than 0.5 when N = 500. Table 5 presents item
recovery statistics when γj2,γj3 ∼ Unif(−1,1) are specified as freely estimated parameters. We do not
recommend N <= 1,000 for estimating both γj2 and γj3 because the RMSE for γj3 are generally very high
and the convergence rates could be low. On the other hand, the RMSE for all the item parameters are
smaller than 0.35 when N ≥ 4000.

In Supplementary Material, we include additional tables, Supplementary Tables S1–S4, which present
the item parameter recovery statistics varying θ distributions, item discrimination parameters, item
difficulty parameters and the maximum number of attempts respectively. Especially, Supplementary
Table S1 shows that an SIRT-MM models works better with a positively skewed θ distribution than the
2.5PL model, and Supplementary Table S3 shows that having a relatively difficult test (by keeping bj

Downloaded from https://www.cambridge.org/core. 27 Feb 2025 at 01:45:26, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


18 Lu et al.

Table 3. Item recovery statistics for items without γju

SE BIAS RMSE CONV

M N bj aj bj aj bj aj

15 250 0.30 0.23 0.02 0.02 0.40 0.32 1.00

500 0.18 0.16 −0.00 0.01 0.23 0.21 1.00

1,000 0.12 0.11 0.01 0.01 0.16 0.15 1.00

2,000 0.09 0.08 0.01 −0.00 0.12 0.11 1.00

4,000 0.06 0.06 0.00 0.00 0.08 0.07 1.00

8,000 0.04 0.04 0.01 −0.00 0.06 0.05 1.00

16,000 0.03 0.03 0.01 −0.00 0.04 0.04 1.00

20 250 0.30 0.23 −0.00 0.03 0.40 0.31 0.99

500 0.19 0.16 −0.01 0.00 0.25 0.20 1.00

1,000 0.12 0.11 0.01 0.00 0.16 0.15 1.00

2,000 0.09 0.08 −0.00 −0.00 0.11 0.10 1.00

4,000 0.06 0.06 0.00 −0.00 0.08 0.07 1.00

8,000 0.04 0.04 0.00 −0.00 0.05 0.05 1.00

16,000 0.03 0.03 0.01 −0.01 0.04 0.04 1.00

25 250 0.28 0.23 −0.00 0.02 0.36 0.29 1.00

500 0.18 0.16 −0.01 0.01 0.23 0.20 1.00

1,000 0.12 0.11 −0.00 0.00 0.15 0.14 1.00

2,000 0.09 0.08 −0.00 −0.00 0.10 0.09 1.00

4,000 0.06 0.06 0.01 −0.00 0.07 0.07 1.00

8,000 0.04 0.04 0.00 −0.01 0.05 0.05 1.00

16,000 0.03 0.03 0.00 −0.01 0.04 0.03 1.00

30 250 0.28 0.23 −0.00 0.02 0.36 0.29 1.00

500 0.18 0.16 −0.01 0.01 0.23 0.20 1.00

1,000 0.12 0.11 −0.00 0.00 0.16 0.14 1.00

2,000 0.09 0.08 −0.00 −0.00 0.10 0.10 1.00

4,000 0.06 0.06 −0.00 −0.01 0.07 0.07 1.00

8,000 0.04 0.04 −0.00 −0.01 0.05 0.05 1.00

16,000 0.03 0.03 −0.00 −0.01 0.04 0.03 1.00

Note: “CONV” stands for convergence rate for a simulation condition.

parameters to a high range) does not seem to affect item parameter estimation much for SIRT-MM
models. This is because SIRT-MM models can glean more item information in the lower θ range from
multiple attempts. Please refer to the Supplementary Material for further elaboration.

In sum, although all the factors more or less affect the accuracy of item parameter estimates, having
a reasonably large sample size enables quality item parameter estimates. For a simple SIRT-MM model,
we recommend N = 500 or more. For more complex SIRT-MM models, N = 1,000 or 2,000 or more
might be needed.
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Table 4. Item recovery statistics for items with γj2

SE BIAS RMSE CONV

M N bj aj γj2 bj aj γj2 bj aj γj2

15 250 0.37 0.23 0.55 0.03 0.03 0.03 0.52 0.33 1.00 0.98

500 0.20 0.16 0.35 0.01 0.03 0.01 0.26 0.24 0.49 1.00

1,000 0.13 0.11 0.24 0.01 0.01 −0.01 0.17 0.15 0.27 1.00

2,000 0.09 0.08 0.17 0.01 0.00 0.00 0.12 0.11 0.18 1.00

4,000 0.06 0.06 0.11 0.01 −0.00 0.00 0.08 0.08 0.12 1.00

8,000 0.05 0.04 0.08 0.01 −0.00 0.00 0.06 0.05 0.09 1.00

16,000 0.03 0.03 0.06 0.01 −0.00 −0.00 0.04 0.04 0.06 1.00

20 250 0.30 0.24 0.51 0.01 0.05 0.06 0.39 0.32 0.78 0.95

500 0.20 0.16 0.34 0.01 0.02 −0.00 0.25 0.22 0.36 1.00

1,000 0.13 0.11 0.24 0.00 0.00 −0.01 0.17 0.15 0.27 1.00

2,000 0.09 0.08 0.17 0.01 −0.00 −0.00 0.12 0.10 0.18 1.00

4,000 0.06 0.06 0.12 0.01 −0.00 −0.00 0.08 0.07 0.13 1.00

8,000 0.05 0.04 0.08 0.00 −0.00 −0.00 0.06 0.05 0.09 1.00

16,000 0.03 0.03 0.06 0.00 −0.00 0.00 0.04 0.04 0.06 1.00

25 250 0.30 0.24 0.52 0.01 0.03 0.04 0.37 0.31 0.77 0.97

500 0.20 0.16 0.35 −0.00 0.01 0.01 0.24 0.21 0.43 1.00

1,000 0.13 0.11 0.24 0.00 0.00 −0.00 0.16 0.14 0.25 1.00

2,000 0.09 0.08 0.17 0.01 −0.00 −0.00 0.11 0.10 0.18 1.00

4,000 0.06 0.06 0.12 0.00 −0.00 −0.00 0.08 0.07 0.12 1.00

8,000 0.05 0.04 0.08 0.00 −0.01 −0.00 0.06 0.05 0.09 1.00

16,000 0.03 0.03 0.06 0.00 −0.01 −0.00 0.04 0.04 0.06 1.00

30 250 0.30 0.23 0.58 0.00 0.02 0.07 0.38 0.30 1.11 0.97

500 0.20 0.16 0.35 0.00 0.01 0.00 0.24 0.20 0.38 1.00

1,000 0.13 0.11 0.24 −0.00 −0.00 0.01 0.16 0.14 0.25 1.00

2,000 0.09 0.08 0.17 0.01 −0.00 0.00 0.11 0.10 0.18 1.00

4,000 0.07 0.06 0.12 0.00 −0.01 −0.00 0.08 0.07 0.12 1.00

8,000 0.05 0.04 0.08 −0.00 −0.01 −0.00 0.05 0.05 0.09 1.00

16,000 0.03 0.03 0.06 0.00 −0.01 −0.00 0.04 0.03 0.06 1.00

Note: “CONV” stands for convergence rate for a simulation condition.

3.5. Person parameter recovery
Figure 10 shows the person recovery statistics varying the number of items, M, when θ ∼ N(0,1),
a ∼ Unif(0.75,1.33), b ∼ Unif(−2,2), and γj2 ∼ Unif(−1,1). The left panel shows RMSE, the middle
panel shows bias and the right panel shows correlations between the true and estimated θ. The RMSE
for θ estimated by the SIRT-MM model with freely estimated γju parameters is consistently smaller
than those estimated by the 2.5PL model. The RMSE of θ estimates is quite low even with N = 250,
indicating that the person parameter estimation can be robust even at very small sample sizes. The bias
for θ estimated both by the SIRT-MM model and the 2.5 PL model are consistently close to zero. The
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Table 5. Item recovery statistics for an item with γj2 and γj3

SE BIAS RMSE CONV

M N bj aj γj2 γj3 bj aj γj2 γj3 bj aj γj2 γj3

15 250 0.30 0.24 0.51 1.03 0.04 0.07 −0.03 1.97 0.39 0.34 0.92 7.30 0.67

500 0.19 0.17 0.34 0.67 0.02 0.03 −0.00 0.94 0.24 0.24 0.49 4.32 0.89

1,000 0.14 0.12 0.24 0.49 0.01 0.01 −0.00 0.43 0.18 0.16 0.27 2.02 0.97

2,000 0.10 0.08 0.17 0.34 0.01 −0.00 −0.00 0.07 0.13 0.12 0.19 0.62 1.00

4,000 0.07 0.06 0.12 0.25 0.01 −0.01 −0.01 −0.00 0.09 0.08 0.13 0.29 1.00

8,000 0.05 0.04 0.08 0.17 0.01 −0.00 0.00 0.00 0.06 0.06 0.09 0.19 1.00

16,000 0.03 0.03 0.06 0.12 0.01 −0.00 0.00 0.01 0.04 0.04 0.06 0.14 1.00

20 250 0.32 0.24 0.53 1.05 0.03 0.06 −0.01 2.05 0.44 0.36 1.01 8.57 0.53

500 0.20 0.17 0.35 0.70 0.02 0.01 −0.02 0.91 0.26 0.23 0.38 5.01 0.89

1,000 0.14 0.12 0.24 0.49 0.01 0.01 0.00 0.48 0.17 0.16 0.26 2.57 0.99

2,000 0.10 0.08 0.17 0.35 −0.00 0.00 −0.01 0.09 0.12 0.11 0.18 0.78 0.99

4,000 0.07 0.06 0.12 0.24 0.01 0.00 0.00 0.01 0.08 0.08 0.13 0.33 1.00

8,000 0.05 0.04 0.08 0.17 0.00 −0.00 −0.00 0.00 0.06 0.05 0.09 0.18 1.00

16,000 0.03 0.03 0.06 0.12 0.00 −0.00 −0.00 0.00 0.04 0.04 0.06 0.13 1.00

(Continued)
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Table 5. Continued

SE BIAS RMSE CONV

M N bj aj γj2 γj3 bj aj γj2 γj3 bj aj γj2 γj3

25 250 0.31 0.24 0.53 0.97 0.03 0.05 0.08 2.39 0.39 0.33 1.16 8.96 0.51

500 0.20 0.17 0.35 0.69 0.01 0.03 0.03 1.18 0.25 0.22 0.47 5.34 0.90

1,000 0.14 0.12 0.24 0.49 0.00 0.00 0.01 0.39 0.16 0.15 0.26 2.12 0.97

2,000 0.10 0.08 0.17 0.34 0.01 0.00 −0.00 0.01 0.12 0.10 0.18 0.39 0.99

4,000 0.07 0.06 0.12 0.25 0.00 −0.00 −0.00 −0.00 0.08 0.07 0.12 0.28 0.99

8,000 0.05 0.04 0.08 0.17 0.00 −0.01 0.00 0.00 0.06 0.05 0.09 0.19 1.00

16,000 0.03 0.03 0.06 0.12 0.00 −0.01 0.00 0.00 0.04 0.04 0.06 0.13 1.00

30 250 0.29 0.24 0.51 0.97 0.00 0.05 0.05 2.10 0.35 0.31 0.86 8.87 0.44

500 0.20 0.16 0.36 0.69 −0.00 0.01 0.01 0.97 0.25 0.21 0.43 4.93 0.89

1,000 0.14 0.12 0.24 0.51 −0.00 −0.00 −0.00 0.31 0.16 0.14 0.26 2.14 0.98

2,000 0.10 0.08 0.17 0.35 −0.00 0.00 0.00 0.10 0.11 0.10 0.18 0.78 0.99

4,000 0.07 0.06 0.12 0.24 −0.00 −0.01 −0.00 0.01 0.08 0.07 0.13 0.33 1.00

8,000 0.05 0.04 0.08 0.17 0.00 −0.01 −0.00 0.01 0.06 0.05 0.09 0.20 1.00

16,000 0.03 0.03 0.06 0.12 0.00 −0.01 0.00 0.00 0.04 0.04 0.06 0.13 1.00

Note: “CONV” stands for convergence rate for a simulation condition.
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Figure 10. Person parameter statistics when θ ∼ N(0,1),aj ∼ Unif(0.75,1.33),bj ∼ Unif(−2,2), and γj2 ∼ Unif(−1,1). M is the number

of items administered. The scoring scheme used in classical test theory is denoted as SS in the correlation plot.

correlations between true θ and θ estimated by the SIRT-MM model are consistently the highest among
the three scoring mechanisms. Typically the CTT scoring scheme outperforms the 2.5PL model in terms
of correlation because it still can recover some partial information from multiple attempts.

Figure 11 shows the conditioned RMSE for θ estimates. The SIRT-MM model leads to lower RMSE,
especially at the lower range of θ. Thus, the SIRT-MM model could be used for improving person
parameter estimates, especially at the low end of the θ.

In Supplementary Material, we include additional figures, Supplementary Figures S3–S6, which
present the person parameter recovery statistics varying θ distributions, item discrimination parame-
ters, item difficulty parameters and the maximum number of attempts, respectively. Generally, an SIRT-
MM model outperforms the 2.5PL model in all conditions especially in RMSE when the SIRT-MM
model is the true model. Please refer to the Supplementary Material for detailed explanations.

4. Empirical analysis

We applied the SIRM-MM model to a real dataset collected from both from college students (N = 167)
and Prolific (N = 295) participants. They took multiple-choice, multiple-attempt trivia questions about
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Figure 11. RMSE for θ estimates conditioning on θ when N = 1,000,M = 25,θ ∼ N(0,1),aj ∼ Unif(0.75,1.33),bj ∼ Unif(−2,2).

Harry Potter through an online platform, following an AUC procedure. The data was collected between
May 2023 to March 2024. There was no missing or incomplete responses. To ensure the quality of data
and item parameter estimates, we omitted four test items that were generally very difficult and had
very few correct responses at the first attempt. The resulting response matrix included multiple-attempt
responses of 462 examinees to 27 test items with four answer options. Because the sample size (N = 462)
was limited, based on the sample size guidelines from our simulation studies, only two candidate SIRT-
MM models were fit to the data: (1) the simplest SIRT-MM model without any freely estimated γju,
and (2) an SIRT-MM model with freely estimated γj2 only. We chose a better model with smaller AIC
and BIC values between the two candidate models. We also fitted GRM and NRM for comparison. For
this analysis, we fixed the maximum number of attempts to two so only data for the first two attempts
were used to fit the two candidate models. We compared the θ estimates and test information function
derived using two attempts against those derived from only the first attempt data. In the Supplementary
Material, we present the resulting item parameter estimates (Supplementary Table S5), the histograms
of the number of attempts for each item (Supplementary Figure S7) and the item category response
functions (Supplementary Figure S8).

Table 6 shows the model fit statistics for the two candidate SIRT-MM models, GRM, and NRM. It
shows that both SIRT-MM models lead to smaller AIC and BIC than GRM and NRM in AIC, BIC,
and negative log likelihood. AIC is the smallest for the SIRT-MM model with freely estimated γj2 and
BIC is the smallest for the simplest SIRT-MM model. As AIC is shown to be more accurate in selecting
the correct model in our simulation study when N = 500, we selected the SIRT-MM model with freely
estimated γj2 for the subsequent analysis.

Figure 12 presents the scatter plot of θ estimated by the SIRT-MM with freely estimated γj2 with
one- vs. two-attempt data. The result shows that all the θ estimates are generally very similar to each
other and there is no outlier that yields very different estimates between one or two attempts. However,
the precision of these estimates can be different. Figure 13 presents the test information functions
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Table 6. Model-fit statistics for an SIRT-MM model without γju and an SIRT-MM model with a freely

estimated γj2

Model AIC BIC Negative log likelihood Number of parameters

Without γj2 17,866.36 18,089.68 8,879.18 54

With γj2 17,778.50 18,113.48 8,808.25 81

GRM 18,896.15 19,231.13 9,367.08 81

NRM 18,832.71 19,279.35 9,308.35 108

Figure 12. Scatter plot of θ estimated by the SIRT-MM models using only one attempt and two attempts from the real data.

derived from the SIRT-MM with one- vs. two-attempt data. There is a consistent increase of test
information from one attempt to two attempts, suggesting that allowing two attempts helps gain more
information from examinees, which leads to smaller SE of θ estimates.

5. Discussion

This article has proposed and formally derived a family of new sequential item response models (SIRT-
MM models) for multiple-choice, multiple-attempt test items that considers the guessing of multiple-
choice test items, and the homogeneity and heterogeneity of distractors. We demonstrated that an SIRT-
MM model can be used to glean more information from multiple-choice, multiple-attempt items and
to provide better scoring, especially for in the region of smaller θ.

Our simulation study included model selection, and item and person parameter recovery. For model
selection, we showed that AIC and BIC never selected GRM or NRM when data were generated from
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Figure 13. Test information functions of the real data with different maximum numbers of attempts using the item parameter estimates

for the SIRT-MM model.

SIRT-MM models, demonstrating the unique utility of the SIRT-MM models to model multiple-attempt
data. For item parameter recovery, we showed that our implementation of MMLE could recover item
parameters very well with N = 500 for the simplest SIRT-MM model and with N = 1,000 or 2,000
for more complex SIRT-MM models with reasonable test lengths. For person parameter recovery, we
showed that an SIRT-MM model consistently outperforms the 2.5PL model in all conditions when
former is the true model. Also, the person parameter recovery results suggested that θ can be estimated
reasonably well even with a small sample size. Taken together, one could consider adopting a multiple-
attempt procedure and SIRT-MM models to improve measurement precision.

One limitation of this study is that we have not fully investigated different possible parameterizations
of SIRT-MM models. First, our proposed models do not allow a freely estimated pseudo-guessing
parameter for each item. By doing so, SIRT-MM models could be compared against the actual 3PL
model, instead of the 2.5PL model. That being said, it is worth noting that a previous study showed
that fixing the pseudo-guessing parameter in 3PL model provides a stable and accurate item estimation
solution (Han, 2012), and thus our study still provides practical utility. Second, our proposed models do
not focus on varying the aj parameter at each attempt. The concept of allowing the item discrimination
parameter to change at each attempt by introducing δju parameters is explained and discussed in the
Supplementary Material. This extension could be important as item discrimination in a traditional
SIRT model could decrease with each attempt (Lyu et al., 2023). Both extensions imply estimating
many additional item parameters, which could cause convergence issues or inaccurate item parameters
unless we have a huge sample size. Future work could consider regularization for item parameter
estimation or Bayesian estimation to help accurately estimate more item parameters even with a smaller
sample size.

A few additional limitations should be noted about the current study. First, our simulation did
not evaluate all the combinations of simulation conditions for item parameters. The sample size
requirement would be different depending on various factors including the complexity of a model and
the distributions of true parameters including γju. As suggested by a reviewer, interactions between
such factors should also be evaluated. In addition, our models did not model learning or growth in this
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context. For future work, we can consider a use case where growth-curve SIRT-MM models similar to
Culpepper (2014) could be formulated and used to track examinees’ learning.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psy.2024.18.
The R package that includes the estimation program and sample real data are available at https://github.com/luyikei/sirtmm.
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