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Abstract

This paper provides a full classification of the dynamics for continuous-time Markov
chains (CTMCs) on the nonnegative integers with polynomial transition rate functions
and without arbitrary large backward jumps. Such stochastic processes are abundant in
applications, in particular in biology. More precisely, for CTMCs of bounded jumps,
we provide necessary and sufficient conditions in terms of calculable parameters for
explosivity, recurrence versus transience, positive recurrence versus null recurrence, cer-
tain absorption, and implosivity. Simple sufficient conditions for exponential ergodicity
of stationary distributions and quasi-stationary distributions as well as existence and
nonexistence of moments of hitting times are also obtained. Similar simple sufficient
conditions for the aforementioned dynamics together with their opposite dynamics are
established for CTMCs with unbounded forward jumps. Finally, we apply our results to
stochastic reaction networks, an extended class of branching processes, a general bursty
single-cell stochastic gene expression model, and population processes, none of which
are birth–death processes. The approach is based on a mixture of Lyapunov–Foster-type
results, the classical semimartingale approach, and estimates of stationary measures.
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1. Introduction

Continuous-time Markov chains (CTMCs) on a countable state space are widely used in
applications, for example, in genetics [20], epidemiology [37], ecology [24], biochemistry and
systems biology [45], sociophysics [44], and queueing theory [26]. For a CTMC on a count-
able state space, criteria for dynamical properties (explosivity, recurrence, certain absorption,
positive recurrence, etc.) are among the fundamental topics and areas of interest.
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A primary source of inspiration for our work comes from stochastic reaction network (SRN)
theory, where examples are abundant. In the present context, SRNs are CTMC models of
(chemical) reaction networks with polynomial transition rates [4] (see Section 4.1 for a pre-
cise definition). In particular, we are interested in one-species reaction networks, where the
reactions take the form nS

κ−−→ mS for two nonnegative integers, n, m, and κ > 0, a positive
reaction rate constant. Here S represents a (chemical) species common to all reactions in the
network, and the reaction represents the conversion of n molecules of the species S into m
molecules of the same species. Each reaction has a transition rate, a propensity to ‘fire’. The
transition rate of nS

κ−−→ mS is η(x) = κx(x − 1) . . . (x − n + 1), x ∈N0. Whenever the reac-
tion fires, the corresponding Markov chain on the state space N0 jumps from the current state
x to the state x + m − n, the number of S molecules after the firing of the reaction. Different
reactions may contribute to the same transition in the state space.

While the chemical terminology may suggest that the usage of such models is restricted,
this is by far not so. In fact, SRNs have widespread use in the sciences with species inter-
preted as agents, individuals, and similar entities, and reactions as interactions among these
[4]. One might emphasize the susceptible–infectious–recovered (SIR) model in epidemiology
as a particular example [37].

Consider the following two examples of one-species SRNs from the recent literature,
consisting of seven and five reactions, respectively [1]:

S
1−−⇀↽−−
2

2S
4−−⇀↽−−
4

3S
6−−⇀↽−−
1

4S
1−−→ 5S, S

1−−⇀↽−−
2

2S
3−−⇀↽−−
1

3S
1−−→ 4S. (1)

A key issue is to understand whether the graphical representation of the reaction networks
determines the dynamics of the corresponding CTMCs, irrespective of their initial values. The
first network is explosive (except if the initial state is 0, which forms a singleton communi-
cating class), while the second is positive recurrent on the positive integers (again 0 forms a
singleton class) [1], which might be inferred from known birth–death process (BDP) criteria
[5]. However, these criteria are not computationally simple and blind to the graphical structure
of the networks. A simple explanation for the drastic difference in the dynamics of these two
random walks on N0 is desirable but remains unknown [1].

Motivated by the above concern, we provide criteria for dynamical properties of CTMCs on
N0 with polynomial-like transition rates and without the possibility of arbitrary large negative
jumps, as in the examples above. These CTMCs are ubiquitous in applications [7]. Specifically,
we provide simple threshold criteria for the existence and nonexistence of moments of hit-
ting times, positive recurrence and null recurrence, and exponential ergodicity of stationary
distributions and quasi-stationary distributions (QSDs) in terms of four easily computable
parameters, derived from the transition rates. Additionally, we provide necessary and sufficient
conditions for explosivity, recurrence versus transience, certain absorption, and implosivity.
These conditions provide simple explanations for the dynamical discrepancies between the
two SRNs in (1).

Our approach is to apply the classical semimartingale approach used in Lamperti’s problem
[29], as well as Lyapunov–Foster theory [12, 32, 33] with delicately constructed Lyapunov
functions (in particular, we make use of the techniques in [32]). The problem of finding neat
and desirable necessary and sufficient conditions for dynamical properties of CTMCs has
existed for a long time [33, 34, 12]. However, the fact that this has not been accomplished yet
indicates that it might be a nontrivial task. A main contribution of this paper is to identify a large
class of CTMCs (without a built-in detailed balanced structure) for which computationally

https://doi.org/10.1017/apr.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.20


Classification of dynamics for 1D CTMCs 323

TABLE 1. Parameter regions with different dynamical properties. Implosive (E), positive recurrent
(A+B+E), null recurrent (C), transient and non-explosive (D), explosive (F), and impossible parame-
ter combinations (gray); exponential ergodicity (B+E), uniform exponential convergence of QSD (E),
no QSD or ergodic stationary distribution (C+D+F). The parameter regions below α = 0 assume � is
finite.

simple sufficient and necessary criteria can be established for dynamical properties of interest.
Our criteria save the effort of constructing Lyapunov functions and applying Lyapunov–Foster
theory case by case. Also, a case-by-case approach is ignorant of the underlying graphical
structure of the Markov chain.

The simple necessary and sufficient conditions for the dynamical properties are determined
by calculating up to four parameters, R, α, β, and γ , that are expressed in terms of the coef-
ficients of the first two terms of the polynomial-like transition rate functions (the specific
assumptions are given in Section 2). For illustration, let � be the set of jump sizes, and let

λω(x) = aωxdω + bωxdω−1 + O
(
xdω−2), ω ∈�, (2)

be the transition rate functions, where dω is the degree of λω and O is Landau’s symbol. Define
R = maxω∈� dω and

α=
∑

ω : dω=R

aωω, γ =
∑

ω : dω=R

bωω+
∑

ω : dω=R−1

aωω, β = γ − 1

2

∑
ω : dω=R

aωω
2. (3)

Based on these four parameters, a full classification of the dynamical properties can be achieved
(see Theorems 1, 3, 7, and 9) and is summarized in Table 1 below. The parameters α, β, γ
depend only on the coefficients of the monomials of degree R and R − 1. Furthermore, the
parameter α might be interpreted as a sum over the jump sizes, weighted by the coefficients
of the monomials of degree R. Similarly, γ might be interpreted as a sum over the jump sizes,
weighted by the coefficients of the monomials of degree R − 1.

To see the power of our results, consider the following SRN, which is not a BDP:

0
κ1−−⇀↽−−
κ2

mS
κ3−−⇀↽−−
κ4

(m + 1)S
κ5−−→ (m + 3)S, (4)

where m is a positive integer, and κi, i = 1, . . ., is a positive rate constant. Then R = m + 1,
α = 2κ5 − κ4,

β = κ3 − mκ2 + m2+m−1
2 κ4 − (m2 + m + 2)κ5,
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and

γ = κ3 − mκ2 + m(m+1)
2 κ4 − m(m + 1)κ5.

The criteria established in Section 3 (and collected in Table 1) imply that the SRN is (in the
sense of the underlying irreducible CTMC on N0)

(a) explosive almost surely (a.s.) if and only if (i) α > 0 or (ii) α = 0, β > 0, R> 2, and
non-explosive if either (i) or (ii) fails;

(b) recurrent if and only if (iii) α < 0 or (iv) α = 0, β ≤ 0, and transient if and only if both
(iii) and (iv) fail;

(c) positive recurrent if and only if (iii), (v) α= 0, β < 0, or (vi) α = 0, β = 0, R> 2 holds,
and null recurrent if and only if (vii) α= 0, β = 0, R = 2;

(d) implosive if and only if (iii) or (viii) α = 0, β ≤ 0, R> 2 holds, and non-implosive if and
only if both (ii) and (viii) fail.

Here implosive means positive recurrent with uniformly bounded expected first return time.
(See Subsection 3.5 for the precise definition.) The above example shows the applicability and
simplicity of our results; in fact, the computations could easily be implemented in a software
program that takes a reaction network as input and outputs the network dynamical properties.
Furthermore, the example illustrates the richness of the dynamical properties that might reside
within a single example by varying the parameters of the model. All possibilities for α, β and
R are covered (the parameter γ is irrelevant for SRNs [46]). The stability of the chain depends
only on α (which is independent of m), unless α = 0, in which case the sign of β determines
the stability. If so, then β = κ3 − mκ2 − 3κ5, which depends on m. Thus, if κ3 − κ2 − 3κ5 > 0,
then if m> 1 is chosen large enough, the stability of the chain flips. The parameter α plays
a role similar to that of the largest Lyapunov exponent for α �= 0. Analogously, when α = 0,
the parameter β determines the stochastic stability and hence plays a role similar to that of the
second-largest Lyapunov exponent in the critical case.

Brief description of our approach

Although our approach is essentially based on Lyapunov–Foster-type results, the sharp cri-
teria for diverse dynamical properties of CTMCs are established by combining a mixture of
results [6, 12, 16, 32, 33]; in particular [32] provides useful criteria.

The most prominent difficulties in deriving necessary and sufficient conditions for dynam-
ical properties of general CTMCs, with multiple jump sizes, lie in the non-calculability of
stationary distributions/measures, as well as the nonexistence of orthogonal polynomials [28].
This also explains why, in general, a partial result in terms of a sufficient but not a necessary
condition, by construction of a Lyapunov function, is likely. Here we discover that Lyapunov–
Foster theory and the semimartingale approach are indeed enough to derive necessary and
sufficient conditions. To obtain conditions that are not only sufficient but also necessary, we
check whether the negation of a condition is also sufficient for the reverse dynamical property.
Moreover, to show null recurrence, we also rely on estimates for stationary measures in [6].
Finally, we would like to point out that some of the Lyapunov functions we use appear to be
rarely used in the literature.
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Comparison with results in the literature

Complete classification of dynamical properties seems quite rare in the literature. Here, we
summarize relevant results together with the methods applied.

Reuter provided necessary and sufficient conditions for explosivity of CTMCs (known as
Reuter’s criterion) [38], but these conditions are difficult to check except in special cases, e.g.
for BDPs [28] and competition processes [39]. This is due to the fact that the conditions involve
infinitely many algebraic equations.

Karlin and McGregor established threshold results for explosivity and recurrence, as well
as certain absorption of BDPs with and without absorbing states, by means of the so-called
Karlin–McGregor integral representation formula [28]. The existence of such a formula is
essentially due to the tridiagonal structure of the Q-matrix. For the same reason, it is delicate
to extend such an approach to generalized BDPs: pure birth processes [14], one-sided skip-free
CTMCs [13, 15, 16], and recently (higher-dimensional) quasi-birth–death processes (QBDPs)
with tridiagonal block structure of the Q-matrix [22]. There are no restrictions on the types of
transition rates for the results in [28] to hold, except the BDP assumption. In contrast, for our
results to hold, we require the polynomial transition rates to have uniformly bounded degrees,
but we do not require the BDP assumption.

In the context of QSDs, there are few threshold results for certain absorption, existence and
uniqueness, and quasi-ergocidity of QSDs. Van Doorn [42, 43] obtained ergodicity, existence
and nonexistence, and uniqueness of QSDs for absorbed BDPs, also building on the Karlin–
McGregor integral representation formula. Later, Ferrari et al. [23] generalized the results in
[43]. They derived a necessary and sufficient condition for the existence of a QSD on the
positive integers for which zero is an absorbing state, using the so-called renewal dynamical
approach, assuming the CTMC is non-explosive, and that the absorption time is finite and
unbounded with probability one. Then the existence of a QSD is equivalent to finiteness of
the exponential moment of the absorption time, for one initial transient state (and hence all
of them). But such a moment condition is again not straightforward to verify, pending the
assumptions.

To sum up, general checkable threshold criteria for dynamical properties of CTMCs
(absorbed and non-absorbed), other than generalized BDPs, are few. We identify a class of
CTMCs with polynomial-like transition rates and without arbitrary large backward jumps for
which simple, checkable criteria for absorbed and non-absorbed CTMCs are found, based on
the coefficients of the polynomials. The price for this is to impose some further mild regularity
conditions, in addition to the two requirements mentioned above.

Impact of our work and further extensions

The following are some possible extensions of our work from the theoretical perspective:

• The sufficient condition for the existence of ergodic stationary distributions and QSDs
allows us to further investigate the tail asymptotics of these distributions [47] and the
computation of these distributions (in a forthcoming paper).

• The novel combination of the approaches presented here can further be extended to
establish criteria for the dynamics of one-dimensional CTMCs with asymptotic polyno-
mial transition rates, and higher-dimensional CTMCs with Q-matrix of a certain block
structure, in analogy with QBDPs and BDPs.

• A deeper understanding of the threshold parameters may provide insight into the
dynamics of higher-dimensional CTMCs on lattices.
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From the perspective of applications, we have the following:

• The criteria can be applied to completely classify the dynamics of one-dimensional
mass-action SRNs, and in particular, we can prove the so-called positive recurrence
conjecture [2] for weakly reversible reaction networks in one dimension [46].

• The criteria can be used to establish bifurcations of one-dimensional SRNs (in a
forthcoming paper).

Outline

In Section 2, the notation and standing assumptions are introduced. Section 3 develops
threshold criteria for dynamical properties of CTMCs. Applications to SRNs, a class of branch-
ing processes, a general bursty single-cell stochastic gene expression model, and population
processes of non-BDP type are provided in Section 4. Proofs of the main results are pro-
vided in Section 5. Additional tools used in the proofs as well as proofs of some elementary
propositions are in the appendix.

2. Preliminaries and assumptions

Let R, R≥0, R>0 be the sets of real, nonnegative real, and positive real numbers, respec-
tively. Let Z be the set of integers, N=Z∩R>0, and N0 =N∪ {0}. For x, y ∈N, let xy =
x(x − 1) · · · (x − y + 1) be the descending factorial of x.

Let (Yt : t ≥ 0) (or Yt for short) be a CTMC on a closed, infinite state space Y ⊆N0 with
conservative transition rate matrix Q = (qx,y)x,y∈Y ; that is, every row sums to zero. A set A ⊆Y
is closed if qx,y = 0 for all x ∈ A and y ∈Y \ A [36]. Assume the absorbing set ∂ �Y is finite
(potentially empty) and closed. Hence, Y \ ∂ is unbounded.

Let �= {y − x : qx,y > 0, for some x, y ∈Y} be the set of jump sizes. For ω ∈�, define the
transition rate function by

λω(x) = qx,x+ω, x ∈Y .

Let�± = {ω ∈� : sgn(ω) = ±1} be the sets of forward and backward jump sizes, respectively.
Throughout, we assume the following regularity conditions:

(A1) �+ �=∅, �− �=∅.

(A2) #�− <∞.

(A3)
∑
ω∈� λω(x)|ω|<∞, for all x ∈Y .

(A4) There exist u,M ∈N such that λω is a strictly positive polynomial of degree ≤ M on the
set Y \ {0, . . . , u − 1}, for all ω ∈�.

(A5) Y \ ∂ is irreducible.

If either�+ =∅ or�− =∅, then Yt is a pure birth or death process (possibly with multiple
jump sizes). The classification of states and the dynamics of such processes are simpler than
under (A1). Indeed, one can derive parallel results from the corresponding results under (A1).
Assumption (A2) implies Yt cannot make arbitrary large negative jumps. Assumption (A3) is
a regularity condition that ensures that functions like x, log x, and log log x are in the domain
of the infinitesimal generator of the CTMC, in order to serve as Lyapunov functions. If � is
finite, then (A2) and (A3) are automatically fulfilled. In that case, the sums above are trivially
polynomials for large x.
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Assumption (A4) implies that the Markov chain can make all jumps in � with positive
probability from any ‘large’ state x ∈Y , x ≥ u. Moreover, (A3) and (A4) together imply that∑
ω∈� λω(x) and

∑
ω∈� λω(x)ω are polynomials of degree ≤ M for x ∈Y \ {0, . . . , u − 1}

(Proposition 1). If (A4) fails, simple examples show that
∑
ω∈� λω(x) and

∑
ω∈� λω(x)ω may

not be polynomials. That these sums are polynomials for large states is an essential property
that we rely on in proofs.

Assumption (A4) is common in applications, especially in the context of chemical reaction
networks and population processes [3, 19]. Assumption (A5) is also standard and is generally
satisfied in applications [12, 32], potentially by restricting the state space. One can show that
(A4) and (A5) together imply that Y \ ∂ is infinite; thus the assumptions are not compatible
with a finite state space.

With the above assumptions, the following three parameters are well-defined and finite:

R = max{deg(λω) :ω ∈�}, α = lim
x→∞

∑
ω∈� λω(x)ω

xR
, γ = lim

x→∞

∑
ω∈� λω(x)ω− αxR

xR−1
.

If R = 0, then trivially γ = 0. In particular, if � is finite, the following additional parameter is
also well-defined and finite:

β = γ − 1

2
lim

x→∞

∑
ω∈� λω(x)ω2

xR
,

with β < γ . The parameter α encodes the sign of the average jump size of the chain. It is
straightforward to verify that (3) is a consequence of the above parameter definitions, owing to
the asymptotic expansions (2) of the transition rate functions.

Example 1. Recall the example (4) in the introduction,

0
κ1−−⇀↽−−
κ2

mS
κ3−−⇀↽−−
κ4

(m + 1)S
κ5−−→ (m + 3)S.

Then �= {1, 2,−1,m,−m}, m ≥ 1, and

λ1(x) =
{

κ3xm if m> 1,

κ3xm + κ1 if m = 1,

}
= κ3xm + O

(
xm−1),

λ2(x) =
{

κ5xm+1 if m �= 2,

κ5xm+1 + κ1 if m = 2,

}
= κ5xm+1 − κ5

m(m+1)
2 xm + O

(
xm−2),

λ−1(x) =
{

κ4xm+1 = κ4xm+1 − κ4
m(m+1)

2 xm + O
(
xm−1

)
if m> 1,

κ4xm+1 + κ2xm = κ4xm+1 + (
κ2 − κ4

m(m+1)
2

)
xm + O

(
xm−1

)
if m = 1,

λm(x) = κ1 if m> 2,

λ−m(x) = κ2xm= κ2xm + O
(
xm−1

)
if m> 1.

Hence, R = m + 1, and

α = 2κ5 − κ4, γ = κ3 − mκ2 + m(m+1)
2 κ4 − m(m + 1)κ5,

β = κ3 − mκ2 + m2+m−1
2 κ4 − (m2 + m + 2)κ5,
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TABLE 2. Labeling of the conditions in the main theorems in Section 3.

(C1) α > 0, R> 1, (C2) α = 0, β > 0, R> 2,
(C3) α < 0, (C4) R ≤ 1,
(C5) α= 0, R = 2, (C6) α = 0, β ≤ 0,
(C7) α > 0, (C8) α = 0, β > 0,
(C9) α= 0, β < 0, R> 1, (C10) α = β = 0, R> 2,
(C11) α= 0, γ < 0, R = 1, (C12) α = 0, β ≤ 0, γ > 0, R = 1,
(C13) α= 0, R = 0, (C14) α = 0, β < 0, R = 1,
(C15) α= 0, β ≤ 0, R = 1, (C16) α = β = 0, R = 2,
(C17) α < 0, R ≥ 1, (C18) α = 0, β ≤ 0, R> 2,
(C19) α < 0, R> 1, (C20) α < 0, R ≤ 1,
(C21) α= 0, β < 0, R = 2.

FIGURE 1. Flow diagram of implications among the 21 conditions.

by (3). As mentioned in the introduction, the sign of α determines the stochastic stability of
the CTMC [33]. Hence, α plays a similar role as the largest Lyapunov exponent. Analogously,
when α = 0, the parameter β determines the stochastic stability and hence plays a role similar
to that of the second-largest Lyapunov exponent in the critical case.

3. Criteria for dynamical properties

In this section, we provide threshold criteria for various dynamical properties in terms of
R, α, β, γ . Proofs are relegated to Section 5. For ease of comparison, we collect all parameter
conditions used in the main theorems below. These are listed in the order in which they appear
in the main theorems; see Table 2. Figure 1 shows implications among the 21 conditions.

3.1. Explosivity and non-explosivity

The sequence J = (Jn)n∈N0 of jump times of a CTMC Yt are defined by J0 = 0 and Jn =
inf{t ≥ Jn−1 : Yt �= YJn−1}, n ≥ 1, where inf ∅= ∞ by convention. The lifetime is denoted by
ζ = supn Jn. The process Yt is said to explode (with positive probability) at y ∈Y if Py({ζ <
∞})> 0. In particular, Yt explodes a.s. at y ∈Y if Py({ζ <∞}) = 1, and does not explode at y ∈
Y if Py({ζ <∞}) = 0 [33]. Hence, Yt does not explode if Y0 ∈ ∂ (since ∂ is closed and finite),
and Ey(ζ )<∞ implies that Yt explodes at y a.s. Recall that non-explosivity and explosivity
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are class properties. They hold for either all or no states in Y \ ∂ . Hence, we simply say Yt

is explosive (respectively, explosive a.s.) if it explodes with positive probability (respectively,
explodes a.s.) at some state in Y \ ∂ , and Yt is non-explosive if it does not explode at some state
in Y \ ∂ .

We present necessary and sufficient conditions for explosivity and non-explosivity.

Theorem 1. Assume (A1)–(A5), and that � is finite. Then Yt is explosive with positive prob-
ability if and only if either (C1) or (C2) holds. Moreover, Yt is explosive a.s. whenever it is
explosive, provided ∂ =∅.

Theorem 2. Assume (A1)–(A5) and that� is infinite. Then Yt is explosive if (C1) holds, and it
is non-explosive if one of the three conditions (C3), (C4), (C5) holds. Moreover, Yt is explosive
a.s. whenever it is explosive, provided ∂ =∅.

Explosion might occur with probability less than one for CTMCs with non-polynomial
transition rates and ∂ =∅ [32]. Reuter’s criterion and generalizations of it provide necessary
and sufficient conditions for explosivity (with positive probability) for general CTMCs in terms
of convergence or divergence of a series [13, 30, 38]. However, these conditions are not easy
to check. In comparison, for CTMCs with polynomial transition rates, Theorem 1 provides an
explicit and checkable necessary and sufficient condition.

3.2. Recurrence versus transience, and certain absorption

For a nonempty subset A ⊆Y , let τA = inf{t ≥ 0 : Yt ∈ A} be the hitting time of A, with
the convention that inf ∅= ∞. If Y0 ∈ A, then τA = 0. Let τ+

A = inf{t ≥ J1 : Yt ∈ A} be the
first return time to A. Obviously, τA = τ+

A if and only if Y0 /∈ A. The process Yt has certain
absorption if the hitting time of ∂ is finite a.s. for all Y0 ∈Y .

Theorem 3. Assume (A1)–(A5) and that � is finite.

(i) Assume ∂ =∅. Then Yt is recurrent if either (C3) or (C6) holds, while it is transient if
neither of them holds.

(ii) Assume ∂ �=∅. Then Yt has certain absorption if and only if either (C3) or (C6) holds.

The results show that CTMCs with polynomial transition rates cannot have an infinite series
of critical transitions from recurrence to transience, for varying parameter values. This stands
in contrast to the case of CTMCs with non-polynomial transition rates, as discovered in [32].
One might hope that this phenomenon carries over to CTMCs with polynomial transition rates
in dimensions higher than one.

Theorem 4. Assume (A1)–(A5) and that � is infinite.

(i) Assume ∂ =∅. Then Yt is recurrent if (C3) holds, and it is transient if (C7) holds.
(ii) Assume ∂ �=∅. Then Yt has certain absorption if (C3) holds, while it does not have

certain absorption if (C7) holds.

3.3. Moments of hitting times

Below we present threshold results on the existence of moments of hitting times for recur-
rent states only, as transient states have infinite return time. Therefore, in light of Theorem 3,
we investigate the existence and nonexistence of moments of hitting times only for α < 0 and
for α = 0, β ≤ 0. Moreover, limited by the tools we apply, we do not discuss existence and
nonexistence of moments of absorption times for ∂ �=∅. Hence, we assume Yt is irreducible on
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Y (equivalently, ∂ =∅) and provide existence and nonexistence of moments of hitting times
for states in Y .

Theorem 5. Assume (A1)–(A5), ∂ =∅, and that � is finite. Then the following hold:
(i) There exists a finite nonempty subset B ⊆Y such that

Ex
(
τ εB
)
<+∞, ∀x ∈Y, ∀0< ε < δ, (5)

for δ > 0, provided one of the conditions (C3), (C9), (C10) holds; for 0< δ < 1/2, provided
(C13) holds; for 0< δ < β

β−γ , provided (C14) holds; and for 0< δ < 1, provided (C16) holds.
In particular, Ex(τB)<+∞, provided one of the conditions (C3), (C9), (C10), (C11) holds.

(ii) There exists a finite nonempty subset B ⊆Y such that

Ex
(
τ εB
)= +∞, ∀x ∈Y \ B, ∀ε > δ,

for δ > 1, provided (C13) holds; for δ > β
β−γ , provided (C15) holds; and for δ > 1, provided

(C16) holds. In particular, Ex(τB) = +∞ provided (C12) holds.

Theorem 6. Assume (A1)–(A5), ∂ =∅, and that� is infinite. If (C3) is fulfilled and 0< δ ≤ 1,
then (5) holds.

3.4. Positive recurrence and null recurrence

We provide sharp criteria for positive and null recurrence, as well as exponential ergodicity
of stationary distributions and QSDs.

If ∂ =∅, then τ∂ = ∞ a.s., and the conditional process (Yt : τ∂ > t) reduces to (Yt : t ≥ 0).
If ∂ �=∅, and τ∂ <∞ a.s. (that is, Yt has certain absorption), then the process conditioned to
never be absorbed, (Yt : τ∂ > t), is referred to as the Q-process [11, 18].

The process (Yt : τ∂ > t) on Y \ ∂ is said to be exponentially ergodic if there exist a proba-
bility measure μ∗ and 0< δ < 1 such that for all probability measures μ on Y \ ∂ , there exists
a constant Cμ > 0 such that

|Pμ(Yt ∈ B|τ∂ > t) −μ∗(B)| ≤ Cμδ
t, ∀t> 0, B ⊆Y \ ∂

(see [25]). The measure μ∗ is also said to be exponentially ergodic. In particular, if Cμ can
be chosen independently of μ, then (Yt : τ∂ > t) and μ∗ is said to be uniformly exponentially
ergodic. Moreover, if ∂ =∅, then μ∗ is the unique ergodic stationary distribution; if ∂ �=∅,
then μ∗ is a quasi-limiting distribution (QLD) [18].

If ∂ �=∅, a probability measure ν on Y \ ∂ is a QSD for Yt if for all t ≥ 0 and all sets
B ⊆Y \ ∂ ,

Pν(Yt ∈ B|τ∂ > t) = ν(B).

Any QLD is a QSD [18]. The existence of a QSD implies certain absorption, and exponential
ergodicity of the Q-process implies existence of a unique QSD [18]. A probability measure ν
on Y \ ∂ is a quasi-ergodic distribution if, for any x ∈Y \ ∂ and any bounded function f on
Y \ ∂ [10, 27], the following limit holds:

lim
t→∞ Ex

(
1

t

∫ t

0
f (Ys)ds

∣∣∣τ∂ > t

)
=
∫
Y\∂

f dν.

A quasi-ergodic distribution is in general different from a QSD [27].
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Theorem 7. Assume (A1)–(A5) and that � is finite.
(i) Assume ∂ =∅ and that Yt is recurrent. Then Yt is positive recurrent and there exists a

unique stationary distribution π on Y , if and only if one of the conditions (C3), (C9), (C10),
(C11) holds, while Yt is null recurrent if and only if none of the conditions (C3), (C9), (C10),
(C11) hold. Moreover, Yt is exponentially ergodic if either (C17) or (C18) holds.

(ii) Assume ∂ �=∅ and that Yt has certain absorption. Then there exist no QSDs if none
of the conditions (C3), (C9), (C10), (C11) hold. In contrast, there exists a unique uniformly
exponentially ergodic QLD, supported on Y \ ∂ , if either (C18) or (C19) holds. Morevover,
it is also a unique quasi-ergodic distribution and the unique stationary distribution of the
Q-process.

Theorem 8. Assume (A1)–(A5) and that � is infinite.

(i) Assume ∂ =∅. Then Yt is positive recurrent and there exists a unique stationary
distribution π on Y if (C3) holds. Moreover, π is exponentially ergodic if (C17) holds.

(ii) Assume ∂ �=∅. Then there exist no QSDs if (C7) holds, while there exists a unique
uniformly exponentially ergodic QLD supported on Y \ ∂ if (C19) holds.

We provide some perspectives:

• The convergence (or ergodicity) in Theorem 8(ii) is uniform with respect to the initial
distribution, while in contrast, the convergence in Theorem 8(i) is not uniform. Indeed,
for the subcritical linear BDP, the stationary distribution is exponentially ergodic but not
uniformly so [5].

• Indeed, one can obtain uniform exponential ergodicity in Theorem 7(i) with (C18) or
(C19) by choosing a non-reachable absorption set (potentially empty), hence impos-
ing that the time to extinction is infinite. In this case, the QSD is in fact a stationary
distribution [12].

• The subtle difference between the conditions for positive recurrence and for exponen-
tial ergodicity of QSDs lies in the fact that we have no a priori estimate of the decay
parameter

ψ0 = inf
{
ψ > 0 : lim inf

t→∞ eψ tPx(Xt = x)> 0
}

(which is independent of x) [12]. We cannot compare ψ0 with −α when R> 1, or with
−β when R> 2 and α = 0. Refer to the constructive proofs (using Lyapunov functions)
in Appendix A for details. Hence, one may believe that the condition we provide for
quasi-ergodicity generically is stronger than that for ergodicity.
The only gap cases that remain for QSDs are (C11), (C20), (C21), where neither exis-
tence of a QSD nor exponential ergodicity of the Q-process are known to occur, provided
one of the three conditions hold.

3.5. Implosivity

Assume ∂ =∅. Then Yt is irreducible on Y . Let B �Y be a nonempty proper subset. Then
Yt implodes towards B [32] if there exists t∗ > 0 such that

Ey(τB) ≤ t∗, ∀y ∈Y \ B.

https://doi.org/10.1017/apr.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.20


332 C. XU ET AL.

FIGURE 2. Flow diagram of implications among the 21 conditions.

Implosion towards a single state x ∈Y implies finite expected first return time to the state, and
thus positive recurrence of x. Indeed,

Ex
(
τ+

x

)≤Ex(J1) + sup{y : y �=x} Ey(τx)<∞,

where τ+
x = τ+

{x}, τx = τ{x}, and J1 has finite expectation since x is not absorbing. Hence, Yt

does not implode towards any transient or null recurrent state.
The process Yt is implosive if Yt implodes towards any state of Y , and otherwise, Yt is

non-implosive. Hence, implosivity implies positive recurrence. If Yt implodes towards a finite
nonempty subset of Y , then Yt is implosive (see Proposition 17).

Theorem 9. Assume (A1)–(A5), ∂ =∅, and that � is finite. Then Yt is implosive, and there
exists ε > 0 such that for every nonempty finite subset B ⊆Y and every x ∈Y \ B,

Ex
(
exp

(
τ εB
))
<∞,

if either (C18) or (C19) holds, while Yt is non-implosive otherwise.

Theorem 10. Assume (A1)–(A5), ∂ =∅, and that � is infinite. Then Yt is implosive if (C19)
holds.

3.6. Relations between absorbed CTMCs and non-absorbed CTMCs

It is worth comparing the properties of absorbed CTMCs to those of non-absorbed CTMCs,
as first discussed by Karlin and McGregor [28]. Indeed, in the case of a finite set of absorbing
states ∂ �=∅ and an irreducible state space Y \ ∂ , one can add positive transition rates to the
transition matrix from the states in ∂ to a finite subset of states in Y \ ∂ , such that Y is irre-
ducible for the new chain. Conversely, if ∂ =∅, then one can prescribe a finite set ∂ ′ ⊆Y , and
delete all transitions from ∂ ′ to Y ′ =Y \ ∂ , so that Y ′ is irreducible and ∂ ′ an absorbing set for
the new chain. These operations can be viewed as simple extensions to those of [28], proposed
in the context of BDPs. As the dynamical properties we discuss generically are determined by
transitions among states of large values, the operations provide a way to link the dynamics of
an absorbed CTMC with that of a corresponding non-absorbed CTMC, and vice versa.

Figure 2 shows the implications among the properties, in agreement with the parameter con-
ditions derived in the main theorems. In Examples 2 and 3 below, counterexamples are given.
It remains unknown whether exponential ergodicity of the Q-process implies implosivity, and
whether ergodicity implies existence of a QSD; see Figure 2.

Example 2. (i) Consider the sublinear BDP on N0 with birth rates λj = a and death ratesμj = b
for j ∈N. We have ∂ = {0}, R = 0, and α = a − b. Hence, the process is non-explosive for any
initial state by Theorem 1. By [43], the process has certain absorption with decay parameter
ψ0 = (√

a − √
b
)2 when a ≤ b, and it admits a continuum family of QSDs when α < 0. This

shows that existence of a QSD does not imply exponential ergodicity of the Q-process in
general.

https://doi.org/10.1017/apr.2022.20 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.20


Classification of dynamics for 1D CTMCs 333

(ii) Consider the linear BDP on N0 with birth rates λj = aj and death rates μj = bj for j ∈N.
Assume a ≤ b. We have ∂ = {0}, R = 1, and α = a − b. Hence, the process is non-explosive for
any initial state by Theorem 1. By [43], the process has certain absorption with decay parameter
ψ0 = (√

a − √
b
)2 when a ≤ b, and it admits no QSDs for α = 0 (hence, β = −a< 0 = γ ),

while it admits a continuum family of QSDs for α < 0. This shows that the process has certain
absorption, but no QSDs for α = 0, which is also justified by Theorem 7(ii). Moreover, it also
shows that ergodicity of the non-absorbed process does not imply uniqueness of a QSD or
exponential ergodicity of the Q-process.

(iii) Consider the superlinear BDP on N0 with birth rates λj = j2 and death rates μj = j2

for j ∈N. We have ∂ = {0}, R = 2, α = 0, and β = −1< 0. Hence, the process is non-explosive
and has certain absorption by Theorem 1 and Theorem 3(ii). By [43], the process admits either
no QSDs or a continuum family of QSDs. This shows that certain absorption does not imply
exponential ergodicity of the Q-process.

Implosivity is indeed a stronger property than positive recurrence (e.g., when R ≤ 1, α < 0),
as shown in the following example (see also Table 1).

Example 3. Let Yt be an irreducible BDP on N0 with �= {1,−1} and

λ−1(x) = x, λ1(x) = 1, x ∈N0.

In this case, R = 1 and α = −1. By Theorems 7 and 9, Yt is positive recurrent and admits an
ergodic stationary distribution, but Yt is non-implosive.

4. Applications

4.1. Stochastic reaction networks

A reaction network (C,R) on a finite set S = {S1, . . . , Sn} (with elements called species) is
an edge-labeled finite digraph with node set C (with elements called complexes) and edge set
R (with elements called reactions), such that the elements of C are nonnegative linear com-
binations of species, y =∑n

i=1 yiSi, identified with vectors y = (
y1, . . . , yn

)
in Nn

0. Reactions
are directed edges between complexes, written as y → y′. We assume that every species has a
positive coefficient in some complex, and that every complex is in some reaction. Hence, the
reaction network can be deduced from the reactions alone, and it is customary simply to list
(or draw) the reactions. If n = 1, the reaction network is a one-species reaction network.

A stochastic reaction network (SRN) is a reaction network together with a CTMC X(t),
t ≥ 0, on Nn

0, modeling the number of molecules of each species over time. A reaction y → y′
fires with transition rate ηy→y′(x), in which case the chain jumps from X(t) = x to x + y′ − y
[4]. The Markov process with transition rates ηy→y′ : Nn

0 →R≥0, y → y′ ∈R, has Q-matrix

qx,x+ω =
∑

y→y′∈R : y′−y=ω
ηy→y′(x).

Hence, the transition rate from the state x to x +ω is

λω(x) =
∑

y→y′∈R : y′−y=ω
ηr(x).

For (stochastic) mass-action kinetics, the transition rate for y → y′ is

ηy→y′(x) = κy→y′ (x)!
(x−y)!1{x′ : x′≥y}(x), x ∈Nn

0
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(in accordance with the transition rate introduced in the introduction for one-species reaction
networks), where x! := ∏n

i=1 xi!, and κy→y′ is a positive reaction rate constant [3, 4]. Generally,
we number the reactions and write κ1, κ2, . . . for convenience.

In this section, we apply the results developed in Section 3 to some examples of SRNs.

Example 4. Consider the following two reaction networks:

(A) ∅
κA

1−−⇀↽−−
κA

2

S, and (B) ∅
κB

1−−⇀↽−−
κB

2

S, 2S
κB

3−−→ 3S,

with �= {−1, 1} in both cases and with transition rates

λA−1(x) = κA
2 x, λA

1 (x) = κA
1 ,

λB−1(x) = κB
2 x, λB

1 (x) = κB
1 + κB

3 x(x − 1),

respectively. By Theorem 7, the first is positive recurrent and admits an exponentially ergodic
stationary distribution on N0, since α= −κA

2 and R = 1, while by Theorem 1, the second reac-
tion network is explosive for any initial state, since α= κB

3 > 0 and R = 2. Indeed, these two
reaction networks are structurally equivalent in the sense that there is only one irreducible
component N0 [48].

Example 5. Consider the following pair of SRNs from the introduction:

S
1−−⇀↽−−
2

2S
4−−⇀↽−−
4

3S
6−−⇀↽−−
1

4S
1−−→ 5S, S

1−−⇀↽−−
2

2S
3−−⇀↽−−
1

3S
1−−→ 4S. (6)

For the first reaction network, R = 4, α = 0, and β = 1, and for the second, R = 3, α= 0, and
β = 0. By Theorem 1, the first is explosive for any initial state and the second does not explode
for any initial state.

Example 6. (i) Consider a strongly connected reaction network:

For the underlying CTMC Yt, �= {1,−2}, and

λ1(x) = κ1x + κ2x(x − 1), λ−2(x) = κ3x(x − 1)(x − 2).

Hence Yt is irreducible on N with 0 a neutral state. Moreover, R = 3 and α= −2κ3. By
Theorem 7, there exists a unique exponentially ergodic stationary distribution on N.

(ii) Consider a similar reaction network including direct degradation of S:

The threshold parameters are the same as in (i). Let ∂ = {0} with N0 \ ∂ =N an irreducible
component. By Theorem 7, the network has a uniformly exponentially ergodic QSD on N.
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4.2. An extended class of branching processes

Consider an extended class of branching processes [16] with transition rate matrix Q =
(qx,y)x,y∈N0 :

qx,y =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r(x)μ(y − x + 1) if y ≥ x − 1 ≥ 0 and y �= x,

−r(x)(1 −μ(1)) if y = x ≥ 1,

q0,y if y> x = 0,

−q0 if y = x = 0,

0 otherwise,

(7)

where μ is a probability measure on N0, q0 =∑
y∈N q0,y, and r(x) is a positive finite function

on N0. Assume the following:

(H1) μ(0)> 0, μ(0) +μ(1)< 1;

(H2)
∑

y∈N q0,yy<∞, E =∑
k∈N0

kμ(k)<∞;

(H3) r(x) is a polynomial of degree R ≥ 1 for large x.

The next theorem follows from the results in Section 3. We would like to mention that the
results below provide conditions for different dynamical regimes in terms of only R and M.
In contrast, the condition for positive recurrence in [16] also depends on the integrability of a
definite integral as well as summability of a series, which nonetheless never appear.

Theorem 11. Assume (H1)–(H3). Let Yt be a process generated by the Q-matrix given in (7)
and Y0 �= 0. Then Yt is non-explosive if one of the following conditions holds: (1) R ≤ 1, (2)
E< 1, (3) R = 2, E = 1, while it is explosive with positive probability if (4) E> 1, R> 1.
Furthermore, the following hold:

(i) If q0 > 0, then Yt is irreducible on N0 and is

(i-1) recurrent if E< 1, and transient if E> 1;

(i-2) positive recurrent and exponentially ergodic if E< 1;

(i-3) implosive if R> 1 and E< 1.

(ii) If q0 = 0, then ∂ = {0}, and Yt has certain absorption if E< 1, while it does not if
E> 1. Moreover, the process admits no QSDs if E> 1, while it admits a uniformly
exponentially ergodic QSD on N if R> 1 and E< 1.

Proof. For all k ∈N∪ {−1}, let

λk(x) =
{

r(x)μ(k + 1) if x ∈N,

q0k if x = 0.

By (H1), μ(k)> 0 for some k ∈N. Note that Y \ ∂ is irreducible, with ∂ =∅ if q0 > 0
and ∂ = {0} if q0 = 0. Hence, regardless of q0, by positivity of r, (A1)–(A2) are satisfied
with �− = {−1} and �+ = {y : q0y > 0} ∪ (supp μ \ {0, 1} − 1). Moreover, (H2)–(H3) imply
(A3)–(A4). Let r(x) = axR + bxR−1 + O

(
xR−2

)
with a> 0. Since R ≥ 1, it coincides with

max{deg(λω) :ω ∈�}. It is straightforward to verify that

α= a(E − 1), β = ( 1
2 a + b

)
(E − 1) − 1

2 aE′, and γ = b(E − 1),
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where E′ =∑
k∈N k(k − 1)μ(k)> 0. Hence α has the same sign as E − 1, and β < 0 whenever

E = 1 (or equivalently, α = 0). Furthermore, α = 0 implies γ = 0. In addition, in light of the
fact that R ≥ 1, the condition E ≥ 1 decomposes into three possibilities:

E> 1, or E = 1, R> 1, or E = R = 1.

Then the conclusions follow directly from Theorems 1, 3, 7 and 9. �
Corollary 1. Assume (H1)–(H3), that μ has finite support, and that {y : q0y > 0} is finite. Then
Yt is non-explosive if and only if either R = 1 or E ≤ 1. Furthermore, the following hold:

(i) If q0 > 0, then Yt is irreducible and is

(i-1) recurrent if E ≤ 1, and transient otherwise;

(i-2) positive recurrent if and only if E< 1, or E = 1, R> 1, while it is null recurrent
if and only if E = R = 1; furthermore, Yt is exponentially ergodic if E< 1, or if
E = 1, R> 2;

(i-3) implosive if and only if either of the two conditions R> 1, E< 1, or R> 2, E = 1
holds.

(ii) If q0 = 0, then ∂ = {0}, and Yt has certain absorption if and only if E ≤ 1. Moreover,
the process admits no QSDs if E> 1, or E = R = 1, while it admits a uniformly
exponentially ergodic QSD on N if either R> 1, E< 1, or R> 2, E = 1.

Proof. Based on the proof of Theorem 11, the conclusions follow from Corollaries 2, 4, 8,
and 10. �

The extended branching process under more general assumptions (allowing more general
forms of r) is addressed in [16]. In that reference, the conditions given for the dynamic behavior
of the process seem more involved than here and even become void in some situations (e.g., in
[16, Corollary 1.5(iii)], where the definite integral indeed is always infinite under (H1)–(H3).)

4.3. A general single-cell stochastic gene expression model

To model single-cell stochastic gene expression with bursty production, we propose the
following one-species generalized reaction network (consisting potentially of infinitely many
reactions) with mass-action kinetics:

mS
cmμm(k)−−−−→ (m + k)S, m = 0, . . . , J1, mS

rm−−→ (m − 1)S, m = 1, . . . , J2, (8)

where cm ≥ 0 for m = 0, . . . , J1, rm ≥ 0 for m = 1, . . . , J2, J1 ∈N0, J2 ∈N, and μm, for m =
0, . . . , J1, are probability distributions on N. Assume the following:

(H4) J1 ≤ J2, c0 > 0, cJ1 > 0, r1 > 0, and rJ2 > 0.

(H5) Em =∑∞
k=1 kμm(k)<∞, for m = 0, . . . , J1.

This network encompasses several single-cell stochastic gene expression models in the pres-
ence of bursting; see e.g. [8, 17, 31, 41]. Ergodicity and an exact formula for the ergodic
stationary distribution (when it exists) are the main concerns of these references. The first set
of J1 reactions accounts for bursty production of mRNA copies with transcription rate cm and
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burst size distribution μm. The second set of J2 reactions accounts for degradation of mRNA
with degradation rate rm [17, 41].

The network (8) reduces to the specific model studied in the following references:

• [17, Section 4] (see also [31, Section 3.2]), when J1 = 0, J2 = 1, and μ0 is a geometric
distribution.

• [40], when J1 = 0, J2 = 1, and μ0 is a negative binomial distribution.

• [31, Example 3.6], when J1 = J2 = 1, and μ0 =μ1 are geometric distributions.

• [21] when J1 = 2, J2 = 3, μ0 = δ1, μ2 = δk for some k ∈N, and c1 = r2 = 0. Here δi is
the Dirac delta measure at i.

Theorem 12. Assume (H4)–(H5), and that μm has finite support whenever cm > 0 for m =
0, . . . , J1. Then the process Yt associated with the network (8) is irreducible on N0, and it is
positive recurrent and there exists an ergodic stationary distribution on N0 if and only if one
of the following conditions holds:

(i) J1 < J2,

(ii) J1 = J2 and cJ2 EJ2 < rJ2 ,

(iii) J1 = J2 > 2, cJ2 EJ2 = rJ2 , and cJ2−1EJ2−1 ≤ rJ2−1 + 1
2 cJ2

(
EJ2 + E′

J2

)
,

(iv) J1 = J2 = 2, cJ2 EJ2 = rJ2 , and cJ2−1EJ2−1 < rJ2−1 + 1
2 cJ2

(
EJ2 + E′

J2

)
,

(v) J1 = J2 = 1, cJ2 EJ2 = rJ2 , and cJ2−1EJ2−1 < rJ2−1,

where E′
m =∑∞

k=1 k2μm(k). Moreover, the stationary distribution is exponentially ergodic if
one of (i), (ii), and (iii) holds. Furthermore, the process Yt is implosive if and only if (iii) or
J2 > 1 with (i) or (ii).

Proof. We have �= {−1} ∪
(

∪J1
j=0 supp μj

)
, and

λ−1(x) =
J2∑

j=1

rjx
j, λk(x) =

J1∑
j=0

cjμj(k)x j,

for k ∈N and x ∈N0, where x j =∏j−1
i=0 (x − i) is the descending factorial. By (H4), (A1)–

(A2) are satisfied; moreover, the irreducibility of Yt also follows from [48]. Under (H5), the
mass-action kinetics yield (A3)–(A4). Since J1 ≤ J2 by (H4), we have R = J2 ≥ 1. Since

∑
ω∈�

λω(x)ω= −
J2∑

j=J1+1

rjx
j +

J1∑
j=1

(
cjEj − rj

)
x j + c0E0,

∑
ω∈�

λω(x)ω2 =
J2∑

j=J1+1

rjx
j +

J1∑
j=1

(
cjE

′
j + rj

)
x j + c0E′

0,

we have α= cJ1 EJ1δJ1,J2 − rJ2 , where δi,j is the Kronecker delta. When α= 0, we have

J1 = J2, cJ2 EJ2 = rJ2, γ = cJ2−1EJ2−1 − rJ2−1,

β = cJ2−1EJ2−1 − rJ2−1 − 1

2
cJ2

(
EJ2 + E′

J2

)
.
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The combination of the conditions (i) and (ii) is equivalent to α < 0; the condition (iii) is
equivalent to R> 2, α= 0, β ≤ 0; the condition (iv) is equivalent to R = 2, α = 0, β < 0;
the condition (v) is equivalent to R = 1, α = 0, γ < 0. The conclusions then follow from
Theorems 7 and 9. �
Corollary 2. Assume (H4)–(H5), and that μm has infinite support and cm > 0 for some m =
0, . . . , J1. Then Yt is irreducible on N0, and is positive recurrent with an ergodic stationary
distribution if one of Theorem 12(i), Theorem 12(ii), and Theorem 12(v) holds. Moreover, the
stationary distribution is exponentially ergodic if either Theorem 12(i) or Theorem 12(ii) holds.
In addition, the process Yt is implosive if J2 > 1.

Proof. Based on the proof of Theorem 12, the conclusions follow directly from Corollaries
8 and 10. �

4.4. Stochastic populations under bursty reproduction

Two stochastic population models with bursty reproduction are investigated in [8].
The first model is a Verhulst logistic population process with bursty reproduction. The

process Yt is a CTMC on N0 with transition rate matrix Q = (qx,y)x,y∈N0 satisfying

qx,y =

⎧⎪⎪⎨⎪⎪⎩
cμ( j)x if y = x + j, j ∈N,

c
K x2 + x if y = x − 1 ∈N0,

0 otherwise,

where c> 0 is the reproduction rate, K ∈N is the typical population size in the long-lived
metastable state prior to extinction [8], and μ is the burst size distribution. Assume the
following:

(H6) Eb =∑∞
k=1 kμ(k)<∞.

Approximations of the mean time to extinction and QSD are discussed in [8] against various
burst size distributions of finite mean (e.g., Dirac measure, Poisson distribution, geometric dis-
tribution, negative-binomial distribution). Nevertheless, the existence of a QSD is not proved
there. Here we prove the certain absorption and ergodicity of the QSD for this population
model.

Theorem 13. Assume (H6). The Verhulst logistic model Yt with bursty reproduction has cer-
tain absorption. Moreover, there exists a uniformly exponentially ergodic QSD on N trapped
to zero.

Proof. We have �= supp μ∪ {−1}, λ−1(x) = c
K x2 + x, λk(x) = cμ(k)x, for k ∈N and x ∈

N. Let ∂ = {0}; then N0 \ ∂ =N is irreducible [48]. Hence (A1)–(A5) are satisfied. Moreover,
R = 2, α = − c

K < 0, and thus the conclusions follow from Theorems 3 and 7, together with
Corollaries 4 and 8 for finite supp μ and infinite supp μ, respectively. �

The second model is a runaway model of a stochastic population including bursty pair
reproduction [8]. This model can be described as a generalized reaction network, where c, K,
and μ are defined as in the first model. The survival probability of this population model is
addressed in [8]. Nevertheless, it turns out that this model is explosive for any initial state.

Theorem 14. Assume (H6). The runaway model is explosive.
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Proof. We have �= supp μ∪ {−1}, λk(x) = c
Kμ(k)x(x − 1), λ−1(x) = x, for k ∈N and x ∈

N. Let ∂ = {0, 1}. Then N0 \ ∂ =N \ {1} is irreducible [48]. Hence (A5) is valid. Moreover, it
is easy to verify that (A1)–(A4) are also satisfied. In addition, R = 2, α= c

K Eb > 0, and thus
the conclusions follow from Theorem 1 and Corollary 2 for finite supp μ and infinite supp μ,
respectively. �

5. Proofs

5.1. Proof of Theorem 1

Hereafter, we use the notation [m, n]1 ([m, n[1, etc.) for the set of consecutive integers from
m to n, with m, n ∈N0 ∪ {+∞}. The notation is adopted from [48].

Moreover, throughout the proofs, we assume without loss of generality that Y =N0, and
∂ ⊆ {0} for ease of exposition. Indeed, the dynamical properties of the CTMCs discussed in
this paper depend only on the transition structure of the states x ∈Y with large values of x. By
Assumptions (A4)–(A5), all jumps in � are possible. When ∂ �=∅, it is standard to ‘glue’ all
states in ∂ to be a single state 0, since ∂ is finite and the set of states in Y \ ∂ one jump away
from ∂ is also finite, by (A2).

We prove the conclusions case by case.
(a) Assume ∂ =∅. Then Yt is irreducible on N0, and one can directly apply Propositions 2
and 3 with appropriate Lyapunov functions to be determined.
(b) Assume ∂ �=∅. Let Zt be the irreducible CTMC on the state space Y \ ∂ with Z0 = Y0 and
transition operator Q̃ being Q restricted to Y \ ∂:

q̃x,y = qx,y, for all x, y ∈Y \ ∂ and x �= y.

In the following, we show that Zt is explosive if and only if Yt is explosive, and hence the case
(b) reduces to the case (a). This equivalence is not quite trivial. There is a positive probability
that, starting from any non-absorbing state, the chain will jump to an absorbing state in a finite
number of steps. So we need to show that this will not happen with probability one. Otherwise,
explosivity is not possible. Assume first that Zt is explosive. Then Q̃v = v for some bounded
nonnegative nonzero v. Let ux = vx1Y\∂ (x), ∀x ∈Y . It is straightforward to verify that Qu = u.
By Proposition 4, Yt is also explosive. Conversely, assume that Yt is explosive; then Qu = u for
some bounded nonnegative nonzero u. Let w = u|∂ , i.e., wx = ux for all x ∈ ∂ . Since Q|∂ is a
lower-triangular matrix with nonpositive diagonal entries, and w ≥ 0, it is readily deduced that
w = 0 by Gaussian elimination. This implies from Qu = u that Q̃v = v with v = u|Y\∂ . Hence
Zt is explosive. To sum up, Zt is explosive if and only if Yt is explosive.

Based on the above analysis, it remains to prove the conclusions for the case (a) using
Propositions 2 and 3. We first prove the conclusions assuming � is finite.

(i) We prove explosivity by Proposition 2. Let the lattice interval A = [0, x0 − min�−[1
for some x0 > 1 to be determined. Since #�− <∞, A ⊆N0 is finite. Let f be decreasing and
bounded such that f (x) = 1[0,x0[1 (x) + x−δ1[x0,∞[1 (x) for all x ≥ x0, with δ > 0 to be deter-
mined. Obviously, Proposition 2(i) is satisfied for the set A. Next we verify the conditions in
Proposition 2(ii). It is easy to verify by straightforward calculation that

Qf (x)<−ε for all x ∈N0 \ A,

where ε = δα/2 provided (C1) holds with δ < R − 1, or ε = δ(β − δϑ) /2 provided (C2) holds
with δ <min{β/ϑ, R − 2}, and x0 is chosen large enough. Since δ > 0 can be arbitrarily small,
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in either case, there exist δ and ε such that the conditions in Proposition 2 are fulfilled, and
thus Exζ <+∞ for all x ∈Y . In particular, Yt is explosive a.s.

(ii) Now we prove non-explosivity using Proposition 3. Let f (x) = log log(x + 1) and g(x) =
(|α| + |β| + 1)(x + M) for all x ∈N0, with some M> 0 to be determined. One can show that all
the conditions in Proposition 3 are satisfied with some large constant M > 0, provided neither
(C1) nor (C2) holds. Hence Yt is non-explosive.

5.2. Proof of Theorem 2

We first prove explosivity under the condition (C1). Let f be as in the proof of Theorem 1(i),
and let

α− = lim
x→∞

∑
ω∈�− λω(x)ω

xR , α+ = lim
x→∞

∑
ω∈�+ λω(x)ω

xR .

Then α = α+ + α−. Since α > 0, we have R+ = R and there exists ε0 ∈ ]0, 1[ such that α− +
(1 − ε0)α+ > 0. By Proposition 1, there exist N0, u′ ∈N such that

∑
ω∈�+∩[1,N0]1

λω(x)ω∑
ω∈�+ λω(x)ω

≥ 1 − ε0 for all x ≥ u′.

By (A3), � \ ]N0,∞[1 is finite. Hence, choosing x0 ≥ u′ large, we have for all x ∈Y \ A

Qf (x) =
∑
ω∈�−

λω(x)
(
(x +ω)−δ − x−δ)+

∑
ω∈�+

λω(x)
(
(x +ω)−δ − x−δ)

≤
∑
ω∈�−

λω(x)
(
(x +ω)−δ − x−δ)+

∑
ω∈�+∩[1,N0]1

λω(x)
(
(x +ω)−δ − x−δ)

≤ x−δ ∑
ω∈�−

λω(x)
(−ωδx−1 + O

(
x−2))+ x−δ ∑

ω∈�+∩[1,N0]1

λω(x)
(−ωδx−1 + O

(
x−2))

= −δα−xR−1−δ + O
(
xR−2−δ)− δx−1−δ ∑

ω∈�+∩[1,N0]1

λω(x)ω

≤ −δα−xR−1−δ + O
(
xR−2−δ)− δ(1 − ε0)x−1−δ ∑

ω∈�+
λω(x)ω

= −δ(α− + (1 − ε0)α+
)
xR−1−δ + O

(
xR−2−δ)<−ε,

where

ε = δ
(
α− + (1 − ε0)α+

)
2

,

and δ < R − 1. The rest of the argument is the same as that of the proof of Theorem 1(i).
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Next, we prove non-explosivity under (C3), (C4), or (C5). Let f and g be as in (ii) in the
proof of Theorem 1. By (A3), for some large M> 0 to be determined, for all x ∈N0,

Qf (x) =
∑
ω∈�−

λω(x)
(
log log(x + 1 +ω) − log log(x + 1)

)
+

∑
ω∈�+

λω(x)
(
log log(x + 1 +ω) − log log(x + 1)

)

=
∑
ω∈�−

λω(x) log

(
1 + log

(
1 + ω

x+1

)
log(x + 1)

)
+

∑
ω∈�+

λω(x) log

(
1 + log

(
1 + ω

x+1

)
log(x + 1)

)

=
∑
ω∈�−

λω(x)

(
ω

(x + 1) log(x + 1)
+ O

(
(x + 1)−2(log (x + 1))−1))

+
∑
ω∈�+

λω(x) log

(
1 + log

(
1 + ω

x+1

)
log(x + 1)

)

≤
∑
ω∈�−

λω(x)

(
ω

(x + 1) log(x + 1)
+ O

(
(x + 1)−2(log (x + 1))−1

))

+
∑
ω∈�+

λω(x)
ω

(x + 1) log(x + 1)

= 1

(x + 1) log(x + 1)

∑
ω∈�

λω(x)ω+ O
(

(x + 1)R−2(log (x + 1))−1
)

= α
(x + 1)R−1

log(x + 1)
+ O

(
(x + 1)R−2(log (x + 1))−1

)
≤ g(f (x)),

provided (C3), (C4), or (C5) holds. The rest of the proof is the same as that of Theorem 1(ii).

5.3. Proof of Theorem 3

Let hA = PY0 (τA <∞) be the hitting probability [36]. In particular, hA is called the absorp-
tion probability if A is a closed communicating class. To verify conditions for certain
absorption requires the following property for hitting probabilities. For any set A ⊆Y , we
write hA(i) for hA, to emphasize the dependence of the hitting probability on the initial state
i ∈Y . In particular, if A = {x} is a singleton, we simply write hx for hA.

Assume without loss of generality that Y =N0, and ∂ ⊆ {0}.
(i) We first show recurrence and transience. The idea of applying the classical semimartin-

gale approach originates from [29]. It suffices to show recurrence and transience for the
embedded discrete-time Markov chain Ỹn of Yt.

To show recurrence, let Zn = log log(̃Yn + 1). Since a one-to-one bicontinuous transfor-
mation of the state space preserves the Markov property and recurrence, it suffices to show
recurrence for Zn. In light of the expression for the transition probability of Ỹn, we have

E(Zn+1 − Zn|Zn = log log(x + 1)) = 1∑
ω∈� λω(x)

∑
ω∈�

λω(x)(log log(x +ω) − log log x).
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By tedious but straightforward computation, we have the following asymptotic expansion:

E
(
Zn+1 − Zn|Zn = log log(x + 1)

)= αxR + βxR−1 − ϑxR−1(log x)−1 + O
(
xR−2

)
(1 + x) log(1 + x)

∑
ω∈� λω(x)

.

From this asymptotic expansion, and noting that ϑ > 0, we have

E
(
Zn+1 − Zn|Zn = log log(x + 1)

)≤ 0, ∀n ∈N0, for all large x,

provided either (C3) or (C6) holds. From Proposition 6 follows the recurrence of Zn, and thus
the recurrence of Ỹn as well.

Next, we prove the transience of Ỹn under the reverse conditions (that is, neither (C3) nor
(C6) holds). Let Z′

n = 1 − (
1 + Ỹn

)−δ , with δ > 0 to be determined. Again, Z′
n is a Markov

chain, and Ỹn → ∞ if and only if Z′
n → 1, which implies that (14) is fulfilled for Z′

n with
M = 1, since Ỹn on a subset of N0 is irreducible. Similarly to the above computation, we have
the asymptotic expansion

E
(

Z′
n+1− Z′

n|Z′
n = 1− (1+ x)−δ

)
= δ

(1 + x)δ+1
∑
ω∈� λω(x)

(
αxR + (β − δϑ)xR−1+ O

(
xR−2)).

Hence
E
(

Z′
n+1 − Z′

n|Z′
n = 1 − (1 + x)−δ

)
≥ 0 ∀n ∈N0

for all large x (and so for all values of z = Z′
n in some interval C ≤ z< 1), provided α > 0 or

α = 0, β > 0 with δ < β
ϑ

. By Proposition 7,

P
(

lim
n→∞ Z′

n = 1
)

= 1,

that is,
P
(

lim
n→∞ Ỹn = ∞

)
= 1,

meaning Ỹn is transient.
(ii) Let ω̃ ∈�+. Let k0 = min{l ∈N : lω̃ ∈N}. Define Zt to be a CTMC on N0 with transition

matrix Q̃ = (̃qxy) satisfying, for all x �= y, x, y ∈N0,

q̃xy =

⎧⎪⎨⎪⎩
qxy if x ∈N,

1 if x = 0 and y = jω̃, j = 1, . . . , k0,

0 otherwise.

It is easy to verify that Zt is irreducible on N0. In the following, we show that the recurrence of
Zt is equivalent to the absorption of Yt, which yields the conclusion.

On the one hand, applying (i) to Zt, we have that Zt is recurrent if and only if (C3) or (C6)
holds. On the other hand, from Proposition 9, Zt is recurrent if and only if hZ

0 (i) = 1 for all
i ∈Y , where hZ

0 (i) is the hitting probability for Zt. By Proposition 8, hZ
0 (i) = 1 for all i ∈Y if

and only if (1, . . . , 1) is the minimal nonnegative solution to the linear equations{
xi = 1, i = 0,∑

j∈∂\{i} q̃ij(xi − xj) = 0, i ∈N,
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which, by the definition of Q̃, are identical to{
xi = 1, i = 0,∑

j∈Y\{i} qij
(
xi − xj

)= 0, i ∈N.
(9)

By Proposition 8, Yt has certain absorption if and only if (1, . . . , 1) is the minimal nonnegative
solution to (9). Hence the recurrence of Zt is equivalent to the certain absorption of Yt.

5.4. Proof of Theorem 4

If � is infinite, then by (A3), �+ is also infinite, while �− is finite. Hence, the asymptotic
expansions of the sum over all negative jumps in �− in the proof of Theorem 3 remain valid,
while the asymptotic expansions of the sum over all positive jumps in�+ might fail, in that the
sum is infinite. Nevertheless, an upper estimate of Qf (x) for certain Lyapunov functions is still
possible, as demonstrated in the proof of Theorem 2. A careful examination of the arguments of
Theorem 3 shows that the desired upper estimates of Qf (x) hold under the respective conditions
listed in Theorem 4, by replacing the asymptotic expansions by one-sided inequalities.

5.5. Proof of Theorem 5

Assume without loss of generality that Y =N0.
We first prove the existence of moments of hitting times assuming � is finite, by applying

Proposition 10(i) case by case. We now prove the existence of moments under (C13) for 0<
δ < 1/2. Let f (x) = √

x + 1 for x ∈N0. One can directly verify that for every 0<σ = 2δ < 2,
there exists 0< c<+∞ such that Qf σ (x) ≤ −cf σ−2(x) for all large x. By Proposition 10(i),
there exists a> 0 such that

Ex
(
τ ε{f ≤a}

)
<+∞, ∀x ∈Y, ∀0< ε < σ/2.

Moreover, {f ≤ a} is finite since limx→∞ f (x) = +∞.
Analogous arguments apply to the cases (C16) for 0< δ < 1 and (C10) for δ > 0 with f (x) =

log (x + 1); the condition (C14) for 0< δ < β
β−γ with f (x) = √

x + 1; the condition (C9) with
f (x) = log log(x + 1), and the condition (C3) with f (x) = x + 1.

Next we prove the nonexistence of hitting times by Proposition 10(ii) assuming � is finite.
For all cases, let f (x) = g(x), and specifically, let f (x) = x + 1 in the cases (C13) for δ > 1 and
(C15) for δ > β

β−γ , and f (x) = log(x + 1) in the case (C16) for δ > 1. Note that in the case

(C15) for δ > β
β−γ , we have that − β

ϑ
< 1 is equivalent to γ > 0. The tedious but straight-

forward verification of the conditions (ii-1)–(ii-4) in Proposition 10 is left to the interested
reader.

5.6. Proof of Theorem 6

As alluded to in the proof of Theorem 4, the desired upper estimate of Qf (x) with the same
f under (C3) still holds as in the proof of Theorem 5, by replacing the asymptotic expansions
by one-sided inequalities.

5.7. Proof of Theorem 7

Assume without loss of generality that Y =N0 and ∂ ⊆ {0}. We prove this theorem by
Propositions 12–13, assuming � is finite. We emphasize that the nonexistence of a QSD rests
only on the failure of certain absorption.
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(i) Since Yt is recurrent, we have that Ỹn is recurrent by Proposition 5. Let π̃ be its unique (up
to a scalar) invariant measure. By [36, Theorem 3.5.1], and since

∑
ω∈� λω(x)> 0 is bounded

away from zero uniformly in x,

π (x) = π̃ (x)

qx
= π̃(x)∑

ω∈� λω(x)
, x ∈N0, (10)

is a finite stationary measure for Yt. Let

b = lim
x→∞

∑
ω∈� λω(x)

xR
=

∑
dω=R

aω.

Note that when R = 0, we have γ = 0, and hence R = 0, γ �= 0, and β ≤ 0 cannot occur (see
Table 1). Thanks to Theorem 3, we only need to show the following:

• Yt is positive recurrent if one of (C3), (C9), (C10), (C11) holds.

• Yt is null recurrent if one of the following conditions holds:

◦ R = 0, α = 0;

◦ R = 1, α = γ = 0;

◦ R = 2, α = 0, β = 0;

◦ R = 1, α = 0, β ≤ 0 ≤ γ .

First, we show positive recurrence and exponential ergodicity. Notice that (C9)∪(C10)
=(C18)∪(C21). Moreover, (C3) can be decomposed into (C17) and (C17)′ R = 0, α < 0.

For (C11) or (C17)′, let f (x) = x + 1; for (C21), let f (x) = log(x + 1). Then one can verify
(using the asymptotics of Qf in Appendix A.7) that there exists ε > 0 such that Qf (x) ≤ −ε for
all large x. With an appropriate finite set F, by Proposition 11, Xt is positive recurrent and there
exists a unique ergodic stationary distribution on N0.

For (C17), let f (x) = x + 1; for (C18), let f (x) = log log(x + 2). Then one can similarly ver-
ify that there exists ε > 0 such that Qf (x) ≤ −εf (x) for all large x. By Proposition 12, Yt is
positive recurrent and there exists a unique exponentially ergodic stationary distribution on N0.

Next, we show null recurrence case by case, applying Proposition 16 as well as nonexistence
of moments of passage times in Theorem 5.

• Assume R = 0, α = 0. Then

λω(x) ≡ aω, ω ∈�,
∑
ω∈�

aωω= 0,

since λω are polynomials. Let c = − min�, g(x) = x + c, h(x) = (x + c)1/2, and f (x) = 1. Hence
it is easy to verify that Proposition 16(i) and Proposition 16(iii) hold. Let Fn be the filtration
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to which Ỹn is adapted. Then

E
(
h
(
Ỹn+1 − h

(
Ỹn
)|Fn

))=
∑
ω∈�

aω

(√
Ỹn +ω+ c −

√
Ỹn + c

)
=
∑
ω∈�

aωω√
Ỹn +ω+ c +

√
Ỹn + c

=
∑
ω∈�

⎛⎝ aωω√
Ỹn +ω+ c +

√
Ỹn + c

− aωω√
Ỹn + c +

√
Ỹn + c

⎞⎠
=
∑
ω∈�

√
Ỹn + c −

√
Ỹn +ω+ c

2
√

Ỹn + c
(√

Ỹn +ω+ c +
√

Ỹn + c
)aωω

= 1

2
√

Ỹn + c

∑
ω∈�

aωω2(√
Ỹn +ω+ c +

√
Ỹn + c

)2
≥ 0,

which shows that Proposition 16(ii) also holds for the finite set A = [0, c]1. Moreover,

E
(
Ỹn+1 − Ỹn|Fn

)=
∑
ω∈�

aωω≡ 0< 1 = f (x) Pz-a.s. on {τA > n},

which shows Proposition 16(iv) also holds. Since

π ( j) = π̃ ( j)∑
ω∈� aω

,

by Proposition 16, we have
∑

j∈N0
π ( j) = ∞. By the uniqueness of stationary measures under

the recurrence condition [35], we know Yt is null recurrent.

• Assume R = 1, α = γ = 0. Then

E
(
Ỹn+1 − Ỹn |̃Yn = x

)=
∑
ω∈� λω(x)ω∑
ω∈� λω(x)

≡ 0

for all large x. Applying [6, Theorem 3.5(iii)] with ε0 = 1/2 and a> 1, we have∑
j≥2

π̃ ( j)

j
√

log j
= ∞. (11)

From (10), (11), and the fact that deg
(∑

ω∈� λω(x)
)= 1 for large x, it follows that

∑
j≥2

π ( j)√
log j

= ∞,

which implies that
∑

j≥2 π ( j) = ∞. The rest of the argument is the same as in the case R = 0,
α = 0.
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• Assume R = 2, α = β = 0. Let gδ(x) = (log x)δ for some 1< δ ≤ 2. Choose g = g2, h =
g3/2, and A = [0, a] for some large a> 0 to be determined. Then it is straightforward to verify
(using the asymptotics of Qf in Appendix A.7) that

E
(
gδ
(
Ỹn+1

)− gδ
(
Ỹn
)|Fn

)= δ(δ − 1)
ϑ

b
x−2(log x)δ−2 + O

(
x−3(log x)δ−1).

Hence it is easy to show that h and g satisfy Proposition 16(i)–(iii).
Moreover, it is easy to show that there exist C = C(ϑ, b)> 0 and f (x) = Cx−2 such that

E
(
g(̃Yn+1 − g

(
Ỹn
)|Fn)

)≤ f
(
Ỹn
)

Px-a.s. on {τA > n}.
By Proposition 16, ∑

j∈Y
f ( j)π̃( j) = ∞.

Since
∑
ω∈� λω(x) = bx2 + O(x), substituting (10) we obtain∑

j∈Y
π ( j) = ∞.

Hence Yt is null recurrent.
• Assume R = 1, α = 0, γ > 0. To prove null recurrence, it suffices to show that there exists

x ∈N0 such that Ex
(
τ+

x

)= ∞. Let B �N0 be as in Theorem 5(ii) and x = max B ∈N0. Hence
YJ1 ∈�+ x �N0 a.s. and (�+ + x) ∩ B =∅. By the Markov property of Yt,

Ex
(
τx − J1|YJ1 = j

)=Ej(τx), ∀j ∈N0 \ {x}.
Hence by the law of total probability,

Ex
(
τ+

x

)=Ex(J1) +
∑

j∈N0\B

Ej(τx)Px
(
YJ1 = j

)+
∑
j∈B

Ej(τx)Px
(
YJ1 = j

)
≥

∑
j∈N0\B

Ej(τx)Px
(
YJ1 = j

)
≥ Px(YJ1 ∈�+ + x) inf

j∈N0\B
Ej(τx)

=
∑
ω∈�+ λω(x)∑
ω∈� λω(x)

· ∞ = ∞,

since ∑
ω∈�+ λω(x)∑
ω∈� λω(x)

> 0,

and Ej(τB) = ∞ for all j ∈N0 \ B, by Theorem 5(ii), under the respective conditions.
(ii) By assumption, ∂ = {0} and Y \ ∂ =N. We first show nonexistence of QSDs. Construct

an irreducible process Zt on N0 with transition rate matrix Q̃ as in the proof of Theorem 3.
Applying the conclusion (i) to Zt, Zt is not positive recurrent when none of the conditions of
(C3), (C9), (C10), (C11) holds. It thus suffices to show that the existence of a QSD for Yt

implies positive recurrence of Zt. Assume that Yt has a QSD on N. By Proposition 14, there
exists ψ > 0 such that

ψEi(τ0) =Ei(ψτ0) ≤Ei(exp (ψτ0))<∞, ∀i ∈N0.
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Let EZ
i (τ0) be the expected hitting times for process Zt. By Proposition 15,

(
EZ

i (τ0)
)

i∈N0
is

the minimal solution to the linear equations associated with Q̃. By a similar argument as in the
proof of Theorem 3,

(
EZ

i (τ0)
)

i∈N0
is also the minimal solution to the linear equations associated

with the transition matrix Q, and thus

EZ
i (τ0) =Ei(τ0)<∞, ∀i ∈N0.

Since Zt is irreducible, we have that Zt is positive recurrent, owing to the classical fact that an
irreducible CTMC that positively recurs to a finite set positively recurs everywhere (cf. [32]).

Next, we prove the ergodicity of the Q-process. For either (C18) or (C19), Yt is non-
explosive by Theorem 1; let f (x) = (2 − x−1)1Y\∂ (x). Under the respective conditions, it is
straightforward to verify that

lim
x→∞

Qf (x)

f (x)
= −∞,

which implies that the set

D = {x ∈Y \ ∂ :
Qf (x)

f (x)
≥ −ψ0 − 1}

is finite. Then, with such f , D, and δ, the conditions in Proposition 13 are satisfied and the
conclusions follow. Note that suppν =N comes from the fact that the support of the ergodic
stationary distribution of the Q-process is N by the irreducibility.

5.8. Proof of Theorem 8

As discussed in the proof of Theorem 4, the desired upper estimates of Qf (x) with the same f
under the respective conditions still hold, by replacing the asymptotic expansions by one-sided
inequalities in the proof of Theorem 7.

5.9. Proof of Theorem 9

First we prove implosivity. Assume (C18) or (C19) holds. Hence Yt is recurrent by
Theorem 3. Let f (x) = 1 − (x + 1)−1. One can show that the conditions in Proposition 18(i-1)
are fulfilled, and implosivity is achieved.

Next we turn to non-implosivity. Assume neither (C18) nor (C19) holds. Since Yt does not
implode towards any transient state, it suffices to prove non-implosivity assuming a recurrence
condition, i.e., (C3) or (C6), by Theorem 3. Let f (x) = log log(x + 2). It is easy to verify that
the conditions (with δ= 2) in Proposition 18(ii) are fulfilled, and Yt is non-implosive.

5.10. Proof of Theorem 10

As discussed in the proof of Theorem 4, the same functon f under the condition (C19) also
serves as a Lyapunov function as in the proof of Theorem 9.

Appendix A. Classical criteria for dynamics

Let Yt be a CTMC on a state space Y ⊆N0 with transition matrix Q = (qx,y)x,y∈Y , and
let

(
Ỹn
)

n∈N0
be its embedded discrete-time Markov chain. Let qx =∑

y �=x qx,y, ∀x ∈Y . The

transition probability matrix P = (px,y)x,y∈Y of Ỹn is given by

px,y =
{

qx,y/qx if x �= y, qx �= 0,

0 if x �= y, qx = 0,
px,x =

{
0 if qx �= 0,

1 if qx = 0.
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Let F be the set of all nonnegative (finite) functions on Y satisfying∑
ω∈�

λω(x)|f (x +ω)|<+∞ ∀x ∈Y .

Since Y is discrete, F is indeed a subset of nonnegative continuous (and thus Borel measurable)
functions on Y . The associated infinitesimal generator is also denoted by Q:

Qf (x) =
∑
ω∈�

λω(x) (f (x +ω) − f (x)) , ∀x ∈Y, f ∈ F.

By (A3), F is a subset of the domain of Q. In particular, functions with sublinear growth rate
are in F. When � is finite, F is the whole set of all nonnegative (finite) functions on Y .

Before presenting the proofs, we recall general Lyapunov–Foster-type criteria for the
reader’s convenience [12, 32, 33]. The proofs are mainly based on constructions of specific
Lyapunov functions. To avoid tedious but straightforward verifications against the corre-
sponding criteria, we simply provide the specific Lyapunov functions we apply and leave the
straightforward verifications to the interested reader.

The next proposition is used to estimate Qf for a Lyapunov function f . Let R+ =
max{deg(λω) :ω ∈�+} and recall R = max{deg(λω) :ω ∈�}. It holds that R, R+ ≤ M.

Proposition 1. Assume (A1)–(A4). Let fn(x) =∑
ω∈�+, ω≤n λω(x)ω for n ∈N. Then fn con-

verges nondecreasingly to a polynomial f of degree R+ on Y \ [0, u[1,

f (x) =
∑
ω∈�+

λω(x)ω, x ∈Y \ [0, u[1, (12)

with u as in (A4). Furthermore,
∑
ω∈� λω(x)ω is a polynomial of degree at most R on Y \

[0, u[1, and
∑
ω∈� λω(x) is a polynomial of degree R on Y \ [0, u[1. Moreover, there exists

u′ ≥ u such that

lim
n→∞ sup

x≥u′
f (x) − fn(x)

f (x)
= 0. (13)

Proof. Assume without loss of generality that u = 0. Otherwise consider λω( · +u).
Furthermore, assume Y =N0. Let n∗ = min{ω ∈�+ : deg(λω) = R+}. Then (fn)n≥n∗ is a
nondecreasing sequence of polynomials on N0 of degree R+, as the coefficient of xR+ is non-
negative in λω(x). By (A3)–(A4), f as defined in (12) is a nonnegative finite function on N0,
and fn converges to f pointwise on N0.

Write fn(x) =∑R+
j=0 α

( j)
n x j as a sum of descending factorials. Since fn( j) → f ( j) for j =

0, . . . , R+ by assumption, we find inductively in j that α( j)
n → α( j) for some α( j) ∈R, j =

0, . . . , R+. Let f̃ (x) =∑R+
j=0 α

( j)x j. Then fn → f̃ pointwise on N0, which implies f = f̃ and
that f is a polynomial on N0. By the definition of n∗ and the monotonicity of (fn)n≥n∗ , we have

α
(R+)
n ≥ α(R+)

n∗ > 0 for n ≥ n∗, and α(R+) = limn→∞ α
(R+)
n > 0. Hence deg(f ) = R+. Similarly,

by (A2), one can show that
∑
ω∈� λω(x)ω is a polynomial of degree at most R on N0, and∑

ω∈� λω(x) is a polynomial of degree R on N0. It remains to prove (13). Indeed, for all x ∈N,

0 ≤ f (x) − fn(x)

f (x)
=

∑R+
j=0 (α( j) − α

( j)
n )x j∑R+

j=0 α
( j)x j

≤ xR+ ∑R+
j=0 |α( j) − α

( j)
n |∑R+

j=0 α
( j)x j

.
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Since there exists u′ ≥ u such that f (x) ≥ 1
2α

(R+)xR+ for all x ≥ u′, we have

sup
x≥u′

f (x) − fn(x)

f (x)
≤ 2

∑R+
j=0 |α( j) − α

( j)
n |

α(R+)
,

which implies (13). �

A.1. Criteria for explosivity and non-explosivity

Proposition 2. ([32, Theorem 1.12, Remark 1.13].) Assume Yt is irreducible on Y . Suppose
that there exists a triple (ε, A, f ) consisting of a constant ε > 0, a set A that is a proper finite
subset of Y such that Y \ A is infinite, and a function f ∈ F, such that

(i) there exists x0 ∈Y \ A with f (x0)<minA f , and

(ii) Qf (x) ≤ −ε for all x ∈Y \ A.

Then the expected lifetime Ex(ζ )<+∞ for all x ∈Y .

Proposition 3. ([32, Theorem 1.14].) Assume Yt is irreducible on Y . Let f ∈ F be such that
limx→∞ f (x) = +∞. If

(i) there exists a nondecreasing function g : [0,∞[ → [0,∞[ such that G(z) = ∫ z
0

dy
g(y) <+∞ for all z ≥ 0 but limz→∞ G(z) = +∞, and

(ii) Qf (x) ≤ g(f (x)) for all x ∈Y ,

then Px(ζ = +∞) = 1 for all x ∈Y .

We give Reuter’s criterion on explosivity of a CTMC in terms of the transition rate matrix.

Proposition 4. ([38, Theorem 10], [9, Theorem 13.3.11].) Assume Yt is irreducible on Y with
transition matrix Q. Then Yt is explosive with positive probability if and only if there exists a
nonzero nonnegative solution to

Qx = λx,

for some (and all) λ> 0.

A.2. Criteria for recurrence, transience, and certain absorption

To prove Theorem 3(i), we rely on the following equivalence in relation to recurrence and
transience between a CTMC and its embedded discrete-time Markov chain.

Proposition 5. ([36, Theorem 3.4.1].) Assume that Yt is irreducible. Let Ỹn be the embedded
discrete-time Markov chain of Yt. Then the following hold:

(i) Yt is recurrent if and only if Ỹn is recurrent.

(ii) Yt is transient if and only if Ỹn is transient.

Apart from the above equivalence, we need the following two properties to prove recurrence
and transience for an irreducible discrete-time Markov chain.

Proposition 6. ([29, Theorem 2.1].) Let Zn be an irreducible discrete-time Markov chain on a
subset of N0. If

E
(
Zn+1 − Zn|Zn = x

)≤ 0, ∀n ∈N0, for all large x,

then Zn is recurrent.
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Proposition 7. ([29, Theorem 2.2].) Let Zn be a discrete-time Markov chain on the real line.
Assume that there exists a positive constant M such that

0 ≤ Zn <M <∞ ∀n ∈N0,

P
(

lim sup
n→∞

Zn = M
)

= 1. (14)

If there exists a constant C<M such that

E
(
Zn+1 − Zn|Zn = x

)≤ 0 ∀n ∈N0, for all x ≥ C,

then
P
(

lim
n→∞ Zn = M

)
= 1.

Recall the definition of λω; the transition probabilities P = (px,y)x,y∈Y of Ỹn are

px,x+ω = λω(x)∑
ω̃∈� λω̃(x)

1
Y∩

(
∪
ω̃∈�

supp λω̃

)(x),

px,x = 1 − 1
Y∩

(
∪
ω̃∈�

supp λω̃

)(x), x ∈N0, ω ∈�.

Proposition 8. ([36, Theorem 3.3.1].) Let A ⊆Y . The vector of hitting probabilities (hA(i))i∈Y
is the minimal nonnegative solution to the following linear equations:{

hA(i) = 1, i ∈ A,∑
j∈Y\{i} qij(hA(i) − hA( j)) = 0, i ∈Y \ A.

(Minimality means that if x is another nonnegative solution, then xi ≥ hA(i) for all i ∈Y0.)

Proposition 9. ([36, Theorem 1.5.7, Theorem 3.4.1].) Assume Yt is irreducible on Y . Then the
following hold:

(i) Yt is recurrent if and only if hj(i) = 1 for all i ∈Y and some (and all) j ∈Y .

(ii) Yt is recurrent if and only if hA(i) = 1 for all i ∈Y and some (and every) nonempty subset
A ⊆Y .

Proof. Recall that by irreducibility, Yt is recurrent if and only if one (and every) state i ∈Y is
recurrent, which is equivalent to hi(i) = 1. The conclusion (i) is a direct result of [36, Theorem
1.5.7, Theorem 3.4.1].

To show (ii), by irreducibility, Pi({YτA = j})> 0 for all j ∈ A and τj = τA conditional on
YτA = j. Hence, by the law of total probability,

Pi(τA <∞) =
∑
j∈A

Pi({YτA = j})P(τj <∞),

which implies that hA(i) = 1 if and only if hj(i) for all j ∈ A. On the one hand, given any
nonempty A ⊆Y , by (i), since Yt is recurrent, we have hj(i) = 1 for all i ∈Y for all j ∈ A, and
thus hA(i) = 1. On the other hand, if hA(i) = 1 for all i ∈Y and some (and all) subsets A ⊆Y ,
then hj(i) = 1 for all j ∈ A, and by (i) we know Yt is recurrent. �
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A.3. Criteria for existence and nonexistence of moments of hitting times

Proposition 10. ([32, Theorem 1.5].) Assume Yt is irreducible on Y . Let f ∈ F be such that
limx→∞ f (x) = +∞.

(i) If there exist positive constants c1, c2, and σ such that f σ ∈ F and

Qf σ (x) ≤ −c2f σ−2(x) ∀x ∈ {f > c1} ,

then Ex

(
τ ε{f ≤c1}

)
<+∞ for all 0< ε < σ/2 and all x ∈Y .

(ii) Let g ∈ F. If there exist

(ii-1) a constant c1 > 0 such that f ≤ c1g,

(ii-2) constants c2, c3 > 0 such that Qg(x) ≥ −c3 for all x ∈ {g> c2},
(ii-3) constants c4 > 0 and δ > 1 such that gδ ∈ F and Qgδ(x) ≤ c4gδ−1(x) for all x ∈

{g> c2}, and

(ii-4) a constant σ > 0 such that f σ ∈ F and Qf σ (x) ≥ 0 for all x ∈ {f > c1c2}, then

Ex

(
τ ε{f ≤c2}

)
= +∞ for all ε > σ and all x ∈ {f > c2}.

A.4. Criteria for positive recurrence, ergodicity, and existence of QSDs

For the reader’s convenience, we first recall the classical Lyapunov–Foster criteria.

Proposition 11. ([32, Theorem 1.7].) Assume Yt is irreducible on Y and recurrent. Then the
following are equivalent:

(i) Yt is positive recurrent.

(ii) There exists a triple (ε, A, f ) with ε > 0, A a finite nonempty subset of X , and f ∈ F
satisfying Qf (x) ≤ −ε for all x ∈Y \ A.

Proposition 12. ([33, Theorem 7.1].) Assume Yt is irreducible on Y . Then Yt is positive
recurrent and there exists an exponentially ergodic stationary distribution, if there exists a
triple (ε, A, f ) with ε > 0, A a finite subset of Y , and f ∈ F with limx→∞ f (x) = ∞, satisfying
Qf (x) ≤ −εf (x) for all x /∈ A.

Proposition 13. ([11, Theorem 1.1], [12, Theorem 5.1, Remark 11], [27, Theorem 2.1].)
Assume ∂ �=∅ and the Q-process of Yt is irreducible. Then there exists a finite subset D ⊆
Y \ ∂ , with Px(Y1 = y)> 0 for all x, y ∈ D, such that the constant

ψ0 := inf
{
ψ ∈R : lim inf

t→∞ eψ tPx(Yt = x)> 0
}

is finite and independent of x ∈ D. If in addition there exist ψ1 >max{ψ0, supx∈Y\∂
∑

z∈∂ qx,z}
and a function f ∈ F such that f

∣∣Y\∂ ≥ 1, f
∣∣
∂
= 0, supY\∂ f <∞, and

∑
y∈(Y\∂)\{x}

qx,yf (y)<∞ ∀x ∈Y \ ∂; Qf (x) ≤ −ψ1f (x) ∀x ∈ (Y \ ∂) \ D,
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then there exists a unique QSD ν on Y \ ∂ with positive constants C and δ < 1 such that for all
Borel probability measures μ on Y \ ∂ ,∥∥∥Pμ(Yt ∈ ·|t< τ∂ ) − ν

∥∥∥
TV

≤ Cδt, ∀t ≥ 0.

In addition, dξ (x) = ζ (x)dν(x) is the unique quasi-ergodic distribution for Yt, as well as the
unique stationary distribution of the Q-process, where ζ is the nonnegative function

ζ (x) = lim
t→∞ eψ0tPx(t< τ∂) , x ∈Y \ ∂ .

To show the nonexistence of QSDs, we rely on the following two classical results.

Proposition 14. ([18, Lemma 4.1].) Assume ∂ �=∅ and the Q-process of Yt is irreducible. If
there exists a QSD for Yt supported on ∂ , then the uniform exponential moment property holds:

there exists ψ > 0 such that Ex(exp (ψτ∂ ))<∞ ∀x ∈Y .

Proposition 15. ([36, Theorem 3.3.3].) Let A ⊆Y and kA(i) =Ei(τA) for all i ∈Y . Assume
qx �= 0 for all x ∈Y \ A. Then the vector of expected hitting times (kA(i))i∈Y is the minimal
nonnegative solution to the following linear equations:{

kA(i) = 1 if i ∈ A,∑
j∈Y\{i} qij(kA(i) − kA( j)) = 1 if i ∈Y \ A.

A.5. Criterion for non-summability of functions with respect to stationary measures

Proposition 16. ([6, Theorem 1′, Remarks 3–4].) Let Y be an unbounded countable subset of
R≥0 and (Y,F , P) a probability space with a filtration {Fn}n∈N0 . Assume that Zn is a discrete-
time Fn-adapted irreducible aperiodic Markov chain on Y , which is recurrent with unique (up
to a multiplicative constant) stationary measure ν. Let f be a nonnegative function defined on
Y . Then ∑

x∈Y
f (x)ν(x) = ∞

if there exist some finite set A, some z ∈ A, and some nonnegative functions g and h such that

(i) limx→∞ h(x) = ∞ and limx→∞ g(x)
h(x) = ∞,

(ii) whenever z′ ∈ E ⊂Y \ A, the process {h(Zn∧τA )}n∈N0 is a Pz′ -submartingale,

(iii) Ez(g(Zn)1τA>n) is finite for all n ∈N, and

(iv) E(g(Zn+1) − g(Zn)|Fn) ≤ f (Zn), Pz-a.s., on τA > n.

A.6. Criterion for implosivity and non-implosivity

Proposition 17. ([32, Proposition 2.14].) Assume Yt is irreducible on Y . If there exists a
nonempty proper subset B �Y such that Yt implodes towards B, then Yt is implosive.
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Proposition 18. ([32, Theorem 1.15, Proposition 1.16].) Assume Yt is irreducible on Y .

(i) The following are equivalent:

(i-1) There exists a triple (ε, F, f ) consisting of a positive constant ε, a finite set F, and
a function f ∈ F such that supx∈Y f (x)<+∞ and Qf (x) ≤ −ε whenever x ∈Y \ F.

(i-2) There exists c> 0, and for every finite A ⊆Y there exists a positive constant CA,
such that Ex(τA) ≤ CA and Ex(exp (cτA))<∞ whenever x ∈Y \ A. In particular,
Yt is implosive.

(ii) Let f ∈ F be such that limx→∞ f (x) = +∞, and assume there exist positive constants
a, c, ε and δ > 1 such that f δ ∈ F. If, in addition,

Qf (x) ≥ −ε, Qf δ(x) ≤ cf δ−1(x), whenever x ∈ {f > a},

then the chain does not implode towards {f ≤ a}.

A.7. Asymptotic expansion of Qf for Lyapunov functions f used in the proofs

We provide an asymptotic expansion of Qf (x) for all large x, for various Lyapunov
functions f . Let δ ∈R.

• Let f (x) = xδ . Then

Qf (x) = δxδ
{
αxR−1 + (β + δϑ)xR−2 + O

(
xR−3

)}
.

• Let f (x) = (
x(log x)−1

)δ . Then

Qf (x) = δ
(
x(log x)−1)δ {α (1 − (log x)−1

)
xR−1

+
(

(β + δϑ) − (β + 2δϑ)(log x)−1
)

xR−2 + O
(

xR−2(log x)−2
)}

.

• Let f (x) = (x log x)δ . Then

Qf (x) = δ(x log x)δ
{
α
(

1 + (log x)−1
)

xR−1 + (β + δϑ)xR−2

+(γ + δϑ)xR−2(log x)−1 + O
(

xR−2(log x)−2
)}

.

• Let f (x) = (log x)δ . Then

Qf (x) = δ(log x)δ−1
{
αxR−1 + βxR−2 + (δ − 1)ϑxR−2(log x)−1 + O

(
xR−3

)}
.

• Let f (x) = (log log x)δ . Then

Qf (x) = δ(log log x)δ−1(log x)−1·{
αxR−1 + βxR−2 − ϑxR−2(log x)−1 + O

(
xR−2(log x)−1(log log x)−1

)}
.
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