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Abstract

We study large-deviation probabilities of Telecom processes appearing as limits in a
critical regime of the infinite-source Poisson model elaborated by I. Kaj and M. Taqqu.
We examine three different regimes of large deviations (LD) depending on the deviation
level. A Telecom process (Yt)t≥0 scales as t1/γ , where t denotes time and γ ∈ (1, 2) is
the key parameter of Y . We must distinguish moderate LD P(Yt ≥ yt) with t1/γ � yt � t,
intermediate LD with yt ≈ t, and ultralarge LD with yt � t. The results we obtain
essentially depend on another parameter of Y , namely the resource distribution. We
solve completely the cases of moderate and intermediate LD (the latter being the most
technical one), whereas the ultralarge deviation asymptotics is found for the case of reg-
ularly varying distribution tails. In all the cases considered, the large-deviation level is
essentially reached by the minimal necessary number of ‘service processes’.

Keywords: Large-deviation probabilities; Telecom process; Poisson random measure;
teletraffic; workload
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1. Introduction: Telecom processes

1.1. A service system

Telecom processes originate from a remarkable work by I. Kaj and M. S. Taqqu [9], who
handled the limit behavior of ‘teletraffic systems’ by using the language of integral represen-
tations as a unifying technique. Their article represented a wave of interest in the subject; see,
e.g., [8, 10, 12, 13, 14], and the surveys with further references [5, 6, 7], to mention just a
few. The simplicity of the dependence mechanism used in the model enables us to get a clear
understanding both of long-range dependence in one case, and independent increments in other
cases.

The work of the system represents a collection of service processes or sessions, using
telecommunication terminology. Every process starts at some time s, lasts u units of time,
and occupies r resource units (synonyms for resource are reward, transmission rate, etc.). The
amount of occupied resources r remains constant during every service process.

Received 5 August 2021; revision received 8 April 2022.
∗ Postal address: St. Petersburg State University, University Emb. 7/9, 199034, St. Petersburg, Russia.
∗∗ Email address: mikhail@lifshits.org
∗∗∗ Email address: nikitin97156@mail.ru

© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust.

267

https://doi.org/10.1017/jpr.2022.46 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.46
https://orcid.org/0000-0002-8124-4749
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2022.46&domain=pdf
https://doi.org/10.1017/jpr.2022.46


268 M. LIFSHITS AND S. NIKITIN

The formal model of the service system is based on Poisson random measures. Let R :=
{(s, u, r)} =R×R+ ×R+. Every point (s, u, r) corresponds to a possible service process with
starting time s, duration u, and required resources r.

The system is characterized by the following parameters:

• λ > 0: the arrival intensity of service processes;

• FU(du): the distribution of service duration;

• FR(dr): the distribution of the amount of resources required.

We can assume that P(R > 0) = P(U > 0) = 1 without loss of generality.
Define on R an intensity measure μ(ds, du, dr) := λds FU(du) FR(dr). Let N be a Poisson

random measure with intensity μ. We can consider the samples of N (sets of triplets (s, u, r),
each triplet corresponding to a service process) as variants (sample paths) of the work for the
system.

The instant workload of the system at time t is W◦(t) := ∫
R r1{s≤t≤s+u} dN. This is essen-

tially the sum of occupied resources over the processes active at time t. The integral workload
over the interval [0, t] is

W∗(t) :=
∫ t

0
W◦(τ )dτ =

∫
R

r
∫ t

0
1{s≤τ≤s+u} dτ dN

=
∫
R

r · ∣∣[s, s + u] ∩ [0, t]
∣∣ dN :=

∫
R

r�t(s, u) dN.

Here, |·| stands for the length of an interval, and the kernel

�t(s, u) := ∣∣[s, s + u] ∩ [0, t]
∣∣ (1)

will be used often in the following.
Notice that W◦(·) is a stationary process, and its integral W∗(·) is a process with stationary

increments.

1.2. Limit theorems for the workload

The main object of theoretical interest is the behavior of the integral workload as a process
(function of time) observed on long time intervals.

In order to obtain a meaningful limit, we must scale (contract) the time, center the workload
process, and divide it by an appropriate scalar factor.

Centering and scaling by an appropriate factor b leads to a normalized integral workload
process Za(t) := (W∗(at) −E R ·E U · aλt)/b, b = b(a, λ).

In order to obtain a limit theorem, we usually assume that either the variables R and U have
finite variance, or their distributions have regular tails. More precisely, either

P(U > u) ∼ cU

uγ
as u → ∞, 1 < γ < 2, cU > 0, (2)

or EU2 < ∞. In the latter case we formally set γ := 2.
Analogously, either

P(R > r) ∼ cR

rδ
as r → ∞, 1 < δ < 2, cR > 0, (3)

or ER2 < ∞. In the latter case we formally set δ := 2.
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Large deviations of Poisson Telecom processes 269

Notice that in all these cases E R < ∞, E U < ∞, and the workload processes are correctly
defined.

The behavior of the service system crucially depends on the parameters γ, δ ∈ (1, 2].
It is remarkable that a simple tuning of the three parameters λ, γ , and δ may lead to different

limiting processes for Za; namely, we can obtain

• Wiener process;

• fractional Brownian motion with index H ∈ (1/2, 1);

• centered Lévy stable process with positive spectrum;

• stable Telecom process;

• Poisson Telecom process.

While the first three processes present a core of the classical theory of stochastic processes,
the Telecom processes remain almost unstudied. In this article we focus on some key properties
of the Poisson Telecom process.

For the full panorama of related limit theorems we refer to [11, Chapter 3], and recall here
only one result concerning the Poisson Telecom process (cf. [11, Theorem 13.16]) related to
the case of critical intensity, λ/aγ−1 → L, 0 < L < ∞.

Theorem 1. Assume that conditions (2) and (3) hold with some 1 < γ < δ ≤ 2. Let a, λ → ∞
so that the critical intensity condition holds. Let Q := LcUγ . Then, with scaling b := a the
finite-dimensional distributions of the process Za converge to those of the Poisson Telecom pro-
cess YQ,γ admitting an integral representation YQ,γ (t) = ∫

R r�t(s, u) N̄Q,γ (ds, du, dr). Here,
�t(s, u) is the kernel defined in (1), and N̄Q,γ is a centered Poisson random measure of intensity
Qμγ , where

μγ (ds, du, dr) := ds du

uγ+1
FR(dr).

Poisson Telecom processes were introduced in [3] and placed into a more general picture in
[9]. For further studies on this subject we refer to [1, 4]. In accordance with its role in the limit
theorem, the process (YQ,γ (t))t≥0 has stationary increments. It is, however, not self-similar like
other limiting processes in the same model, such as Wiener processes, fractional Brownian
motion, or strictly stable Lévy processes.

It is well known that the process YQ,γ is correctly defined if E(Rγ ) < ∞. In the rest of the
paper we make only this assumption on R and do not assume any tail regularity of R like the
one required in (3). The only notable exception is the ultralarge-deviation case (Theorem 5)
where the tail regularity appears to be essential.

2. Main results

2.1. A limit theorem for Telecom process

At large time scales the Poisson Telecom process essentially behaves as a γ -stable Lévy
process. This fact is basically known, but we present it here for completeness of exposition.
The analogy with a stable law will also guide us (to some extent and within a certain range) in
the subsequent studies of large-deviation probabilities.

Proposition 1. We have a weak convergence

(E(Rγ )t)−1/γ YQ,γ (t) ⇒ SQ,γ as t → ∞, (4)
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270 M. LIFSHITS AND S. NIKITIN

where SQ,γ is a centered strictly γ -stable random variable with positive spectrum, i.e.

E exp{iθSQ,γ } = exp

{
Q

∫ ∞

0

eiθu − 1 − iθu

uγ+1
du

}
, θ ∈R.

2.2. Large deviations

According to Proposition 1, the large-deviation probabilities are P(YQ,γ (t) ≥ yt) as yt �
t1/γ . Their behavior may be different in different zones of yt and may depend on the distribution
of R. Actually, three large-deviation zones emerge naturally:

• Moderate large deviations: t1/γ � yt � t. This case is completely explored in Section
2.2.1. The large-deviation probabilities behave exactly as those of the limiting stable
process from Proposition 1.

• Intermediate large deviations: yt = κt. This case is explored in Section 2.2.2. The decay
order of the large-deviation probabilities is still the same as for the limiting stable process
but the corresponding constants are different. The study is quite involved, especially due
to the tricky dependence of these new emerging constants on the distribution of R.

• Ultralarge deviations: yt � t. This case is partially considered in Section 2.2.3. Here,
the large-deviation probabilities are determined by the tail probabilities of the underly-
ing random variable R. Our result is limited by one of the most natural cases, regular
behavior of the tails. Solving the case of light tails in sufficient generality remains a
challenging problem.

We present specific results in the following subsections.

2.2.1. Moderate large deviations

Theorem 2. Let yt be such that t1/γ � yt � t. Then

P(YQ,γ (t) ≥ yt) = Dty−γ
t (1 + o(1)) as t → ∞, (5)

where D := QE(Rγ )/γ .

This result should be compared with the limit theorem (4) because for the levels ρt satisfying
1 � ρt � t(γ−1)/γ , (5) yields

P
(
(E(Rγ )t)−1/γ YQ,γ (t) ≥ ρt

) = P
(
YQ,γ (t) ≥ (E(Rγ )t)1/γ ρt

)
∼ Dt(E(Rγ )t)−1ρ

−γ
t = Q

γ
ρ

−γ
t ∼ P(SQ,γ ≥ ρt).

In other words, the moderate large-deviation probabilities are equivalent to those of the limiting
distribution.

Using the terminology of the background service system, moderate deviation is attained by
a unique heavy service process. We will stress this fact later in the proof.

2.2.2. Intermediate large deviations The following result describes the situation on the upper
boundary of the moderate deviations zone.

Theorem 3. Let κ > 0 be such that P(R ≥ κ) > 0 and

P(R = κ) = 0. (6)
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Large deviations of Poisson Telecom processes 271

Let yt := κt. Then P(YQ,γ (t) ≥ yt) = QD(1)
I (κ)t−(γ−1)(1 + o(1)) as t → ∞, where

D(1)
I (κ) := κ−γ

γ
E

(
Rγ 1{R≥κ}

) + (2 − γ )κ1−γ

(γ − 1)γ
E

(
Rγ−11{R≥κ}

)
.

Remark 1. There is a certain continuity between the asymptotic expressions in the zones of
moderate and intermediate large deviations, as in the intermediate case we let κ → 0. Indeed,
by plugging formally yt := κt into (5) we obtain the asymptotics QE(Rγ )γ −1κ−γ t−(γ−1),
while the first term in the definition of D(1)

I (κ) taken alone provides almost the same asymp-
totics, QE

(
Rγ 1{R≥κ}

)
γ −1κ−γ t−(γ−1), given that E

(
Rγ 1{R≥κ}

)
tends to E(Rγ ) as κ → 0.

Moreover, when κ goes to zero, the second term in the definition of D(1)
I (κ) is negligible with

respect to the first one because it contains an extra degree of κ .

Remark 2. If (6) does not hold, the decay order of large deviations will be the same but the
expression for the corresponding constant becomes more involved and less explicit.

The attentive reader will notice that Theorem 3 does not work for large κ if the distribution
of R is compactly supported. Indeed, in this case the large-deviation asymptotics will be differ-
ent, as the next result shows. In terms of the service system, it handles the case when the large
deviation can be attained by accumulation of n heavy service processes but cannot be attained
by (n − 1) such processes.

Theorem 4. Let κ > 0. Assume that there is a positive integer n such that P(R ≥ κ/n) > 0 but

P

(
R ≥ κ

n − ζ

)
= 0 for some ζ ∈ (0, 1). (7)

Assume that
P(R1 + · · · + Rn = κ) = 0, (8)

where R1, . . . , Rn are independent copies of R.
Let yt := κt. Then P(YQ,γ (t) ≥ yt) = QnD(n)

I (κ)t−(γ−1)n(1 + o(1)) as t → ∞, where D(n)
I (κ)

is some finite positive constant depending on n, κ , and on the law of R.

Remark 3. The explicit form of D(n)
I (κ) is given in (31).

Remark 4. Theorem 4 does not cover the critical case ζ = 1, where we have P(R ≥
κ/(n − 1)) = 0 but P(R ≥ κ/(n − 1) − ε) > 0 for all ε > 0. In this case, the assertion of the
theorem may not hold because the large-deviation probability behavior depends on that of the
upper tail, P(R ∈ [κ/(n − 1) − ε, κ/(n − 1))), as ε → 0.

2.2.3. Ultralarge deviations

Theorem 5. Let yt � t. Assume that the tail probability function F̄R(r) := P(R ≥ r) is regularly
varying of negative order −m, where m > γ . Then

P(YQ,γ (t) ≥ yt) = QDt−(γ−1)F̄R(yt/t)(1 + o(1))

as t → ∞, where

D := m(m − 1)

γ (γ − 1)(m − γ + 1)(m − γ )
.

As in Theorem 2, the workload’s large deviation is attained by a unique long and heavy
service process.
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We stress that the parameter m in Theorem 5 is allowed to be arbitrarily large. In particular,
the case m > 2 corresponds to the notation δ = 2 used in the introduction. Therefore, we are
not allowed to identify m with δ.

On the other hand, considering m < γ is meaningless because for such a case our Telecom
process YQ,γ is simply not correctly defined.

2.3. Concluding remark

The challenging case of light tails of the distribution of R not covered by Theorem 5 remains
beyond the scope of this article. Unlike all our results, here the workload’s large deviation may
be achieved through many overlapping heavy service processes.

Consider a ‘toy’, but not completely trivial, example of deterministic R. Let P(R = 1) = 1.
Then the contribution of any one service process is bounded by t. Therefore, in order to reach
an ultralarge deviation level yt � t we essentially need yt/t → ∞ long service processes of
maximal length order t. By quantifying this idea, we get an exponential probability decay,

ln P(YQ,γ (t) ≥ yt) ∼ −yt

t
ln

(
Cyt

t2−γ

)
, C = (γ − 1)γ

eQ
,

which is very different from the results of this article both in its form and in its nature.
We expect that for a sufficiently large class of distributions with light tails the results in the

spirit of the classical large-deviation theory [2] might be relevant. This could be a subject of
subsequent work.

3. Proofs

3.1. Preliminaries

Let us introduce two auxiliary intensity measures that play a central role in the whole paper.
The first one corresponds to the kernel �t, namely

μ
(�)
t (A) :=

∫
R

∫
R+

1{�t(s,u)∈A}
du

uγ+1
ds, A ∈B([0, t]).

Recall that �t denotes the time length of a service process restricted to the interval [0, t]. These
lengths form a Poisson random point process (or Poisson random measure), and μ

(�)
t is the

corresponding intensity (or mean measure).
The second measure is the ‘distribution’ of the product r�t(s, u),

μ
(�,r)
t (A) :=

∫
R+

∫
R+

1{r�∈A} μ
(�)
t (d�) FR(dr)

= μγ {(s, u, r) : r�t(s, u) ∈ A}, A ∈B(R+).

Here, the product r�t represents the contribution of a service process to the integral workload
of the system on the time interval [0, t]. Again, these contributions form a Poisson random
point process, and μ

(�,r)
t is the corresponding intensity.

Notice that the total mass of both measures is infinite due to the presence of infinitely many
very short service processes.

A simple variable change v = r�t(s, u) in the definition of YQ,γ (t) yields

YQ,γ (t) =
∫
R+

v ÑQ,γ (dv), (9)
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where ÑQ,γ is a centered Poisson measure with intensity Qμ
(�,r)
t . Therefore, the properties of

μ
(�,r)
t determine those of YQ,γ (t).

As a first step, we give an explicit formula for the intermediate measure μ
(�)
t . First, by

definition, we have μ
(�)
t (t, ∞) = 0. Next, let us fix an �0 ∈ (0, t] and find μ

(�)
t [�0, t]. In fact,

�t(s, u) ≥ �0 if and only if u ≥ �0 and s ∈ [�0 − u, t − �0]. Therefore,

μ
(�)
t [�0, t] =

∫ ∞

�0

(t − 2�0 + u)
du

uγ+1
= t�−γ

0

γ
+ 2 − γ

(γ − 1)γ
�

1−γ

0 . (10)

It follows that the measure μ
(�)
t has an atom with weight t−(γ−1)/(γ − 1)γ at the right boundary

point t, and a density

dμ
(�)
t

d�
(�) = t�−1−γ + 2 − γ

γ
�−γ , 0 < � < t.

For each �0 > 0, (10) also yields the bound

μ
(�)
t [�0, ∞) = μ

(�)
t [�0, t] ≤ t�−γ

0

γ

(
1 + 2 − γ

γ − 1

)
= t �

−γ

0

γ (γ − 1)
. (11)

Finally, consider the asymptotic behavior of

μ
(�,r)
t [yt, ∞) =

∫
R+

μ
(�)
t

[
yt

r
, t

]
FR(dr). (12)

Assume that yt → ∞ but yt/t → 0. Then it follows from (10) that, for every fixed r,

μ
(�)
t

[
yt

r
, t

]
= ty−γ

t rγ

γ
(1 + o(1)). (13)

By using (11), we also have an integrable majorant with respect to the law FR:

μ
(�)
t

[
yt

r
, t

]
≤ ty−γ

t rγ

γ (γ − 1)
.

By integrating this estimate in (12) we obtain

μ
(�,r)
t [yt, ∞) ≤ E(Rγ )

γ (γ − 1)
ty−γ

t . (14)

Furthermore, by Lebesgue’s dominated convergence theorem, (12) and (13) yield

μ
(�,r)
t [yt, ∞) = y−γ

t t
∫
R+

rγ

γ
FR(dr)(1 + o(1)) = E(Rγ )

γ
ty−γ

t (1 + o(1)). (15)

3.2. Proof of Proposition 1

Proof. Consider the integral representation (9). According to a general criterion of the weak
convergence of Poisson integrals to a stable law [11, Corollary 8.5], it is enough to check that,
for each fixed ρ > 0,

Qμ
(�,r)
t {v : (E(Rγ )t)−1/γ v ≥ ρ} = Q

ρ−γ

γ
(1 + o(1)), (16)
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combined with the uniform bound

sup
t>0

sup
ρ>0

ργ μ
(�,r)
t {v : (E(Rγ )t)−1/γ v ≥ ρ} < ∞. (17)

Indeed, by substituting yt := ρ(E(Rγ )t)1/γ in (15) we obtain (16), and by making the same
substitution in (14) we obtain (17). �

3.3. A decomposition

Take some v0 > 0 and split the integral representation (9) into three parts:

YQ,γ (t) =
∫ v0

0
v ÑQ,γ (dv) +

∫ ∞

v0

v NQ,γ (dv) − Q
∫ ∞

v0

v μ
(�,r)
t (dv)

:= Y◦(t) + Y†(t) − Et, (18)

where NQ,γ is the corresponding non-centered Poisson random measure and Et is the centering
deterministic function.

The variance of Y◦(t) admits the upper bound

Var Y◦(t) = Q
∫ v0

0
v2 μ

(�,r)
t (dv) = 2Q

∫ v0

0
vμ(�,r)

t [v, v0] dv ≤ 2Q
∫ v0

0
vμ(�,r)

t [v, ∞) dv.

Using (14) we get

Var Y◦(t) ≤ 2Qt

γ (γ − 1)
E(Rγ )

∫ v0

0
v1−γ dv = D2tv2−γ

0 , (19)

where

D2 := 2Q

γ (γ − 1)(2 − γ )
E(Rγ ).

Similarly, the centering term admits the bound

0 ≤ Et ≤ Q
∫ ∞

v0

μ
(�,r)
t [v, ∞) dv + Qv0μ

(�,r)
t [v0, ∞) ≤ D1tv1−γ

0 , (20)

where

D1 := Q

(γ − 1)2
E(Rγ ).

3.4. A lower bound for large deviations

We will give a lower bound for large-deviation probabilities P(YQ,γ (t) ≥ yt) with yt �
t1/γ . Let h, ε be small positive numbers. Define v0 := hyt and consider the corresponding
decomposition (18).

First of all, notice that Et is negligible at the range yt because, by (20), Et ≤ D1t(hyt)1−γ =
D1h1−γ (t−1/γ yt)−γ yt = o(yt). Therefore, we may, and do, assume t to be so large that Et ≤ εyt.

Using (19), by Chebyshev’s inequality we have

P(|Y◦(t)| ≥ εyt) ≤ Var Y◦(t)

(εyt)2
≤ D2t(hyt)2−γ

(εyt)2
= D2h2−γ

ε2
(t−1/γ yt)

−γ → 0. (21)

https://doi.org/10.1017/jpr.2022.46 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.46


Large deviations of Poisson Telecom processes 275

It is also useful to notice that, for each fixed ρ > 0 and all large t,

μ
(�,r)
t [v0, ∞) = μ

(�,r)
t [hyt, ∞) = μ

(�,r)
t [h(t−1/γ yt)t

1/γ , ∞)

≤ μ
(�,r)
t [hρt1/γ , ∞) ≤ E(Rγ )

γ (γ − 1)
(hρ)−γ ,

where we used (14) at the last step. Letting ρ → ∞ we get μ
(�,r)
t [v0, ∞) → 0 as t → ∞.

Using the basic properties of Poisson random measure, we may proceed now with the
required lower bound as follows:

P(YQ,γ (t) ≥ yt) ≥ P(|Y◦(t)| ≤ εyt, Y†(t) ≥ (1 + 2ε)yt)

≥ P(|Y◦(t)| ≤ εyt)P(Y†(t) ≥ (1 + 2ε)yt; NQ,γ [v0, ∞) = 1)

= P(|Y◦(t)| ≤ εyt) exp{−Qμ
(�,r)
t [v0, ∞)}Qμ

(�,r)
t [(1 + 2ε)yt, ∞).

The idea behind this bound is to take a single service process providing a substantial large-
deviation workload and to suppress other contributions.

As we have just seen, the first two factors tend to one, thus

P(YQ,γ (t) ≥ yt) ≥ Qμ
(�,r)
t [(1 + 2ε)yt, ∞)(1 + o(1)). (22)

3.5. An upper bound for large deviations

Starting again with the representation in (18), using Et ≥ 0 and (21) we have

P(YQ,γ (t) ≥ yt)

≤ P(Y◦(t) ≥ εyt) + P(NQ,γ [v0, ∞) ≥ 2) + P(Y†(t) ≥ (1 − ε)yt; NQ,γ [v0, ∞) = 1)

= P(Y◦(t) ≥ εyt) + P(NQ,γ [v0, ∞) ≥ 2) + P(NQ,γ [(1 − ε)yt, ∞) = 1)

≤ D2th2−γ

ε2yγ
t

+ 1

2

(
Qμ

(�,r)
t [v0, ∞)

)2 + Qμ
(�,r)
t [(1 − ε)yt, ∞). (23)

Here, the last term is the main one. Recall that almost the same expression also shows up in
the lower bound.

3.6. Proof of Theorem 2

Proof. Recall that, according to (15), in the zone under consideration, t1/γ � yt � t, it is
true that

μ
(�,r)
t [yt, ∞) = E(Rγ )

γ
ty−γ

t (1 + o(1)), (24)

and we have similar representations with yt replaced by either (1 + 2ε)yt, (1 − ε)yt, or v0 = hyt.
In view of (24), the lower estimate (22) yields

lim inf
t→∞

P(YQ,γ (t) ≥ yt)

ty−γ
t

≥ QE(Rγ )

γ
(1 + 2ε)−γ ,

while the upper estimate (23) yields
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lim sup
t→∞

P(YQ,γ (t) ≥ yt)

ty−γ
t

≤ D2h2−γ

ε2
+ QE(Rγ )

γ
(1 − ε)−γ ,

because the second term in (23) has a lower order of magnitude.
First letting h → 0, then ε → 0, we obtain

lim
t→∞

P(YQ,γ (t) ≥ yt)

ty−γ
t

= QE(Rγ )

γ
,

as required. �

3.7. Proof of Theorem 3

Proof. The proof goes along the same lines as in the moderate-deviation case, except for
the evaluation of μ

(�,r)
t [yt, ∞). Instead of (24), we have the following non-asymptotic exact

formula. According to (10), for yt = κt we have

μ
(�,r)
t [yt, ∞) =

∫ ∞

0
μ

(�)
t

[
yt

r
, ∞

)
FR(dr)

=
∫ ∞

κ

(
t
(yt/r)−γ

γ
+ 2 − γ

(γ − 1)γ
(yt/r)1−γ

)
FR(dr)

=
∫ ∞

κ

(
κ−γ

γ
rγ + (2 − γ )κ1−γ

(γ − 1)γ
rγ−1

)
FR(dr)t−(γ−1)

=
(

κ−γ

γ
E

(
Rγ 1{R≥κ}

) + (2 − γ )κ1−γ

(γ − 1)γ
E

(
Rγ−11{R≥κ}

))
t−(γ−1)

= D(1)
I (κ)t−(γ−1).

The latter constant is positive due to the assumption P(R ≥ κ) > 0.
For the lower bound, the estimate in (22) yields

P(YQ,γ (t) ≥ κt) ≥ QD(1)
I ((1 + 2ε)κ)t−(γ−1)(1 + o(1)).

Letting ε ↘ 0 and using (6), we have

lim
ε↘0

D(1)
I ((1 + 2ε)κ) = κ−γ

γ
E

(
Rγ 1{R>κ}

) + (2 − γ )κ1−γ

(γ − 1)γ
E

(
Rγ−11{R>κ}

) = D(1)
I (κ).

Therefore, P(YQ,γ (t) ≥ κt) ≥ QD(1)
I (κ)t−(γ−1)(1 + o(1)), as required.

For the upper bound, the estimate in (23) with yt = κt yields

P(YQ,γ (t) ≥ κt) ≤
(

D2h2−γ

ε2κγ
+ QD(1)

I ((1 − ε)κ)

)
t−(γ−1)(1 + o(1)).

First letting h ↘ 0, we get rid of the first term and obtain

P(YQ,γ (t) ≥ κt) ≤ QD(1)
I ((1 − ε)κ)t−(γ−1)(1 + o(1)).

Letting ε ↘ 0, we have limε↘0 D(1)
I ((1 − ε)κ) = D(1)

I (κ). Therefore, P(YQ,γ (t) ≥ κt) ≤
QD(1)

I (κ)t−(γ−1)(1 + o(1)), as required. �
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3.8. Proof of Theorem 4

In the setting of this theorem, the large-deviation probabilities decay faster with t than
Chebyshev’s inequality (21) suggests. Therefore, we need the finer estimate for Y◦(t) given
in the following lemma.

Lemma 1. For every M, ε > 0 there exist h > 0 and C = C(h, ε) > 0 such that, for all t > 0,
P(Y◦(t) ≥ εt) ≤ Ct−(γ−1)M, where Y◦(t) is defined by (18) with the splitting point v0 := ht.

Proof. We start with some calculations valid for arbitrary v0. We have the following formula
for the exponential moment of the centered Poisson integral:

E exp(λY◦(t)) = exp

{ ∫ v0

0
(eλv − 1 − λv)μ(�,r)

t (dv)

}
.

We can split the integration domain here into two parts: [0, v0/2] and (v0/2, v0]. For the second
one we have∫ v0

v0
2

(eλv − 1 − λv)μ(�,r)
t (dv) ≤ eλv0 · μ(�,r)

t

[
v0

2
, v0

]
≤ D3eλv0 tv−γ

0 , D3 := 2γ
E(Rγ )

γ (γ − 1)
. (25)

At the last step we used (14).
For the first zone, by using the inequality ex − 1 − x ≤ x2ex and (14) we have∫ v0

2

0
(eλv − 1 − λv)μ(�,r)

t (dv) ≤
∫ v0

2

0
λ2v2eλvμ

(�,r)
t (dv)

≤ 2eλv0/2λ2
∫ v0

2

0
vμ(�,r)

t [v, v0/2] dv

≤ 2E(Rγ )

γ (γ − 1)
eλv0/2λ2t

∫ v0
2

0
v1−γ dv

= D4eλv0/2λ2tv2−γ

0 , D4 := 2γ−1
E(Rγ )

γ (γ − 1)(2 − γ )
.

Next, using the inequality e
x
2 x2 ≤ 3ex, we have∫ v0

2

0
(eλv − 1 − λv)μ(�,r)

t (dv) ≤ 3D4eλv0 tv−γ

0 . (26)

Summing (25) and (26), we obtain E exp(λY◦(t)) ≤ exp{(D3 + 3D4) tv−γ

0 eλv0} := exp{Aeλv0},
where A := (D3 + 3D4)tv−γ

0 . For every real z, by the exponential Chebyshev inequality we
have

P(Y◦(t) ≥ z) ≤ inf
λ>0

exp(Aeλv0 − λz). (27)

If z > Av0, the minimum on the right-hand side is attained at the point λ = (1/v0) log(z/Av0).
By plugging this value into (27) we obtain

P(Y◦(t) ≥ z) ≤ exp

(
z

v0

)(
Av0

z

) z
v0 = exp

(
z

v0

)(
(D3 + 3D4)

tv1−γ

0

z

) z
v0

. (28)

Letting z := εt, v0 := ht yields P(Y◦(t) ≥ εt) ≤ Ct− ε
h (γ−1), where C depends only on ε and h.

Choosing h < ε
M , we get the result. �

Now we can proceed to the proof of the theorem.
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Proof of Theorem 4. We start with the upper bound. Let η := (1 − ζ )κ/(n − ζ ). Since ζ ∈
(0, 1), we have η > 0. It also follows from the definition that κ/(n − ζ ) = (κ − η)/(n − 1).
Therefore, we may rewrite (7) as

P

(
R ≥ κ − η

n − 1

)
= 0. (29)

Let ε ∈ (0, η). We now use the decomposition in (18) with the splitting point v0 = ht, where
h is small number. More precisely, by using Lemma 1 with M = n + 1 we find a small h > 0
such that

P(Y◦(t) ≥ εt) ≤ Ct−(γ−1)(n+1). (30)

Taking into account Et ≥ 0, we get the bound

P
(
YQ,γ (t) ≥ κt

) ≤ P(Y◦(t) ≥ εt) + P(Y†(t) ≥ (κ − ε)t).

By (30), the first term is negligible compared with the decay order t−(γ−1)n announced in the
theorem. Let us write N0 := NQ,γ [v0, ∞), which is a Poissonian random variable with intensity

μ0 := Qμ
(�,r)
t [v0, ∞), and apply the following bound to the second term:

P
(
Y†(t) ≥ (κ − ε)t

) ≤ P(N0 > n) + P
(
Y†(t) ≥ (κ − ε)t; N0 = n

)
+ P

(
Y†(t) ≥ (κ − ε)t, N0 ≤ n − 1

)
.

For the first term, an elementary bound for the Poisson tail works, namely

P(N0 > n) = e−μ0

∞∑
j=0

μ
n+1+j
0

(n + 1 + j)! ≤ e−μ0
μn+1

0

(n + 1)!
∞∑

j=0

μ
j
0

j! ≤ μn+1
0

(n + 1)! ,

where we used that (n + 1 + j)! ≥ (n + 1)!j!. Notice that by (14) with yt := v0 = ht we have

μ0 ≤ QE(Rγ )

γ (γ − 1)
t(ht)−γ = QE(Rγ )h−γ

γ (γ − 1)
t−(γ−1),

and hence P(N0 > n) = O
(
t−(γ−1)(n+1)

)
is negligible compared to the term t−(γ−1)n in the

theorem’s assertion.
Further, by using (29) and the definition of the measure μ

(�,r)
t , we see that

μ
(�,r)
t

[
(κ − ε)t

n − 1
, ∞

)
≤ μ

(�,r)
t

[
(κ − η)t

n − 1
, ∞

)
= 0,

which implies P(Y†(t) ≥ (κ − ε)t, N0 ≤ n − 1) = 0, because here the Poissonian integral Y†(t)
is a sum of not more than n − 1 terms each being strictly smaller than (κ − ε)t/(n − 1).

For A ∈B([v0, ∞)), we write NA := NQ,γ (A) with intensity μA := Qμ
(�,r)
t (A) and

ν
(l,r)
t (A) := P(NA = 1 | N0 = 1), which is a measure on [v0, ∞). We therefore have ν

(l,r)
t (A) =

e−μAμA · eμA−μ0 · (eμ0/μ0) = μA/μ0.
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The remaining Poissonian integral with a fixed number of points admits the following
representation:

P(Y†(t) ≥ (κ − ε)t; N0 = n)

= P
(
Y†(t) ≥ (κ − ε)t | N0 = n

)
P(N0 = n)

= e−μ0
μn

0

n!
∫

[v0,∞)n
1{v1+···+vn≥(κ−ε)t}

n∏
j=1

ν
(l,r)
t (dvj)

≤ e−μ0
Qn

n!
∫
R

n+
1{v1+···+vn≥(κ−ε)t}

n∏
j=1

μ
(�,r)
t (dvj)

= e−μ0
Qn

n!
∫

[0,t]n

∫
Rn+

1{�1r1+···+�nrn≥(κ−ε)t}
n∏

j=1

μ
(�)
t (d�j)

n∏
j=1

FR(drj)

= e−μ0
Qn

n!
∫

[0,1]n
P(s1R1 + · · · + snRn ≥ κ − ε)

n∏
j=1

ν(dsj)t
−(γ−1)n,

:= e−μ0 QnD(n)
I (κ − ε)t−(γ−1)n,

where R1, . . . , Rn are independent and identically distributed variables with distribution FR

and, according to (10), ν is a measure on [0, 1] having the atom 1/(γ (γ − 1)) at 1 and the
density

dν

ds
(s) = s−(γ+1) + 2 − γ

γ
s−γ , 0 < s < 1.

Notice also that the constant D(n)
I (κ − ε) is finite although the measure ν is infinite at each

neighborhood of zero. The reason is that the probability we integrate vanishes if, for some i,
we have si < s∗ := (n − 1)(η − ε)/(κ − η) where η > 0 satisfies (29). Indeed, in this case we
have

P(s1R1 + · · · + snRn ≥ κ − ε) ≤ P
(
(s∗ + (n − 1)) max1≤j≤n Rj ≥ κ − ε

)
≤ nP

(
R ≥ κ − ε

s∗ + (n − 1)

)
= nP

(
R ≥ κ − η

n − 1

)
= 0.

We summarize our findings as P(YQ,γ (t) ≥ κt) ≤ QnD(n)
I (κ − ε)t−(γ−1)n(1 + o(1)).

Letting ε ↘ 0, we obtain P(YQ,γ (t) ≥ κt) ≤ QnD(n)
I (κ)t−(γ−1)n(1 + o(1)), where

D(n)
I (κ) := lim

ε→0
D(n)

I (κ − ε) = 1

n!
∫

[0,1]n
P(s1R1 + · · · + snRn ≥ κ)

n∏
j=1

ν(dsj). (31)

It is easy to see that for n = 1 we obtain the same value of D(1)
I (κ) as in Theorem 3.

For the lower bound, first, notice that Et in (18) is still negligible because by (20) we have
Et ≤ D1tv1−γ

0 = D1t(ht)1−γ = O(t2−γ ) = o(t). Hence, for every fixed small ε we may and do
assume that Et ≤ εt for large t.
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Second, using (19), by Chebyshev’s inequality we have, as t → ∞,

P(|Y◦(t)| ≥ εt) ≤ Var Y◦(t)

(ε t)2
≤ D2t(ht)2−γ

(ε t)2
= D2h2−γ

ε2
t−(γ−1) → 0.

Therefore, we may proceed towards the required lower bound as follows:

P(YQ,γ (t) ≥ κ t) ≥ P
(|Y◦(t)| ≤ ε t, Y†(t) ≥ (κ + 2ε)t

)
≥ P(|Y◦(t)| ≤ ε t)P

(
Y†(t) ≥ (κ + 2ε)t; N0 = n

)
= (1 + o(1))P

(
Y†(t) ≥ (κ + 2ε)t; N0 = n

)
.

The idea behind this bound is to focus on n service processes providing a substantial large-
deviation workload and to suppress other contributions.

Furthermore, by using the expression obtained while working on the upper bound,

P
(
Y†(t) ≥ (κ + 2ε)t; N0 = n

)
= Qn

n!
∫

[0,1]n
P(s1R1 + · · · + snRn ≥ κ + 2ε)

n∏
j=1

ν(dsj)t
−(γ−1)n(1 + o(1))

:= QnD(n)
I (κ + 2ε)t−(γ−1)n(1 + o(1)).

By letting ε ↘ 0, we obtain

lim
ε↘0

D(n)
I (κ + 2ε) = 1

n!
∫

[0,1]n
P(s1R1 + · · · + snRn > κ)

n∏
j=1

ν(dsj)

= 1

n!
∫

[0,1]n
P(s1R1 + · · · + snRn ≥ κ)

n∏
j=1

ν(dsj) = D(n)
I (κ).

For the non-obvious passage we used the following lemma. �

Lemma 2. Assume that (8) holds. Then

νn{s := (s1, . . . , sn) : P(s1R1 + · · · + snRn = κ) > 0} = 0. (32)

The required lower bound P(YQ,γ (t) ≥ κt) ≥ QnD(n)
I (κ)t−(γ−1)n(1 + o(1)) now follows from

the previous estimates. The proof is complete once the lemma is proved. �
Proof of Lemma 2. Let r1, . . . , rn be a sequence of atoms of the distribution FR, so that

P(R = rj) > 0, 1 ≤ j ≤ n. Define F = F(r1, . . . , rn) := {s ∈ [0, 1]n : s1r1 + · · · + snrn = κ}.
For every subset of integers J ⊂ {1, . . . , n} let

BJ := {s ∈ [0, 1]n : sj ∈ [0, 1), j ∈ J; sj = 1, j �∈ J},
and notice that [0, 1]n = ⋃

J BJ . Let FJ := F
⋂

BJ = {s ∈ BJ :
∑

j∈J sjrj = κ − ∑
j �∈J rj}. If J

is not empty, then νn(FJ) = 0 because ν is absolutely continuous on [0, 1).
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If J is empty, then BJ = {(1, . . . , 1)} is a singleton and FJ = ∅, because otherwise∑n
j=1 rj = κ which would contradict (8). We conclude that νn(F(r1, . . . , rn)) = ∑

J νn(FJ) =
0. Since {s : P(s1R1 + · · · + snRn = κ) > 0} ⊂ ⋃

r1,...,rn
F(r1, . . . , rn) and the union is count-

able, we obtain (32). �

3.9. Proof of Theorem 5

Proof. For the upper bound, we take a small ε > 0, use the decomposition in (18) with
v0 := hyt (a small h = h(ε) will be specified later on), and start with the usual bound

P(YQ,γ (t) ≥ yt) ≤ P(Y◦(t) ≥ εyt) + P(Y†(t) ≥ (1 − ε)yt)

≤ P(Y◦(t) ≥ εyt) + P(Y†(t) ≥ (1 − ε)yt; N0 = 1) + P(N0 ≥ 2).

To show that the first term is negligible compared to F̄R(yt/t), we use the estimate in
(28) with z := εyt, v0 := hyt and obtain, for some C = C(ε, h), P(Y◦(t) ≥ εyt) ≤ C(ty−γ

t )
ε
h ≤

Cy
−(γ−1) ε

h
t � F̄R(yt) ≤ F̄R(yt/t) whenever h is chosen so small that (γ − 1)ε/h > m.
Subsequent evaluation of Y†(t) requires analysis of the measure μ

(�,r)
t . By using (12) and

(10) we obtain

μ
(�,r)
t [v, ∞) =

∫ ∞

v/t
μ

(�)
t

[
v

r
, t

]
FR(dr)

=
∫ ∞

v/t

(
t(r/v)γ

γ
+ 2 − γ

(γ − 1)γ
(r/v)γ−1

)
FR(dr)

= tv−γ

γ

∫ ∞

v/t
rγ FR(dr) + (2 − γ )v1−γ

(γ − 1)γ

∫ ∞

v/t
rγ−1FR(dr).

Since the tail of FR is regularly varying, we have the following asymptotics for the integrals as
z → ∞:

∫ ∞

z
rγ FR(dr) = mzγ

m − γ
F̄R(z)(1 + o(1)),

∫ ∞

z
rγ−1FR(dr) = mzγ−1

m − γ + 1
F̄R(z)(1 + o(1)).

Therefore, we obtain

μ
(�,r)
t [v, ∞) = t−(γ−1)

[
m

γ (m − γ )
+ (2 − γ )m

(γ − 1)γ (m − γ + 1)

]
F̄R(v/t)(1 + o(1))

= m(m − 1)

γ (γ − 1)(m − γ + 1)(m − γ )
t−(γ−1)F̄R(v/t)(1 + o(1))

= Dt−(γ−1)F̄R(v/t)(1 + o(1)), as v � t. (33)
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Now the evaluation of Y† is straightforward. Indeed, by (33),

P
(
Y†(t) ≥ (1 − ε)yt; N0 = 1

) ≤ Qμ
(�,r)
t [(1 − ε)yt, ∞)

= QDtγ−1F̄R((1 − ε)yt/t)(1 + o(1))

= QDtγ−1F̄R(yt/t)(1 − ε)−m(1 + o(1)),

P(N0 ≥ 2) ≤ Q2μ
(�,r)
t [hyt, ∞)2 = Q2(Dt−(γ−1)F̄R(hyt/t))2(1 + o(1))

= Q2(Dt−(γ−1)F̄R(yt/t)h−m)2(1 + o(1))

� t−(γ−1)F̄R(yt/t).

By combining these estimates and letting ε → 0 we obtain the desired bound,

P(YQ,γ (t) ≥ yt) ≤ QDt−(γ−1)F̄R(yt/t)(1 + o(1)).

For the lower bound, since yt � t � t1/γ , all the bounds from Section 3.4 apply. For every
ε > 0, the inequality in (22) along with (33) yield

P(YQ,γ (t) ≥ yt) ≥ Qμ
(�,r)
t [(1 + 2ε)yt, ∞)(1 + o(1))

= QDt−(γ−1)(1 + 2ε)−mF̄R(yt/t)(1 + o(1)),

and letting ε → 0 we get the desired bound, P(YQ,γ (t) ≥ yt) ≥ QDt−(γ−1)F̄R(yt/t)(1 + o(1)). �
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