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Abstract
The given article emphasizes the development and modeling of a hybrid navigational controller to optimize the path
length and time taken. The proposed navigational controller is developed by hybridizing the metaheuristic moth–
flame optimization (MFO) approach and the reinforcement learning (RL) approach. Input parameters like obstacle
and target locations are fed to the MFO controller that implements a proper navigational direction selection. It
forwards to the RL controller, which exercises further refinement of the output turning angle around obstacles.
The collaboration of the global MFO approach with the local-based RL approach helps to optimize the path tra-
versed by the humanoid robot in an unknown environment. The major breakthrough in this article is the utilization
of humanoid robots for navigation purposes between various checkpoints. The humanoid robots are placed in a
cluttered environment and assigned specific target positions to complete the assigned tasks. In the case of a multi-
humanoid robot system, to avoid self-collision, it requires a Petri-Net controller to be configured in the navigation
system to prevent deadlock situations and enhance the smooth completion of tasks without inter-collision among
the humanoid robots. Simulations and real-time experiments are undertaken using different controllers involving
single- and multi-humanoid robot systems. The robustness of the proposed controller is also validated in dynamic
environment. Comparisons are carried with an established navigational controller in a similar environmental setup,
which proves the proposed hybrid controller to be robust and efficient.

1. Introduction
Humanoid robots are a prominent area of interest among current researchers due to their well-perceived
ability to emulate human behavior and replicate task deportment. Various sensors and interaction devices
implanted on humanoid robots help smooth proceedings between the robot and its environment, hence
improvising task completion’s easiness. Due to humanoid robots’ consistent behavior in performing
repetitive jobs, a significant chunk of production and manufacturing lines employ robots to complete
monotonous work. The application of humanoid robots in various segments of the industry considerably
improves the work efficiency of the process and reduces accident probability to a minimum level. The
implementation of humanoid robots in perilous conditions extends the domain of its application and
supersedes man’s applicability in these conditions. In lieu of the given advantages of the humanoid
robot, it is employed in various sectors like automobile assembly, underwater repairing, offshore drilling,
and basic household services. Since the humanoid robot is being widely used in various sectors, energy
minimization during tasks’ performance is a major concern from an economic point of view. Various
researchers have employed the use of artificial intelligence (AI) approach for the path-planning of mobile
robots and humanoids, which are discussed below.
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Authors [1] have provided a novel forward model-based technique for lidar analytical approach.
Existing mapping methods have a number of flaws that can be traced back to an absence of a clear
forward concept. The goal of Wu et al. [2] has been to create a generalized wavefront method for mobile
robot route mapping. Multi-objective point combinations, layered grid expenses, logarithmic expansion
across barriers, and route improvement are all part of the research. Liang and Xu [3] have emphasized
the development of a mutated simulated annealing (SA) approach to applying on wheeled robot global
navigation. They modified the conventional method since it has a demerit of slow convergence rate. Zhu
et al. [4] have discussed the memetic approach (MA) of path planning and examined it on simulated
maps and correlated with other counterpart approaches. They also described that the result came from
the MA has better efficiency than the other conventional approaches. Botzheim et al. [5] have empha-
sized a bacterial MA to recognize a collision-free route for the wheeled robot by minimizing the path
length and the number of divergences in the trodden path. In this paper, Ant Colony Optimization (ACO)
has been used to determine the presence of intra-class pheromone secreted by other ants to determine
the shortest path. Liang et al. [6] have emphasized the use of bacterial behavior to find out an optimal
path without collision with the hindrances, with the help of bacterial foraging approach, in order to make
a bio-inspired route outlining an approach for a wheeled robot.

The authors have created a navigation framework that uses an evolutionary threshold filtering tech-
nique to identify barriers in a sliding window, categories the identified barriers with a tree structure,
heuristically forecasts future collisions, and uses a simplified Morphin method to select the best path
[7]. Gao and Tian [8] have evaluated the refined SA mixed optimization approach and the artificial neu-
ral network and implemented it to wheeled robot motion planning in an unknown environment. This
approach improves the protective measures and enhances the convergence value of the SA approach. It
also minimizes the computing time of route outlining; thereby, it becomes easy and fast to obtain the
optimal global solution. Jun and Qingbao [9] have presented a multi-objective mobile robot route plan-
ning approach based on an enhanced genetic algorithm. The method introduces a chaotic series and a
heuristic technique focuses on ecological expertise to initialize the population in order to enhance the
individuals’ ergodicity and practicability in the search area. Yue and Wang [10] have focused on the use
of applied SA with a compound shape method for the route outlining for the neural network of wheeled
robots. Along with achieving the globally optimal result that identifies the SA approach, it has been
used for an ideal declining inclination, thus refining the convergence value. Sharifi and Vinke [11] have
focused on the use of a SA approach to preventing the entrapment of robots in a local minima position.
Authors have applied it for local path planning in a stationary environment to increase the effective-
ness of selecting path and to ensure robustness. Alfaro and Garcia [12] have proposed a fuzzy logic and
SA approach to design an automated route outlining approach of wheeled robot. Proposed approach was
used to regulate the velocity of the wheeled robot at the time of navigation, and it was applied in-between
of the fixed polygonal hindrances by applying 49 fuzzy rules to get collision-free optimal path.

A behavior-based neural network and reactive command framework for mobile robot guidance are
proposed by Pandey and Parhi [13]. As sources, two distinct reactive behaviors have been used that
includes location and angle of the obstacles. Ganganath and Cheng [14] have presented an off-line path
planner for which the basic was ACO approach (ACO2 Gauss) for wheeled robots. Chang et al. [15] has
presented an advanced dynamic window approach based on Q-learning. To improve the efficiency of
global guidance, the fundamental assessment algorithms are updated and enhanced by introducing two
additional evaluation processes. Wei and Zhao [16] have developed a three-part technique that includes
motion primitives, a Bayesian network, and an unique coupling neural network. To decouple human arm
motions, motion elements are utilized. Arm motion categorization enhances the precision of human-like
gestures.

Kusuma et al. [17] have emphasized the usage of the A∗ search approach for path-planning of a
humanoid robot in various home assistance operations. The methodology aims for an efficient path
sketching and rerouting of the humanoid robot’s path in case it of unreachability to a given check-
point. Sabe et al. [18] have proposed a stereo vision for path planning and obstacle detection of a QRIO
humanoid robot in home environments. The grid detection methodology is implemented for obstacle
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avoidance along the proposed path. Huang et al. [19] have proposed a star search navigational strategy
for efficient footstep planning of humanoid robots with a major emphasis on energy consumption in
the navigation process. The given methodology is based on the optimization of step length, step width,
and the turning angle of the humanoid robot. Lee et al. [20] have proposed the concept and modeled a
service-providing humanoid robot for performing day-to-day tasks in an unknown environment with an
in-built 3D object detection system. Simulations in real-time environments show that the proposed robot
performs the given tasks at about 24% efficiency of human beings. Lagaza et al. [21] have emphasized
the use of the Spider Monkey algorithm for the optimization of the path traced between checkpoints in
static and dynamic environments.

As evident from the study of the presented research papers, a significant amount of work has been
done for path planning in mobile robots. Research work involving the navigation of humanoid robots in
unknown environments is scarce. Path planning approaches involving humanoid robots have contributed
a meager amount in research works with almost no proper work done for navigation of robots between
multiple targets. In the current scenario, the robots employed in various industries are multidimensional,
requiring various skills to complete the task. This includes the design of a mechanical engine, repair
works, and various other breakdown maintenance tasks. Due to major complications in the humanoid
robots’ path planning, a hybrid navigational strategy combining the global moth–flame optimization
approach with the accurate and local reinforcement learning (MFO-RL) approach has been proposed in
this article. The MFO is a global path planning approach that cancels out the probability of local min-
ima entrapment, whereas RL being a local path planning approach that optimizes the angle of turning
of the humanoid robot around various obstacles. The paper also focuses on a multi-humanoid system’s
path planning in an unknown environment, which has not been done actively yet. In the case of multi-
humanoid navigation, a situation of deadlock arises when a robot enters another robot’s proximity zone.
To avoid inter-collision among the robots, a Petri-Net controller is configured alongside the hybrid con-
troller for the path-planning of multi-humanoid system. The Petri-Net controller, in this scenario, nego-
tiates between the humanoid robots and cancels out any hindrance during the navigation. The various
research works done on the MFO approach, RL approach, and Petri-Net controller are enlisted below.

Jalali et al. [22] have proposed MFO-based multilayer perceptron network for trajectory planning
of an autonomous robot in an unknown environment. The proposed MFO methodology, entrusted with
controlling the NN controller’s weight and bias parameters compared with various evolutionary and
gradient-based approaches, demonstrates its clear superiority. Abdullah et al. [23] have developed an
MFO-based approach for the optimization of energy usage at assembly stations. The idle energy in
the assembly sequencing problems is optimized using MFO-based controller, which performs much
better than the genetic algorithm (GA), Particle Swarm Optimization (PSO), and ACO controllers in
terms of robustness, feasibility, and computational time. Mehne and Mirjalili [24] have proposed the
use of the MFO approach for feedback control on a general nonlinear problem. The methodology is
used to convert a given infinite-dimensional problem to a finite one using a set of coefficients. The
application of the proposed controller to certain established problems demonstrates its efficiency in
achieving optimum results in this regard. Elaziz et al. [25] have explored the applications of MFO-
based approaches in various benchmark works in conjunction with opposition based learning (OBL)
and Differential evolution (DE) approaches for better initial insect population generation and exploration
facilities. The results of the experiment are evidenced by the fact that the proposed approach performs
better than the established ones.

Gao et al. [26] have illustrated the use of the Q-learning reinforcement approach for the path-planning
of mobile robots in cluttered environments. The proposed methodology involves the generation of an
obstacle-free path in the first step and optimization of the generated path in the next step. The emphasis
was to establish the proposed method, superior to the BFS breadth-first search (BFS) and rapidly explor-
ing random trees (RRT) methods. Fakoor et al. [27] have solved the latter challenge by using a unique
method wherein the speed is decided using fuzzy Markov decision process (MDP).

Trinh et al. [28] have emphasized the usage of dipole interaction systems for the path-planning of
humanoid robots in cluttered environments. Furthermore, a Petri-Net framework with a dynamic win-
dow approach has been used for dynamic obstacle avoidance in unknown environment navigation. Parhi
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and Mohanta [29] have emphasized the use of fuzzy logic controller combined with the Petri-Net frame-
work, which helps in avoidance of dynamic obstacles during the navigation of humanoid robots in the
given terrain. Kumar et al. [30] have proposed the usage of a hybrid RA-fuzzy logic controller for
hassle-free travel of humanoid robots in unknown environments. The Petri-Net controller attached to
the proposed framework helps in the prevention of inter-collision among the humanoid robots during
task completion.

Implementation of the sole AI approach for the path-planning of a robot takes an enormous amount
of time and renders the strategy uneconomical. Furthermore, the single technique used often leads to
the robot being captive in a local minima situation where the conditions created are unresolvable. The
hybrid navigational strategy proposed in the article deals with the entrapment of the robot in a local
minima condition and guides in faster convergence toward the target with minimum deviations. The
hybrid controller is implemented in single- and multi-humanoid robots in a common platform, which is
still a topic for research. It is assessed against various standalone approaches based on path length. The
hybrid controller leads to the successful completion of the task and has not been used anywhere yet by
author’s knowledge. The MFO approach is a global search strategy that is based on the generation of
fitness function of various sample spaces in the unknown environment to sketch out an optimum path
for the humanoid robot navigation. The RL approach is a more accurate local search strategy that helps
in the determination of the optimum turning angle of the humanoid for collision-free navigation. RL
optimizes the footstep planning to efficiently avoid obstacles with any shapes. The algorithm also helps
the robot to find out the prioritized target to decrease the overall length of the path. The hybridization
of these two approaches are implemented in a single controller and configured alongside a Petri-Net
controller for dynamic obstacle clearance. The proposed controller is also capable of solving the problem
of avoidance of dynamic obstacles (multi-humanoid robots). The layout of the article is demonstrated as
follows. Section 2 emphasizes the MFO approach, whereas the RL approach is described in Section 3.
The Petri-Net controller, which is used to solve the conflict problem, is presented in Section 4. The
hybrid controller based on the MFO and RL approach is presented in Section 5. Various simulations and
experimental results using the proposed hybrid controller are shown in Section 6, whose comparisons
with previously established approaches are discussed in Section 7. Section 8 demonstrates the conclusion
of the presented work and gives the scope for future improvisations in the given context.

2. Moth–flame optimization
It is a bio-inspired swarm optimization method based on moth’s navigational strategy during the night.
This paper’s navigational mechanism is referred to as the transverse orientation in which moths can
travel in a straight line for longer distances by maintaining a fixed angle with respect to the moon.
However, the presence of artificial light sources in the environment, moths, due to their proximity to
these artificial sources, is influenced on a larger scale and maintains a certain angle with them, resulting
in the travel path being spiral. In this approach, the moths traverse the spiral path while exploiting the
search space to reach the maximum fitness function value attainable by the flame position with respect
to other moths.

In this optimization approach, the moths are randomly placed in the solution space, where each moth
is assigned a solution in the sample space. Moths are assigned a specific fitness function and a flame that
stores the best solution found by the moth. With every iteration, the moth traverses a spiral path around
the flame, thus updating its fitness function and new positions. The position matrix for’x‘ number of
moths in’n ‘dimensional solution space are as follows:

M =

⎡
⎢⎢⎢⎣

m1,1 m1,2 . . . m1,n

m2,1 . . . . . . . . .

. . . . . . . . . . . .

mn,1 . . . . . . mn,n

⎤
⎥⎥⎥⎦ (1)
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The fitness function for’x ‘number of moths are as follows:

MF =

⎡
⎢⎢⎢⎣

MF1

MF2

. . .

MFx

⎤
⎥⎥⎥⎦ (2)

The position matrix for ‘x’ number of flames in ‘n’ dimensional solution space are as follows:

F =
⎡
⎣ F1,1 . . . F1,n

. . . . . . . . .

Fx,1 . . . Fx,n

⎤
⎦ (3)

The complete fitness function of flames based on fitness function of each flame is given as as
follows:

FF =

⎡
⎢⎢⎢⎣

FF1

FF2

. . .

FF3

⎤
⎥⎥⎥⎦ (4)

where Fj is the jth flame. The fitness function refers to the evaluation of the positions based on the
suitability of the given path for travel, that is, the higher the fitness function value, the higher are the
chances of treading via that path. The functions used for position updation of moths that contains M
denotes random position of moths, and E presents the termination search operation.

The random positioning of moths is done by the M function which is given as:

M(i, j) = (U(i) − L(j)) ∗ rand() + L(i) (5)

where U and L are arrays defining upper and lower bounds of variables, respectively.
The movement of moths in the search space is based on traverse orientation, and the path model used

is the logarithmic spiral curve. The curve has the following properties:
(i) Spiral’s initial point is the starting point of the moth and the final point is the next position of the

flame.
(ii) Fluctuations in the spiral curve’s range should be within the search space domain.
The movement of moths in the search space is given by the H function whose equation is given as:

H
(
Mi, Fj

) = Die
pt cos(2�t) + Fj (6)

where H represents the movement of moths in search space, Mi is the ith moth, Fj is the jth flame, p is the
defining parameter for the spiral, t is the time between [–1,+1], and Di is the distance between ith moth
and jth flame and is given by:

Di =
∣∣Fj − Mi

∣∣ (7)

Thus, with the completion of each iteration, the moths and flames’ fitness value get updated, which
ensures that the exact location of the best solution is found. The terminal function E is based on the
termination criteria as proposed by the programmer which is limited by the number of epochs or a certain
minimum fitness function value. The flow diagram of the working of an MFO approach is presented in
Fig. 1.

Steps for carrying out the MFO approach:

Step 0: Set the number of moth and flame and the maximum no. of iterations ‘δ’ to be carried out. Set
the upper and lower bound of the function and initialize random generation of the moths.

Step 1: Calculate the fitness function for each moth and flame and tag the best position by comparing
the fitness function of flames.
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Figure 1. Flow chart of MFO approach in humanoid robot navigation.

Step 2: Update the flame position by the fitness function criteria.
Step 3: Calculate the value of Di for the corresponding moth and update it’s M(i, j) using the

relation:

Mi+1 = H
(
Mi, Fj

)
(8)

Step 4: If no. of iterations≥ δ, terminate the process or else, reiterate the process.

2.1. Description of the optimal navigational fitness function
Assume a humanoid NAO going through an environment having a starting location (Xs, Ys) and a goal
location (Xt, Yt), and a barrier at (Xo, Yo). The environment is made up of a number of robots that behave
as dynamic barriers to one another. The main purpose is to develop the humanoid NAO smart enough
to evade static and dynamic barriers (another humanoid NAO) and reach the goal in the least period
of time. In addition, the humanoid NAO should create the shortest and best route possible while also
ensuring its smoothness. In this part, the objective navigational mechanism is built while keeping these
factors into account. As there is a possibility of inter-collision, the motion of another robot also disrupts
their activities. As a result, in order to comprehend the situation and evade self-collision, the robot’s
movement is also evaluated.

The objective feature is based on the minimum length to the goal, the evasion of barriers, and
the smooth path. These aims should be met in order to complete the assignments with the minimal
computational effort.

2.1.1. Minimum route length
The design of the minimum route length is considered as the primary goal of humanoid NAO’s trajectory
mapping. Between the starting position and the goal, the robot must take the quickest path. To find the
optimal path, it ought to be a Euclidean length. At each cycle, the robot’s location ought to be accurately
adjusted to obtain the shortest trip interval between it and the destination. The module is based on the
humanoid NAO’s optimal positioning and goal. It is defined as [31]:

f1(X, Y) = d[(XHr(i) , YHr(i)) , (Xt, Yt)] (9)
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where (XHr(i) , YHr(i)) is the humanoid NAO’s location at ith point. There could be n locations between
starting and goal, with the coordinate of humanoid NAO at nth location is (XHr(n) , YHr(n)). The overall
path distance is equivalent to the total of the lengths between the humanoid NAO’s various sites. It is
defined as [31]:

Espl =
n∑

i=1

d[(XHr(i) , YHr(i)) , (Xt, Yt)] =
n∑

i=1

spl (10)

spl =
√

(YHr(i + 1) − YHr(i))
2 + (XHr(i + 1) − XHr(i))

2 +
√

(YHr(n) − Yt)
2 + (XHr(n) − Xt)

2 (11)

2.1.2. Barrier evasion
For safe trajectory mapping, barrier evasion should be considered in addition to the minimal path
length. The utility is determined by the location of jth barrier and the humanoid NAO at ith location.
The following is a representation of the framework [31]:

f2(X, Y) = [
(Xo(j) , Yo(j)) , (XHr(i) , YHr(i))

]
(12)

The range between the humanoid NAO at location ith and the barrier at location jth must be kept to
a minimum (safe). The humanoid NAO must travel to the closest, secured location to the barrier. The
entire length of the route between them is denoted by [31]:

Eoa =
m∑

j=1

n∑
i=1

d
[
(Xo(j) , Yo(j)) , (XHr(i) , YHr(i))

] =
m∑

j=1

n∑
i=1

oa (13)

The above equation represents the discrete situation while achieving the target. It is the summation
of the distance between the robot at and ith position and barrier at jth position. Likewise, it draws a line
between the start point and the target by considering the barrier.

where, m is the count of barriers.

oa =
√

(YHr(i) − Yo(j))
2 + (XHr(i) − Xo(j))

2 (14)

2.1.3. Soothing of route
The purpose of performance management is to maintain a smooth path while evading barriers. It denotes
the reduction of angle fluctuation from the Euclidean route to the smallest possible value (from the
humanoid NAO at ith location to the goal). It is formulated as [31]:

f3(X, Y) = |α[H(i) , H(i + 1)] , α[H(i) , T]| (15)

where α[H(i) , H(i + 1)] and α[H(i) , T] are the angles between the humanoid NAO’s route at ith and
(i + 1)

th spots and the angle between the humanoid NAO’s route at ith location and the goal, respectively.

α[H(i) , H(i + 1)] = tan−1

[
Yhr(i + 1) − Yhr(i)

Xhr(i + 1) − Xhr(i)

]
, and α[H(i) , T] = tan−1

[
Yt − Yhr(i)

Xt − Xhr(i)

]

Ets =
n∑

i=1

|α[H(i) , H(i + 1)] , α[H(i) , T]| (16)

The multi-objective activity is calculated as follows [31]:

f (mof ) = w1

n∑
i=1

Espl(i) + w2

n∑
i=1

m∑
j=1

Eoa(i) (j) + w3

n∑
i=1

Ets(i) (17)
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Figure 2. Representation of global space example with cell system.

where the weight functions w1, w2, and w3 represent the relative importance of specific objectives. They
must adhere to the following restrictions:

w1 + w2 + w3 = 1 (18)

The multi-objective equations’ ultimate fitness is expressed as:

ffitness = 1

f (mof ) + ε
(19)

where ε is a small value that is inserted to ensure that it is not divided by zero. Because all factors must
be reduced to produce the best solution, the multi-objective expression is a minimization task.

To achieve our objective, it is needed to create a genotype layout that could be easy for the MFO
approach agents to interpret while yet preserving the necessary routing path for autonomously moving
robot. As a result, as illustrated in Fig. 2, a simple cell layout has been employed for the global space.
The parameters (length and width) of the global space are presumed to be available. The following
hypotheses are used in this concept:

1. There is a layout of the space where navigation occurs. The exploration space’s length and width
will be determined by the route organizer, who will then implement a cell layout to the space.
As a result, the space is split into rows and columns.

The strategy of assuming that the quantity of rows equals the number of columns is used. The cell’s
populated area represents the positions of recognized barriers.

2. The source and target of the planned robot’s motion are also specified in predefined dimensions.
3. The robot is able to travel on all viable cells, with its center moving down an imaginary path

connecting the centers of one cell and the centers of adjacent cell.

A route in that domain is defined by a genotype [32] having N genes, provided a navigable scenario
defined by N rows. Every gene frequency correlates with a column reference inside that row, while each
gene location correlates with a row reference. Let’s say there is chromosome 2,3,3,6,8,8. This genotype
denotes a route that begins in row 1, column 2 (1,2) and finishes in row 6, column 8 (6,8). This route’s
interim locations are (2,3), (3,3), (4,6), and (5,8). The passage through this route in world space is shown
in Fig. 3(a), with point (1,1) presumed to be in the upper left corner.

The interim phases, or vertices, of a route are represented by the directional data of a chromo-
some. Moving the robot in a continuous trajectory from one cell’s center to another cell’s center, on
the other hand, might result in the robot moving in a diagonal route over several neighboring cells. If
any neighboring cells on the robot’s path through one row to another have a barrier, it will create issues.
A better solution is to divide the diagonally route section into a horizontally and a vertically portion,
allowing the robot to navigate around barriers. As a result, an orientation information to the chromo-
somal architecture has been added to signify the robot’s initial turning as it moves to another vertex.
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Figure 3. Representation of global space navigation: (a) row wise and (b) column wise.

The genotype architecture has been enhanced by introducing a guidance bit to every chromosome: 0
indicates column-wise configuration and 1 indicates row-wise configuration. Each locus, on the other
hand, correlates with a column reference on a column-wise chromosome, whereas every gene corre-
lates with a row reference. The movement for the column-wise chromosome 4,4,2,4,6,5,3,3 is shown
in Fig. 3(b). This genotype shows a route that begins in row 4, column 1 (4,1) and continues to row 3,
column 8 (3,8) via intermediary locations (4,2), (2,3), (4,4), (6,5), (5,6), and (6,3).

The process has one limitation that the genetic individual representation disallows moving back
simultaneously in both rows and columns. The proposed optimization technique’s parameters are the
number of search agents (50), number of features (400), number of iterations (200), and dimension
(400).

3. Reinforcement learning
RL is a learning approach implemented in unknown environments for assessment and improvisation
of the agent’s learning skills when an incomplete output data set is provided. The approach is based
on the development of a continuous space scenario into a discrete space scenario by the implementa-
tion of sampling criteria used in the MDP and the Q-learning algorithm. This random sampling of the
given environment occurs unless the final target is attained. The approach considers obtaining a specific
Q-value from a specific action and moving on from the current state to a newer state. The obtained
Q-value is compared to the maximum Q-value desired by carrying out value iterations. The policy net-
work is the major deciding criteria, which determines the course of action taken by the agent in the
current state. Based on evaluating the Q-value received from a certain iteration, the network either gives
a reward or imposes a penalty on the agent’s action, which governs its future actions.

The penalty imposed on the actions reduces the probability of a similar action occurring in the future,
thus, filtering out the action from the agent’s behavior pattern. Similarly, a rewarded action has a greater
probability of occurrence in the future in similar states. The agent has two primary behaviors: exploration
and exploitation. Exploration refers to assessing the immediate surroundings by the agent’s inquisitive
behavior and drawing out a certain conclusion, while exploitation is the calculation of optimum action
based on provided information to generate a suitable path for locomotion in the environment. Q-learning
is based on the agent’s exploration behavior in the sample space and discovers optimum solutions that
are not provided in the input data set. The schematic diagram for the RL approach has been presented
in Fig. 4.

3.1. State representation and reward function
The state comprises of ultrasonic sensors data that include range statistics from the working region, its
forward speed, and the respective ranges of x and y from the robot to the goal location:

z = zultrasonic + zt arg et + zvelocity (20)
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Figure 4. Schematic diagram of reinforcement learning approach [33].

where zultrasonic data is ultrasonic sensor information that measures range and recognizes obstacles to
identify the interaction between barriers and the robot. Additionally, the ultrasonic information has been
utilized to explicitly estimate the object’s motion position and velocity over three step. The comparative
distance between the robot and the goal point is zt arg et, and moving orientation may be efficiently deter-
mined by’s unambiguous data on how the moving route is correct. The robot’s speed data is displayed
via zvelocity. Furthermore, zvelocity can be used to determine the robot’s maximum velocity and inertia, as
well as the robot’s evasion technique based on velocity.

The robot’s objective in this investigation would have been to achieve the goal point (Xt, Yt). Traveling
with collision avoidance using RL and staying within the efficiency limit is required to achieve the goal
location. As a result, the reward has also been taken into account independently. The combination of
following two reward functions is considered:

Rt = RG + RCA (21)

The system earns a huge reward of 20 if the robot achieves the goal location. Furthermore, if the range
to the goal grows shorter than previously while advancing to the goal location, the robot is rewarded as
it moves in the correct route:

RG =
{

20 if pc < 0.5

pp − pc otherwise
(22)

where pc is the current position of robot and pp is the previous position of robot.

p =
√

(YHr(i) − Yt(j))
2 + (XHr(i) − Xt(j))

2 (23)

Walking in the reverse way from the desired location results in a penalty equal to the distance traveled
in one step, while traveling in the other direction results in a reward equal to the distance traveled in one
step.

Whenever the robot collides with a barrier, the reward RCA applies a severe penalty of –20, which is
a condition that the robot must be trained to escape:

RCA =
{−20 if collisions occur

0 otherwise
(24)

The random sampling carried out in the Q-learning approach is economical as it significantly reduces
the number of grids to be computed for the generation of an optimum path. After the sampling, paths that
interfere with the obstacles are removed, and the remaining connections are considered for the next stage.
The prime purpose is to generate a smaller and smoother path based on the current location according
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to the given state of the function. The Q-learning approach is based on the existence of a Q-function
Q(pt, qt) described as:

Q(pt, qt) = max(Rt+1) (25)

where Rt is the total future reward from any time point t and is defined as:

Rt = rt + wrt+1 + w2rt+2 + . . . .. + wn−trn (26)

And pt is the state at time step t and qt is the action at time step t. Substituting the value of Rt+1 in
Eq. (25) yields the equation as:

Q(pt, qt) = w + [
δ∗ {max Q(pt+1, qt+1)}

]
(27)

where w is the discount factor (0<w<1)
The action value function is denoted as Q(pt, qt) which is improvised by the following given rule:

Q(pt+1, qt+1) = Q(pt, qt) + β∗ [
at + δ∗ {max Q(pt+1, qt+1)} − Q(pt, qt)

]
(28)

where β is the learning rate (0<β<1), which decides the learning convergence rate, and δ is the discount
rate (0<δ<1), which determines the relative ratios between awards at two consecutive states.

The steps for carrying out the Q-learning process in path planning are as follows:
1. The employed humanoid robot evaluates the input data provided to it and decides upon

exploration or exploitation of the environment.
2. An action is determined by the humanoid robot based on the policy network by the usage of

policy gradients.
3. The action is carried out in the given environment.
4. Based on the action undertaken, the agent receives an award or penalty as a reinforcement and a

new state is formed.
5. If Q(qt, pt)<Qmax

(
qt,pt

)
, reiterate the process or else, stop the iteration and feed the final data to

the path planning approach.

With the increase in the number of iterations, if the Q-value also increases, then the path planning
approach is in a learning state. As the value of Q reaches an optimum value, the iterations stop, and the
stable state is reached. This data is fed to the path planning approach as the optimized path is obtained.
The RL algorithm has been presented in Fig. 5.

3.2. Collision detection problem
When humanoid robot navigates in a global space to complete tasks, it utilizes its own gadgets to evaluate
if the range between robot and obstacle is smaller than the threshold distance Tr, and subsequently if there
is a risk of collision. If a collision is possible, the humanoid robot must execute a collision prevention
strategy to maintain safe navigation. Due to the limitations of movement of humanoid robots, they have
a safety zone, and whenever an obstacle enters in its safety zone, avoiding movements are required. As
a result, an avoidance movement is necessary before any obstacle enter the robot’s security zone.

The detection zone for the humanoid robot is a part of circular region with threshold radius Tsafe in
its present location

(
xr,yr

)
, as depicted in Fig. 6. In the safe region, the humanoid robot will move safely,

if there is no obstacle, else it has high risk of collision.
In the Fig. 6, xpoyp is the relative coordinate system and XOY is the absolute coordinate system,

with the location of humanoid robot taken as the origin. The safe range of the robot is denoted by
Tsafe and the threshold range is represented as Tr. The humanoid robot in the present location

(
xr,yr

)
to

identify the range between the barriers and the humanoid robot is being R. Once the sensor radar Tr < R
demonstrates that the humanoid robot has identified the barriers, and a possibility collision prevention
operation decision should be considered. If R < Tsafe is not present, it signifies that the barrier has reached
the robots’s safe area and cannot be efficiently avoided.
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Figure 5. Flow chart of reinforcement learning approach in humanoid robot navigation.

Figure 6. Representation of safety range of the robot and detection of static obstacle.

4. Petri-Net controller for dynamic obstacle avoidance
Petri-Net, consisting of places, transitions and arcs, was first used for modeling of systems in 1981 by
Peterson [34]. A Petri-Net setup is often characterized by marks known as a token, which creates a
configuration called marking. The enabling of a certain token in a Petri-Net is termed as firing, which
leads to the consumption of the required input token and the creation of an output token. Unless defined,
the firing order in a Petri-Net is often nondeterministic, that is, in any random order. The transfer of
tokens from one state to another occurs via a transition move between them.
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Figure 7. Petri-Net framework for multi-humanoid robot navigation system.

In the scenario of obstacle avoidance among humanoid robots, where they act as dynamic obstacles to
each other, Petri-Net is used for the employment of supervised firing order. The property of concurrent
firing of humanoid robots is utilized in this controller. The proposed Petri-Net network for obstacle
avoidance is shown in Fig. 7. The configuration net consists of six places and eight possible transitions.
It shows the initial position of robot using a circular black circle and transition is denoted by black bar.

The steps for working of the Petri-Net controller in a humanoid robot navigation system are as
follows:

Step 1: Initially, the token is enabled at state 1, which is the state of the humanoid robot’s initialization.
The humanoid robot is at its initial position waiting for the signal to start the task.

Step 2: As the first transition occurs, the token is transferred to state 2, which is the state of navigation
of the humanoid in the cluttered environment while avoiding static obstacles by following the
path decided by the proposed path planning approach. The robot navigates in an unknown
environment unless it comes in proximity of another humanoid robot.

Step 3: The proximity issue leads to the transition of the token to state 3, where the humanoid robot
comes into conflict scenario which another robot, hence, creating dynamic obstacles in its
pathway.

Step 4: The token then undergoes another transition from state 3 to state 4, which involves the imple-
mentation of negotiation strategy among the humanoid based on various deciding parameters
and assignment of priority to the preferred robot. The priority parameters often prioritize the
robot, which is at a lesser distance from its goal and has lesser obstacles left in its path to
overcome.

Step 5: The token thereafter transfers to state 5, where the situation is similar to state 2, that is, naviga-
tion in the unknown environment consisting of static environment and treading of the optimal
path decided by the path planning approach. The robot which has been prioritized earlier
undertakes this task and moves forward, whereas the less priority robot’s state is transferred
to state 6.

Step 6: State 6 involves waiting for the lesser prioritized robot in its original place till the superior
robot leaves its proximity zone. Once the higher priority robot clears out of its proximity
zone, the state of the lesser prioritized humanoid robot transitions to state 2.

Step 7: In case a third robot enters the conflict zone in between, it is assigned as state 6.

This proposed configuration net helps in the smooth completion of each humanoid robots’ task
without causing any conflict between them.
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Figure 8. Block diagram of proposed hybrid MFO-RL controller.

5. Hybridization of MFO and RL (hybrid MFO-RL) controller
The proposed path planning approach in the hybrid controller is a combination of the bio-inspired MFO
approach and the RL approach. From the literature review section, it is evident that various classical
approaches have been earlier used for the path-planning of the humanoid robot, which is usually faster
but less accurate while convergence to final solutions. On the other hand, AI approaches are precise
but are less efficient in providing optimum solutions at a steady rate. Furthermore, usage of a single
approach often results in the entrapment of the humanoid robot in the local minima, which presses the
need for another approach to remove this complication. For overcoming this problem, we have utilized
the culmination of a classical approach to strengthening the benefits of a metaheuristic approach for
efficient path planning.

In the proposed hybrid controller, input parameters of the humanoid robot’s surroundings are fed to
the sensor system implanted on the humanoid robot’s body. The sensor system forwards this information
to the navigation system, which is controlled by the MFO controller. The MFO controller targets the
obstacles and the final goal and designs a proper path for the navigation of the humanoid robot. In case
of conflict with an obstacle, the RL controller is activated. This data further fed to the RL controller
helps further refine the optimal angles during turning, as shown in Fig. 8. This process continues till the
humanoid robot reaches the final goal. The hybrid controller works in a similar fashion as the feedback
loop mechanism to obtain optimum results.

The steps of the MFO-RL hybrid controller for humanoid robot navigation are listed below:

1. The start and end positions of the humanoid robot are intialized.
2. The MFO controller is activated, which decides the obstacles’ fitness function and the target and

sketches out an optimal path for the robot.
3. The robot is navigated freely through the cluttered environment until it encounters an

obstacle.
4. MFO controller has activated again. In case of any obstacle, input parameters (left obstacle dis-

tance, right obstacle distance, and front obstacle distance) are fed to the robot and initial turning
angle is determined to avoid getting stuck in local minima, the reward significance for every par-
ticular optimum approach as well as the global best location in the trajectory planning process
is computed and recorded.

5. RL controller is activated, and final turning angle is determined by improvisation using the RL
approach. It is utilized to determine the cumulative reward depending on all global best locations
and the reward value of particular optimum solution.

6. The ideal particle location and searching vector of the MFO approach, as well as the fitness of
every individual’s optimum response and the global optimum position, are modified.
The mechanism of correction is as follows:

�G(x) = G(x) − π

For jth particle, g
(
xj+1

j

) = g(xi) − π(i)
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Figure 9. Representation of convergence curve between standalone algorithms and hybrid MFO-RL
approach.

7. If there comes a situation where, multi-humanoid robots (dynamic obstacle) come at a single
coordinate rise the situation of conflict. In this situation, Petri-Net comes into play and priotize
the robot which can reach the target quickest (as described in Fig. 7).

8. Final turning angle is implemented to steer the humanoid out of the conflict zone.
9. Once out of the conflict zone, MFO is activated to sketch out the humanoid’s new optimal path.

10. Steps 3–9 are repeated till the humanoid robot reaches the end position.

The optimum route is chosen using the optimal route assessment variable system, with the predefined
weight limit variable as the most important criteria.

The RL method will be used to train the MFO approach in this section. The adjustment parameter
generated from the total reward, which is called as hybrid MFO-RL approach, maintains the optimum
particles and global ideal location fitness of the MFO. Then, using the variables in the optimal route
assessment mechanism, this method is implemented to the trajectory-tracking of autonomous navigation
robot and an effective optimum route is established. The trajectory planning for the robot is done by using
following steps.

The hybrid MFO-RL approach has been developed. Further, it has been tested against few standalone
approaches with respect to optimal travel length in number on interations. Five algorithms (genetic algo-
rithm, particle swarm optimization, MFO, RL, and hybrid MFO-RL approach) are tested with reference
to travel length. As presented in Fig. 9, graph shows that the hybrid MFO-RL approach provides optimal
travel length and too in the least number of iterations. Therefore, further research has been proceeded
by taking hybrid MFO-RL approach in consideration.

6. Simulation and experimental results
6.1. Robotic platform
The robotic platform used in the given study is NAO V4 developed by Aldebaran Robotics of France. It
is a compact, automated, and configurable robot with 25 degrees of freedom and weighs about 5.2 kg.
Various specifications of the robot are given in Table I.
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Table I. Specification of robotic platform.

Specifications NAO V4
Dimensions (h ∗ w ∗ d) 573mm ∗ 275mm ∗ 311mm
Power source Lithium battery (27.6Wh at 21.6V)
CPU Intel Atom Z530@1.6Ghz
RAM 1 GB
Storage 2 GB Flash memory + 8 GB Micro SDHC
Programming languages C++, Python, Java, MATLAB, Urbi, C, .Net
Sensors 4 microphones, 9 tactile sensors, inertial board, 2 IR emitters and

receivers, 8 pressure sensors, sonar rangefinder
Connectivity Ethernet, Wi-Fi
Cameras 2 MT9M114 72.6 degrees DFOV camera

Figure 10. Simulation result of navigation of humanoid robot using hybrid MFO-RL approach for
single robot.

6.2. Path-planning of a single-humanoid robot using hybrid MFO-RL approach
For the justification of the efficiency of the proposed controller, it is employed for the navigational pur-
pose of a single-humanoid robot in a cluttered environment. The controller is employed in simulated
and real NAO. WEBOT, a 3D simulator, is utilized first to test the developed controller. Further, it is
verified in real NAO. The comparison of outcomes from simulation and experiment are performed based
on navigational parameters. The navigational parameters are recorded from the interface in WEBOT
and using measuring instruments like measuring tape and stopwatch for recording the parameters. In
Fig. 10, the robot is placed at its initial Start position and proceeds toward the first checkpoint Target
T1. Henceforth, it traverses from Target 1 to Target 2. Similar environment conditions are being cre-
ated for real-time experiments, as shown in Fig. 11. The hybrid model works according to the steps as
directed earlier. The path length and time taken are directly measured through the WEBOT interface in
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Table II. Comparison of travel length (Tl) and travel time (Tt) for simulations and
experiments using hybrid MFO-RL approach for single robot.

Simulation Experiment Deviation (%)

Sl. No. Tl (cm) Tt (s) Tl (cm) Tt (s) Tl (cm) Tt (s)
1. 150.4 60.45 155.4 63.36 3.32 4.81
2. 151.1 61.51 157.4 64.42 4.17 4.73
3. 150.8 61.09 154.3 61.94 2.32 1.39
4. 149.8 59.92 156.1 62.71 4.21 4.66
5. 150.2 60.2 155.8 61.71 3.73 2.51
6. 152.2 60.98 157.8 63.77 3.68 4.58
7. 153.01 62.51 159.9 65.19 4.5 4.29
8. 153.3 62.77 160.1 65.23 4.44 3.92
9. 149.2 59.83 156.4 61.62 4.83 2.99
10. 151 61.38 155.5 63.51 2.98 3.47
Avg. 151.101 61.064 156.87 63.346 3.818 3.735

Figure 11. Experimental result of navigation of humanoid robot using hybrid MFO-RL approach for
single robot.

simulation. While, in experimental demonstration, measuring tape and stopwatch are used to measure
path length and travel time.

A tabular data of path length and time taken by the humanoid robot during simulation and experiment
show a minimal deviation of about 5% between them as shown in Table II. Hence, it justifies the usage of
the proposed hybrid approach. Figures 10 and 11 show that the robot reaches both targets conveniently
in simulation and experimental setups.

The deviation of 5% indicates that the result from the simulation is validated and demonstrates the
robustness of the proposed controller. The deviation is due to some external disturbance in experimental
demonstration that are absent in simulation.
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Figure 12. Simulation result of navigation of humanoid robot using hybrid MFO-RL approach for two
robots.

Figure 13. Experimental result of navigation of humanoid robot using hybrid MFO-RL approach for
two robots.

6.3. Path-planning of multi-humanoid robot using hybrid MFO-RL approach
For the acceptance of the proposed hybrid path planning controller, the approach is used as the prime nav-
igational strategy in the path-planning of two humanoid robots N1 and N2, in an unknown environment.
The environment is modeled with various static obstacles, and similar conditions are created for both
simulation and real-time experiments, as shown in Figs. 12 and 13. The robots are placed at their initial
start positions S1 and S2 and are navigated through the environment to Target T1 and Target T2, respec-
tively. It is observed that although the hybrid approach proves its worth in static obstacle clearance, it
reaches a stalemate in the scenario of a dynamic obstacle.
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Table III. Comparison of travel length for simulations and experiments using hybrid
MFO-RL approach for two robots.

Simulation Experiment Deviation (%)

Sl. No. N1 N2 N1 N2 N1 N2
1. 153.2 159.7 159.5 166.9 4.11 4.51
2. 153.4 159.4 159.6 166.5 4.04 4.45
3. 152.8 159.9 158.9 166.3 3.99 4
4. 152.9 157.2 160.09 164.8 4.7 4.83
5. 153.7 158.3 159.9 165.7 4.03 4.67
6. 153.5 160.2 159.8 166.8 4.1 4.12
7. 153 159.4 159.2 165.7 4.05 3.95
8. 153.1 160.5 158.6 166.3 3.59 3.61
9. 153.8 158.9 160.1 165.4 4.1 4.09
10. 152.6 161.4 158.8 167.7 4.06 3.9
Avg. 153.2 159.49 159.449 166.21 4.077 4.213

Table IV. Comparison of travel time for simulations and experiments using hybrid MFO-
RL approach for two robots.

Simulation Experiment Deviation (%)

Sl. No. N1 N2 N1 N2 N1 N2
1. 62.65 67.81 64.78 70.02 3.4 3.26
2. 63.01 67.25 65.85 69.51 4.51 3.36
3. 61.96 68.12 64.29 70.37 3.76 3.3
4. 62.07 64.95 64.42 66.84 3.79 2.91
5. 63.25 66.12 66.01 68.71 4.36 3.92
6. 63.1 68.55 65.42 70.89 3.68 3.41
7. 62.31 67.28 64.91 70.01 4.17 4.06
8. 62.45 68.7 64.71 71.41 3.62 3.94
9. 63.48 66.03 65.98 68.81 3.94 4.21
10. 61.75 69.28 64.74 71.6 4.84 3.35
Avg. 62.603 67.409 65.111 69.817 4.007 3.572

Thus, the hybrid approach combined Petri-Net controller is encoded in the humanoid robot for
dynamic obstacle clearance. On entering the proximity zone of each other, the robots activate the Petri-
Net controller, which prioritizes the robots for further navigation based on a given set of rules. The
data values about the path length traversed and time taken to complete the two humanoid robots’ tasks
are recorded in tabular form using a similar method discussed in the previous section. Further anal-
ysis confirms that the simulation and experimental values agree with each other, with a deviation of
about 6%, which confirms the hybrid approach’s robustness and feasibility in multi-humanoid naviga-
tion. Tables III and IV show the travel length and time taken obtained through these simulations and
experimental results, respectively.

The proposed controller has been examined in the terrain having a single robot and multiple robots.
In the multiple robots situation, one robot act as a dynamic obstacle to the other. But in this situation,
the programmers do not know which will act as the robot and which will act as a dynamic obstacle.
Therefore, a different scenario has been taken where one robot (Knepra III with one obstacle mounted
on it) will act as a dynamic obstacle. The proposed controller has been checked in both simulation and
experimental scenarios, as shown in Fig. 14 and 15, respectively. The situation shows that the dynamic
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Figure 14. Simulation result of navigation of humanoid robot using hybrid MFO-RL approach for a
dynamic environment.

Figure 15. Experimental result of navigation of humanoid robot using hybrid MFO-RL approach for a
dynamic environment.
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Table V. Comparison of travel length (Tl) and travel time (Tt) for simulations and
experiments using hybrid MFO-RL approach for a dynamic environment.

Simulation Experiment Deviation (%)

Sl. No. Tl (cm) Tt (s) Tl (cm) Tt (s) Tl (cm) Tt (s)
1. 176.2 73.88 182.5 76.79 3.58 3.94
2. 174.5 72.35 179 74.48 2.58 2.94
3. 175.9 73.46 179.4 74.31 1.99 1.16
4. 174.9 72.29 181.2 75.08 3.6 3.86
5. 175.3 72.57 180.9 74.08 3.19 2.08
6. 175.7 71.95 181.3 74.74 3.19 3.88
7. 176.51 73.48 183.4 76.16 3.9 3.65
8. 175.5 72.82 180.5 75.73 2.85 4
9. 176.8 73.74 183.6 76.2 3.85 3.34
10. 172.7 70.8 179.9 72.59 4.17 2.53
Avg. 175.401 72.734 181.17 75.016 3.29 3.138

Figure 16. Comparison of path adaptation of humanoid robot using (a) proposed hybrid MFO-RL
approach against the (b) existing approach [35].

obstacle moves in its path and the humanoid robot need to change its direction to find a safe path to the
target. The results displated in tabular form (Table V) demonstrate that the simulation and experimental
results are in good relation with each other with deviation under 5% for both travel length and travel
time.

7. Comparison
The proposed hybrid MFO-RL controller, in culmination with the Petri-Net controller, is configured
into the humanoid robot NAO. The results obtained in lieu of the simulations and real-time experiments
show the proposed hybrid approach’s efficacy. To analyze the effectiveness and profundity of the path
planning approach, it is weighed up against previous works in path planning research. The paper used
in lieu of comparison is the online multi-objective evolutionary approach for navigation of humanoid
robots [35]. A similar environmental scenario has been created to check the efficiency of the proposed
controller. The previously used method and the proposed hybrid approach has been tested on, as shown
in Fig. 16. The results obtained show the successful clearance of the obstacles and the attainment of the
final goal by both strategies.
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Table VI. Comparison of previously developed approach [35] and proposed hybrid MFO-RL
approach based on path length.

Sl. No. Approach Path length Deviation (%)
1. Online multi-objective evolutionary approach 563 units 9.8
2. Hybrid MFO-RL approach 508 units

Table VII. Comparison of previously developed approach [36] and proposed hybrid MFO-RL
approach based on path length.

Sl. No. Approach Path length Deviation (%)
1. Improved ACO and MDP approach 360.6 units 11.3
2. Hybrid MFO-RL approach 324 units

Figure 17. Comparison of path adaptation of humanoid robot using (a) proposed hybrid MFO-RL
approach against the (b) existing approach [36].

However, the data report’s detailed analysis shows that the proposed hybrid approach edges over the
past-established method by 9.8% in terms of path length traversed between the initial and final posi-
tion. The results ensue in lesser computational complexity, making the proposed controller economical.
These comparisons prove the method to be highly feasible and robust while using humanoid robot path
planning in an unknown environment. Table VI shows the deviation between the two path planning
strategies.

The proposed approach has been evaluated with reference to improved ACO and MDP [36] in regard
to path length. Just like the previous comparison, utmost care has been taken to replicate the environ-
ment. The process has been started by feeding the proposed controller to the robot. It finds its path
and reaches the target by avoiding obstacles in its path. Figure 15 (b) shows the path adaption by robot
using the improved ACO and MDP approach. The proposed approach is compared in the same environ-
ment and presented in Fig. 17(a). The comparison has been made also in tabular form and presented in
Table VII. It shows that the overall improvement of path length can be obtained, that is, about 11% to
the path length obtained by previously improved ACO and MDP approach.

8. Conclusion
Path planning approach using a hybrid MFO-RL controller is successfully applied and tested on single-
and multi-humanoid robot navigation in an unknown environment. A total of 150 epochs were carried
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out to optimize the training weights in the given approach used for finding out the optimal turning angle
of the humanoid robot. The reward function is used to optimize the trajectory selection by each moth.
For the path-planning of multi-humanoid robot system in an unknown environment, a Petri-Net con-
troller is configured alongside the MFO-RL controller to prevent deadlock situations during navigation
in the terrain. This is accomplished by prioritization among the humanoid robots using the Petri-Net
controller. For the analysis of the applied approach’s robustness and effectiveness, various factors like
the easiness of obstacle avoidance, turning angle, clearance, and task completion time are considered.
The hybrid controller is then assessed based on path length with reference to other standalone approaches
that displays the superiority of the hybrid MFO-RL approach. The simulation and experimental results
in both single- and multi-humanoid robot navigation yield a deviation of around 6%, which is acceptable
by common standards. In the case of single-humanoid robot navigation, comparison with a previously
established approach demonstrates the superiority of the proposed approach by over 9% reduction in
path length covered. Comparison with one more environment has been done based on the path length.
In that environment also, the proposed controller comes out as a clear winner. It justifies that the pro-
posed hybrid controller is efficient and feasible for the path-planning of single- and multi-humanoid
robots in an unknown environment having multiple targets. The proposed approach can be improvised
in the future by combining the proposed controller with a classical path planning approach for navigation
over uneven terrains.
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