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Abstract. This paper goes beyond Katz–Sarnak theory on the distribution of curves over finite
fields according to their number of rational points, theoretically, experimentally, and conjecturally.
In particular, we give a formula for the limits of the moments measuring the asymmetry of this
distribution for (non-hyperelliptic) curves of genus g ≥ 3. The experiments point to a stronger
notion of convergence than the one provided by the Katz–Sarnak framework for all curves of genus
≥ 3. However, for elliptic curves and for hyperelliptic curves of every genus, we prove that this
stronger convergence cannot occur.

1 Introduction

Katz–Sarnak theory [KS99] gives a striking unified framework to understand the
distribution of the traces of Frobenius for a family of curves1 of genus g over a finite
field Fq when q goes to infinity. It has been used in many specific cases (see [AS10,
BCD+18, CDSS17, FKRS12, HKL+20, KS09, Vlă01] among others). Although powerful,
this theory can neither in general predict the number of curves over a given finite field
with a given trace, nor distinguish between the family of all curves and the family of
hyperelliptic curves when g ≥ 3. This paper can be seen as an attempt to go beyond
Katz–Sarnak results, theoretically, experimentally, and conjecturally. We hope that this
blend will excite the curiosity of the community.

We begin by resuming our study of sums of powers of traces initiated in
[BHLGR23]. If C/Fq is a curve of genus g, we denote by [C] the set of representatives
of its twists and define

sn(C) = ∑
C′∈[C]

(q + 1 − #C′(Fq))n

# AutFq(C′) .

As shown in [BHLGR23, Proposition 3.1], the sn(C) are integers and we denote by
Sn(q,X) the sum of the sn(C) when C runs over a set of representatives for the
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1Throughout this paper, the word “curve” will always mean a projective, absolutely irreducible,

smooth variety of dimension 1.
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Fq-isomorphism classes of curves C over Fq in X, where X can be, for example,
• the moduli space M1,1 of elliptic curves,
• the moduli space Mg of curves of genus g > 1,
• the moduli space Hg of hyperelliptic curves of genus g > 1, or
• the moduli space Mnhyp

g of non-hyperelliptic curves of genus g > 2.
In Remark 2.2, we will briefly recall that Sn(q,M1,1) can be determined for all q and
n in terms of traces of Hecke operators on spaces of elliptic modular cusp forms. For
every q and n, we can also find expressions for Sn(q,M2) = Sn(q,H2) in terms of
traces of Hecke operators acting on spaces of Siegel modular cusp forms of genus 2
(and genus 1) starting from [Pet15, Theorem 2.1] (see [BF22, Section 4.5] for a few
more details). For every g ≥ 3, there are known explicit formulae for Sn(q,X) only for
the first values of n (see, for instance, [BHLGR23, Theorem 3.4] for Hg (note that the
odd n values are equal to 0 in this case) and [Ber08] for Mnhyp

3 ). However, it is possible
to give an interpretation for

an(X) ∶= lim
q→∞

Sn(q,X)
qdim X+n/2

with X =Mg , Hg , or Mnhyp
g for every g ≥ 2 and even n ≥ 2 in terms of representation

theory of the compact symplectic group USp2g . This is achieved in [BHLGR23,
Theorem 3.8] using the ideas of Katz and Sarnak.

Our first contributions are gathered in Theorem 2.1. Using the results of Johnson
[Joh83] and Hain [Hai95], together with results of Petersen [Pet15, Pet16] about the
first cohomology group of symplectic local systems on Mg , we can prove that for even
values of n > 0, we have

an(Mg) −
Sn(q,Mg)
qdim Mg+n/2 = O(q−1)(1.1)

when g ≥ 2, whereas Katz–Sarnak would only give O(q−1/2). Since an(Mg) = 0 for
odd values of n, this suggests replacing the exponent in the power of q in the
denominator of the expression defining an(Mg) with a smaller number. As far as we
know, this has not been considered previously. We therefore introduce for odd n

bn(Mg) ∶= − lim
q→∞

Sn(q,Mg)
q3g−3+(n−1)/2 .

Theorem 2.1 gives bn(Mg) in terms of an explicit integral and in terms of the
representation theory of USp2g . This second description makes it easy to compute. The
idea to use information about the cohomology of moduli space of curves to predict
the number of curves over a given finite field with a given trace can also be found in
[AEK+15], but there g goes to infinity.

The deep relations between the sum of traces and Katz–Sarnak theory become
clearer once we switch to a probabilistic point of view. In Section 3, we introduce
the classical probability measure μq ,g on the interval [−2g , 2g] derived from the
numbers of Fq-isomorphism classes of curves of genus g > 1 with given traces of
Frobenius. From Katz–Sarnak, we then know that the sequence of measures (μq ,g)
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Refinements of Katz–Sarnak theory 3

Figure 1: Data for curves of genus 2 over Fq for q = 1, 009. The blue dots are the points
(t/√q,√qNhyp

q ,2 (t/
√q)) for integers t ∈ [−126, 126]. The red curves are the functions bf2(τ)

and cf2(τ), where b = 38/45 and c = 52/45 are the bounds given by Proposition 4.2 for g = 2
when ε = 0.

weakly converges to a continuous measure μg with an explicit density fg (see [Bil95,
Theorem 2.1] for equivalent definitions of weak convergence of measures). In this
language, the numbers an(Mg) can be understood as the nth moments of the measure
μg , and we can refine Katz–Sarnak theory using a second continuous function hg
whose nth moments are the numbers bn(Mg) (see Theorem 3.1).

In Section 4, we investigate whether the Katz–Sarnak limiting distributions can be
used to approximate the number of curves over a given finite field Fq of a given genus
and with a given trace of Frobenius; one might hope that integrating that distribution
over an interval of length 1/√q around t/√q would give a value close to the number of
genus-g curves over Fq having trace t. We show that this does not happen for elliptic
curves or for hyperelliptic curves of any genus. For elliptic curves, Proposition 4.5
shows that the number of elliptic curves with a given trace can be an arbitrarily large
multiple of this naïve Katz–Sarnak prediction (see also Figure 3). For hyperelliptic
curves, Proposition 4.2 shows (roughly speaking) that if the number of curves is
asymptotically bounded above and below by two multiples of the naïve Katz–Sarnak
prediction, then the ratio of these two multiples is bounded below by a fixed number
strictly greater than 1 (see Figure 1).

On the other hand, numerical experiments suggest that the elliptic and hyperellip-
tic cases differ in the sense that it is easy to “correct” the distribution in the hyperelliptic
cases to observe a good approximation by the density function fg (see Figure 2). Even
stronger, computations for all non-hyperelliptic curves of genus 3 (see Figure 4) make
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4 J. Bergström E. W. Howe, E. Lorenzo Garcia, and C. Ritzenthaler

Figure 2: Scaled data for curves of genus 2 over Fq for q = 1, 009. The blue dots are the
points (t/√q, s√qNhyp

q ,2 (t/
√q)) for integers t ∈ [−126, 126], where s = 45/52 if t is even and

s = 45/38 if t is odd. The red curve is the function f2(τ).

us dream that the naïve Katz–Sarnak approximation does directly give an accurate
estimate for the number of curves with a given number of points. This leads us to claim
the bold Conjecture 5.1. The heuristic idea behind this conjecture is that for each trace,
one is averaging over many isogeny classes which somehow would allow this stronger
convergence as long as there are no obvious arithmetic obstructions. Our attempts to
use the better convergence rates of the moments in the case of Mg for g ≥ 3 to prove
this conjecture were unfortunately unsuccessful. However, for g = 1, we would like to
point out the shortening of the intervals of convergence obtained in [Ma23], which
may give some hints for addressing the question.

Finally, in Section 5, we revisit the work of [LRR+19] on the symmetry breaking
for the trace distribution of (non-hyperelliptic) genus 3 curves, by looking at the
difference between the number of curves with trace t and the number of curves
with trace −t. In probabilistic terms, this asymmetry is given by a signed measure
νq ,g . Although this signed measure weakly converges to 0 when q goes to infinity, by
Corollary 5.3, the moments of √q νq ,g converge to −2bn(Mg) when n is odd (and are
trivially 0 when n is even). In particular, this shows that by “zooming in” on the Katz–
Sarnak distribution, one can spot a difference between the behavior for hyperelliptic
curves (for which the corresponding signed measures would all be 0) and for non-
hyperelliptic curves.

In the same spirit as Section 4, the experimental data for g = 3 (see Figure 5)
and the convergence of moments lead us to conjecture that the sequence of signed
measures (√q νq ,g) weakly converges to the continuous signed measure with density
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Refinements of Katz–Sarnak theory 5

−2hg for all g ≥ 3. Notice that in contrast to the case of positive bounded measures, the
convergence of moments of signed measures on a compact interval does not directly
imply weak convergence (see Example 5.4).

With such a conjecture in hand, one may then improve on the result of [LRR+19]
that heuristically approximated the limit density of (√q νq ,g) by the function

x(1 − x2/3) ⋅ ( 1√
2π

e−x2/2) .

Using the first values of bn(M3), we get the better approximation

x (5/4 − x2/2 + x4/60)( 1√
2π

e−x2/2) .

2 Limits of sums of powers of traces

Fix a prime power q. Let us start by recalling some definitions and results from
[BHLGR23].

Definition 2.1 Let X =Hg , Mg or Mnhyp
g for any g ≥ 2, or X =M1,1.

⋆ Recall from Section 1 that one defines

Sn(q,X) = ∑
[C]∈X(Fq)

∑
C′∈[C]

(q + 1 − #C′(Fq))n

# AutFq(C′) ,

where [C] is a point of X(Fq) representing the Fq-isomorphism class of a curve
C/Fq , and the second sum spans the set of representatives of all twists C′ of C.

⋆ For every n ≥ 1, let

an(X) ∶= lim
q→∞

Sn(q,X)
qdimX+n/2

with X =Hg or Mg or Mnhyp
g for any g ≥ 2, or with X =M1,1.

Define wk ∶= ∑g
j=1 2 cos kθ j and

dmg ∶=
1

g! πg ∏
i< j

(2 cos θ i − 2 cos θ j)2 ∏
i

2 sin2 θ i dθ1 . . . dθ g ,

and recall from [BHLGR23, Theorem 2.1] that for every g ≥ 2 and n ≥ 1,

an(X) = ∫(θ 1 , . . . ,θ g)∈[0,π]g
wn

1 dmg ,

withX =Hg orMg orMnhyp
g . Notice that for a fixed value of g, an(X) does not depend

on X, and an(X) = 0 for odd n.
In order to go deeper in the limit distribution, we will also look at the “next term”

of the limit of Sn(q ,X)
qdim X+n/2 when X =Mg .
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Definition 2.2 For every g ≥ 2 and n ≥ 1, let

bn(Mg) ∶= − lim
q→∞

√q(
Sn(q,Mg)
q3g−3+n/2 − an(Mg)) .

To state our results, we need to recall basic facts about the representations of USp2g
with coefficients in Q�, where � is a prime distinct from the characteristic of Fq .
The irreducible representations Vλ of USp2g are indexed by the highest weight λ =
(λ1 , . . . , λg)with λ1 ≥ ⋅ ⋅ ⋅ ≥ λg ≥ 0. The corresponding characters χλ are the symplec-
tic Schur polynomials s⟨λ⟩(x1 , . . . , xg) ∈ Z[x1 , . . . , xg , x−1

1 , . . . , x−1
g ] in the sense that

if A ∈ USp2g has eigenvalues α1 , . . . , αg , α−1
1 , . . . , α−1

g , then χλ(A) = s⟨λ⟩(α1 , . . . , αg)
(see [FH91, Proposition 24.22 and (A.45)]). In the notation, we will suppress the λ j
that are 0. Put ∣λ∣ = λ1 + ⋅ ⋅ ⋅ + λg and note that V∨λ ≅ Vλ .

Theorem 2.1 Let V = V(1) denote the standard representation.

(1) Let X =Hg , Mg , Mnhyp
g for any g ≥ 2, or M1,1. For every n ≥ 1, an(X) is equal to

the number of times the trivial representation appears in the USp2g-representation
V⊗n .2

(2) For every g ≥ 3 and n ≥ 1, bn(Mg) is equal to the number of times the representation
V(1,1,1) appears in the USp2g-representation V⊗n . In particular, bn(Mg) = 0 for n
even.

(3) For every n ≥ 1, bn(M2) = 0.
(4) For every g ≥ 2 and n ≥ 1,

an(Mg) −
bn(Mg)√q

=
Sn(q,Mg)
q3g−3+n/2 + O(q−1).

(5) For every g ≥ 3 and n ≥ 1, we have

bn(Mg) = ∫(θ 1 , . . . ,θ g)∈[0,π]g
wn

1
⎛
⎝

1
6

w3
1 −

1
2

w1w2 +
1
3

w3 − w1
⎞
⎠

dmg .(2.1)

Proof Poincaré duality gives a symplectic pairing on the first �-adic étale coho-
mology group of a curve. We will be interested in the action of Frobenius on these
cohomology groups, and since we need to take the size of the eigenvalues of Frobenius
into account, we will consider representations of GSp2g . Let Q�(−1) denote the
multiplier representation or similitude character; if we identify GSp2g as the group of
automorphisms of a 2g-dimensional vector space that preserve a symplectic form s up
to scaling, then Q�(−1) is the representation η that sends an element of GSp2g(Q�) to
the factor by which it scales s. Let Q�(1) be the inverse (or dual) of Q�(−1), and for an
integer j, put Q�( j) = Q�(sgn j)⊗∣ j∣. For a representation U, put U( j) ∶= U ⊗Q�( j).
With the standard representation W of GSp2g , we can get irreducible representations
Wλ , for λ = (λ1 , . . . , λg) with λ1 ≥ ⋅ ⋅ ⋅ ≥ λg ≥ 0, using the same construction as for
USp2g (see [FH91, (17.9)]). If we homogenize the polynomial s⟨λ⟩(x1 , . . . , xg , t) to
degree ∣λ∣ using a variable t of weight 2 and with x i of weight 1 for i = 1, . . . , g,

2This is precisely [BHLGR23, Theorem 3.8], but we will give a different proof.
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then for A ∈ GSp2g with η(A) = s and eigenvalues α1 , . . . , αg , sα−1
1 , . . . , sα−1

g , we have
χλ(A) = s⟨λ⟩(α1 , . . . , αg , s). Now, for every n, there are integers cλ ,n ≥ 0 such that

W⊗n ≅ ⊕
∣λ∣≤n

W⊕cλ ,n
λ ((−n + ∣λ∣)/2).(2.2)

Note that if n /≡ ∣λ∣ mod 2, then cλ ,n = 0. Note also that (2.2) holds with the same cλ ,n
when replacing GSp2g with USp2g , i.e., replacing W by V and ignoring the multiplier
representation. Note also that W∨

λ ≅ Wλ(∣λ∣).
LetX =Hg ,Mg orMnhyp

g for any g ≥ 2, orX =M1,1. Let π ∶ Y→ X be the universal
object and define the �-adic local system V = R1π∗Q�. To any irreducible represen-
tation of GSp2g (the symplectic pairing coming as above from the first cohomology
group of the curves) corresponding to λ, we can then use Schur functors to define
a local system Vλ . Let H j

c denote compactly supported �-adic cohomology and Frq
the geometric Frobenius acting on X⊗ Fq . For general results on étale cohomology
of stacks, see, for instance, [Sun12].

For almost all primes p, we have H j
c(X⊗C,Vλ) ≅ H j

c(X⊗Qp ,Vλ) ≅ H j
c(X⊗

Fp ,Vλ). From this, we get bounds on dimQ�
H j

c(X⊗ Fp ,Vλ) that are independent
of p. This will tacitly be used below when we let q go to infinity.

Put X = X⊗ Fq . The Lefschetz trace formula and (2.2) then tell us that

Sn(q,X) =
2 dim X

∑
j=0

(−1) j Tr(Frq , H j
c(X,V⊗n

1 ))

= ∑
λ

cλ ,n

2 dim X

∑
j=0

(−1) j Tr(Frq , H j
c(X,Vλ)) q(n−∣λ∣)/2

(compare [BFvdG14, Section 8]). SinceVλ is pure of weight λ, it follows from Deligne’s
theory of weights [Del80, Sun12] that the trace of Frobenius on H j

c(X,Vλ) is equal
(after choosing an embedding of Q� in C) to a sum of complex numbers with absolute
value at most q( j+∣λ∣)/2.

From this, we see that only when j = 2 dimX can we get a contribution to an(X).
Since X is a smooth Deligne–Mumford stack, Poincaré duality shows that for every i
with 0 ≤ i ≤ 2 dimX, we have

H2 dim X−i
c (X,Vλ) ≅ H i(X,Vλ)∨(−dimX − ∣λ∣).

The zeroth cohomology group of a local system consists of the global invariants, and
among the irreducible local systems, only the constant local system V(0) ≅ Q� has
such. Moreover, H0(X,Q�) is one-dimensional, since X is irreducible. Finally, since
the action of Frq on H0(X,Q�) is trivial, we get by Poincaré duality that Frq acts
on H2 dim X

c (X,Q�) by multiplication by qdim X. It follows that an(X) = c(0),n . This
proves (1).

Assume now that g ≥ 3. From the work of Johnson and Hain, we know that
H1(Mg ,Vλ) is nonzero if and only if λ = (1, 1, 1) (see [Hai95, Joh83] and [Kab98,
Theorem 4.1 and Corollary 4.2]). In these references, it is the rational Betti coho-
mology group of Mg over the complex numbers that is considered. Furthermore,
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8 J. Bergström E. W. Howe, E. Lorenzo Garcia, and C. Ritzenthaler

H1(Mg ⊗ Fq ,V(1,1,1)) is one-dimensional and generated by the Gross–Schoen cycle,
which lives in the second Chow group (see [PTY21, Remark 12.1 and Example 6.4]).
Since this result also holds in �-adic cohomology, as noted in [PTY21, Section 1.2], the
action of Frq on this cohomology group is by multiplication by q2.

Recall that dimMg = 3g − 3. By Poincaré duality, we find that the action of Frq

on H6g−7
c (Mg ⊗ Fq ,V(1,1,1)) is by q3g−3+3−2. We can now conclude the following.

If n is even, then c(1,1,1),n = 0, and so every eigenvalue of Frobenius contributing to
q3g−3+n/2c(0),n − Sn(q,Mg) has absolute value at most q3g−4+n/2. If n is odd, then
c(0),n = 0, and so there are no eigenvalues of Frobenius contributing to Sn(q,Mg) of
absolute value q3g−3+n/2 and we can conclude by the above that bn(Mg) = c(1,1,1),n .
This proves (2.1).

Because of the hyperelliptic involution, H i
c(M2 ,Vλ) = 0 for all λ such that ∣λ∣

is odd. Moreover, H1(M2 ,Vλ) is nonzero precisely when λ = (2, 2). It is then one-
dimensional and Frq acts by multiplication by q3. This result is proven but not stated
explicitly in [Pet15, Pet16], as explained in [Wat18, Corollary 6.7]. By Poincaré duality,
Frq acts on H5

c(M2 ,V2,2) by multiplication by q3+4−3. Hence, for all even n, every
eigenvalue of Frobenius contributing to q3+n/2c(0),n − Sn(q,M2) has absolute value
at most q3+(n−2)/2. This proves (2.1).

Statement (4) is only a reformulation of the properties of an(Mg) and bn(Mg)
proven above.

Finally, for every k ≥ 1, put pk(x1 , . . . , xg) ∶= ∑g
i=1(xk

i + x−k
i ). The polynomial

s⟨(1,1,1)⟩(x1 , . . . , xg) equals

1
6

p3
1 −

1
2

p1 p2 +
1
3

p3 − p1 .

The irreducible representations of USp2g are self-dual. As a consequence, if U is a
representation of USp2g , then the number of times the representation Vλ appears
in U equals the number of times the trivial representation appears in Vλ ⊗ U . If
A ∈ USp2g has eigenvalues α1 , . . . , αg , α−1

1 , . . . , α−1
g , with α j = e iθ j for j = 1, . . . , g, then

pk(α1 , . . . , αg) = wk(θ1 , . . . , θ g). Statement (5) now follows from (2.1). ∎

Remark 2.2 Why did we not define bn for M1,1? For every prime p and n > 0, it
follows from [Del71] (see also [Bir68] and [BFvdG14, Section 2]) that

2
∑
j=0

(−1) j Tr(Frp , H j
c(M1,1 ⊗ Fp ,V(n))) = −Tr(Frp , H1

c(M1,1 ⊗ Fp ,V(n)))

= −1 − Tr(Tp , Sn+2),

where Tp is the pth Hecke operator acting on Sn+2, the (complex) vector space of
elliptic modular cusp forms of level 1 and weight n + 2. Moreover, for every prime
power q, the eigenvalues of Frq acting on H1

c(M1,1 ⊗ Fp ,V(n))will have absolute value
q(n+1)/2. It is in general not clear that the limit

− lim
q→∞

√q(Sn(q,M1,1)
q1+n/2 − an(M1,1)) ,(2.3)
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Refinements of Katz–Sarnak theory 9

which would be the way to define bn(M1,1), always exists when n is even. (For odd n,
Sn(q,M1,1) = 0; hence, the limit (2.3) will be 0.)

For even 0 ≤ n ≤ 8, the limit (2.3) is also 0 since there are no elliptic cusp forms
level 1 and weight less than or equal to 10. We then have that S10(p,M1,1) = 42p6 −
Tr(Tp , S12) + O(p5) and S12(p,M1,1) = 132p7 − 11p ⋅ Tr(Tp , S12) + O(p6). The so-
called Frobenius angle, 0 ≤ φp ≤ π, of the Hecke eigenform (the Ramanujan Δ
function) in the one-dimensional space S12 is defined by ap ∶= Tr(Tp , S12) =
2p11/2 cos φp . The Sato–Tate conjecture for Δ (proven in [BLGHT11]) then tells us that
there are sequences of primes p′1 , p′2 , . . . and p′′1 , p′′2 , . . . such that the Frobenius angles
of ap′1 , ap′2 , . . . (respectively, ap′′1 , ap′′2 , . . .) are all between 0 and π/3 (respectively, 2π/3
and π). This implies that the limit (2.3) does not exist for n = 10 and n = 12. It is unlikely
to exist for even n > 12, but the limit will then involve an interplay between different
Hecke eigenforms.

In [BHLGR23, Theorem 3.9], it is shown that for fixed g, we have

lim
n→∞

a2n(Mg)1/(2n) = 2g .

In the remainder of this section, we prove a similar result for b2n+1(Mg).

Proposition 2.3 For fixed g ≥ 3, one has

lim
n→∞

b2n+1(Mg)1/(2n+1) = 2g .

Proof Consider the functions w1 and f ∶= 1
6 w3

1 − 1
2 w1w2 + 1

3 w3 − w1 on X ∶= [0, π]g .
The maximum value of ∣w1∣ is attained at exactly two points in X, namely the points
x ∶= (0, . . . , 0) and y ∶= (π, . . . , π). We have w1(x) = 2g and w1(y) = −2g, and we also
have f (x) = (2/3)(2g3 − 3g2 − 2g) > 0 and f (y) = (−2/3)(2g3 − 3g2 − 2g) < 0.

Let V be the (open) subset of X where w1 f > 0, so that x and y both lie in V, and let
W = X/V . Let M be the supremum of ∣w1∣ on W, so that M < 2g. For ε ∈ (0, 2g − M),
let Uε be the subset of X where ∣w1∣ > 2g − ε, so that Uε ⊂ V , and let Vε = V/Uε .

Then, for every n, we have

b2n+1(Mg) = ∫
X

w2n+1
1 f dmg

= ∫
Uε

w2n+1
1 f dmg + ∫

Vε

w2n+1
1 f dmg + ∫

W
w2n+1

1 f dmg

≥ ∫
Uε

w2n+1
1 f dmg + ∫

W
w2n+1

1 f dmg

≥ (2g − ε)2n+1 ∫
Uε

∣ f ∣ dmg − M2n+1 ∫
W
∣ f ∣ dmg ,

where the third line follows from the fact that w2n+1
1 f is positive on Vε and the fourth

follows from the bounds on ∣w1∣ in Uε and W. Let A ∶= ∫Uε
∣ f ∣ dmg and B ∶= ∫W ∣ f ∣ dmg .

Then

b2n+1(Mg)1/(2n+1) ≥ (2g − ε)(A− ( M
2g − ε

)
2n+1

B)
1/(2n+1)

,
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and the rightmost factor tends to 1 as n →∞. Therefore, lim inf b2n+1
(Mg)1/(2n+1) ≥ 2g .

We also have

b2n+1(Mg) = ∫
Uε

w2n+1
1 f dmg + ∫

X/Uε

w2n+1
1 f dmg

≤ (2g)2n+1 ∫
Uε

∣ f ∣ dmg + (2g − ε)2n+1 ∫
X/Uε

∣ f ∣ dmg ,

so if we let C ∶= ∫X ∣ f ∣ dmg , then b2n+1(Mg) ≤ (2g)2n+1A+ (2g − ε)2n+1C , so

b2n+1(Mg)1/(2n+1) ≤ 2g(A+ (2g − ε
2g

)
2n+1

C)
1/(2n+1)

.

Once again the rightmost factor tends to 1 as n →∞, so lim supb2n+1(Mg)1/(2n+1) ≤
2g , and the proposition is proven. ∎

Remark 2.4 Let Xg be either Mg or Mg ,1, where the latter denotes the moduli
space of curves of genus g together with a marked point. For any k ≥ 0, λ as in
the proof of Theorem 2.1, and g ≥ 3

2 (k + 1 + ∣λ∣), there is an isomorphism in Betti
cohomology, Hk(Xg ,Vλ) ≅ Hk(Xg+1 ,Vλ) (see [Loo96, Theorem 1.1] and [Wah13]).
These are called stable cohomology groups.

In [BDPW23, Theorem 3.5.12], there is an alternative formula to that of [Loo96,
Theorem 1.1] for the dimensions of the stable cohomology groups of Mg . Using this
formula, one can prove, in a way analogous to [BDPW23, Theorem 7.0.2], that if
k < ∣λ∣/3 and g ≥ 3

2 (k + 1 + ∣λ∣), then Hk(Mg ,Vλ) = 0. It follows that for each k, there
are finitely many λ for which Hk(Mg ,Vλ), with g = ⌈ 3

2 (k + 1 + ∣λ∣)⌉, is nonzero. Again
using [BDPW23, Theorem 3.5.12], we find, for instance, that there are 5 such λ for k = 2
(see below) and 14 such λ for k = 3. Note also that for g ≥ 3

2 (k + 1 + ∣λ∣), Hk(Mg ,Vλ)
is zero if k + ∣λ∣ is odd.

The result above also holds in �-adic cohomology. Moreover, every eigenvalue
of Frobenius Fq acting on the compactly supported �-adic cohomology group
H6g−6−k

c (Mg ,Vλ), for g ≥ 3
2 (k + 1 + ∣λ∣), is equal to q3g−3+(∣λ∣−k)/2 (see, for instance,

[PTY21]).
In [MPPR24], it is shown that for g ≥ 3k + 3 (i.e., a bound that is independent of

λ), there is an isomorphism in Betti cohomology, Hk(Mg ,1 ,Vλ) ≅ Hk(Mg+1,1 ,Vλ).
It should be possible to show that this leads to an isomorphism Hk(Mg ,Vλ) ≅
Hk(Mg+1 ,Vλ) for all g ≥ gstab(k), with gstab(k) a function that only depends upon k
(cf. [CM09] and [BDPW23, Remark 3.5.11]). If we assume this to be true, then we can
combine the results above with the techniques in the proof of Theorem 2.1 to conclude
the following.

Let dn ,λ denote the number of times the representation Vλ appears in the USp2g-
representation V⊗n . Fix any K ≥ 0. Then, for any n ≥ 1 and g ≥ gstab(K), we have

K
∑
k=0

(−1)k
ck ,n ⋅ q−k/2 = Sn(Mg , q)/q3g−3+n/2 + O(q−(K+1)/2),(2.4)
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where

ck ,n = ∑
λ

dn ,λ ⋅ dim Hk(Mgstab(k) ,Vλ).

From [BDPW23, Theorem 3.5.12], we can, for instance, compute that

c2,n = dn ,(0) + dn ,(12) + dn ,(14) + dn ,(16) + dn ,(22 ,12) .

Note that by Theorem 2.1, c0,n = an(Mg) for g ≥ 2, c1,n = bn(Mg) for g ≥ 3, and
equation (2.4) holds with gstab(0) = 2 and gstab(1) = 3.

3 Convergence of moments of the measures μq,g

Let M′g(Fq) be the set of Fq-isomorphism classes of curves of genus g > 1 over Fq . If
g = 1, we abuse notation and let M1 =M1,1 be the moduli space of elliptic curves and
M′1(Fq) the set ofFq-isomorphism classes of elliptic curves overFq . Define a measure
μq ,g by

μq ,g ∶=
1

#Mg(Fq)
∑

C∈M′
g(Fq)

δτ(C)

# AutFq(C) ,

where τ(C) ∶= Tr(C)/√q is the normalized trace of C and δτ(C) is the Dirac δ
measure supported at τ(C). We see that μq ,g is a discrete probability measure on
Ig ∶= [−2g , 2g], since

μq ,g(Ig) =
1

#Mg(Fq)
∑

C∈M′
g(Fq)

1
# AutFq(C)

= 1
#Mg(Fq)

∑
C∈Mg(Fq)

∑
C′∈Twist(C)

1
# AutFq(C)

%&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&'&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&*
= 1 by [vdGvdV92, Prop. 5.1]

= 1.

We can introduce Nq ,g(τ) defined by

Nq ,g(τ) ∶= 1
#Mg(Fq)

∑
C∈M′

g(Fq),τ(C)=τ

1
# AutFq(C)

and rewrite μq ,g = ∑τ∈Ig
Nq ,g(τ)δτ . Note that the definition of Nq ,g(τ) differs from

the ones of [LRRS14, Appendix B] and [LRR+19, Section 4], in particular by a factor
of √q (this factor will appear again in Section 4, but this definition is more natural for
the measure).

From [Lac16, Remark 3.5], as a direct consequence of Katz–Sarnak results [KS99,
Theorems 10.7.12 and 10.8.2], there exists a probability measure μg ∶ Ig → R with a C∞
density function fg such that we have weak convergence of μq ,g to μg . Writing

fg(τ) = ∫
Aτ

dmg with Aτ = {(θ1 , ..., θ g) ∈ [0, π]g ∶ ∑ j 2 cos θ j = τ},
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12 J. Bergström E. W. Howe, E. Lorenzo Garcia, and C. Ritzenthaler

we see this is equivalent to

lim
q→∞∫

Ig

f dμq ,g = ∫
Ig

f (τ)fg(τ) dτ(3.1)

for all continuous functions f ∶ Ig → R. Moreover, for all polynomial functions3

P∶ Ig → R,

∫
Ig

P dμq ,g = ∫
Ig

P(τ)fg(τ) dτ + O ( 1
√q

) .(3.2)

We will now find a refinement of (3.2) when g ≥ 2.
Theorem 3.1 Let

hg(τ) = ∫
Aτ

⎛
⎝

1
6

w3
1 −

1
2

w1w2 +
1
3

w3 − w1
⎞
⎠

dmg(3.3)

be the function whose nth moments are equal to the numbers bn(Mg) given by the
expression (2.1). For g ≥ 2 and every polynomial function P ∶ Ig → R, we have

∫
Ig

P dμq ,g = ∫
Ig

P(τ)(fg(τ) −
hg(τ)
√q

) dτ + O (q−1) .(3.4)

Proof Notice that
Sn(q,Mg)

#Mg(Fq) ⋅ qn/2 = ∫
Ig

τn dμq ,g .

Using Deligne’s theory of weights, as in the proof of Theorem 2.1, we find that

#Mg(Fq) = Tr(Frq , H6g−6
c (Mg ,Q�)) + O (q3g−4) = q3g−3 + O (q3g−4) ,

since Mg is irreducible of dimension 3g − 3. Hence,
Sn(q,Mg)

#Mg(Fq) ⋅ qn/2 =
Sn(q,Mg)
q3g−3+n/2 + O(q−1).

Using Theorem 2.1 (4) for g ≥ 2, we then get

∫
Ig

τn dμq ,g =
Sn(q,Mg)

#Mg(Fq) ⋅ qn/2

=
Sn(q,Mg)
q3g−3+n/2 + O(q−1)

= an(Mg) −
bn(Mg)√q

+ O(q−1)

= ∫
Ig

τn (fg(τ) −
hg(τ)
√q

) dτ + O (q−1) . ∎

3In an earlier version and in [BHLGR23] following [Lac16, Corollary 4.3], we wrote that this
convergence rate holds for any continuous function. We cannot find a proof for this and prefer to state it
now only for polynomial functions as Katz and Sarnark do. Fortunately, this change has no consequence
on the rest of [BHLGR23]: for instance, Corollary 2.3 can be proven only using the pointwise convergence
of the cumulative distributions which is equivalent to the weak convergence above.
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Refinements of Katz–Sarnak theory 13

4 The elliptic and hyperelliptic cases: results and experiments

Katz–Sarnak results show that for every interval J ⊆ Ig , the probability that a random
curve of genus g over Fq (or a random hyperelliptic curve of genus g over Fq) has
normalized trace in J tends toward a fixed value as q →∞, this value being ∫J fg(τ) dτ,
where fg is the density function for the measure μg defined at the beginning of Section
3. Here, the interval J is fixed, and we let q tend to infinity. One can wonder how
rapid this convergence is. For instance, suppose the interval J has length x. How large
must q become in order for the actual probability that a normalized trace lies in J is
well-approximated by the Katz–Sarnak prediction? Could it even be the case that the
approximation is reasonably good when q is as large as 1/x2, so that x ≈ 1/√q and there
is exactly one integer t with t/√q ∈ J? In other words, can we use the Katz–Sarnak
distribution to estimate the number of curves over Fq with a given trace? Since the
measures μq ,g converge weakly to μg , one might hope that for every τ ∈ Ig , the integral
of μq ,g over an interval of length 1/√q containing τ would be close to the integral of
μg over this interval. If we let t be the unique integer such that t/√q is contained in
this interval, this optimistic approximation then translates to

√qNq ,g(
t

√q
) ≈ fg(

t
√q

).

Since Nq ,g(t/√q) gives us the weighted number of curves with trace t, if this
approximation is close to the truth, we would have a good estimate for the number
of such curves.

Remark 4.1 We do not know how to prove that this estimate holds, and indeed we
will see below that it does not hold, without modification, for hyperelliptic curves.
One consequence of this estimate, however, is the much weaker statement that for
every fixed value of t, the value of Nq ,g(t) converges to 0 as q increases. It is at least
easy to show that this weaker statement holds for t = 0, by the following argument.

Given ε > 0, let f ∶ Ig → [0, 1] be a continuous function with f (0) = 1 and with
f (τ) = 0 when ∣τ∣ ≥ ε. From (3.1), we find that for q large enough, we have

∣ ∫
Ig

f dμq ,g − ∫
Ig

f (τ)fg(τ) dμg∣ ≤ ε.

Hence,

0 ≤ Nq ,g(0) ≤ ∫
Ig

f dμq ,g ≤ ∫∣τ∣<ε
f (τ)fg(τ) dτ + ε ≤ (2 ∥fg∥∞ + 1)ε.

As we intimated in the preceding remark, for hyperelliptic curves, we can prove
that the naïve approximation for Nq ,g described above cannot hold. To state our result
precisely, we introduce a function N

hyp
q ,g (τ), which we define analogously to how we

defined Nq ,g(τ):

Nhyp
q ,g (τ) ∶= 1

#Hg(Fq)
∑

C∈H′
g(Fq)

τ(C)=τ

1
# Aut(C) .
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14 J. Bergström E. W. Howe, E. Lorenzo Garcia, and C. Ritzenthaler

Here, by Hg(Fq), we mean the set of Fq-isomorphism classes of hyperelliptic curves
of genus g over Fq , and by H′g(Fq), we mean the set of Fq-isomorphism classes of
such curves. Note that for an integer t in Ig , the value q2g−1N

hyp
q ,g (t/√q) is then the

weighted number of genus-g hyperelliptic curves over Fq with trace t.

Proposition 4.2 Fix g > 1 and ε ∈ [0, 2g), let rg ∶= ∑2g+2
i=0 (−2)i/i!, and let v =

∫
2g

2g−ε fg(τ) dτ. Suppose there are constants bg ≤ cg such that for every sufficiently large
prime power q and for every integer t in [−(2g − ε)√q, (2g − ε)√q ], we have

bg√q
fg(

t
√q

) ≤ N
hyp
q ,g (

t
√q

) ≤
cg√q

fg(
t

√q
).

Then bg ≤ (1 − rg)/(1 − 2v) and cg ≥ (1 + rg − 4v)/(1 − 2v).

The proof is based on the following lemma.

Lemma 4.3 Fix g > 1, and let rg be as in Proposition 4.2. If q is an odd prime power,
then

∑
t even

N
hyp
q ,g (

t
√q

) =
1 + rg

2
+ O

⎛
⎝

1
q
⎞
⎠

and ∑
t odd

N
hyp
q ,g (

t
√q

) =
1 − rg

2
+ O

⎛
⎝

1
q
⎞
⎠

.

Proof Fix an odd prime power q, fix a nonsquare n ∈ Fq , and consider the set H
consisting of all pairs (c, f ), where c ∈ {1, n} and f ∈ Fq[x] is a monic separable
polynomial of degree 2g + 1 or 2g + 2. A result of Carlitz [Car32, Section 6] shows
that #H = 2q2g+2 − 2q2g . The group PGL2(Fq) acts on H: Given a matrix [ r s

t u ] and
an element (c, f ) of H, let (d , g) be the unique element of H such that

dg(x) = ce2(tx + u)2g+2 f
⎛
⎝

rx + s
tx + u

⎞
⎠

for some e ∈ F×q . Note that the stabilizer of (c, f ) is isomorphic to the reduced
automorphism group RedAut(C) of the hyperelliptic curve C∶ y2 = c f , that is, the
quotient of the full automorphism group of C by the subgroup generated by the
hyperelliptic involution.

The map γ that sends (c, f ) ∈ H to the hyperelliptic curve y2 = c f takes H onto
H′g(Fq). Given a curve C ∈H′g(Fq), let (c, f ) ∈ H be such that γ((c, f )) = C. Then

#(PGL2(Fq) ⋅ (c, f )) =
# PGL2(Fq)
# RedAut(C) ,

so that

#γ−1(C)
# PGL2(Fq)

= 1
# RedAut(C) = 2

# Aut(C) .(4.1)

Let Heven be the subset of H consisting of the pairs (c, f ) such that the curve γ(c, f )
has even trace. Let H′even be the subset of H consisting of the pairs (c, f ) such that f has
degree 2g + 2 and has an even number of roots. Then H′even ⊆ Heven, and Heven/H′even
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consists of pairs (c, f ) ∈ Heven such that f has degree 2g + 1. Therefore,

∣#Heven − #H′even∣ ≤ 2q2g+1 .

Leont’ev [Leo06a, Lemma 4, p. 302] gives the generating function for the number
of (not necessarily separable) monic polynomials of a fixed degree over Fq that have a
given number of roots. To find the number of such polynomials with an even number
of roots, we simply need to take the average of the values of this generating function
evaluated at −1 and at 1. We find that

#{monic polynomials of degree 2g + 2
over Fq with an even number of roots } =

1 + rg

2
q2g+2 + O(q2g+1).

The result of Carlitz mentioned earlier shows that

#{non-separable monic polynomials
of degree 2g + 2 over Fq

} = q2g+1 .

Therefore, #H′even = (1 + rg)q2g+2 + O(q2g+1), so that #Heven = (1 + rg)q2g+2 +
O(q2g+1) as well.

Using (4.1), we see that

∑
t even

Nhyp
q ,g (

t
√q

) = 1
#Hg(Fq)

∑
C∈H′

g(Fq)
Tr(C) even

1
# AutFq(C)

= 1
#Hg(Fq)

∑
C∈H′

g(Fq)
Tr(C) even

#γ−1(C)
2# PGL2(Fq)

= 1
2#Hg(Fq)# PGL2(Fq)

#Heven

= 1
2q2g−1(q3 − q)((1 + rg)q2g+2 + O(q2g+1))

=
1 + rg

2
+ O( 1

q
).

This gives us the first equality in the conclusion of the lemma. The second follows
analogously. ∎

Proof of Proposition 4.2 Suppose the hypothesis of the proposition holds for a given
g and ε. For a given q, we let m = ⌊2√q⌋ and we consider several subintervals of
[−2g√q, 2g√q]:

J0 ∶= [−mg , mg], J2 ∶= [−2g√q,−(2g − ε)√q),
J1 ∶= [−(2g − ε)√q, (2g − ε)√q ], J3 ∶= ((2g − ε)√q, 2g√q ].

Now we interpret the sum

Seven ∶= ∑
t even

Nhyp
q ,g (

t
√q

)
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in two ways. On the one hand, from Lemma 4.3, we have

Seven = (
1 + rg

2
) + O

⎛
⎝

1
q
⎞
⎠

.

On the other hand, for q large enough, we have

Seven = ∑
t∈J1

t even

Nhyp
q ,g (

t
√q

) + ∑
t∈J2

t even

Nhyp
q ,g (

t
√q

) + ∑
t∈J3

t even

Nhyp
q ,g (

t
√q

)

= ∑
t∈J1

t even

Nhyp
q ,g (

t
√q

) + 2 ∑
t∈J3

t even

Nhyp
q ,g (

t
√q

)

≤
cg

2 ∑
t∈J1

t even

fg(
t

√q
)( 2

√q
) + 2 ∑

t∈J3

Nhyp
q ,g (

t
√q

) .(4.2)

The first sum in (4.2) is a Riemann sum for the integral of fg(τ) dτ over the interval
[−2g + ε, 2g − ε], so as q →∞ the first term in (4.2) approaches cg(1 − 2v)/2. The
second sum is the measure, with respect to μq ,g , of the interval [2g − ε, 2g]. Since
the μq ,g converge weakly to μg , the second term of (4.2) approaches 2v as q →∞.

Combining these two interpretations of Seven, we find that

(
1 + rg

2
) ≤

cg(1 − 2v)
2

+ 2v

so that cg ≥ (1 + rg − 4v)/(1 − 2v).
Similarly, we can consider the sum

Sodd ∶= ∑
t odd

Nhyp
q ,g (

t
√q

).

From Lemma 4.3, we see that

Sodd = (
1 − rg

2
) + O

⎛
⎝

1
q
⎞
⎠

.

But we also have

Sodd ≥
bg

2 ∑
t∈J1

t odd

fg(
t

√q
)( 2

√q
),

and the expression on the right approaches bg(1 − 2v)/2 as q →∞. This shows that

(
1 − rg

2
) ≥

bg(1 − 2v)
2

,

so we find that bg ≤ (1 − rg)/(1 − 2v). ∎

Remark 4.4 In the statement of Proposition 4.2, we only assume that the condition
on N

hyp
q ,g (t/√q) holds for t more than ε√q away from the ends of the interval
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[−2g√q, 2g√q ] because when ∣t∣ > g⌊2√q⌋ we have Nhyp
q ,g (t/√q) = 0. If we did not

exclude the tail ends of the interval, the hypothesis of the proposition would only hold
if we took bg = 0, which is not an interesting approximation.

Figure 1 shows the value of Nhyp
q ,g (t/√q) for all integers t ∈ [−4√q, 4√q], where

q = 1, 009, together with the density function f2 for the limiting Katz–Sarnak measure,
scaled by the two factors b = 38/45 and c = 52/45 given by Proposition 4.2 for g = 2
and ε = 0.

The key to Proposition 4.2 is the imbalance between the likelihood of even versus
odd traces for hyperelliptic curves. The obvious work-around would be to scale the
counts for the even and odd traces by the factors given in the proposition for ε = 0. One
can ask whether the scaled curve counts then better match the limiting Katz–Sarnak
distribution. Figure 2 suggests that perhaps this parity factor is the main obstruction
to obtaining decent estimates from the naïve Katz–Sarnak approximation.

The proof of Proposition 4.2 carries through for elliptic curves exactly as it does
for hyperelliptic curves of a given genus g > 1. We do not include genus-1 curves in
the statement of the proposition, however, because as we will see in Proposition 4.5,
for g = 1 there is no value of c1 that satisfies the hypothesis of the proposition when
ε ≤ 1, while the conclusion of the proposition is trivial when ε > 1 because the resulting
upper bound on b1 will be greater than 1 and the lower bound on c1 will be less than 1.

When g = 1, the density function of the limiting Katz–Sarnak measure on I1 is
f1 = (2π)−1

√
4 − τ2. Let Nq ,t denote the weighted number of elliptic curves over Fq

with trace t. For some values of t in [−2√q, 2√q ], we have Nq ,t = 0; in addition to
those t with ∣t∣ > ⌊2√q⌋, this happens for most values of t that are not coprime to q.
But even if we exclude these values, and even if we restrict attention to values of t that
are near the center of the interval [−2√q, 2√q ], the following proposition shows that
we cannot hope to approximate Nq ,t by the quantity

q1/2
f1(

t
√q

) = 1
2π

√
4q − t2 .

Proposition 4.5 For every c > 0, there are infinitely many values of q and t such that
∣t∣ ≤ √q and Nq ,t > c

√
4q − t2.

Proof Let Δ0 be a fundamental quadratic discriminant with Δ0 < −4, and let χ be
the quadratic character modulo Δ0. For a given value of n, let f be the product of the
first n primes p that are inert in Q(

√
Δ0). Since the product over all inert primes of

1 + 1/p diverges (see [Cox13, Lemma 1.14] and [Apo76, Exercise 6, p. 176]), when n is
large enough, we have

∏
p∣ f

(1 + 1
p
) > cπ2

3

√
∣Δ0∣

h(Δ0)
.

Choose n so that this holds, and let q0 be a prime of the form x2 − f 2Δ0 y2, where x
and y are positive integers. Note that x must be coprime to q0 because 0 < x < q0. Let
ϖ = x + f y

√
Δ0, viewed as an element of the upper half plane. Since x is coprime to

q0, ϖ is the Weil number of an isogeny class of ordinary elliptic curves over Fq0 .
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Let θ be the argument of ϖ, and let m be the smallest integer such that π/3 ≤ mθ <
2π/3. Write ϖm = u + f v

√
Δ for integers u and v, let q = qm

0 = u2 − f 2v2Δ, and let
t = 2u. Then ϖm is the Weil number for an isogeny class I of ordinary elliptic curves
over Fq , and the trace of this isogeny class is t. We have ∣t∣ ≤ √q because the argument
of ϖm lies between π/3 and 2π/3.

The number of elliptic curves in the isogeny class I is equal to the Kronecker class
number H(Δ) of the discriminant Δ ∶= t2 − 4q = 4 f 2v2Δ0. By [How22, p. 696], we
have

H(Δ) = h(Δ0) ∏
pe∥F

(1 + (1 − χ(p)
p )(p + ⋅ ⋅ ⋅ + pe)) ,

where F = 2 f v, so

H(Δ)√
4q − t2

= h(Δ0)√
∣Δ0∣

∏
pe∥F

(p−e + (1 − χ(p)
p )(1 + p−1 + ⋅ ⋅ ⋅ + p1−e)) .

Now,

p−e + (1 − χ(p)
p )(1 + p−1 + ⋅ ⋅ ⋅ + p1−e) ≥

⎧⎪⎪⎨⎪⎪⎩

1 + 1/p, if χ(p) = −1,
1 − 1/p2 , if χ(p) ≠ −1,

so we have

H(Δ)√
4q − t2

≥ h(Δ0)√
∣Δ0∣

∏
p∣F

χ(p)=−1

(1 + 1
p
) ∏

p∣F
χ(p)≠−1

(1 − 1
p2 )

≥ h(Δ0)√
∣Δ0∣

∏
p∣ f

(1 + 1
p
)∏

p
(1 − 1

p2 )

≥ h(Δ0)√
∣Δ0∣

( cπ2

3

√
∣Δ0∣

h(Δ0)
)( 6

π2 )

≥ 2c.

Since the curves in I are ordinary and the discriminants of their endomorphism
rings are neither −3 nor −4, they all have automorphism groups of order 2, so Nq ,t =
H(Δ)/2. It follows that

Nq ,t ≥ c
√

4q − t2 ,

as claimed. ∎

Figure 3 shows the weighted number of elliptic curves overF1000003 of each possible
trace, as well as the limiting density function f1(τ) = (2/π)

√
4 − τ2. We see that the

plotted points do not appear to be near the density function.
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Figure 3: Data for elliptic curves over Fq for q = 1, 000, 003. The blue dots are the points
(t/√q, Nq ,t/√q) for t ∈ [−2000, 2000], where Nq ,t is the weighted number of elliptic curves
over Fq with trace t. The red curve is the density function f1(τ) = (2π)−1√4 − τ2 of the
distribution μ1 .

5 The non-hyperelliptic case: experiments and conjectures

We consider now the case of non-hyperelliptic curves of genus g = 3. For this purpose,
for g ≥ 3, we introduce the function N

nhyp
q ,g (τ), which we define analogously to how

we defined Nq ,g(τ) and N
hyp
q ,g (τ):

Nnhyp
q ,g (τ) ∶= 1

#Mnhyp
g (Fq)

∑
C∈Mnhyp

g
′(Fq)

τ(C)=τ

1
# Aut(C) .

Here, by Mnhyp
g (Fq), we mean the set of Fq-isomorphism classes of non-hyperelliptic

curves of genus g over Fq , and by M
nhyp
g

′
(Fq), we mean the set of Fq-isomorphism

classes of such curves. The associated measures will still weakly converge to the
measure μg with density fg . But experimentally, the behavior looks much smoother
than in the elliptic or hyperelliptic cases as illustrated by Figure 4 for g = 3 and q = 53.4
Note that a similar behavior would certainly hold considering all curves of genus 3.

4When using the data of [LRRS14] to draw this figure, we noticed that there were some errors in the
code when computing the automorphism group of twists for small dimensional strata, giving 728 extra
“weighted” curves. This is a very small proportion with respect to 536

+ 1 curves and does not affect the
general shape of the curve.
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Figure 4: Data for non-hyperelliptic curves of genus 3 over Fq for q = 53. The blue dots are the
points (t/√q,√qNq ,3(t/√q)) for integers t ∈ [−42, 42]. The red curve is the function f3(τ).

Heuristically, these patterns could be understood as an averaging for a given trace
over several isogeny classes, but this idea does not work for the hyperelliptic locus as
we have seen in Section 4 and something more is needed for a family of curves to
“behave nicely.” Still, the experimental data in genus 3 lead us to state the following
conjecture.

Conjecture 5.1 Let g ≥ 3. For all τ ∈ Ig , for all ε > 0, and for all large enough q, there
exists t ∈ N such that ∣τ − t/√q∣ < 1/(2√q) and ∣√q ⋅Nnhyp

q ,g (t/√q) − fg(t/√q)∣ < ε.

Another way to phrase this conjecture is to replace the measure μq ,g by a measure
with density given by the histogram with height √q ⋅Nnhyp

q ,g (t/√q) and base centered
at t/√q of length 1/√q for all t ∈ [−2g√q, 2g√q]. The conjecture asserts that the
densities of these measures converge to the density fg at each point of Ig . This is
stronger than weak convergence of the measures [Sch47].

We now conclude by looking at the symmetry breaking for the trace distribution of
(non-hyperelliptic) genus 3 curves. In general, if C is a hyperelliptic curve of genus g
overFq with trace t, then its quadratic twist for the hyperelliptic involution has trace−t
and therefore the distribution of the number of hyperelliptic curves of genus g over Fq
as a function of their trace is symmetric. For non-hyperelliptic curves, the distribution
has no reason to be symmetric anymore. Actually, if a principally polarized abelian
variety overFq is the Jacobian (overFq) of a non-hyperelliptic curve, then its quadratic
twist is never a Jacobian. This obstruction, known as Serre’s obstruction, is a huge
obstacle to finding a closed formula for the maximal number of rational points for
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g = 3 [Lau02], whereas such formulas are known for g = 1 [Deu41] and g = 2 [Ser83].
Although we cannot improve on the state-of-the-art of this question, we can study this
asymmetry with the probabilistic angle and the results we got before.

To visualize this asymmetry, let us consider the signed measure νq ,g = μq ,g −
(−1)∗μq ,g where (−1)∗μq ,g is the discrete image signed measure defined by

(−1)∗μq ,g =
1

#Mg(Fq)
∑

C∈M′
g(Fq)

δ−τ(C)

# AutFq(C) .

We get the following consequence of Theorem 2.1.

Proposition 5.2 The sequence of signed measures (νq ,g) weakly converges to the 0
measure.

Proof By definition, the even moments of νq ,g are zero. By Theorem 2.1, the odd
moments of √q νq ,g are equal to

2
Sn(q,Mg)

q3g−3+(n−1)/2 = −2bn(Mg) + O ( 1
√q

) .

Hence, all moments of νq ,g are 0. Now, if f is any continuous function on the compact
interval Ig = [−2g , 2g], then by the Stone–Weierstrass theorem, for every ε > 0, we can
find a polynomial P such that ∣ f (τ) − P(τ)∣ ≤ ε for all τ ∈ Ig . Therefore, we have

∣∫
Ig

f dνq ,g∣ ≤ ∣∫
Ig

( f − P) dνq ,g + ∫
Ig

P dνq ,g∣ ≤ ε∥νq ,g∥ + ∣∫
Ig

P dνq ,g∣.

The last term is a sum of moments which converges to 0 when q goes to infinity. The
variation of νg ,q is also uniformly bounded since

∥νq ,g∥ = ∣νq ,g ∣(Ig) = ∑
τ
∣Nq ,g(τ) −Nq ,g(−τ)∣ ≤ 2∑

τ
Nq ,g(τ) = 2μq ,g(Ig) = 2.

∎

Having a 0 measure is not very interesting, and the proof of Proposition 5.2
shows that it would be much more interesting to study the weak convergence of
the sequence of signed measures (√q νq ,g). We have from the previous proof the
following corollary.

Corollary 5.3 The even moments of √q νq ,g are zero, and the odd nth moments of the
sequence (√q νq ,g) converge to −2bn(Mg).

Unfortunately, we cannot prove weak convergence: The rest of the proof fails as
we do not know if one can bound √q ∥νq ,g∥ uniformly in q (which is a necessary
condition for weak convergence). Moreover, one cannot expect a general result from
the convergence of moments alone as in the case of (positive) measures as the
following counterexample shows.

Example 5.4 Consider the sequence of signed measures (μ i) with density i sin ix
on the interval [0, 2π]. The sequence of nth moments converges to −(2π)n which is
the nth moment of the signed measure μ = −δ2π . But ∥μ i∥ = 4i, which is not bounded
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and therefore the sequence (μ i) does not weakly converge (to μ) (see, for instance,
[Bog18, Proposition 1.4.7]).

Recall from (3.3) that the nth moment of the function

hg(τ) = ∫
Aτ

( 1
6

w3
1 −

1
2

w1w2 +
1
3

w3 − w1) dmg ,

with Aτ = {(θ1 , . . . , θ g) ∈ [0, π]g ∶ ∑ j 2 cos θ j = τ}, is equal to bn(Mg). Because of
the convergence of the moments above, we conjecture the following.

Conjecture 5.5 For g ≥ 3, the sequence of signed measures (√q νq ,g) weakly converges
to the continuous signed measure with density −2hg .

Such a result would, for instance, imply that √q ∥νq ,g∥ is uniformly bounded;
hence, there exists a constant C > 0 such that for all q and all τ = t/√q, we have
∣Nq ,g(τ) −Nq ,g(−τ)∣ ≤ C/√q.

In genus 3, in the same spirit as in Section 4, one can run experiments which
illustrate how the values

{q (Nq ,g (
t

√q
) −Nq ,g (

−t
√q

))}
0≤t≤g⌊2√q⌋

are close to the values −2h3(t/√q). See, for instance, Figure 5 for q = 53. Seeing the
data, one may even wonder if something stronger would hold in the same line as
Conjecture 5.1, at least for g = 3.

Under this conjecture, one can use the moments of the density function h3 to revisit
the result of [LRR+19]. Based on results of [BDFL10], the authors gave a heuristic
explanation for the distribution of the points

pt ,q = ( t
√q

, q (Nq ,g (
t

√q
) −Nq ,g (

−t
√q

)))

when 0 ≤ t ≤ g⌊2√q⌋ by comparing it with the distribution of differences around the
mean in the binomial law [LRR+19, Corollary 2.3]. With the arguments given there,
the distribution is approximated by the function

Vlim(τ) = τ(1 − τ2/3) ⋅ ( 1√
2π

e−τ2/2) .

Graphically, for q = 53, the comparison looks acceptable but not perfect (see Figure 5).
This is fair as the heuristic grew from a result true when the degree of the plane curves
in play is larger than 2q − 1. As presently we are dealing with non-hyperelliptic curves
of genus 3, represented as plane curves of degree 4, the condition is obviously never
fulfilled. It is therefore already stunning that a close, albeit imperfect, match was found
in this way.

We now take a different road based on Conjecture 5.5 and approximate the density
−2h3 by a function νlim using the moments bn(M3). By Theorem 2.1, they can be
efficiently computed using any symmetric polynomial package. We used Maple and
the package SF [Ste95] to compute bn(M3) for n = 1, 3, 5, . . . , 25, and found the
following values:
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n bn(M3) n bn(M3) n bn(M3)

1 0 11 10,395 19 481,835,250

3 1 13 135,564 21 8,308,361,040

5 9 15 1,927,926 23 150,309,679,212

7 84 17 29,524,716 25 2,836,568,118,720

9 882

Taking νlim(τ) of the form P(τ) ( 1√
2π e−τ2/2) with P an odd polynomial of degree

5, we want

∫
R

τ2n+1 ⋅ νlim(τ) dτ = −2b2n+1(M3),

for n = 0, 1, and 2, and one finds that

νlim(τ) = (1/60 τ5 − 1/2 τ3 + 5/4 τ)( 1√
2π

e−τ2/2) .

Remarkably, the moments of νlim(τ) still agree with −2b2n+1(M3) for n = 3, 4, and 5.
However, for n = 6, we find that ∫R τ13 ⋅ νlim(τ) dτ = −2 ⋅ 135135 ≠ −2 ⋅ b13(M3).

Figure 5: Comparison of genus-3 data for q = 53 with theoretical approximations. In each
graph, the blue dots are the points {(τ, q (N53,3 (τ) −N53,3 (−τ)))} with τ = t/

√
53 and

0 ≤ t ≤ 42. The upper-left graph shows −2h3 in red. The bottom-left graph shows νlim in red.
The bottom-right graph shows Vlim in red.
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In Figure 5, we see a comparison between the graph of points {pt ,53}0≤t≤42 and the
functions Vlim(τ) and νlim(τ), in favor of the latter.

Acknowledgments We thank Dan Petersen for helpful conversations in connection
with the Gross–Schoen cycle and Remark 2.4.
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