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Abstract

We revisit the topic of common lines between projection images in single-particle cryo-electron microscopy (cryo-
EM). We derive a novel low-rank constraint on a certain 2n × n matrix storing properly scaled basis vectors for the
common lines between n projection images of one molecular conformation. Using this algebraic constraint and
others, we give optimization algorithms to denoise common lines and recover the unknown 3D rotations associated
with the images. As an application, we develop a clustering algorithm to partition a set of noisy images into
homogeneous communities using common lines, in the case of discrete heterogeneity in cryo-EM. We demonstrate
the methods on synthetic and experimental datasets.

Impact Statement
Single-particle cryo-electron microscopy (cryo-EM) is an imaging technique used to determine the 3D structure
of biomolecules from noisy 2D projection images. This article revisits one of the first approaches to cryo-EM
image processing, namely common lines between pairs of 2D class averages coming from the Fourier slice
theorem. We present a novel mathematical approach for dealing with common lines: in contrast to some
alternatives, it operates directly on the common lines themselves and avoids triplewise angular reconstitution
completely. The article then derives novel algebraic constraints on sets of consistent common lines, including a
straightforward low-rank matrix condition. The algebraic conditions are incorporated into optimization methods
arising from the field of computer vision to produce new methods for computational tasks involving common
lines. In particular, we achieve improved accuracy in common line denoising and rotation recovery at low signal-
to-noise ratios. We also present a method to detect homogeneous communities of 2D class averages in the case of
a cryo-EM dataset with multiple molecular conformations. Altogether this work clarifies a classic topic in cryo-
EM, and opens the door to applying common lines techniques on more challenging datasets.

1. Introduction

Single-particle cryo-electron microscopy (cryo-EM) is an imaging technique capable of recovering the
high-resolution 3D structure of molecules from many noisy tomographic projection images taken at
unknown viewing angles. One of the first approaches for 3D reconstruction, known as angular recon-
stitution, is based on the common line property of projection images induced by the Fourier slice
theorem.(1,2) Due to the low signal-to-noise ratio (SNR) in cryo-EM data, detecting common lines is a
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difficult task(3): even todaywhen applied to denoised averages of images, referred to as 2D class averages.
Detecting common lines is subject to angular errors and incorrectly identified common lines. Although
methods which seek to minimize global errors in the estimated viewing directions have increased the
utility of common lines methods,(4) additional constraints on common lines are needed to improve their
accuracy and robustness.

In this article, we propose a novel approach for dealing with common lines. Specifically, we assemble
the estimated common lines for a dataset of n images into a certain 2n× n matrix, which stores properly
scaled basis vectors for the common lines (Theorem 3.2). Thematrix directly encodes common lines data,
without requiring angular reconstitution on various subsets of images or needing voting procedures like
some existing formulations.(3,5) As such, it yields a direct and more global approach than prior construc-
tions for common lines.

As a main contribution, we derive algebraic constraints on the matrix of common lines, which must be
satisfied in order for a set of common lines to be consistent with a single asymmetric molecular
conformation. The constraints include a straightforward low-rank condition on the matrix, as well as
various sparse quadratic constraints. Importantly, the constraints enable new strategies for computational
tasks involving common lines, in particular for denoising common lines; estimating 3D rotations; and
clustering heterogeneous image sets into homogeneous subsets. We demonstrate this by adapting
optimization algorithms from other domains to these tasks, using the algebraic constraints. We remark
that our constraints seem better suited for numerical optimization than the semialgebraic constraints found
in prior work.(6)

Notably, the clustering problem is a recent application of common lines.(7) In more detail, the goal is to
sort discretely heterogeneous image sets of multiple molecules into communities corresponding to
homogeneous image subsets. This application is motivated by the increasing complexity of cryo-EM
datasets, where samples may not be purified and thus the number of distinct molecules contained in a
dataset is more than one.(8–10) Our algebraic constraints and optimization algorithms enable consistency
checks of subsets of images, to test whether the subset corresponds to a single molecule.

As a mathematical guarantee, we prove that computing the correct scales in the homogeneous case
admits an essentially unique global optimum, see Theorem 5.1. We implement our algorithms and test
them on simulated and real datasets in Section 7. The results demonstrate that our methods can be
successful when applied to 2D class averages at noise levels comparable to experimental data, in both the
homogeneous and discretely heterogeneous cases. We conclude with a discussion of potential future
improvements.

1.1. Advantages

There are several advantages to our approach for dealing with common lines:

• The new formulation is directly in terms of the data, that is, in terms of the common lines themselves.
• It involves multiple common lines simultaneously and does not require triplewise angular recon-
stitution at all (in contrast to (5) for instance), making our approach fully global and potentially more
robust to noise than alternatives.

• The algebraic constraints can be incorporated into existing optimization algorithms that have seen
success in computer vision applications.(11)

• The resulting algorithms outperform existing methods for denoising and rotation recovery on noisy
simulated data, and perform comparably well for clustering heterogeneous image sets on real data,
even though the optimization algorithms are off-the-shelf.

2. Background

First, we recall a standard simplified mathematical model for cryo-EM, in the homogeneous case of one
molecular conformation. We assume there exists a 3D function φ :ℝ3!ℝ describing the electrostatic
potential generated by the molecule. As data, we receive n two-dimensional tomographic projection
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images, denoted IR ið Þ :ℝ2!ℝ for i= 1,…,n, where R ið Þ ∈SO 3ð Þ are 3D rotations associated with each
image. The goal of single-particle cryo-EM is to recover the underlying 3D structure φ from the set of 2D
tomographic projection images which are observed at unknown rotations. The images, in their idealized
and noiseless form, have the following Fourier transforms due to the Fourier slice theorem:

bIR ið Þ bx,byð Þ= R ið Þ �bφ� � bx,by,0ð Þ: (1)

Here bφ bx,by,bzð Þ ≔ R
ℝ3φ x,y,zð Þe

ffiffiffiffiffi�1p
xbx+ yby+ zbzð Þdxdydzdenotes the Fourier transform of φ, and R ið Þ �bφdenotes

the rotation of bφ by R ið Þ. Writing R ið Þ = r ið Þ
1 r ið Þ

2 r ið Þ
3

� �⊤
, (1) reads

bIR ið Þ bx,byð Þ= bφ R ið Þ
� �⊤ bxby0ð Þ⊤
� �

= bφ bxr ið Þ
1 +byr ið Þ

2

� �
: (2)

Generically, for asymmetric molecules φ and distinct rotations R ið Þ and R jð Þ , there exist unique lines
through the origin in the domain of the Fourier-transformed images bIR ið Þ and bIR jð Þ , respectively

ℓij ⊆ domain bIR ið Þ

� �
=ℝ2 and ℓji ⊆ domain bIR jð Þ

� �
=ℝ2, such that the restrictions

bIR ið Þ ℓij =bIR jð Þ

��� ���
ℓji

(3)

are equal as functions onℝ2. In cryo-EM, one says that ℓij and ℓji are the common lines between the ith and
jth image. In modest-noise settings, which are arrived at by working with 2D class averages instead of raw
tomographic images,(12) common lines can be estimated from real cryo-EM data. They give basic ways to
do 3D reconstruction in cryo-EM; for example, see the angular reconstitution technique of van Heel(2) or
the works of Shkolnisky, Singer, and their collaborators(3–5) for example.

From (2), the common lines ℓij andℓjimay be foundmathematically by expressing the single line in 3D
space:

span r ið Þ
1 ,r ið Þ

2

� �
∩ span r jð Þ

1 ,r jð Þ
2

� �
= span r ið Þ

3

� �⊥
∩ span r jð Þ

3

� �⊥
= span r ið Þ

3 × r jð Þ
3

� �
⊆ dom bφð Þ=ℝ3 (4)

in the coordinate system of the ith and jth images, respectively. Here, × denotes the cross product in ℝ3.
Combining (2) and (4), (3) may be written as:

ÎRðiÞ ðλx̂ij,λŷijÞ≔ÎRðjÞ ðλx̂ji,λŷjiÞ for all λ∈R,

where x̂ij ≔ ⟨rðiÞ1 ,rðiÞ3 × rðjÞ3 ⟩, ŷij ≔ ⟨rðiÞ2 ,rðiÞ3 × rðjÞ3 ⟩,

and x̂ji ≔ � ⟨rðjÞ1 ,rðiÞ3 × rðjÞ3 ⟩, ŷji ≔ � ⟨rðjÞ2 ,rðiÞ3 × rðjÞ3 ⟩

where 〈�, �〉 denotes the standard inner product in ℝ3. Common lines can therefore be encoded via:

Definition 2.1. Vectors aij,aji ∈ℝ2 are called representatives for the common lines ℓij and ℓji if there
exists a nonzero scalar λij = λji ∈ℝ such that

aij = λij
〈r ið Þ

1 ,r ið Þ
3 × r jð Þ

3 〉

〈r ið Þ
2 ,r ið Þ

3 × r jð Þ
3 〉

 !
, aji = λji

�〈r jð Þ
1 ,r ið Þ

3 × r jð Þ
3 〉

�〈r jð Þ
2 ,r ið Þ

3 × r jð Þ
3 〉

 !
: (5)

Equivalently, representatives aij and aji are choices of basis vectors for the common lines ℓij and ℓji

which satisfybIR ið Þ λaij
� 	

=bIR jð Þ λaji
� 	

for all λ∈ℝ. Representatives for common lines can be estimated from
2D class averages in practice.

We stress that, although quite standard, the model (1) is greatly simplified. It neglects the effects of
contrast transfer functions (CTFs), imperfect centering in particle picking, and blurring in class averaging.
Further, we have restricted attention to the case of asymmetric molecules, as otherwise common lines are
only unique up to the action of the relevant symmetry group (e.g., see (13)).
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3. Constraints on sets of common lines

3.1. The common lines matrix

We introduce an object to keep track of all common lines in a dataset. It is the main object of this article.

Definition 3.1. A common lines matrix associated to rotations R 1ð Þ,…,R nð Þ ∈SO 3ð Þ is a matrix
A∈ℝ2n× n, which when regarded as an n× n block matrices with 2 × 1 blocks aij ∈ℝ2 is such that aij,aji
are representatives for the common lines ℓij,ℓji if i and j are distinct and aii = 0 otherwise. If the scalars λij
in (5) are all equal to 1, then we call A the pure common lines matrix.

Thus a common lines matrix A associated to R 1ð Þ,…,R nð Þ is uniquely defined up to
n

2

� �
nonzero real

scalars λij (i< j ). In real data settings where the 2D class averages are sufficiently denoised, we can
estimate A from data by estimating representatives for the common lines.

We now present constraints which a pure common lines matrix must satisfy. Firstly, there is the
following low-rank condition. All of our computational methods take advantage of this.

Theorem 3.2. Let A∈ℝ2n× n be the pure common lines matrix associated to Zariski-generic rotations

R 1ð Þ,…,R nð Þ ∈SO 3ð Þ where n≥ 3. Then rank Að Þ= 3.
Proof. Since

aij =
〈r ið Þ

1 ,r ið Þ
3 × r jð Þ

3 〉

〈r ið Þ
2 ,r ið Þ

3 × r jð Þ
3 〉

 !
=

〈r ið Þ
1 × r ið Þ

3 ,r jð Þ
3 〉

〈r ið Þ
2 × r ið Þ

3 ,r jð Þ
3 〉

 !
=
�〈r ið Þ

2 ,r jð Þ
3 〉

〈r ið Þ
1 ,r jð Þ

3 〉

 !
=
�r ið Þ

2

⊤

r ið Þ
1

⊤

0@ 1A
2× 3

r jð Þ
3 ,

the pure commons line matrix admits the following factorization:

A=

�r 1ð Þ
2

⊤

r 1ð Þ
1

⊤

⋮

�r nð Þ
2

⊤

r nð Þ
1

⊤

0BBBBBBBB@

1CCCCCCCCA
2n× 3

r 1ð Þ
3 ⋯ r nð Þ

3

� �
3× n

: (6)

Equation (6) witnesses rank Að Þ≤ min 3,nð Þ = 3. We have equality when R ið Þ are generic because the two
matrices in the factorization are full rank.

There are also necessary quadratic constraints in the entries of a pure common lines matrix.

Proposition 3.3. Suppose A∈ℝ2n× n is a pure common lines matrix where n≥ 3. Then for any
1≤ i< j≤ n, we have ∥aij∥22 = ∥aji∥

2
2.

Proof. See Appendix A.

Proposition 3.4. Suppose A∈ℝ2n× n s a pure common lines matrix where n≥ 3. Then for any
1≤ i< j< k ≤ n, we have det aij aikð Þ = �det aji ajkð Þ= det aki akjð Þ.
Proof. See Appendix A.

From Propositions 3.3 and 3.4, the number of quadratic constraints on a pure common lines matrix

equals
n

2

� �
+ 2

n

3

� �
.
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Example 1. Consider n= 4. Then a pure common lines matrix written in block form,

A =

0 a12 a13 a14
a21 0 a23 a24
a31 a32 0 a34
a41 a42 a43 0

0BBB@
1CCCA

has rank at most 3 and satisfies 14 quadratic equations, which are

ka12k22 = ka21k22 ka14k22 = ka41k22
ka13k22 = ka31k22 ka24k22 = ka42k22
ka23k22 = ka32k22 ka34k22 = ka43k22

detða12 a13 Þ= �detða21 a23 Þ= detða31 a32 Þ
detða12 a14 Þ= �detða21 a24 Þ= detða41 a42 Þ
detða13 a14 Þ= �detða31 a34 Þ= detða41 a43 Þ
detða23 a24 Þ= �detða32 a34 Þ= detða42 a43 Þ

where ∥ �∥2 denotes the Euclidean norm. Note that rank Að Þ≤ 3 is equivalent to the vanishing of all 4 × 4
minors of A, giving a collection of homogeneous degree 4 polynomial constraints on the entries of A.

We note that (6) furnishes a polynomial map which sends an n-tuple of rotations to a pure common
lines matrix:

ψ :SO 3ð Þn!ℝ2n× n

R 1ð Þ,…,R nð Þ
� �

↦A:
(7)

Studying ψ will allow us understand additional important properties of pure common lines matrices. To
do this, we will need to introduce some terminology and elementary concepts from algebraic geometry
(see (14) for precise definitions.)

A subset X ⊆ ℝd is called an algebraic variety if it is the set of points inℝdwhere a finite collection of
polynomials all simultaneously equal 0. For example, SO 3ð Þ is an algebraic variety since it is the set of
matrices R in ℝ3 × 3ffiℝ9 satisfying the polynomial equations R⊤R� I3 × 3 = 03× 3 and det Rð Þ�1 = 0.
Roughly speaking, an algebraic variety is similar to an embedded manifold, expect possibly singular and
always defined by polynomial equations. Due to the properties of polynomials, an algebraic variety X is a
“thin” subset of ℝd in which it lives: provided X ≠ℝd , the complement of X is always a dense subset
filling up almost the entirety of the ambient space. More precisely, if one samples a random point fromℝd

according to any absolutely continuous probability distribution, thenwith probability 1the point will lie in
the complement of X . We say that some property P holds (Zariski) generically if it holds for all points in
the complement of some algebraic variety X ⊊ℝd, and we call such points (Zariski) generic. Roughly
speaking, this means that property P holds with probability 1 (even if, as usually the case, the variety
X ⊊ℝd is left unspecified).

Recall that the fiber of a map at a point p in its image is the set of points in its domain which map to p.
Therefore to answer the question, “Does a pure common lines matrix uniquely determine the rotations
which generated it?”we need to understand the fibers of the map ψ in (7). Our next result shows that the
answer to the question is “Yes,” up to a global rotation, provided the pure common lines matrix is
generic.
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Theorem 3.5. For n≥ 3, generically, the fibers of the map ψ are isomorphic to SO 3ð Þ. More precisely,
for generic rotations R 1ð Þ,…,R nð Þ it holds that

ψ�1 ψ R 1ð Þ,…,R nð Þ
� �� �

= R 1ð ÞQ,…,R nð ÞQ
� �

:Q∈SO 3ð Þ
n o

:

Proof. See Appendix A.

Remark 3.6. Theorem 3.5 does not contradict the chirality ambiguity in cryo-EM, which states that the
3D molecule and rotations can only ever be recovered up to a global rotation and global reflection given
cryo-EM data. In Theorem 5.1, we prove that there are two possible pure common lines matrices for a
given non-pure common lines matrix. They differ by a global sign, and correspond to rotation tuples

R 1ð Þ,…,R nð Þ� 	
and JR 1ð Þ,…,JR nð Þ� 	

where J = diag �1,�1,1ð Þ, respectively. The chirality or handedness
ambiguity is well-known in the common lines literature(2,5) and unavoidable.

3.2. The common lines variety

In general, the image of a polynomial map from an algebraic variety is not an algebraic variety, because
polynomial inequalities (in addition to equations) are needed in the description of the image.(15) This
means that the set of all pure common lines matrices, that is, the image of ψ from SO 3ð Þ, on its own is not
an algebraic variety. To resolve this, we consider the smallest algebraic variety in ℝ2n× n containing
ψ SO 3ð Þð Þ, that is, we add the smallest set of additional points (which are not pure common lines matrices)
to ψ SO 3ð Þð Þuntil the union becomes an algebraic variety. The process is called taking the Zariski closure
of ψ SO 3ð Þð Þ. We call the resulting algebraic variety the common lines variety and it lives in the ambient
space ℝ2n× n . The common lines variety is defined by polynomial equations in the entries of a matrix
A∈ℝ2n× n . Since the common lines variety includes all pure common lines matrices, the polynomials
defining it, in particular, include the constraints we already identified in Section 3.1.

Example 2. When n= 3, we used the computer algebra systemMacaulay2(16) to determine the collection
of polynomial equations defining the common lines variety. Along with the 5 quadratic polynomials from
Propositions 3.3 and 3.4, our computation also found 1 polynomial of degree 6, 64 polynomials of degree
8, and 24 polynomials of degree 10, for a total of 94 polynomial equations. Notice that for n= 3, the rank 3
constraint of Theorem 3.2 is vacuous. We find the 5 quadratics are the only homogeneous polynomials.
The other 89 equations are highly complex and we refrain from explicitly writing them here. They are
available at the GitHub repository (8.1).

In view of Example 2, we believe that Section 3.1 identifies all “simple-to-describe” algebraic
constraints on pure common lines matrices. As such, it is important to understand to what extent these
constraints are enough to characterize pure common lines matrices. This requires understanding the
geometry of the common lines variety better, for which we will need to use a couple more basic concepts
from algebraic geometry described in the next two paragraphs.

In general, every algebraic variety X⊆ℝd admits a unique decomposition into a finite union of
irreducible components X =∪r

i = 1X i, where X i⊆ℝd are algebraic varieties themselves and each cannot be
decomposed as a union of two strictly smaller varieties. We think of X i as “building blocks” of X . For
example, the variety x,yð Þ∈ℝ2 : xy= 0


 �
is a union of the x- and y-axes, and these lines are its irreducible

components. In general, each irreducible component X i can be ascribed a dimension, which captures the
number of degrees of freedom in X i and coincides with manifold dimension when X i is smooth. We note
that the dimension of different irreducible components X i of X may differ.

Given an algebraic variety X⊆ℝd, one can construct from it a larger algebraic variety C Xð Þ⊆ℝd called
the cone overX by adding toX all points inℝdwhich lie on a line passing through the origin and a point on
X . This constructs an algebraic variety that includes all scalar multiples of points of X .

e9-6 Tommi Muller et al.

https://doi.org/10.1017/S2633903X24000072 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000072


Since the constraints we identified in Section 3.1 are all polynomial equations, they define Section 3.1
as an algebraic variety in ℝ2n× n. In the next proposition, we show that this algebraic variety contains the
cone over the common lines variety as an irreducible component. This means that locally on this
component, our constraints from Section 3.1 are sufficient to characterize pure common lines matrices
up to scale. The proof relies on computer algebra software,(16) and checks that certain numerical matrices
are full-rank, so we also report the range of n on which the proposition has been confirmed.

Proposition 3.7. The algebraic variety defined by the low-rank constraint in Theorem 3.2, alongwith the
quadratic constraints in Propositions 3.3 and 3.4, and the requirement that all diagonal blocks are 0,
contains the cone over the common lines variety in ℝ2n× n as an irreducible component for n= 3,…,50.

Proof. See Appendix A.

4. Optimization problem

We encode the common lines from cryo-EM data by choosing representatives baij ∈ℝ2 (Definition 2.1) to

form the 2 × 1blocks in a common lines matrix bA∈ℝ2n× n. Suppose we have rescaled the 2 × 1blocks of bA
so they all have norm 1. Then at least in clean situations, Theorem 3.2 and Propositions 3.3 and 3.4 imply
we can scale the blocks by nonzero scalars λij with λij = λji so that the resulting matrix is a pure common
lines matrix A , and thus has rank 3 and satisfies the set of norm and 2 × 2 determinant equations.
Proposition 3.7 states that these constraints are sufficient to determine the common lines variety locally. In
Section 5.4, we further prove that for purposes of recovering scales λij to obtain a pure common lines
matrix, the constraints are also sufficient.

Proper scales are not directly available from common lines data in cryo-EM. To find the scales we
formulate an optimization problem, inspired by work for a mathematically similar problem in (11):

min
aijf g, λijf g

i, j = 1,…,n

Xn
i, j = 1

∥baij� λijaij∥2 (8)

subject to

aii = 0 for all 1≤ i≤ n

rank Að Þ= 3
λij = λji for all 1≤ i< j≤ n,

8><>: (9)

∥aij∥22 = ∥aji∥
2
2

detðaij aik Þ= �detðaji ajk Þ= detðaki akj Þ
for all 1≤ i< j < k≤ n:

8><>: (10)

The mixed L1/Frobenius norm ∥ �∥2 in the objective is chosen for its robustness to outliers.
Once we obtain a pure common lines matrix, we show in Section 5.3 how to recover the rotations

corresponding to the common lines (up to the ambiguity in Remark 3.6). Later in Section 6, we solve the
problem (8) to identify homogeneous clusters among images coming from a discrete number of distinct
molecules.

5. Optimization algorithms

Our approach to solving (8) is first to solve the problem with constraint (9) only, and then to enforce the
constraint (10) on the solution. These steps are in Sections 5.1 and 5.2, respectively.
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5.1. IRLS and ADMM for the rank constraint

To solve (8) with the rank constraint, we closely follow the approach of (11). We relax the mixed
L1/Frobenius norm to a weighted least squares objective, where the weights and optimization variables
are updated after each iteration ofminimization via a procedure called Iterative Reweighted Least Squares
(IRLS).(17) Let t denote the IRLS iteration number. Then the objective (8) becomes:

min
A∈ℝ2n × n,Λ∈ℝn × n

∥bA� Λ⊗12× 1ð Þ ⊙ A∥2WF , (11)

where ⊗ and ⊙ is the Kronecker and Hadamard product of two matrices respectively, Λij = λij,

∥M∥2WF ≔
Xn
i, j = 1

w tð Þ
ij ∥mij∥22

is the squared weighted Frobenius norm of a block matrix M ∈ℝ2n× n, the weights in (11) are

w tð Þ
ij =

1= max δ,∥baij� λ t�1ð Þ
ij a t�1ð Þ

ij ∥2
n o� �

if i ≠ j

0 if i= j,

(
(12)

and 0 < δ≪ 1 is a chosen regularization parameter.
Within each iteration of IRLS, we need to solve the problem (11) with the constraints (9). Since the

objective is bilinear in A and Λ , we can do this using the Alternate Direction Method of Multiplier
(ADMM).(18,19) This gives an augmented Lagrangian optimization problem:

max
Γ∈R2n× n

min
A,B∈R2n× n, Λ∈Rn× n

1
2
kbA�ðΛ⊗12× 1Þ⊙Ak2WF +

τ
2
kB�ðA+ΓÞk2F

subject to

aii = 0 for all 1≤ i≤ n

Λ =Λ⊤

rankðBÞ= 3,

8><>:
(13)

where Γ is a matrix of Lagrange multipliers and τ =
Pn

i,j = 1w
tð Þ
ij . We now describe the steps of the ADMM

procedure. Since the problem (13) is non-convex, we alternatingly optimize for each variable. In the
following, let k denote the ADMM iteration number and letW tð Þ ∈ℝn× nwhereW tð Þ

ij =w tð Þ
ij be the matrix of

weights within IRLS iteration t.

1. Optimize A and Λ: We alternatingly optimize for A and Λ until convergence. Let k0 denote the
iteration number for this step.

1a. First we solve the unconstrained problem for A:

min
A∈ℝ2n × n

1
2
∥bA� Λ k0ð Þ⊗12× 1

� �
⊙ A∥2WF +

τ
2
∥B kð Þ � A+ Γ kð Þ

� �
∥2F :

The solution is

A k0 + 1ð Þ = W tð Þ⊗12× 1
� �

⊙ Λ k0ð Þ⊗12× 1
� �

⊙ bA +
τ
4

B kð Þ +Γ kð Þ
� �� �

⊘ W tð Þ⊗12× 1
� �

⊙ Λ k0ð Þ⊗12× 1
� �

⊙ Λ k0ð Þ⊗12× 1
� �

+
τ
4
12n× n

� �
,

(14)

where⊘ is the element-wise division of two matrices. Then we project A onto the set of matrices whose
2× 1 diagonals are 0:

a k0 + 1ð Þ
ii = 0: (15)

1b. Next we solve the unconstrained problem for Λ:

min
Λ∈Rn × n

1
2
kbA�ðΛ⊗12× 1Þ⊙Aðk

0 + 1Þk2WF

subject to Λ=Λ⊤
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The solution is

λ k0 + 1ð Þ
ij =

wij〈baij,a k0 + 1ð Þ
ij 〉+wji〈baji,a k0 + 1ð Þ

ji 〉

wij∥a
k0 + 1ð Þ
ij ∥22 +wji∥a

k0 + 1ð Þ
ji ∥22

if i ≠ j

0 if i= j:

8>><>>: (16)

After repeating 1a. and 1b. until convergence, we obtain A k + 1ð Þ and Λ k + 1ð Þ.

2. Optimize B: The constrained problem for B is

min
B∈R2n× n

τ
2
kB�ðAðk + 1Þ +ΓðkÞÞk2F

subject to rankðBÞ= 3
This is solved by

B k + 1ð Þ =SVP A k + 1ð Þ �Γ kð Þ,3
� �

, (17)

where SVP M,3ð Þ is the singular value projection of a matrixM onto the set of matrices of rank at most 3,
which is computing by taking the highest three singular values ofM and its corresponding left and right
singular vectors.

3. Update Γ: In ADMM, there is a gradient ascent step for Γ, where the step is the solution to

max
Γ∈ℝ2n× n

∥B k + 1ð Þ � A k + 1ð Þ �Γ
� �

∥2F:
This gives the update

Γ k + 1ð Þ =Γ kð Þ + B k + 1ð Þ �A k + 1ð Þ
� �

: (18)

Steps 1, 2, and 3 are repeated until convergence in the optimization variables. This completes the ADMM

procedure for IRLS iteration t. The IRLS weights w t + 1ð Þ
ij for iteration t + 1 are updated using (12), and the

ADMM procedure is repeated again. The whole pipeline is detailed in Algorithm 1.

Algorithm 1. IRLS and ADMM for rank constraint satisfaction

Input: bA∈ℝ2n× n, a common lines matrix
Output: A∈ℝ2n× n, a common lines matrix satisfying only the rank constraint

1: procedure IRLS-ADMM bA� �
2: initialize A,Λ,W
3: t 0
4: while not converged do
5: B A
6: Γ 02n× n
7: τ Pn

i,j = 1w
tð Þ
ij

8: k 0
9: while not converged do
10: k0  0
11: while not converged do
12: update A using (14) and (15) ⊳ 1. Update A and Λ
13: update Λ using (16)
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14: k0  k0 + 1
15: end while
16: update B using (17) ⊳ 2. Update B
17: update Γ using (18) ⊳ 3. Update Γ
18: k k + 1
19: end while
20: updateW using (12) ⊳Update IRLSweights
21: t t + 1
22: end while
23: end procedure

5.2. Sinkhorn scaling for the quadratic constraints

When successful, IRLS-ADMM in Section 5.1 gives us a solution A to (8) satisfying the constraint (9).
Next, we must enforce (10). As described below, our approach is to scale the rows and columns of A
alternatingly until constraint (10) is satisfied, in amanner analogous to Sinkhorn’s algorithm.(20) Note that
nonzero row and column scales do not affect the rank of A, so constraint (9) will still be satisfied.

We find the row and column scales by solving least squares problems. First, we handle the norm
constraints. Define M ∈ℝn× n where

Mij = ∥aij∥22: (19)

Then the norm constraints are satisfied if and only if M =M⊤ , which leads us to the following
constrained least squares problems:

μ = argmin
∥μ∥2 = 1

∥diag μð ÞM� diag μð ÞMð Þ⊤∥2F , (20)

τ = argmin
∥τ∥2 = 1

∥Mdiag τð Þ� Mdiag τð Þð Þ⊤∥2F: (21)

The solutions to problems (20) and (21) are

min
∥μ∥2 = 1

NLμk k22, (22)

min
∥τ∥2 = 1

NRτk k22, (23)

respectively, where NL,NR ∈ℝn× n are the corresponding least squares matrices. See Appendix B for full
details. The problems (22) and (23) are solved by taking μ and τ to be the right singular vector
corresponding to the smallest singular value of NL and NR, respectively.

Nowwe handle the determinant constraints. Scaling each 2 × n row ofAby μ1,…,μn ∈ℝand enforcing
the constraints leads us to the equations

μ2i det aij aikð Þ= �μ2j det aji ajkð Þ= μ2kdet aki akjð Þ (24)

for all 1≤ i< j< k ≤ n. Taking the signed root on each equation, we obtain

μisgnðdetðaij aik ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðaij aik Þj

q
= �μjsgnðdetðaji ajk ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðaji ajk Þj

q
= μksgnðdetðaki akj ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðaki akj Þj

q (25)

Scaling the columns of A by τ1,…,τn ∈ℝ and enforcing the constraints leads to the equations

τjτkdet aij aikð Þ= � τiτkdet aji ajkð Þ= τiτjdet aki akjð Þ (26)
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for all 1≤ i< j< k ≤ n. Dividing the first equation above by τk on both sides and the second equation above
by τi on both sides, we obtain

τjdetðaij aik Þ = � τidetðaji ajk Þ
�τkdetðaji ajk Þ = τjdetðaki akj Þ

(27)

We observe that (25) and (27) are linear in μi and τi. We can enumerate all determinants into three vectors

v1 = ðdetðaij aik ÞÞ1≤ i < j < k≤ n

v2 = ð�detðaji ajk ÞÞ1≤ i < j < k≤ n

v3 = ðdetðaki akj ÞÞ1≤ i < j < k≤ n,

(28)

each of length
n

3

� �
. The determinant constraints are satisfied if and only if v1 = v2 = v3, which leads to the

following constrained least squares problems:

min
∥μ∥2 = 1

∥ μ Δ v1ð Þ� μ Δ v2ð Þ∥22 + ∥ μ Δ v2ð Þ� μ Δ v3ð Þ∥22, (29)

min
∥τ∥2 = 1

∥ðτ Δ1 v1Þ�ðτ Δ1 v2Þ∥22 + ∥ðτ Δ2 v2Þ�ðτ Δ2 v3Þ∥22, (30)

where the quantities in brackets (defined in (B5) and (B6)) are the corresponding scalings (25) and (27) of
v1, v2, and v3 by μ and τ. The solutions to problems (29) and (30) are

min
∥μ∥2 = 1

DL,1 +DL,2ð Þμk k22, (31)

min
∥τ∥2 = 1

DR,1 +DR,2ð Þτk k22, (32)

respectively, where DL,1,DL,2,DR,1,DR,2 ∈ℝn× n are the corresponding least squares matrices. See
Appendix B for full details. The problems (31) and (32) are again solved using SVD.

Now we describe the steps of the Sinkhorn scaling method. Let r denote the iteration number of the
procedure.

1. Scale rows: Let μ∈ℝn be the solution to

min
∥μ∥2 = 1

NL +DL,1 +DL,2ð Þμk k22: (33)

Then we perform the update

A r + 1
2ð Þ = ∥A rð Þ∥2F

∥ diag μð Þ⊗12× 1ð ÞA rð Þ∥2F
diag μð Þ⊗12× 1ð ÞA rð Þ: (34)

2. Scale columns: Let τ ∈ℝn be the solution to

min
∥τ∥2 = 1

NR +DR,1 +DR,2ð Þτk k22: (35)

Then we perform the update

A r + 1ð Þ =
∥A r + 1

2ð Þ∥2F
∥A r + 1

2ð Þdiag τð Þ∥2F
A r + 1

2ð Þdiag τð Þ: (36)
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The Sinkhorn scaling procedure is detailed in Algorithm 2.

Algorithm 2. Sinkhorn scaling for quadratic constraint satisfaction

Input: A∈ℝ2n× n, the output of IRLS-ADMM
Output: A0 ∈ℝ2n× n, a pure common lines matrix

1: procedure SINKHORN Að Þ
2: r 0
3: while not converged do
4: set NL,DL,1,DL,2 using (B1), (B7), (B8)
5: set μ to be the solution of (33)
6: update Ausing (34) ⊳1. Scale rows
7: set NR,DR,1,DR,2 using (B2), (B9), (B10)
8: set τ to be the solution of (35)
9: update A using (36) ⊳ 2. Scale columns
10: end while
11: r r + 1
12: A0  A
13: end procedure

5.3. Rotation recovery

IRLS-ADMM and SINKHORN aim to output a pure common lines matrix A∈ℝ2n× n. Given a pure common

lines matrix, we now show how to determine the underlying rotations R ið Þ in (3) which generated A (recall
Theorem 3.5).

Given A, use singular value decomposition to compute a rank-3 factorization A=BC⊤ for B∈ℝ2n× 3

and C ∈ℝn× 3. We then seek an invertible matrix Q∈ℝ3 × 3 so that BQ and CQ�⊤ take the form of the
factors in (6). In particular, it is required that the rows of BQ come in orthonormal pairs; more precisely,

BQð Þ BQð Þ⊤ =BQQ⊤B⊤ ∈ℝ2n× 2n should have 2 × 2identities along its diagonal. Setting X =QQ⊤ ∈ℝ3 × 3

and relaxing positive semidefiniteness, let us consider the following affine-linear least squares problem:

min
X ∈ℝ3× 3

X =X⊤

∥ℒ BXB⊤� 	
∥2F , (37)

where ℒ :ℝ2n× 2n!ℝ2n× 2n denotes the affine-linear operator which sets all entries of a 2n× 2n matrix
outside of the 2 × 2diagonal blocks to 0, and subtracts the 2 × 2identity matrices from the diagonal blocks.
The normal equations for (37) may be written as

Lvec Xð Þ= vec B⊤B
� 	

, (38)

where L∈ℝ9 × 9 , whose rows and columns index the variables X ij for 1≤ i≤ j≤ 3, and whose corres-
ponding ij,kℓð Þ-th entry is

Lð Þij,kℓ = 〈 In× n⊗11× 2ð Þ bi ⊙ bℓð Þ, In× n⊗11× 2ð Þ bj ⊙ bk
� 	

〉, (39)

where bi is the ith column of B. Generically there is a unique symmetric matrix X solving (38).
Let X =VDV⊤ be an eigendecomposition for the solution to (37), where V ,D∈ℝ9 × 9 . In the clean

case, the diagonal matrixD is already positive semidefinite. Then VD1=2 ∈ℝ3 × 3 is a candidate forQ. Next

the ith row block of BQ determines the first two rows of R ið Þ , and the cross product of these two rows

computes the third row of R ið Þ. From this, we recover the n-tuple of rotations R 1ð Þ,…,R nð Þ� 	
up to global

right multiplication by a rotation. The full procedure for rotation recovery is in Algorithm 3, which is
formulated to apply to noisy inputs as well.We note that as explained in Remark 3.6, a pure common lines
matrix A can only be recovered up to sign, because there are two distinct n-tuples of rotations that can be
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recovered corresponding to the chiral ambiguity of common lines data. One can run ROTATIONS twice, onA
and �A, to produce the two possible sets of rotations.

Algorithm 3. Rotation recovery

Input: A∈ℝ2n× n, an estimate for pure common lines matrix
Output: R1,…,Rnð Þ∈SO 3ð Þn, rotations determining the pure common lines matrix

1: procedure ROTATIONS Að Þ
2: set B using the SVD to get a rank-3 approximation BC⊤ for A
3: set L using (39)
4: set X to be least squares solution of (38)
5: set V ,D using the eigendecomposition X =VDV⊤

6: Dii max Dii,0ð Þ
7: for i= 1,…,n do
8: set q⊤j to be the 2i�2 + jð Þ-th row of BVD1=2 for j= 1,2
9: set q⊤3 to be the ith row of C VD1=2

� 	�⊤
10: set Ri ∈ℝ3 × 3 to be

q⊤2
�q⊤1
q⊤3

0B@
1CA

11: end for
12: if det Rið Þ< 0 then
13: for i= 1,…,n do
14: Ri �Ri

15: end for
16: end if
17: for i= 1,…,n do
18: replace Ri by the nearest rotation matrix to Ri using the SVD of Ri

19: end for
20: end procedure

5.4. Justification of algorithms

Suppose the input to IRLS-ADMM is a noiseless common lines matrix bA∈ℝ2n× n , and its output
A∈ℝ2n× n is a global minimizer to the non-convex problem (13). In the next theorem, we show that
we can recover the ground-truth pure common linesmatrix, up to a global scale, by scaling the 2 × 1blocks
of A via IRLS-ADMM and enforcing the quadratic constraints via SINKHORN. The theorem justifies using
IRLS-ADMM and SINKHORN.

Theorem 5.1. Let n≥ 4. Let A∈ℝ2n× n be a generic pure common lines matrix and λij ∈ℝ be nonzero
scales for i, j= 1,…,n with i ≠ j. Let Λ∈ℝn× n where Λij = λij if i ≠ j, Λii = 0, and Λ =Λ⊤. Suppose

B ≔ Λ⊗12× 1ð Þ ⊙ A =

0 λ12a12 … λ1,n�1a1,n�1 λ1,na1,n
λ21a21 0 … λ2,n�1a2,n�1 λ2,na2,n
⋮ ⋮ ⋱ ⋮ ⋮

λn�1,1an�1,1 λn�1,2an�1,2 … 0 λn�1,nan�1,n
λn,1an,1 λn,2an,2 … λn,n�1an,n�1 0

0BBBBBB@

1CCCCCCA
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has rank 3. Then there exists μ1,…,μn,τ1,…,τn ∈ℝ such that

0 λ12 … λ1,n�1 λ1,n
λ21 0 … λ2,n�1 λ2,n
⋮ ⋮ ⋱ ⋮ ⋮

λn�1,1 λn�1,2 … 0 λn�1,n
λn,1 λn,2 … λn,n�1 0

0BBBBBB@

1CCCCCCA=

0 μ1τ1 … μ1τn�1 μ1τn
μ2τ1 0 … μ2τn�1 μ2τn�1
⋮ ⋮ ⋱ ⋮ ⋮

μn�1τ1 μn�1τ2 … 0 μn�1τn
μnτ1 μnτ2 … μnτn�1 0

0BBBBBB@

1CCCCCCA: (40)

If B additionally satisfies the quadratic constraints (10), then there exists τ ∈ℝ such that for all
i, j= 1,…,n (i ≠ j) it holds λij = τ.

Proof. See Appendix A.

Remark 5.2. Theorem 3.5 implies that given a pure common lines matrix, the rotation recovery problem
in Section 5.3 is uniquely solvable up to a global rotation. Theorem 5.1 states that the ground-truth pure
common lines matrix can only be determined up to a global scale; in particular, τ in Theorem 5.1 may be
positive or negative. As in Remark 3.6, this sign flip corresponds to chiral ambiguity in cryo-EM. Apart
from its sign, the global scale has no effect on rotation recovery in Algorithm 3.

6. Application: Clustering heterogeneous common lines

Here we present an application of our approach for common lines to a challenging problem in cryo-EM.
We propose a clustering algorithm for detecting homogeneous communities of consistent common lines
from discretely heterogeneous data, using our algebraic constraints. One can then use the clusters of
common lines for rotation recovery and 3D reconstruction.

Several successful methods have been proposed for clustering heterogeneous cryo-EM data
that consist of images of a single macromolecule with conformational landscapes or differences in
subunits.(21–27) Recent work of the third author(7) proposed a method of solving a different
heterogeneity challenge in cryo-EM, where the heterogeneity in the data comes from multiple
distinct macromolecules rather than variations on one primary structure. Our proposed application
focuses on the latter problem. For this setting of heterogeneity, the main prior work to compare
against is (7).

The basic idea of our approach is illustrated in Figure 1. There thematrix in gray is a matrix of common
lines from simulated heterogeneous data, corresponding to two distinctmolecular conformations. The two
homogeneous common lines matrices are diagonal blocks in green and purple. The 2 × 1entries outside of
these diagonal blocks do not correspond to any consistent lines and are just random lines inℝ2, encoded as
representatives. Note that in general, a heterogeneous common lines matrix will not necessarily have
consistent common linesmatrices as diagonal blocks, but will be a 2 × nrow and n× 1column permutation
of such a matrix. Gaussian white noise has also been added to the gray matrix to decrease the signal-to-
noise ratio of the common lines. A scree plot in Figure 1 shows a noticeable spectral gap between the third
and fourth singular values of the homogeneous common lines matrices (green and purple curve), which is
not detectable for the entire heterogeneous common lines matrix (gray curve), thus demonstrating low-
rank structure of submatrices.

Algorithm 4. Heterogeneous clustering on common line constraints

Input: A∈ℝ2n× n, a common lines matrix
Output: C1,…,Cr⊆ 1,…,nf g, a partition of all common lines into consistent clusters
1: procedure CLUSTERS Að Þ
2: L ; ⊳ 1. Generate samples
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3: for i≥ 1 until sufficient do
4: set S⊆ 1,…,nf g to be a random sample such that ∣S∣= 4
5: set AS to be the submatrix of A associated to the common lines in S
6: AS IRLS-ADMM (AS)
7: AS SINKHORN (AS)
8: if converged then
9: set M using (19) on AS

10: set v1,v2,v3 using (28) on AS

11: e ∥M �M⊤∥2F + ∥v1�v2∥22 + ∥v2�v3∥22
12: L append L, S,eð Þð Þ
13: end if
14: end for
15: sort L by increasing values of e ⊳ 2. Cluster samples
16: G 0n× n
17: while L ≠ ; do
18: S,eð Þ pop Lð Þ
19: GS,S max GS,S ,� log eð Þ �14 × 4f g
20: end while
21: Gii 0 for all i= 1,…,n
22: C1,…,Cr COMMUNITYDETECTION(G) ⊳ Use method from (28)
23: end procedure

Our clustering algorithm consists of two main steps:

1. Generate samples: As input, we are given a single common lines matrix A , from which we
identify small clusters of consistent common lines. We randomly sample a set of four common
lines S and extract the corresponding 8 × 4 submatrix AS from A (the choice of four common lines
is explained in Section 7.3 based on numerical experiments). We then run IRLS-ADMM and

scree plot

Figure 1. A heterogeneous common lines matrix and rank test for simulated rotations from two distinct
molecules. Block-diagonals comparing rotations from the same molecule show rank-3 structure.
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SINKHORN on AS. These methods may occasionally diverge due to numerical instability from noise
in the data, as discussed in Section 7, in which case we discard the sample. We also discard the
sample if the spectral gap between the third and fourth singular value of AS is not sufficiently large
(i.e., AS does not have numerical rank 3). Otherwise, we obtain a quadratic constraint satisfaction
error for the sample. We record both the sample and its error, and repeat this sampling sufficiently
many times.

2. Cluster samples: We view the collection of samples and errors we obtain as a weighted hypergraph
on n vertices whose hyperedges are of size 4 corresponding to the samples and whose hyperedge
weights are given by their corresponding errors. We convert the weighted hypergraph into a
weighted graph by constructing a weighted adjacency matrix whose i, jð Þ entry is the negative
logarithm of the smallest error on a hyperedge containing both common lines iand j.We then use an
unsupervised community detection algorithm on this adjacency matrix to find the clusters of
consistent common lines. In our numerical experiments, we use the algorithm proposed by
Lancichinetti, Fortunato, and Kertész,(28) which can identify overlapping communities and hier-
archical structure, and depends only on a single hyperparamter controlling the scale of the
hierarchies. In particular, we do not need to specify the number of clusters or their sizes.

The clustering algorithm is detailed in Algorithm 4 and illustrated in Figure 2.

7. Performance on data

We compare the performance of our methods to existing common lines based algorithms in the literature,
namely functions in the software package ASPIRE (29) and the clustering algorithm of Verbeke et al.(7)We
study the problems of recovering rotations, denoising common lines, and partitioning discretely hetero-
geneous image sets into homogeneous subcommunities using common lines. The tests are done on
simulated data (at various levels of noise) and real data.

Our simulated data consists of image data of the 40S, 60S, and 80S ribosome (available from the
Electron Microscopy Data Bank(30) as entries EMD-4214, EMD-2811, and EMD-2858, respectively),
generated by ASPIRE. The ribosomes and examples of their clean 2D projection images are displayed in
Figure 3. Each image is 128 × 128 with a pixel size of 3 Å. White Gaussian noise is added to each image
corresponding to a specified signal-to-noise ratio (SNR).We define the SNR by taking the signal to be the
average squared intensity over each pixel in the clean image and setting the noise variance to achieve the
appropriate ratio. The common lines between two images are detected by finding the line projections of
the two images with the highest correlation, as computed in ASPIRE.

Figure 2. Algorithm for separating images of distinct molecules using algebraic constraints on common
lines. The common lines matrix is first computed from an input set of images or class averages. We then
apply Algorithm 4, our clustering algorithm. After clustering, images corresponding to the samemolecule

can then be used for 3D reconstruction.
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In our numerical experiments, we have observed that the performance of IRLS-ADMM, and conse-
quently SINKHORN, can depend on its initialization. In particular, we have occasionally observed diver-
gence or vanishing of the entries of A in SINKHORN. This behavior appears to be due to numerical
instabilities in SINKHORN arising from noise in the data or from using too many common lines. In these
cases, we can either discard such runs and restart the algorithms with new initializations, or skip using
SINKHORN. We address this issue in each of our tests.

7.1. Rotation recovery

Let R 1ð Þ,…,R nð Þ ∈SO 3ð Þ be the ground-truth rotations and R1,…,Rn ∈SO 3ð Þ be the recovered rotations.
Then Theorem 3.5 states that there exists a unique rotationQ∈SO 3ð Þ such that R ið Þ =RiQ for all 1≤ i≤ n.
In other words, Q can be found by solving the orthogonal Procrustes problem

min
Q∈ SO 3ð Þ

1
n

R 1ð Þ

⋮
R nð Þ

 !
�

R1

⋮
Rn

 !
Q

�����
�����
2

F

: (41)

The solution to this problem can be found using SVD.(31) We note that for n= 1, there is a simple relation
between the Procrustes error and the angular error between two rotation matrices. For R,S ∈SO 3ð Þ, it
holds ∥R�S∥2F = 〈R�S,R�S〉= ∥R⊤R∥2F �2〈R,S〉+ ∥S⊤S∥2F = ∥I3 × 3∥2F �2〈R,S〉+ ∥I3 × 3∥2F = 2 �3�
2 � tr R⊤S

� 	
. Hence the angular error between R and S is

θ = arccos
tr R⊤S
� 	�1

2

� �
= arccos

3� 1
2∥R�S∥2F�1

2

 !
:

We compare our method to the procedure in ASPIRE on simulated data. Given common lines, the
rotation recovery algorithm used in ASPIRE is the synchronization with voting procedure as described in
(5). We use 30 images of the 60S, 80S, and 40S ribosomes at SNR= 0:125,0:25,0:5,1 . For each
macromolecule and SNR, we generate 50 sets of 30 random ground-truth rotations and their correspond-
ing noisy images. We report the average Procrustes error (41) per image (i.e., the Procrustes error divided
by the number of images).

When running this test, we chose to only use our IRLS-ADMM algorithm followed by Rotations, and
omitted the SINKHORN row and column scaling step due to observed numerical instabilities of SINKHORN
with noise in the data or too many common lines. Also, Remark 5.2 states that our algorithm is only
guaranteed to recover the ground-truth pure common lines matrix up to a global scale, and the sign of this
scale produces two sets of rotations that differ by left-multiplication with J = diag �1,�1,1ð Þ. This sign
flip corresponds to the chiral ambiguity in cryo-EM, as explained in Remark 3.6. Thus in our tests, we
report the best rotational error amongst the two possible sets of rotations.

The results for rotation recovery are displayed in Table 1. Notably, at lower SNR our method is
consistently more accurate than ASPIRE.

Figure 3. 3-D structures and example projection images for the three structures used for simulation.
(a) 80S ribosome (EMD-2858) and example projection images. (b) 60S ribosome (EMD-2811) and

example projection images. (c) 40S ribosome (EMD-4214) and example projection images.
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7.2. Denoising common lines

The problem we consider here is the following: given a noisy common lines matrix, how well can we
recover the ground-truth clean pure common lines matrix? If A,B∈ℝ2n× n are the ground truth and
recovered pure common lines matrix respectively, then we measure this error to be

min
λ∈ℝ

1
n

A� λBk k2F (42)

since there is a global scale ambiguity in the recovered pure common lines matrix as discussed in Remark
5.2. The above problem is a least-squares problem in λ and hence has a closed-form solution.

We compare our methods to ASPIRE on simulated data as follows. We run the rotation recovery

algorithm of ASPIRE based on common lines to obtain rotations R 1ð Þ,…,R nð Þ ∈ SO 3ð Þ. Thenwe construct
a recovered pure common lines matrix B from these rotations by using the factorization (6). We then
compare the denoising error (42) from the ground-truth clean common lines matrix A to the output of our
IRLS-ADMMmethod and to the matrix B. As before, the simulated data consists of 30 images of the 60S,
80S, and 40S ribosomes at SNR= 0:125,0:25,0:5,1, and we report the average denoising error (42) per
image over 50 runs. We assume we have the ground-truth chiral information when recovering rotations
with ASPIRE.

The results for common line denoising are displayed in Table 2. Again our IRLS-ADMM method
outperforms ASPIRE for denoising common lines matrices, particularly at low SNR.

7.3. Clustering heterogeneous image sets

We test the performance of our algorithm CLUSTERS for clustering (see Section 6) on simulated and
real data.

The success of clustering is measured by the adjusted Rand index(32) (ARI) between the ground-truth
clusters and the recovered clusters. The range of this index is �∞<ARI≤ 1, with ARI = 1 if the two
partitions are identical. The ARI is a corrected-for-chance version of the Rand index, meaning that it is the
expected Rand index for the cluster and is equal to 0 if every element is placed in a random cluster.

While any number of common lines ∣S∣ can be sampled on line 4 of CLUSTERS, we found that sampling
four common lines at a time was effective for a number of reasons: ∣S∣= 4 enforces a non-trivial rank
3 constraint, and the small number of common lines allowed us to both generatemany samples rapidly and

Table 1. The average rotation recovery error from 30 simulated images of macromolecules
at various SNR, 50 runs each

Average Procrustes rotation error (42)

Macromolecule SNR Algorithm 1 and Algorithm 3 ASPIRE

EMD–2811 (60S ribosome) 0.125 3.6840 4.3426
0.25 3.3215 3.6042
0.5 1.5512 2.2704
1 0.4215 0.4877

EMD–2858 (80S ribosome) 0.125 1.7903 2.5943
0.25 0.8038 1.3175
0.5 0.1576 0.2543
1 0.0259 0.0240

EMD–4214 (40S ribosome) 0.125 4.0377 4.5281
0.25 3.9079 4.0104
0.5 3.6375 3.3994
1 2.8271 2.1334

Bold values indicate the algorithm with lower error.
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improve the numerical stability of the SINKHORN scaling procedure. In addition, the COMMUNITYDETECTION

algorithm we use is the one described in (28).

7.3.1. Simulated data
We generate a dataset containing three clusters, with n= 5 + 30 + 15 = 50 images from the 40S, 60S, and
80S ribosomes, respectively, from which we construct a common lines matrix.

CLUSTERS achieved perfect clustering (ARI = 1 ) at SNR= 10 , ARI = 0:8581 at SNR= 5 , and
ARI = 0:3286 at SNR= 1. The clusters found at SNR= 5 are displayed in Figure 4, which shows that
only one pair of images were placed in incorrect clusters.

7.3.2. Real data
Our real data consists of a subset of 2D class averages computed from the experimental data described in
Verbeke et al.(7) The subset we consider consists of two clusters with n = 47 + 28 = 75 images

Table 2. The average denoising error of recovered pure common lines matrices from 30 simulated
images of macromolecules at various SNR, 50 runs each

Average denoising error (42)

Macromolecule SNR Algorithm 1 ASPIRE

EMD–2811 (60S ribosome) 0.125 14.1982 18.2274
0.25 12.7786 17.8805
0.5 8.2349 16.8199
1 4.1908 6.1365

EMD–2858 (80S ribosome) 0.125 11.2948 17.3292
0.25 6.8850 13.3778
0.5 2.3152 3.6690
1 0.5680 0.3512

EMD–4214 (40S ribosome) 0.125 15.5635 18.0612
0.25 15.1112 18.0862
0.5 14.0420 18.0069
1 11.6964 15.7237

Bold values indicate the algorithm with lower error.

Figure 4. Clustering results for n= 50 simulated images with SNR = 5. Images are size 128 × 128 with
pixel size of 3 Å, and are colored according to the ground truth labels. Using CLUSTERS achieves

ARI = 0.8581 and only one pair of images are incorrectly clustered.
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corresponding to the 60S and 80S ribosomes respectively. Each class average is 96 × 96 with a pixel size
of 4.4 Å. We use the labels from (7) as ground truth for clustering.

Figure 5 shows the clusters found by our algorithm CLUSTERS, achieving ARI = 0.8440 and misclas-
sifying only three images.

The clustering algorithm used in (7) is based on performing community detection on a nearest-
neighbors graph constructed using Euclidean distances between the best-matching line projections
between every pair of images. We stress that our clustering algorithm uses a completely distinct aspect
of common lines data: the positions of the common lines. As a proof of concept for our constraints, we do
not make use of the correlations between the common lines at all, unlike (7). The test for CLUSTERS only
uses a subset of the dataset in (7), which has n= 100 images and includes images with unknown labels. If
we compare only the 60S and 80S images that were clustered, then CLUSTERS achieves a similar
performance, where one additional image is misclassified by CLUSTERS compared to (7).

8. Conclusion

This article revisited the fundamental topic of common lines in cryo-EM image processing. We discussed
a novel approach for dealing with common lines, based on a certain 2n× nmatrix encoding the common
lines between n projection images. We proved that if the 2 × 1 blocks of the matrix are properly scaled,
then the matrix satisfies nice algebraic constraints: a low-rank condition and several sparse quadratic
constraints. The new formulation operates directly on common lines data, and is fully global in that it does

Figure 5.Clustering results for n= 752D class averages from EMPIAR-10268 computed as described in
(7). Images are size 96 × 96with a pixel size of 4.4 Å, and are colored according to the ground truth labels.

Using CLUSTERS achieves ARI = 0.8440 and only three images are incorrectly clustered.
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not require angular reconstitution or voting procedures at all. It opens the door to different and potentially
more robust approaches to computational tasks involving common lines. Using the algebraic constraints,
we adapted optimization algorithms from other domains to give new methods to denoise common lines
data, and recover the 3D rotations underlying noisy images. Numerical experiments show that these
methods have increased accuracy at low SNR, compared to existing methods based on common lines.We
also explored a setting where traditional common lines methods fail to apply – cryo-EM datasets with
discrete heterogeneity – by proposing a sampling-based process to cluster the images in homogeneous
subcommunities based on our algebraic constraints. Experiments with simulated and real data show the
method performs well when applied to images with high noise.

Although there is clear promise, several future directions could be pursued for further improvements.
Firstly, in Section 5 the optimization algorithm building on (11) is quite complex.Matrix scaling problems
as in (11) and our work are an interesting variation on the problem of matrix completion; would other
optimization approaches perform better? Secondly, extensions to molecules with nontrivial point group
symmetries would be useful (and currently are a focus in other common lines research). Perhaps our
formulation can suggest another way to incorporate symmetries into common linesmethods. Lastly, in the
application to discrete heterogeneity, we neglected correlation scores between the common lines, on
which (7) relied. It is likely better to use both the scores and the algebraic constraint errors.

Data availability statement. Data and replication code are available at https://github.com/ozitommi/algebraic-common-lines.
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A. Appendix. Additional proofs

Proof of Proposition 3.3. Since orthogonal matrices preserve norms, we have
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Similarly, we have

1 = 〈r ið Þ
3 ,r jð Þ

3 〉2 + aij
�� ��2

2
: (A2)

Thus, by equating (A1) with (A2) and simplifying, we obtain ∥aij∥22 = ∥aji∥
2
2.

Proof of Proposition 3.4. Let D = det r ið Þ
3 r jð Þ
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by expanding the determinant along the first column. Similarly for each j and k we have
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Thus, equating (A3)–(A5), we obtain det aij aikð Þ = �det aji ajkð Þ = det aki akjð Þ.
Proof of Theorem 3.5. We first prove the theorem in the case n= 3. Given R1,R2,R3 ∈ SO 3ð Þ, we have
A=ψ R1,R2,R3ð Þ=ψ R1Q,R2Q,R3Qð Þ for any Q∈ SO 3ð Þ since
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Hence, the fibers of ψ contain at least a copy of SO 3ð Þ: By fixing Q=R⊤
1 , we may assume that R1 = I , so that

A=ψ R1,R2,R3ð Þ=ψ I ,R2R⊤
1 ,R3R⊤

1

� 	
. To prove the statement, we therefore need to show that fibers of the map ψ with R1 = I fixed,

ψ : SO 3ð Þ× SO 3ð Þ!ℝ6 × 3
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,
(A6)

generically consist of only one point. Our strategy to show this is to set up a corresponding system of polynomial equations for a
random instance of two rotations R 1ð Þ and R 2ð Þ, and then solve the system numerically, showing that it has only one solution. It is
sufficient to solve the polynomial system over the complex numbers ℂ, and exhibit that there is a unique solution even over ℂ. We
parameterize R1,R2 ∈SO 3ð Þ using the Euler-Rodriguez formula:

Ri =

a2i + b
2
i � c2i �d2i 2 bici�aidið Þ 2 bidi + aicið Þ

2 bici + aidið Þ a2i + c
2
i �b2i �d2i 2 cidi�aibið Þ

2 bidi�aicið Þ 2 cidi + aibið Þ a2i + d
2
i �b2i � c2i

0B@
1CA,

Biological Imaging e9-23

https://doi.org/10.1017/S2633903X24000072 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000072


where ai,bi,ci,di ∈ℝ such that a2i + b
2
i + c

2
i + d

2
i = 1. We construct one pure common lines matrix A=ψ I ,R1,R2ð Þwhose entries are

polynomial in ai,bi,ci,di, and another pure common lines matrix A=ψ I ,R1,R2

� 	
, from random rotation matrices R1,R2 ∈ SO 3ð Þ,

whose entries are real. Setting A=A gives us a system of polynomial equations, which we solve over ℂ using the package
HomotopyContinuation.jl in Julia.(33) Every rotation under the Euler-Rodriguez parametrization has two parametrizations, namely
a,b,c,dð Þ and �a,�b,�c,�dð Þ representing the same matrix in SO 3ð Þ. By parameterizing R1 and R2, we therefore expect to find
4 real solutions to the system and therefore one point in the fiber, which is indeed what we find using homotopy continuation. The
computation is carried out in the file fiber.jl in our GitHub repository (8.1).

Now with the theorem true for n= 3 , it in fact follows that the theorem is true for all n> 3 : if A1 =ψ R1,…,Rnð Þ and
A2 =ψ S1,…,Snð Þ, where A1 =A2 is a generic point in the image of ψ, then we need to show that there exists a unique Q∈SO 3ð Þ
such that Si =RiQ for all i = 1,…,n. Choosing two 6 × 3 pure common lines submatrices of A1 =A2 corresponding to indices i, j,kf g
and i,ℓ,mf g, the theorem in the case n= 3 implies that there exist Qijk ,Qiℓm ∈ SO 3ð Þ such that Si,Sj,Sk

� 	
= RiQijk ,RjQijk ,RjQijk

� �
and Si,Sj,Sℓ

� 	
= RiQiℓm,RℓQiℓm,RmQiℓmð Þ. In particular, RiQijk =RiQiℓ,, soQijk =Qiℓm. Thus, any triplet of rotations are related by

the same matrix Q.

Proof of Proposition 3.7. Let Vn⊆ℝ2n× n denote the cone over the common lines variety (i.e., Vn is the smallest algebraic
variety containing all scalar multiples of all pure common lines matrices). Let Wn⊆ℝ2n× n denote the variety defined by the
polynomial constraints in Proposition 3.7. Note that since the constraints are invariant to global scaling, we haveVn⊆Wn. By (15), in
order to show that Vn is an irreducible component of Wn we need to show that

dim Vnð Þ= dim Wn,Að Þ (A7)

holds a generic point A∈Vn, where dim �ð Þ and dim �, �ð Þ respectively denote the dimension of a variety and the local dimension of a
variety at a point. This is analogous to computing the dimension of a manifold by computing the dimension of its tangent space at a
point.

Recall Vn is the cone over the common lines variety, which is the smallest algebraic variety containing the image of the map ψ in
(7). Thus using the fiber dimension theorem (the algebraic geometric analog of the rank-nullity theorem from linear algebra),
Theorem 3.5 implies

dim Vnð Þ= 3n�2: (A8)

Next, we compute dim Wn,Að Þ. We first note that Wn⊆X n , where X n is the algebraic variety of all rank ≤ 3 matrices in ℝ2n × n

defined by the vanishing of 4 × 4 minors. Note the map ρ :ℝ2n× 3 ×ℝn× 3!Vn given by ρ B,Cð Þ =BC⊤ parameterizes Vn with 9-
dimensional fibers over each rank-3 point.(34) This holds because for each 3 × 3 invertible matrix M , ρ B,Cð Þ = ρ BM�1,CM⊤� 	

.
Hence

dim Wn,Að Þ+ 9= dim ρ�1 Wnð Þ, B,Cð Þ� 	
(A9)

for B,Cð Þ∈ℝ2n× 3 ×ℝn × n such that ρ B,Cð Þ =A. We now compute the right-hand side of (A9) in the computer algebra system
Macaulay2.(16) Specifically, we differentiate the defining constraints ofWnwith respect to BandC, noting that the rank-3 constraint
is enforced automatically by ρ and the other constraints in Proposition 3.7 are biquadratic and bilinear in B,Cð Þ. We evaluate the
Jacobian matrix at a point B,Cð Þ in the fiber of ρover A, where A∈Vn is generated as a random scaling of ψ R 1ð Þ,…,R nð Þ� 	

where R ið Þ

are random. Generically, the nullity of the Jacobian matrix equals dim ρ�1 Wnð Þ, B,Cð Þð Þ. Performing numerical computations for
n= 3,…,50 in double-precision arithmetic yields numerical nullities of 3n+ 7. Comparing (A9) with (A8) implies (A7) as desired.

Proof of Theorem 5.1. Since nonzero row and column scaling preserves rank, wemay assumewithout loss of generality that

λi1 = λ1j = 1 for all i, j = 2,…,n: this is achieved by choosing μ1 = τ1 = 1, μi = λ
�1
i1 , and τj = λ

�1
1j . We will show that λij = λkℓ for all

i, j,k,ℓ= 2,…,n, i ≠ j, k ≠ℓ. In other words, we will prove that the matrix Λ must have the form in (A12).

First, we prove that λij = λik for all i, j,k = 2,…,n, i ≠ j, i ≠ k . There are three cases to consider: i < j < k , j < i < k , and j < k < i.
Suppose we are in the first case. Since rank Bð Þ = 3, every 4 × 4minor of B vanishes. Thus, choosing row indices 1, 2, 2i�1, and 2i,
and column indices 1, i, j, and k, we have

det
0 a1i a1j a1k
ai1 0 λijaij λikaik

� �
= λik det a1i a1jð Þdet ai1 aikð Þ� λijdet a1i a1kð Þdet ai1 aijð Þ= 0: (A10)

But since A is a pure common lines matrix, det a1i a1jð Þ = �det ai1 aijð Þ and det ai1 aikð Þ = �det a1i a1kð Þby Proposition 3.4, all of
which are nonzero since A is generic. Thus λij = λik .
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Expanding the 4 × 4 minor with the same choice of row and column indices for the remaining two cases gives us

det
0 a1j a1i a1k
ai1 λijaij 0 λikaik

� �
= �det

0 a1i a1j a1k
ai1 0 λijaij λikaik

� �
= 0

and

det
0 a1j a1k a1i
ai1 λijaij λikaik 0

� �
= det

0 a1i a1j a1k
ai1 0 λijaij λikaik

� �
= 0,

respectively, which brings us back to (A10).

Suppose that 3≤ i≤ n�1. The 4 × 4 minor whose row indices are 2i�1, 2i, 2 i + 1ð Þ�1, , and 2 i + 1ð Þ, and whose column
indices are 1, i�1, i, and i + 1 is

det
ai1 λi,i�1ai,i�1 0 λi,i + 1ai,i + 1

ai + 1,1 λi + 1,i�1ai + 1,i�1 λi + 1,iai + 1,i 0

� �
= det

0 λi,i + 1ai,i + 1 ai1 λi,i�1ai,i�1
λi + 1,iai + 1,i 0 ai + 1,1 λi + 1,i�1ai + 1,i�1

� �
:

We showed earlier that λ0 ≔ λi,i + 1 = λi,i�1 and λ00 ≔ λi + 1,i = λi + 1,i�1. Thus expanding, we obtain

det
0 λ0ai,i + 1 ai1 λ0ai,i�1

λ00ai + 1,i 0 ai + 1,1 λ00ai + 1,i�1

 !
= λ0λ002det ai1 ai,i + 1ð Þdet ai + 1,i�1 ai + 1,ið Þ

� λ02λ00det ai,i�1 ai,i + 1ð Þdet ai + 1,1 ai + 1,ið Þ= 0:
(A11)

After dividing both sides of the last equation by λ0λ00, we obtain λ0 = λ00 . Lastly, the 4 × 4 minor with the same choice of row and
column indices when i = 2 is

det
a21 0 λ23a23 λ24a24
a31 λ32a32 0 λ34a34

� �
= det

0 λ0a23 a21 λ0a24
λ00a32 0 a31 λ00a34

� �
= 0

since λ0 ≔ λ23 = λ24 and λ
00 ≔ λ32 = λ34, which brings us back to (A11). Thus we have proven that λij = λkℓ for all i, j,k,ℓ= 2,…,n, i ≠ j,

k ≠ℓ. Let λ be their common value. Then

Λ=

0 1 1 … 1 1

1 0 λ … λ λ

1 λ 0 … λ λ

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 λ λ … 0 λ

1 λ λ … λ 0

0BBBBBBBB@

1CCCCCCCCA
(A12)

and we may obtain (40) by choosing μ1 =
1
λ, μ2 =…= μn = 1 and τ1 = 1, τ2 =…= τn = λ.

Nowwe prove the last statement of the theorem.What we have shown so far is that rank Bð Þ= 3 implies that there exists scales μi
and τj such that λij = μiτj. Since λij = λji, we have

μiτj = μjτi

for all i, j = 1,…,n. If μ= μið Þni = 1 and τ = τj
� 	n

j = 1
, then this means that the matrix μτ⊤ ∈ℝn× n is symmetric. This is true if and only if

μ= τ. In particular,

μi = τi: (A13)

If B furthermore satisfies the determinant constraints, then we have

μ2i τjτkdet aij aikð Þ= �μ2j τiτkdet aji ajkð Þ = μ2k τiτjdet aki akjð Þ

for all 1≤ i < j < k ≤ n, which implies that

μ2i τjτk = μ
2
j τiτk = μ

2
k τiτj:

Substituting (A13), we obtain

τ2i τjτk = τ
2
j τiτk = τ

2
k τiτjτi = τj = τk
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after dividing by τiτjτk. Denoting the common value of the above equation on the right by τ, we find that μi = τ. Hence, λij = τ for all
i, j = 1,…,n, i ≠ j, which gives the desired result.

B. Appendix. Least squares problems
In Section 5.2, we consider the least squares problems (20) and (21), which are

μ= argmin
∥μ∥2 = 1

∥diag μð ÞM � diag μð ÞMð Þ⊤∥2F ,

τ = argmin
∥τ∥2 = 1

∥Mdiag τð Þ� Mdiag τð Þð Þ⊤∥2F :
These have solutions

min
∥μ∥2 = 1

NL �μk k22,

min
∥τ∥2 = 1

NR � τk k22,

respectively, where NL ∈ℝn × n with

ðNLÞij =

P
k = 1,…,n

k ≠ i

M2
ik if i = j

�MijMji if i ≠ j

8>>><>>>: (B1)

and NR ∈ℝn × n with

ðNRÞij =

P
k = 1,…,n

k ≠ i

M 2
ki if i = j

�MijMji if i ≠ j

8>>><>>>: : (B2)

We also consider the least squares problems (29) and (30), which are

min
∥μ∥2 = 1

∥ μ Δ v1ð Þ� μ Δ v2ð Þ∥22 + ∥ μ Δ v2ð Þ� μ Δ v3ð Þ∥22, (B3)

min
∥τ∥2 = 1

∥ðτ Δ1 v1Þ�ðτ Δ1 v2Þ∥22 + ∥ðτ Δ2 v2Þ�ðτ Δ2 v3Þ∥22, (B4)

where
μ Δ v1 ≔ μi sgn det aij aikð Þð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∣det aij aikð Þ∣p� 	
1≤ i < j < k ≤ n

μ Δ v2 ≔ μj sgn det aji ajkð Þð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣det aji ajkð Þ∣p� �

1≤ i < j < k ≤ n

μ Δ v3 ≔ μk sgn det aki akjð Þð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣det aki akjð Þ∣p� 	

1≤ i < j < k ≤ n

(B5)

and
τ Δ1 v1 ≔ τjdet aij aikð Þ� 	

1≤ i < j < k ≤ n τ Δ1 v2 ≔ �τidet aji ajkð Þð Þ1≤ i < j < k ≤ n

τ Δ2 v2 ≔ �τkdet aji ajkð Þð Þ1≤ i < j < k ≤ n τ Δ2 v3 ≔ τjdet aki akjð Þ� 	
1≤ i < j < k ≤ n

(B6)

are all vectors of length
n

3

� �
. The solution to problem (B3) is

min
∥μ∥2 = 1

DL,1 +DL,2ð Þ �μk k22,
where DL,1,DL,2 ∈ℝn × n with

DL,1ð Þpq =

P
1≤ j < k ≤ n

j ≠ p,k > p

sgn vpj,pk
� 	

∣vpj,pk ∣ if p= q

� P
max p,qf g < k ≤ n

sgn vpq,pkvqp,qk
� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

∣vpq,pk ∣
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

∣vqp,qk ∣
p

if p≠ q

8>>>>><>>>>>:
(B7)
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DL,2ð Þpq =

P
1≤ j < k ≤ n

j ≠ p,k > p

sgn vpk,pj
� 	

∣vpj,pk ∣ if p= q

� P
max p,qf g < k ≤ n

sgn vpq,pkvqp,qk
� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

∣vpq,pk ∣
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

∣vqp,qk ∣
p

if p≠ q

8>>>>><>>>>>:
(B8)

and the solution to problem (B4) is

min
∥τ∥2 = 1

DR,1 +DR,2ð Þ � τk k22
where DR,1,DR,2 ∈ℝn× n with

DR,1ð Þpq =

P
1≤ j < k ≤ n

j ≠ p,k > p

v2jp,jk if p= q

� P
max p,qf g < k ≤ n

vpq,pkvqp,qk if p ≠ q

8>>>><>>>>: , (B9)

DR,2ð Þpq =

P
1≤ k < j≤ n

j ≠ p,k < p

v2jk,jp if p= q

� P
1≤ k < max p,qf g

vpk,pqvqk,qp if p ≠ q

8>>>><>>>>: , (B10)

where vij,ik ≔ det aij aikð Þ.
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