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1. Introduction

In this work, we study the local and global existence and uniqueness of ‘non-Lipschitz’
solution for a class of abstract ordinary differential equations with state-dependent
argument (SDA) of the form

u′(t) =Au(t) + F (t, u(σ(t, u(t)))), t ∈ [0, a], (1.1)

u(0) = x0 ∈ X, (1.2)

where (X, ‖ · ‖) is a Banach space, A : D(A) ⊂ X → X is the generator of an ana-
lytic semigroup of bounded linear operators (T (t))t≥0 on X and F (·), σ(·) are suitable
continuous functions.
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The literature on differential equations with SDA is extensive and recent. To begin,
we mention the pioneer work by Driver [6] that introduces and studies a class of neutral
ordinary differential equations with state-dependent delay. Always in the context of ODEs
with state-dependent delay, we mention the works [7, 8, 11, 12, 14, 15, 27] and the
excellent survey by Hartung et al. [19]. For the case of ordinary differential equations
with SDA similar to Equations (1.1)–(1.2), we cite the early papers by Cooke [5], Dunkel
[9], Eder [10] and Oberg [36]. Concerning abstract problems with applications to Partial
differential equations (PDEs), we cite the pioneer papers [13, 24], our recent works [21,
22, 23–26] and the interesting papers [28–30, 34, 35].

To clarify the contributions of our paper to the field of abstract differential equations
with SDA in infinite-dimensional spaces, it is convenient to include some comments about
the associated literature. To begin, we note that in [13, 24], possibly the first works on
this type of problems, are introduced two different technical approaches, which have been
extensively used in the literature. The existence of solution for a class of abstract differ-
ential equations with state-dependent ‘delay’ using the Schauder’s Fixed Point Theorem
is studied in Hernandez et al. [24]. The existence and ‘uniqueness’ of solution for a prob-
lem similar to Equations (1.1)–(1.2) using the contraction mapping principle is studied
in Ciprian [13]. The results in the interesting paper [13] are proved assuming a condition
on the nonlinear term F (·) (see the condition H 3) , what can be understood as a ‘spatial
regularizing property’. A simple manner to understand this observation is noting that the
function H(·) in the example in [13] is a function defined from L2(Ω) into W 1

0 (Ω). The
approach in [13] was introduced to lead with the lack of the Lipschitz continuity of the
map u 7→ u(σ(·, u(·))) in spaces of continuous functions. The aforementioned condition
allowed the authors to work on a ‘space of Lipschitz functions’, where an inequality of
the form

‖ F (·, u(σ(·, u(·)))) − F (·, v(σ(·, v(·)))) ‖C([0,b];Xα)

≤ [F ]CLip
(1 + [v]CLip([0,b];Xα−1)

[σ]CLip
)

‖ u− v ‖C([0,b];Xα) (1.3)

is satisfied. In this inequality, which ‘appear implicitly’ in the proof of [13, Theorem 2.2],
X α is the domain of the fractional power (−A)α of A endowed with the graph norm, Xα−1

is the dual space of X1−α and [F ]CLip
, [v]CLip([0,b];Xα−1)

and [σ]CLip
are the Lipschitz

semi-norm of F (·), v(·) and σ(·).
The approach in Ciprian [13] has been extensively used in the literature concerning the

existence and uniqueness of a ‘Lipschitz’ solution for abstract problem with SDA, see, for
example, [1–3, 16–18, 31, 32]. A similar regularizing property is used by Rezounenko et al.
in [30, 38] to study the existence and ‘uniqueness’ of a ‘Lipschitz’ solution for abstract
problems with state-dependent delay. Assuming, basically, that F (·) is a Lipschitz func-
tion from [0, a]×X into X, in [20–22, 23–26], we also study the existence and uniqueness
of a ‘Lipschitz’ solution for some different models of state-dependent delay differential
equations.

In comparison to the early works [13, 24] and the papers [1–4, 13, 16–18, 21, 22, 23–26,
31, 32], we present several novelties. To begin, we prove the existence and ‘uniqueness of
a non-Lipschitz’ solution for Equations (1.1)–(1.2). In addition, to prove our results, we
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assume that the functions F (·) and σ(·) are Lp-Lipschitz from [0, a]×Xα into X and from
[0, a] ×Xα into [0, a], respectively, which simplify significantly the Condition H 3 in [13].
We remark that the class of Lp-Lipschitz functions include the class of locally Lipschitz
functions and that a Lp-Lipschitz function is not necessarily a locally Lipschitz function
(see Definition 2.1). We also study the local and global existence and uniqueness of
solution and the existence of solution for the case σ(0, x0) > 0, an interesting, non-trivial
and unconsidered problem in the literature.

This work has four sections. In the next section, we introduce some notation, concepts
and results used in this paper. In particular, we include the concept of Lp-Lipschitz
functions, see Definition 2.1, and we present some simple examples, see Remark 2.1. In
§ 3, we study the local and global existence and uniqueness of mild solution assuming that
F (·) and σ(·) are Lp-Lipschitz functions. The local existence and uniqueness of solution
for the case σ(0, x0) = 0 is established in Theorem 3.1 and Proposition 3.1. We observe
that both results are proved working on spaces formed by functions in C([0, b];Xα),
with α> 0, such that sup0<ε<b ε

θ[u]CLip([ε,b];Xα) <∞, where [u]CLip([ε,b];Xα) denotes the

Lipschitz semi-norm of u(·) on [ε, b]. From the ideas in the proofs of Theorem 3.1 and
Proposition 3.1 are deduced several propositions and corollaries concerning the local and
global existence and uniqueness of solution for the problems in Equations (1.1)–(1.2),
see for example, Corollary 3.1, Corollary 3.2, Corollary 3.4 and Corollary 3.5. In § 3.2,
we study the case σ(0, ϕ(0)) > 0. This case, unconsidered in the associated literature, is
particularly interesting because it is necessary to guarantee the existence of solution on
some interval containing the interval [0, σ(0, ϕ(0))]. The existence of solution defined on
[0,∞) is studied in § 4. Proposition 4.4 and Proposition 4.5 are deduced from the proofs
of Theorem 3.1 and Proposition 3.1. The used approach in the other results of § 4 is
different and based in the study of the existence and qualitative properties of maximal
solutions. Finally, motivated by the applications in some recent works and by some PDEs
arising in the theory of population dynamics, in § 5, we present some examples of PDEs
with SDA.

2. Preliminaries

Let (Z, ‖ · ‖Z) and (W, ‖ · ‖W ) be Banach spaces. In this work, for r > 0 and z ∈ Z,
we use the symbol Br[z, Z] for the closed ball Br[z, Z] = {x ∈ Z; ‖ x − z ‖Z≤ r}.
The open ball is denoted by Br(z, Z). In addition, we use the notation L(Z,W )
for the space of bounded linear operators from Z into W endowed with the uni-
form norm denoted by ‖ · ‖L(Z,W ). For convenience, we write ‖ · ‖L(Z) in the
place of ‖ · ‖L(Z,Z) and ‖ · ‖ for the norm ‖ · ‖L(X). The spaces C([b, c];Z)
and CLip([b, c];Z) are usual, and their norms are denoted by ‖ · ‖C([b,c];Z) and ‖
· ‖CLip([b,c];Z), respectively. We remark that ‖ · ‖CLip([b,c];Z)=‖ · ‖C([b,c];Z) +[·]CLip([b,c];Z),

where [ξ]CLip([b,c];Z) = supt,s∈[b,c],t 6=s
‖ξ(s)−ξ(t)‖Z

|t−s| . In addition, we use the notation

CLip,loc(Z;W ) for the space formed by the functions G ∈ C(Z;W ) such that

[G]Clip(Br(0,Z);W ) = supx 6=y,x,y∈Br [0,Z]

‖G(x)−G(y)‖W
‖x−y‖Z

<∞ for all r > 0.

As pointed, A : D(A) ⊂ X → X is the generator of an analytic C 0-semigroup (T (t))t≥0

on X. For simplicity, we assume that 0 ∈ ρ(A). For η > 0, we use the notation (−A)η and
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X η for the η-fractional power of A and for the domain of (−A)η endowed with the norm
‖ x ‖η=‖ (−A)ηx ‖. We also suppose that Ci, C0,η (i ∈ N ∪ {0}, η ∈ (0, 1)) are positive
such that ‖ AiT (t) ‖≤ Cit

−i and ‖ (−A)ηT (t) ‖≤ C0,ηt
−η for all t ∈ (0, a].

For positive numbers θ, α and b, we use the notation CLip,θ((0, b];Xα) for the space

CLip,θ((0, b];Xα) = {u ∈ C([0, b];Xα) : [u]CLip,θ((0,b];Xα) = sup
0<ε<b

εθ[u]CLip([ε,b];Xα) <∞},

endowed with the norm ‖ · ‖C([0,b];Xα). In addition, CLip,θ,1((0,∞);Xα) is the space

{u ∈ C([0,∞);Xα) : u|
[0,1]

∈ CLip,θ((0, 1];Xα), u|[1,∞)
∈ CLip([1,∞);Xα)}.

Concerning the problem

u′(t) = Au(t) + ξ(t), t ∈ [0, a], u(0) = x ∈ X, (2.1)

we remark that the function u ∈ C([0, b];X) given by u(t) = T (t)x+
∫ t

0
T (t− s)ξ(s) ds,

is called a mild solution of Equation (2.1) on [0, b]. A function v ∈ C([0, b];X)
is said to be a strict solution of Equation (2.1) on [0, b] (respectively, a classical
solution of Equation (2.1) on [0, b]) if v ∈ C1([0, b];X) ∩ C([0, b];X1) and v(·) satis-
fies Equation (2.1) on [0, b] (respectively, v ∈ C1((0, b];X)∩C((0, b];X1) and v(·) satisfies
Equation (2.1) on (0, b]).

For convenience, we include the following result on regularity of mild solutions. In this
result, for θ ∈ (0, 1), Cθ([0, b];Z) denotes the space formed by all the continuous functions

ξ : [0, b] 7→ Z such that [ξ]Cθ([b,c];Z) = supt,s∈[b,c],t 6=s
‖ξ(s)−ξ(t)‖

|t−s|θ
is finite, endowed with

the norm ‖ · ‖Cθ([b,c];Z)=‖ · ‖
C([b,c];X)

+[·]Cθ([b,c];Z).

Lemma 2.1. Assume that u ∈ C([0, b];X) is the mild solution of Equation (2.1). If
γ ∈ (0, 1), T (·)x ∈ CLip([0, b];Xγ) and ξ ∈ C([0, b];X), then u ∈ C1−γ([0, b];Xγ) and

[u]C1−γ([0,b];Xγ)
≤ [T (·)x]CLip([0,b];Xγ)b

γ+ ‖ ξ ‖C([0,b];X)

(
C1,1+γ

γ(1 − γ)
+

C0,γ

1 − γ

)
.

For additional details on C 0-semigroups and the problem Equation (2.1), we cite
[33, 37].

As noted in the introduction, our results on the existence and uniqueness of solutions
are proved without assuming that F (·) and σ(·) are locally Lipschitz. From [22], we
remark the next concept.

Definition 2.1. Let (Yi, ‖ · ‖Yi), i = 1, 2, be Banach spaces and p ≥ 1. We say
that a function P : [c, d] × Y1 7→ Y2 is an Lp-Lipschitz function if P (t, ·) : Y1 7→ Y2 is
continuous a.e. for t ∈ [c, d], there exists an integrable function [P ](·,·) : [c, d]×[c, d] → R+

and a non-decreasing function WP : R+ → R+ such that [P ](t,·) ∈ Lp([c, t];R+) and
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[P ](·,c) ∈ Lp([c, t];R+) for all t ∈ (c, d] and

‖ P (t, x) − P (s, y) ‖Y2≤ WP (max{‖ x ‖Y1 , ‖ y ‖Y1})[P ](t,s)(| t− s | + ‖ x− y ‖Y1),

for all x, y ∈ Y1 and c ≤ s ≤ t ≤ d. Next, Lp
Lip([c, d] × Y1;Y2) denotes the set formed by

this type of functions.

Remark 2.1. For completeness, we include some simple examples concerning
Definition 2.1. Next, for p > 1, we use the notation p

′
for the number p′ = p/(p− 1).

(1) It is obvious that CLip([0, a] × Y1;Y2) ⊂ Lp
Lip([0, a] × Y1;Y2) and that Lp

Lip([0, a] ×
Y1;Y2) is a vectorial space.

(2) For p > 1, the function f : [0, a] 7→ R given by f(t) = p
√
t belongs to Lq

Lip([0, a];R)

for all q ∈ (1, p′). In fact, for t > 0, | f(t) − f(0) |≤ t
1
p−1t and from the mean value

Theorem, it follows that | f(t) − f(s) |≤ 1
ps

−(1− 1
p ) | t − s | for 0 < s ≤ t ≤ a,

which shows that f(·) is a Lq
Lip function for q ∈ (1, p′), with [f ](t,s) = 1

ps
−(1− 1

p ),

[f ](t,0) = t
1
p−1 and [f ](0,0) = 0.

(3) Let f ∈ Lq
Lip([a, b] : R), G ∈ C(X;X) and assume that for all r > 0, there is

LG(r) > 0 such that ‖ G(x) − G(y) ‖≤ LG(r) ‖ x − y ‖ for all x, y ∈ Br[0, X]. If
H(s, x) = f(t)G(x), for t, s ∈ [a, b] and x, y ∈ Br[0, X], we note that

‖ H(t, x) − H(s, y) ‖
≤ ‖ (f(t) − f(s))G(x) ‖ + ‖ f(s)(G(x) −G(y)) ‖
≤ [f ](t,s) | t− s |‖ G(x) ‖ + | f(s) | LG(r) ‖ x− y ‖
≤ [f ](t,s) | t− s | (LG(r) ‖ x ‖ + ‖ G(0) ‖)+ ‖ f ‖C([a,b])

‖ LG(r) ‖ x− y ‖
≤ ([f ](t,s)+ ‖ f ‖C([a,b]))(LG(r)r+ ‖ G(0) ‖ +LG(r))

(| t− s | + ‖ x− y ‖),

which shows that H ∈ Lq
Lip([a, b] ×X;X).

(4) Assume that H(t, x) = ζ(t)G(t, x), where G ∈ CLip([0, a] × X;X) and ζ ∈
C([0, a];R). Suppose that ζ(·) is differentiable a.e. on [0, a], and there is a func-
tion ξ : [0, a]× [0, a] → R+ such that |ζ(t)− ζ(s)| ≤ ζ ′(ξ(t,s))|t− s| and s ≤ ξ(s,t) ≤ t
for all 0 < s ≤ t < a and that the function [ζ](·,·) = ζ ′(ξ(·,·)) belongs to Lq(U) for
some q > 1, where U = {(t, s) ∈ [0, a] × [0, a], s ≤ t}. Then H ∈ Lq

Lip([0, a] ×X;X)
with [H](t,s) = [ζ](t,s)+ | ξ(s) | and WH(r) = [G]Lip(a+ r + 1)+ ‖ G(0, 0) ‖.

(5) Assume that H(t, x) = ζ(t)G(t, x), where G ∈ Lq
Lip([0, a]×X;X), ζ ∈ Lp

Lip([0, a];R)

and 1
p + 1

q ≤ 1. If the functions G(·) and ζ(·) are continuous, then H ∈
L
min{p,q}
Lip ([0, a] × X;X) with [H](t,s) = [G](t,s)([ζ](t,s)+ ‖ ζ(s) ‖) and WH(r) =

WG(r)(a+ r + 1).

To work with Lq
Lip functions and SDA, it is convenient to include the following useful

Lemma. We omit the proof.
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Lemma 2.2. Assume that σ ∈ Lq
Lip([0, a] × Xα; [0, b]) for α ≥ 0 and 0 < b ≤ a and

that u, v ∈ C([0, b];Xα).

(a) If u ∈ CLip([0, b];Xα), then

‖ u(σ(t+ h, u(t+ h))) − u(σ(t, u(t)) ‖α
≤ [u]CLip([0,b];Xα)[σ](t+h,t)Wσ(ρ1)(1 + [u]CLip([0,b];Xα))h,

‖ u(σ(t, u(t)) − v(σ(t, v(t)) ‖α ≤ (1 + [u]CLip([0,b];Xα)[σ](t,t)Wσ(ρ2)) ‖ u− v ‖C([0,b];Xα)

for all t, h ∈ [0, b] with t + h ∈ [0, b], where ρ1 =‖ u ‖C([0,b];Xα) and ρ2 = max{‖
u ‖C([0,b];Xα), ‖ v ‖C([0,b];Xα)}.

(b) If u ∈ Cβ([0, b];Xα) and σ(·) is Lipschitz, then u(σ(·, ·)) ∈ Cβ2([0, b];Xα) and

[u(σ(·, ·))]
Cβ2([0,b];Xα)

≤ [u]
Cβ([0,b];Xα)

[σ]βCLip
(b1−β + [u]

Cβ([0,b];Xα)
)βhβ

2
.

3. Existence and uniqueness of solution

In this section, we study the local and global existence and uniqueness of solution for the
problem (1.1)–(1.2). To begin, we introduce the following concepts of solution.

Definition 3.1. A function u ∈ C([0, b];X), 0 < b ≤ a, is called a mild solution of
(1.1)–(1.2) on [0, b] if u(0) = x0, σ(t, u(t)) ∈ [0, b] for all t ∈ [0, b] and

u(t) = T (t)x0 +

∫ t

0

T (t− s)F (s, uσ(s)) ds, ∀ t ∈ [0, b],

where uσ(·) is the function uσ : [0, b] 7→ X given by uσ(t) = u(σ(t, u(t))).

Definition 3.2. A function u ∈ C([0, b];X), b > 0, is said to be a classical solution
of Equations (1.1)–(1.2) on [0, b] if u(0) = x0, u|(0,b] ∈ C((0, b];X1) ∩ C1((0, b];X),

σ(t, u(t)) ∈ [0, b] for all t ∈ [0, b] and u(·) satisfies Equation (1.1) on (0, b]. If u(·)
is a classical solution on [0, b], u|[0,b] ∈ C([0, b];X1) ∩ C1([0, b];X) and u(·) satisfies

Equation (1.1) on (0, b], then we say that u(·) is a strict solution on [0, b].

To develop our studies, we include the next conditions.

Hq,r
F,σ,a(Y1; Y2) : (Yi, ‖ · ‖Yi), i = 1, 2, are Banach spaces, a > 0, r, q ∈ [1,∞],

1
q + 1

r ≤ 1, F ∈ Lq
Lip([0, a]×Y1;Y2)∩C([0, a]×Y1;Y2) and σ(·) belongs to Lr

Lip([0, a]×
Y1; [0, a]) ∩ C([0, a] × Y1; [0, a]).
HF,a(Y1; Y2) : (Yi, ‖ · ‖Yi), i = 1, 2, are Banach spaces, a > 0, the function

F (·) belongs to C([0, a] × Y1;Y2), and there are integrable bounded functions %i :
[0, a] 7→ R+, i = 1, 2, and a non-decreasing function KF : [0,∞) 7→ R+ such that
‖ F (s, x) ‖Y2≤ KF (‖ x ‖Y1)%1(s) + %2(s), for all s ∈ [0, a] and x ∈ Y1.
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In order to work on spaces similar to CLip,θ((0, b];Xα) and to simplify the exposition,
we introduce the following condition.

Condition Hα,γ
F,σ,a(Y1,Y2): the conditions Hq,r

F,σ,a(Y1;Y2) and HF,a(Y1;Y2) are

satisfied, 0 ≤ α < γ < 1+α, and there is a non-decreasing function ξ ∈ C([0, a];R+)
such that 0 < ξ(t) ≤ σ(t, x) ≤ t for all (t, x) ∈ (0, a] × Y1 and the functions
[F ](·+h,·)[σ](·+h,·)
(t−·)αξ2(1+α−γ)(·)

and
[F ](·,·)[σ](·,·)

(t−·)αξ1+α−γ(·) are integrable on [0, t] for all t ∈ [0, a] and

h > 0 with t+ h ≤ a.

Remark 3.1. To avoid additional notation, independent of the spaces Y i , we use the
same notation for the functions [F ](·,·), [σ](·,·), %i(·), WF (·), Wσ and ξ(·) in the conditions
Hq,r

F,σ,a(Y1;Y2) and HF,a(Y1;Y2).

Notation 1. If the condition Hα,γ
F,σ,a(Y1,Y2) is satisfied and Λ(τ) = (1 +

1/(ξ1+α−γ(τ))) for b ∈ (0, a] and r > 0, we use the following notation

Ψ1(b, r) = ‖ %1 ‖L∞([0,b]) KF (r)+ ‖ %2 ‖L∞([0,b]),

Ψ2(b, r) = ‖ %1 ‖L1([0,b]) KF (r)+ ‖ %2 ‖L1([0,b]),

Θ1(b) = sup
t,h∈[0,b],t+h≤b

∫ t

0

[F ](τ+h,τ)(1 + [σ](τ+h,τ))Λ
2(τ) dτ,

Θ2(b) =

∫ b

0

[F ](τ,τ)(1 + [σ](τ,τ))Λ(τ) dτ,

Θ3(b) = sup
t,h∈[0,b],t+h≤b

∫ t

0

[F ](τ+h,τ)

(t− τ)α
(
1 + [σ](τ+h,τ)

)
Λ2(τ) dτ,

Θ4(b) = sup
t∈[0,b]

∫ t

0

[F ](τ,τ)

(t− τ)α
(
1 + [σ](τ,τ)

)
Λ(τ) dτ,

Θ5(b) = sup
t∈[0,b]

∫ t

0

[F ](τ,0)

(t− τ)α
dτ.

Remark 3.2. Concerning the above conditions and notation, it is useful to make
some observations. As pointed out in the introduction, an important contribution of our
work is related to our studies and results about the existence and uniqueness of non-
Lipschitz solution for the problem (1.1)–(1.2). Our different results about it, see, for
example, Theorem 3.1, Proposition 3.1 and the associated corollaries, are proved using
the contraction mapping principle on subsets of spaces of the form CLip,θ((0, b];Xβ) with
β ≥ 0 endowed with the uniform norm ‖ · ‖C([0,b];Xβ), see, for instance, the space

Sx0
=
{
u ∈ CLip,1+α−γ((0, b];Xα) : u(0) = x0,max{‖ u ‖C([0,b];Xα), [u]CLip,1+α−γ

}
≤ R}

in the proof of Theorem 3.1. Evidently, the use of the contraction mapping principle
requires different estimates involving (directly or indirectly) the seminorm [·]CLip,1+α−γ

.

This simple fact is the justification for the introduction of the above conditions and

https://doi.org/10.1017/S0013091523000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000160


312 E. Hernandez, D. Fernandes and A. Zada

the definitions of the functions Θi(·) in Notation 1. In particular, we observe that the
definitions and the properties of the functions Θ1(·) and Θ4(·) are introduced to estimate
the seminorm [Γu]CLip,1+α−γ

and ‖ Γu−Γv ‖C([0,b];Xα), respectively, where Γ(·) denotes

the associated solution operator.

We divide the remainder of this section into four parts. To begin, we study the case in
which σ(0,x0) = 0.

3.1. The case σ(0, x0) = 0

In this section, we establish and prove several results related to the existence and
uniqueness of solution for the case σ(0,x0) = 0. The ideas and the technical framework
used to study this case are fundamental for the development of the next sections.

To establish our first result, we need the next simple and useful lemma.

Lemma 3.1. For 0 ≤ α < γ < 1 + α and x0 ∈ Xγ ,

‖ (−A)αT (t)x0 − (−A)αT (s)x0 ‖≤ C0,1+α−γ

s1+α−γ
‖ x0 ‖γ | t− s |, ∀t > s > 0,

T (·)x0 ∈ CLip,1+α−γ((0, a];Xα) and [T (·)x0]CLip,1+α−γ((0,a];Xα) ≤ C0,1+α−γ ‖ x0 ‖γ
for all a> 0.

Proof. We only note that for s ∈ (0, a] and t ∈ (s, a],

‖ (−A)αT (t)x0 − (−A)αT (s)x0 ‖ ≤
∫ t

s

‖ (−A)1+α−γT (ξ)(−A)γx0 ‖ dξ

≤
∫ t

s

C0,1+α−γ

ξ1+α−γ
‖ (−A)γx0 ‖ dξ

≤ C0,1+α−γ

s1+α−γ
‖ (−A)γx0 ‖| t− s | .

�

We can now prove our first result on the existence and uniqueness of the solution for
Equations (1.1)–(1.2).

Theorem 3.1. Suppose that the condition Hα,γ
F,σ,a(Xα,Xα) is satisfied, that the func-

tions Θi(·), i = 1, 2, are well defined and bounded and that x0 ∈ Xγ for some
γ ∈ (α, 1 + α). Then there exists a unique mild solution u ∈ CLip,1+α−γ((0, b];Xα) of
the problem (1.1)–(1.2) on [0, b] for some 0 < b ≤ a.

Proof. From Lemma 3.1, we can select R > C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα).

From the assumptions and noting that Ψ2(c,R) → 0 and Θ2(c) → 0 as c → 0, we choose
0 < b ≤ a such that
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C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ
+ C0Ψ2(b,R) + b1+α−γC0Ψ1(b,R)

+C0WF,σ(R)
[
(1 +R)2b1+α−γΘ1(b) + (1 +R)Θ2(b)

]
< R, (3.1)

where WF,σ(R) = WF (R)(1 + Wσ(R)), and we write [·]CLip,1+α−γ
in place of

[·]CLip,1+α−γ((0,b];Xα).

Let Sx0
be the space

Sx0
=
{
u ∈ CLip,1+α−γ((0, b];Xα) : u(0) = x0,max{‖ u ‖C([0,b];Xα), [u]CLip,1+α−γ

}
≤ R},

endowed with the metric d(u, v) =‖ u − v ‖C([0,b];Xα) and Γ : Sx0
7→ C([0, b];X) be the

map given by

Γu(t) = T (t)x0 +

∫ t

0

T (t− s)F (s, uσ(s)) ds, for t ∈ [0, b]. (3.2)

Let u ∈ Sx0
. Noting that x0 ∈ Xα and that F (·, uσ(·)) ∈ C([0, b];Xα), it is trivial to

see that Γu ∈ C([0, b];Xα). In addition, from condition HF,a(Xα;Xα), we note that

‖ F (s, uσ(s)) ‖α≤‖ %1 ‖L∞([0,b]) KF (R)+ ‖ %2 ‖L∞([0,b])≤ Ψ1(b,R), ∀s ∈ (0, b].(3.3)

Using this estimate, for t ∈ [0, b] we have that

‖ Γu(t) ‖α ≤
∫ t

0

C0 ‖ (−A)αF (τ, uσ(τ)) ‖ dτ + C0 ‖ x0 ‖α

≤ C0(‖ %1 ‖L1([0,b]) KF (R)+ ‖ %2 ‖L1([0,b])) + C0 ‖ x0 ‖α
≤ C0Ψ2(b,R) + C0 ‖ x0 ‖α≤ R. (3.4)

In addition, for s ∈ (0, b) and h ∈ (0, b] with s+ h ∈ (0, b], we note that

‖ F (s+ h, uσ(s+ h)) − F (s, uσ(s)) ‖α
≤ [F ](s+h,s)WF (R)(h+ ‖ uσ(s+ h) − uσ(s) ‖α)

≤ [F ](s+h,s)WF (R)

(
h+

[u]CLip,1+α−γ

ξ1+α−γ(s)
Wσ(R)[σ](s+h,s)(

h+
[u]CLip,1+α−γ

s1+α−γ
h

))

≤ [F ](s+h,s)WF (R)

(
h+

RWσ(R)

ξ1+α−γ(s)
[σ](s+h,s)

(
h+

R

s1+α−γ
h

))
≤ WF (R)(1 + Wσ(R))(1 +R)2[F ](s+h,s)

(
1 +

[σ](s+h,s)

ξ1+α−γ(s)(
1 +

1

s1+α−γ

))
h

≤ WF,σ(R)(1 +R)2[F ](s+h,s)(1 + [σ](s+h,s))

(
1 +

1

ξ1+α−γ(s)
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1 +

1

s1+α−γ

))
h

≤ WF,σ(R)(1 +R)2[F ](s+h,s)(1 + [σ](s+h,s))

(
1 +

1

ξ1+α−γ(s)

)
(

1 +
1

s1+α−γ

)
h, (3.5)

and hence,

‖ F (s+ h, uσ(s+ h)) − F (s, uσ(s))‖α≤ WF,σ(R)(1 +R)2[F ](s+h,s)(1 + [σ](s+h,s))Λ
2(s)h.
(3.6)

From Equation (3.6), for t ∈ (0, b] and h ∈ [0, b] with t+ h ∈ [0, b], we get

‖ Γu(t+ h) − Γu(t) ‖α

≤ [T (·)x0]CLip,1+α−γ

h

t1+α−γ
+

∫ h

0

‖ T (t+ h− τ) ‖‖ F (τ, uσ(τ)) ‖α dτ

+

∫ t

0

C0 ‖ F (τ + h, uσ(τ + h)) − F (τ, uσ(τ)) ‖α dτ

≤ [T (·)x0]CLip,1+α−γ

h

t1+α−γ
+ C0

(
‖ %1 ‖L∞([0,b]) KF (R)+ ‖ %2 ‖L∞([0,b])

)
h

+ WF,σ(R)(1 +R)2C0

∫ t

0

[F ](τ+h,τ)(1 + [σ](τ+h,τ))Λ
2(τ)h dτ

≤ [T (·)x0]CLip,1+α−γ

h

t1+α−γ
+ C0Ψ1(b,R)h+ C0WF,σ(R)(1 +R)2Θ1(b)h,

(3.7)

and hence,

[Γu]CLip,1+α−γ
≤ [T (·)x0]CLip,1+α−γ

+ C0b
1+α−γ(Ψ1(b,R) + WF,σ(R)(1 +R)2Θ1(b))

≤ R. (3.8)

From Equations (3.4) and (3.8), we conclude that Γ(·) is a Sx0
-valued function.

In order to estimate ‖ Γu− Γv ‖C([0,b];Xα), for u, v ∈ Sx0
and s ∈ (0, b], we note that

‖ uσ(s) − vσ(s) ‖α ≤ ‖ u(σ(s, u(s))) − v(σ(s, u(s))) ‖α + ‖ v(σ(s, u(s))) − v(σ(s, v(s))) ‖α

≤ ‖ u− v ‖C((0,b];Xα) +
[v]CLip,1+α−γ

ξ1+α−γ(s)
|σ(s, u(s)) − σ(s, v(s))|

≤ ‖ u− v ‖C((0,b];Xα) +
R[σ](s,s)Wσ(R)

ξ1+α−γ(s)
‖ u− v ‖C((0,b];Xα)

≤
(

1 +
R[σ](s,s)Wσ(R)

ξ1+α−γ(s)

)
‖ u− v ‖C((0,b];Xα)
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≤ (1 +R[σ](s,s)Wσ(R))

(
1 +

1

ξ1+α−γ(s)

)
‖ u− v ‖C((0,b];Xα)

≤ (1 +R)(1 + Wσ(R))(1 + [σ](s,s))Λ(s) ‖ u− v ‖C((0,b];Xα) . (3.9)

Using this inequality, for t ∈ (0, b], it is easy to see that

‖ Γu(t) − Γv(t) ‖C([0,b];Xα)

≤ C0WF (R)

∫ t

0

[F ](τ,τ) ‖ uσ(τ) − vσ(τ) ‖α dτ

≤ C0(1 +R)WF,σ(R)

∫ t

0

[F ](τ,τ)(1 + [σ](τ,τ))Λ(τ) dτ ‖ u− v ‖C((0,b];Xα)

≤ C0(1 +R)WF,σ(R)Θ2(b) ‖ u− v ‖C([0,b];Xα), (3.10)

which implies, see Equation (3.1), that Γ(·) is a contraction from Sx0
into Sx0

. Thus,
there exists a unique mild solution u ∈ CLip,1+α−γ((0, b];Xα) of the problem (1.1)–(1.2)
on [0, b]. �

Remark 3.3. Let u(·) be the mild solution in Theorem 3.1 and 0 < ε < b. From
the definition of CLip,1+α−γ((0, b];Xα), it is obvious that u|[ε,b] ∈ CLip([ε, b];Xα) and

[u]CLip([ε,b];Xα) ≤ [u]CLip,1+α−γ((0,b];Xα)ε
−(1+α−γ). Moreover, if σ(·) is Lipschitz, by using

that σ(t, x) ≥ ξ(t) ≥ ξ(ε) > 0 for all t ∈ [ε, b] and Lemma 2.2, we obtain that

[uσ]CLip([ε,b];Xα) ≤ [u]CLip,1+α−γ((0,b];Xα)ξ
−1(ε)[σ]CLip

(1+[u]CLip,1+α−γ((0,b];Xα)ε
−(1+α−γ)).

From the above, we have that u|[ε,b] and uσ|[ε,b] belongs to CLip([ε, b];Xα) for all 0 < ε < b.

Notation. For convenience, in the remainder of this work, if non-confusion arise, we
write simply [·]CLip,1+α−γ

in place of [·]CLip,1+α−γ((0,b];Xα).

From the proof of Theorem 3.1, we infer the next results on the existence of solution
defined on [0, a].

Corollary 3.1. Assume that the condition Hα,γ
F,σ,a(Xα,Xα) is satisfied that the func-

tions Θi(·), i = 1, 2, are well defined and bounded and that x0 ∈ Xγ . Let Pa : [0,∞) 7→ R
be the function given by

Pa(x) = C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα) + C0Ψ2(a, x) + C0Ψ1(a, x)a1+α−γ

+ C0WF,σ(x)
[
(1 + x)2a1+α−γΘ1(a) + (1 + x)Θ2(a)

]
− x,

where WF,σ(θ) = WF (θ)(1 + Wσ(θ)). If Pa(R) < 0 for some R> 0, then there exists a
unique mild solution u ∈ CLip,1+α−γ((0, a];Xα) of Equations (1.1)–(1.2) on [0, a].

Proof. The condition Pa(R) < 0 implies that the inequality (3.1) is satisfied with
‘a’ in place ‘b’, which allows us to complete the proof arguing as in the proof of
Theorem 3.1. �
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If the functions F (·) and σ(·) are Lipschitz, we get the following:

Corollary 3.2. Let the condition Hα,γ
F,σ,a(Xα,Xα) hold. Assume that F (·) and σ(·)

are Lipschitz, that Λ2(·) is integrable on [0, a] and let Pa : [0,∞) 7→ R be the function
given by

Pa(x) = C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα) + C0Ψ2(a, x) + C0Ψ1(a, x)a1+α−γ

+ 2[F ]CLip
(1 + [σ]CLip

)C0

(
(1 + x)2a1+α−γ ‖ Λ2 ‖L1([0,a])

+(1 + x) ‖ Λ ‖L1([0,a])

)
− x

= θ + (1 + x)2η1 + (1 + x)η2 − x.

If Pa(R) < 0 for some R> 0, then there exists a unique mild solution
u ∈ CLip,1+α−γ((0, a];X) of the problem (1.1)–(1.2) on [0, a]. In particular, if
P ((1 − 2η1 − η2)/2η1) < 0 and P (·) has a positive root, then there exists a unique mild
solution u ∈ CLip,1+α−γ((0, a];X) of (1.1)–(1.2) on [0, a].

Proof. The first assertion follows from Corollary 3.1 using WF (θ) = Wσ(θ) = 1,
[F ](t,s) = [F ]CLip

and [σ](t,s) = [σ]CLip
. In addition, if P ((1 − 2η1 − η2)/2η1) < 0 and

R1 > 0 is a positive roof of Pa(·), by noting that (1 − 2η1 − η2)/2η1 is the global minimum
point of P (·), it follows that there exists R between (1 − 2η1 − η2)/2η1 and R1 such that
P (R) < 0, which allows us to prove the assertion. �

Remark 3.4. For convenience, in the remainder of this work, if the condition
Hα,γ

F,σ,a(Y1,Y2) is satisfied, we assume that the functions in Notation 1 are well defined
and bounded.

Concerning Corollary 3.3 below, which is an obvious consequence of Theorem 3.1, we
alert that the objective of this result modifies some parts of the proof of Theorem 3.1 in
order to develop our studies on the existence and uniqueness of solution on [0,∞) using
the idea in Corollary 3.1. Specifically, we want to modify the definition of the map Pa(·)
in Corollary 3.1.

Corollary 3.3. In addition to the conditions in Theorem 3.1, assume that Θ1(c) → 0

as c→ 0 and that C0 ‖ %1 ‖L∞([0,a]) lim supr→∞
KF (r)

r < 1. Then there exists a unique
mild solution u ∈ CLip,1+α−γ((0, b];Xα) of (1.1)–(1.2) on [0, b] for some 0 < b ≤ a.

Proof. To begin, we select R> 0 such that

R > C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα) + C0(‖ %1 ‖L∞([0,a]) KF (R)

+ ‖ %2 ‖L∞([0,a]))

= C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα) + C0Ψ1(a,R). (3.11)

Using the assumptions on the functions Θi(·) and the fact that Ψ2(c,R) → 0 as c → 0,
we select 0 < b ≤ min{a, 1} such that
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C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα) + C0Ψ1(a,R)

+C0Ψ2(b,R) + C0WF,σ(R)
(
(1 +R)2Θ1(b) + (1 +R)Θ2(b)

)
< R, (3.12)

where WF,σ(θ) = WF (θ)(1 + Wσ(θ)).
Let Sx0

and Γ(·) be defined as in the proof of Theorem 3.1. A review of the proof of
Theorem 3.1 allows us to infer that the inequalities (3.4) and (3.6) remain valid, which
implies that ‖ Γu(t) ‖α≤ R for all t ∈ [0, b] and that

[Γu]CLip,1+α−γ
≤ [T (·)x0]CLip,1+α−γ

+ b1+α−γC0Ψ1(b, x) + C0WF,σ(R)

(1 +R)2b1+α−γΘ1(b)

≤ [T (·)x0]CLip,1+α−γ
+ C0Ψ1(b, x) + C0WF,σ(R)(1 +R)2Θ1(b) ≤ R

(3.13)

because 0 < b < 1. This proves that Γ(·) is an Sx0
-valued function. We also note that

the estimates (3.9) and (3.10) are also satisfied, which allows us to infer that Γ(·) is a
contraction. This allows us to finish the proof. �

Corollary 3.4. Assume that the conditions in Corollary 3.3 are satisfied and let Pa :
[0,∞) 7→ R be the function defined by

Pa(x) = C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα) + C0(Ψ1(a, x) + Ψ2(a, x))

+ C0WF,σ(x)((1 + x)2Θ1(a) + (1 + x)Θ2(a)) − x, (3.14)

where WF,σ(θ) = WF (θ)(1 + Wσ(θ)). If Pa(R) < 0 for some R> 0, then there exists a
unique mild solution u ∈ CLip,1+α−γ((0, a];X) of (1.1)–(1.2) on [0, a].

Proof. If a ≤ 1, from the definition of Pa(·), we have that the inequality (3.12) is
satisfied with ‘a’ in place of ‘b’, which allows us to use the proof of Corollary 3.3 to prove
the assertion.

Suppose a > 1. Let Ŝx0
be the space

Ŝx0
=
{
u ∈ CLip,1+α−γ((0, a];Xα) : u(0) = x0, ‖ u ‖C([0,a];Xα)≤ R,

[u]CLip,1+α−γ((0,1];Xα) ≤ R, [u]CLip([1,a];Xα) ≤ R
}

(3.15)

endowed with the metric d(u, v) =‖ u − v ‖C([0,a];Xα) and Γ : Ŝx0
7→ C([0, a];X) be

defined as in the proof of Theorem 3.1.
Using that Pa(R) < 0, it follows that the inequality (3.12) is satisfied. In addition,

observing that the estimates (3.3) and (3.6) are satisfied with ‘a’ in place of ‘b’, it
is easy to show that Equations (3.4) and (3.7) are also satisfied. In particular, from
Equation (3.7), for t ∈ (0, a] and h > 0 with t+ h ∈ [0, a], we have that
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‖ Γu(t+ h) − Γu(t) ‖α ≤ [T (·)x0]CLip,1+α−γ((0,a];Xα)
h

t1+α−γ
+ C0Ψ1(a,R)h

+ WF,σ(R)(1 +R)2C0Θ1(a)h. (3.16)

Using this inequality, it is easy to see that

[Γu]CLip,1+α−γ((0,1];Xα) ≤ [T (·)x0]CLip,1+α−γ((0,a];Xα) + C0Ψ1(a,R)

+ WF,σ(R)(1 +R)2C0Θ1(a) ≤ R. (3.17)

Moreover, from Equation (3.16), for t ∈ [1, a] and h > 0 with t+ h ∈ [1, a], we have that

‖ Γu(t+ h) − Γu(t) ‖α ≤ [T (·)x0]CLip,1+α−γ((0,a];Xα)h+ C0Ψ1(a,R)h (3.18)

+ WF,σ(R)(1 +R)2C0Θ1(a)h, (3.19)

which implies that

[Γu]CLip([1,a];Xα)

≤ [T (·)x0]CLip,1+α−γ((0,a];Xα) + C0Ψ1(a,R) + WF,σ(R)

(1 +R)2C0,αΘ1(a) ≤ R. (3.20)

From Equations (3.17) and (3.20), it follows that Γ(·) is an Ŝx0
-valued function.

Moreover, from the estimates in the last part of the proof of Theorem 3.1, we infer
that Equations (3.9) and (3.10) are satisfied with ‘a’ in place of ‘b’, which shows that
Γ(·) is a contraction. This completes the proof. �

Considering the ideas in the proofs of the previous results, next we study the existence
of solution for the case in which the condition Hα,γ

F,σ,a(Xα,X) is satisfied with α> 0

because the case in which the condition H0,γ
F,σ,a(X,X) holds follows from Theorem 3.1.

For completeness, we include a short proof of the next results.

Proposition 3.1. Assume that the condition Hα,γ
F,σ,a(Xα,X) is satisfied with α> 0,

x0 ∈ Xγ for some γ ∈ (α, 1 + α) and F (0, ·) ∈ CLip,loc(Xα;Xα). If Θ4(c) → 0 as
c→ 0, then there exists a unique mild solution u ∈ CLip,1+α−γ((0, b];Xα) of the problem
(1.1)–(1.2) on [0, b] for some 0 < b ≤ a.

Proof. Let R > C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα). Remarking that the func-

tions Θ3(·),Θ5(·) are bounded on [0, a], from the assumption on Θ4(·), we can select
0 < b ≤ a such that

C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα)

+C0 max{b, b1+α−γ}(‖ F (0, x0) ‖α +2R[F (0, ·)]Clip(BR(0,Xα);Xα))

+C0,αWF (R)bΘ5(b) + b1+α−γC0,α

(
WF (R)Θ5(b) + WF,σ(R)(1 +R)2Θ3(b)

)
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+C0,αWF,σ(R)(1 +R)Θ4(b) < R, (3.21)

where WF,σ(R) = WF (R)(1 + Wσ(R)).
Let Sx0

and Γ(·) be defined as in the proof of Theorem 3.1 and u, v ∈ Sx0
. To begin,

for t ∈ [0, b], we note that

‖ (−A)αΓu(t) ‖ ≤ ‖ T (t)x0 ‖α +

∫ t

0

‖ T (t− s)(−A)αF (0, x0) ‖ dτ

+

∫ t

0

‖ T (t− s)(−A)αF (0, uσ(τ)) − (−A)αF (0, x0) ‖ dτ

+

∫ t

0

‖ (−A)αT (t− s)(F (τ, uσ(τ)) − F (0, uσ(τ))) ‖ dτ

≤ + C0 ‖ x0 ‖α +C0b(‖ F (0, x0) ‖α +2R[F (0, ·)]Clip(BR(0,Xα);Xα))

+

∫ t

0

C0,α

(t− τ)α
WF (R)[F ](τ,0)τ dτ

≤ + C0 ‖ x0 ‖α +C0b(‖ F (0, x0) ‖α +2R[F (0, ·)]Clip(BR(0,Xα);Xα))

+ C0,αWF (R)bΘ5(b) ≤ R, (3.22)

which implies that Γu ∈ C([0, b];Xα) and that ‖ Γu ‖C([0,b];Xα)≤ R.
On the other hand, noting that the estimate (3.6) is satisfied and proceeding as in the

estimates (3.22) and (3.7), for t ∈ (0, b] and h > 0 with t+ h ∈ [0, b], we get

‖ Γu(t+ h) − Γu(t) ‖α

≤ [T (·)x0]CLip,1+α−γ

h

t1+α−γ
+

∫ h

0

C0 ‖ F (0, x0) ‖α dτ

+

∫ h

0

C0 ‖ F (0, uσ(τ)) − F (0, x0) ‖α dτ

+

∫ h

0

C0,α

(t+ h− τ)α
‖ F (τ, uσ(τ)) − F (0, uσ(τ)) ‖ dτ

+

∫ t

0

C0,α

(t− τ)α
‖ F (τ + h, uσ(τ + h)) − F (τ, uσ(τ)) ‖ dτ

≤ [T (·)x0]CLip,1+α−γ

h

t1+α−γ
+ C0 ‖ F (0, x0) ‖α h

+ C0[F (0, ·)]CLip(BR(0,Xα);Xα)2Rh+

∫ h

0

C0,α

(t+ h− τ)α
WF (R)[F ](τ,0)τ dτ

+ WF,σ(R)(1 +R)2C0,α

∫ t

0

[F ](τ+h,τ)

(t− τ)α
(1 + [σ](τ+h,τ))Λ

2(τ)hdτ

≤ [T (·)x0]CLip,1+α−γ

h

t1+α−γ
+ C0(‖ F (0, x0) ‖α

+ [F (0, ·)]CLip(BR(0,Xα);Xα)2R)h
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+ C0,αWF (R)Θ5(b)h+ WF,σ(R)(1 +R)2C0,αΘ3(b)h, (3.23)

and hence,

[Γu]CLip,1+α−γ
≤ [T (·)x0]CLip,1+α−γ

+ C0b
1+α−γ(‖ F (0, x0) ‖α

+ [F (0, ·)]Clip(BR(0,Xα);Xα)2R)

b1+α−γC0,α

(
WF (R)Θ5(b) + WF,σ(R)(1 +R)2Θ3(b)

)
≤ R. (3.24)

From Equations (3.22) and (3.24), it follows that Γ(·) has values in Sx0
.

To finish, noting that the inequality (3.9) is satisfied and arguing as in the estimate
(3.10), for t ∈ (0, b], we get

‖ Γu(t) − Γv(t) ‖C([0,b];Xα)

≤ C0,αWF (R)

∫ t

0

[F ](τ,τ)

(t− τ)α
‖ uσ(τ) − vσ(τ) ‖α dτ

≤ C0,α(1 +R)WF,σ(R)

∫ t

0

[F ](τ,τ)

(t− τ)α
(1 + [σ](τ,τ))Λ(τ) dτ ‖ u− v ‖C((0,b];Xα)

≤ C0,α(1 +R)WF,σ(R)Θ4(b) ‖ u− v ‖C([0,b];Xα), (3.25)

which implies (see Equation (3.21)) that Γ(·) is a contraction on Sx0
and that there exists

a unique mild solution u ∈ CLip,1+α−γ((0, b];Xα) of (1.1)–(1.2) on [0, b]. �

Remark 3.5. Concerning the assumptions in the last result, assume that F (t, x) =
f(t)x0+G(t, x), where G ∈ Lq

Lip([0, a]×Xα;X)∩C([0, a]×Xα;X) and f ∈ Lq
Lip([0, a];R).

If G(0, ·) ≡ 0 and f(0) ∈ {0, 1}, then F (·) verifies the conditions in Proposition 3.1.
On the other hand, concerning the condition on Θ4(·), it is interesting to note that

integrability of the functions τ 7→
[F ](τ,τ)
(t−τ)α (1 + [σ](τ,τ))Λ(τ) on [0, t] does not implies that

Θ4(b) → 0 as b → 0. About it, assume that F (·) and σ(·) are Lipschitz, α ∈ (0, 1), γ = 2α,
and there is β ∈ (0, 1) such that βτ ≤ ξ(τ) ≤ τ for all τ ∈ [0, a]. From the estimates

‖
[F ](·,·)

(t− ·)α
(1 + [σ](·,·))Λ(·) ‖L1([0,t])

≤ [F ]CLip

(
1 + [σ]CLip

)∫ t

0

1

(t− τ)α

(
1 +

1

ξ(τ)1−α

)
dτ

≤ [F ]CLip

(
1 + [σ]CLip

) t1−α

1 − α
+

∫ t

t
2

dτ

(t− τ)α
(

βt
2

)1−α

+

∫ t
2

0

dτ(
t
2

)α
(βτ)1−α

)

≤ [F ]CLip

(
1 + [σ]CLip

)( a1−α

1 − α
+

1

1 − α

(
2

βt

)1−α(
t

2

)1−α
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+

(
2

t

)α
1

α

(
βt

2

)α)
≤ [F ]CLip

(
1 + [σ]CLip

)( 1

1 − α

(
a1−α +

1

β1−α

)
+
βα

α

)
,

‖
[F ](·,·)

(t− ·)α
(
1 + [σ](·,·)

)
Λ(·) ‖L1([0,t])≥ [F ]CLip

(1 + [σ]CLip
)

∫ t

0

dτ

(t− τ)αξ(τ)1−α

≥ [F ]CLip

(
1 + [σ]CLip

)(∫ t
2

0

dτ

(t− τ)α
(
t
2

)1−α +

∫ t

t
2

dτ(
t
2

)α
τ1−α

)

≥ [F ]CLip

(
1 + [σ]CLip

)(21−α

t1−α

1

1 − α

[
t1−α −

(
t

2

)1−α
]

+

(
2

t

)α
1

α

[
tα −

(
t

2

)α])
≥ [F ]CLip

(
1 + [σ]CLip

)[21−α − 1

1 − α
+

2α − 1

α

]
,

we have that the function
[F ](·,·)
(t−·)α (1+[σ](·,·))Λ(·) belongs to L1([0, t]) for all t ∈ [0, a], that

Θ4(·) is bounded on [0, a] and that Θ4(c) does not converge to 0 as c → 0. We also note
that similar observations hold concerning other results and functions, see for example,
Proposition 4.6, Corollary 3.6 and Proposition 4.6.

Similar to the corollaries associated to Theorem 3.1, from the proof of Proposition 3.1,
we can prove the next results. We omit the proofs.

Corollary 3.5. Assume that the conditions Hα,γ
F,σ,a(Xα,X) is satisfied, x0 ∈ Xγ for

some γ ∈ (α, 1 + α) and F (0, ·) ∈ CLip,loc(Xα;Xα).

(a) Let Pa : [0,∞) 7→ R be the function given by

Pa(x) = C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα)

+ C0 max{a, a1+α−γ}(‖ F (0, x0) ‖α +2x[F (0, ·)]CLip(Bx(0,Xα);Xα))

+ C0,αWF (x)aΘ5(a) + a1+α−γC0,α

(
WF (x)Θ5(a) + WF,σ(x)(1 + x)2Θ3(a)

)
+ C0,αWF,σ(x)(1 + x)Θ4(a) − x,

where WF,σ(θ) = WF (θ)(1+Wσ(θ)). If Pa(R) < 0 for some R> 0, then there exists
a unique mild solution u ∈ CLip,1+α−γ((0, a];Xα) of (1.1)–(1.2) on [0, a].

(b) Assume, in addition, that F ∈ CLip([0, a]×Xα;X) and σ ∈ CLip([0, a]×Xα; [0, a]),
and let Pa : [0,∞) 7→ R be the function defined by

Pa(x) = C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα) + C0,α[F ]CLip

a2−α

1 − α

+ C0 max{a, a1+α−γ}(‖ F (0, x0) ‖α +2x[F (0, ·)]CLip(Bx(0,Xα);Xα))
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+ C0,αa
1+α−γ

(
[F ]CLip

a1−α

1 − α
+ 2[F ]CLip

(1 + [σ]CLip
)(1 + x)2Θ̃3(a)

)
+ 2C0,α[F ]CLip

(1 + [σ]CLip
)(1 + x)Θ̃4(a) − x,

where Θ̃3(a) = supt∈[0,a]

∫ t

0
Λ2(τ)
(t−τ)α dτ and Θ̃4(a) = supt∈[0,a]

∫ t

0
Λ(τ)

(t−τ)α dτ. If

Pa(R) < 0 for some R> 0, then there exists a unique mild solution u ∈
CLip,1+α−γ((0, a];Xα) of the problem (1.1)–(1.2) on [0, a].

Similar to the results in the first part of this section, to study the existence of solution
on [0,∞) using the ideas in the proof of Proposition 3.1, it is convenient to introduce
some modifications to the proof of this proposition. It is the objective of the next results.

Corollary 3.6. Suppose that the conditions in Proposition 3.1 are satisfied and
that Θi(c) → 0 as c→ 0 for i = 3, 4, 5. Then there exists a unique mild solution
u ∈ CLip,1+α−γ((0, b];Xα) of (1.1)–(1.2) on [0, b] for some 0 < b ≤ a.

Proof. The proof follows combining the ideas in the proof of Corollary 3.3 and
Proposition 3.1. For completeness, we include some details. To begin, we select R> 0
large enough such that

R > C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα).

From the assumptions on the functions Θi(·), i = 3, 4, 5, we select 0 < b ≤ min{a, 1}
such that

C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα)

+C0 max{b, b1+α−γ}(‖ F (0, x0) ‖α +2R [F (0, ·)]CLip(BR(0,Xα);Xα)) + C0,αWF (R)bΘ5(b)

+C0,α

(
WF (R)Θ5(b) + WF,σ(R)(1 +R)2Θ3(b) + WF,σ(R)(1 +R)Θ4(b)

)
< R,

and WF,σ(θ) = WF (θ)(1 + Wσ(θ)). Let Sx0
and Γ(·) be defined as in the proof of

Theorem 3.1.
Arguing as in the proof of Proposition 3.1, it is easy to see that Γu ∈ C([0, b];Xα)

and that the inequalities (3.22) and (3.25) remain valid. In addition, noting that
Equations (3.23) and (3.24) are satisfied, we obtain that

[Γu]CLip,1+α−γ
≤ [T (·)x0]CLip,1+α−γ

+ C0(‖ F (0, x0) ‖α +[F (0, ·)]CLip(BR(0,Xα);Xα)2R)

C0,α

(
WF (R)Θ5(b) + WF,σ(R)(1 +R)2Θ3(b)

)
≤ R

because 0 < b < 1. From the above remarks, we obtain that Γ(·) is a contraction on
Sx0

. �

The proof of the next result follows arguing as in the proof of Corollary 3.4, but using
the estimates in the proof of Proposition 3.1 in place of the estimates in the proof of
Theorem 3.1. We omit the proof.
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Corollary 3.7. Suppose that the condition Hα,γ
F,σ,a(Xα,X) is satisfied, x0 ∈ Xγ for

some γ ∈ (α, 1 + α) and F (0, ·) ∈ CLip,loc(Xα;Xα). Let Pa : [0,∞) 7→ R be the function
defined by

Pa(x) = C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα)

+ C0 max{a, a1+α−γ}(‖ F (0, x0) ‖α +2x[F (0, ·)]CLip(Bx(0,Xα);Xα))

+ C0,αWF (x)aΘ5(a) + C0,α

(
WF (x)Θ5(a) + WF,σ(x)(1 + x)2Θ3(a)

)
+ C0,αWF,σ(x)(1 + x)Θ4(a) − x, (3.26)

where WF,σ(θ) = WF (θ)(1 + Wσ(θ)). If Pa(R) < 0 for some R> 0, then there exists
a unique mild solution u ∈ CLip,1+α−γ((0, a];Xα) of (1.1)–(1.2) on [0, a]. Moreover,
[u|[0,1] ]CLip,1+α−γ((0,1];Xα) ≤ R and [u|[1,a] ]CLip([1,∞);Xα) ≤ R if a> 1.

3.2. The case σ(0, x0) > 0

The case σ(0,x0) > 0 is qualitatively different to the case σ(0, x0) = 0 because it is
necessary to establish the existence of solution on an interval [0, b] with b > σ(0, x0).
Noting that this case is an unconsidered problem in the literature, next we study the
existence and uniqueness of a Lipschitz mild solution (the case T (·)x0 ∈ CLip([0, a];Xα))
and of a non-Lipschitz mild solution (the case, T (·)x0 ∈ CLip,1+α−γ((0, a];Xα)).

3.2.1. Existence of a non-Lipschitz solution, the case T (·)x0 ∈ CLip,1+α−γ((0, a];Xα).

The next result follows from the ideas in Theorem 3.1, see also Corollary 3.1.

Proposition 3.2. Assume that the conditions Hq,r
F,σ,a(Xα;Xα) and HF,a(Xα;Xα) are

satisfied, σ(·) is Lipschitz, x0 ∈ Xγ , a > σ(0, x0) > 0 and there is a non-decreasing
function ξ ∈ C([0, b];R+) such that 0 < ξ(t) ≤ min{σ(t, x), t} for all (t, x) ∈ [0, a] ×Xα.
Let P : [0,∞) × [0, a] 7→ R be the function given by

P (x, s) := C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα) + C0Ψ2(s, x) + s1+α−γC0Ψ1(s, x)

+ 2WF (x)C0

(
1 + [σ]CLip

)(
(1 + x)2s1+α−γΘ̂1(s) + (1 + x)Θ̂2(s)

)
− x,

where Θ̂1(s) = supt,h∈[0,s],t+h≤s

∫ t

0
[F ](τ+h,τ)Λ

2(τ) dτ and Θ̂2(s) =
∫ s

0
[F ](τ,τ)Λ(τ) dτ and

Λ(τ) =
(

1 + 1
ξ1+α−γ(τ)

)
. If there are b > σ(0, x0) and R> 0 such that P (R, b) < 0

and [σ]CLip
(b + 2R) + σ(0, x0) ≤ b, then there exists a unique mild solution u ∈

CLip,1+α−γ((0, b];Xα) of (1.1)–(1.2) on [0, b]. In particular, if there is R> 0 such that
P (R, a) < 0 and [σ]CLip

(a+R+ ‖ x0 ‖α) + σ(0, x0) ≤ a, then there exists a unique mild

solution u ∈ CLip,1+α−γ((0, a];Xα) on [0, a].

Proof. Assume P (R, b) < 0. From the definition of P (·), we have that the inequality
(3.1) is satisfied. If Sx0

is the set defined in the proof of Theorem 3.1 and u ∈ Sx0
, for
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s ∈ (0, b], we get

σ(s, u(s)) ≤ | σ(s, u(s)) − σ(0, x0) | +σ(0, x0)

≤ [σ]CLip
(s+ ‖ u(s) − x0 ‖α) + σ(0, x0)

≤ [σ]CLip
(b+ ‖ u(s) ‖α + ‖ x0 ‖α) + σ(0, x0)

≤ [σ]CLip
(b+ 2R) + σ(0, x0) ≤ b, (3.27)

which implies that σ(s, u(s)) ∈ [0, b]. From this fact, we have that the map Γ(·) in the
proof of Theorem 3.1 is well defined on Sx0

. Moreover, arguing as in the cited proof, we
can show that Γ(·) is a contraction on Sx0

, which implies that there exists a unique mild
solution u ∈ Sx0

. The last assertion follows from the above remarks. �

3.2.2. Existence of a Lipschitz solution, the case T (·)x0 ∈ CLip([0, a];Xα).

To develop the studies in this section, it is convenient to introduce some notation.

Notation 3. In this section, we assume that the condition Hq,r
F,σ,a(Xα;X) is satisfied,

that the functions
[F ](·,0)
(t−·)α (1 + [σ](·,0)) and

[F ](·+h,·)
(t−·)α (1 + [σ](·+h,·)) are integrable on [0, t]

for all t ∈ [0, a] and we use the notation Φi, i = 1, 2, for the functions Φi : [0, a] 7→ R+,
i = 1, 2, defined by

Φ1(b) := sup
t,h∈[0,b],t+h≤b

∫ t

0

[F ](s+h,s)

(t− s)α
(1 + [σ](s+h,s)) ds, (3.28)

Φ2(b) := sup
t∈[0,b]

∫ t

0

[F ](s,0)

(t− s)α
(1 + [σ](s,0)) ds. (3.29)

Proposition 3.3. Assume that the condition Hq,r
F,σ,a(Xα;X) is satisfied, T (·)x0 ∈

CLip([0, a];Xα), a > σ(0, x0) > 0 and that the function F (0, ·) takes bounded set of Xα

into bounded sets of Xα. Let P : [0,∞) × [0, a] 7→ R be the function given by

P (x, s) := [T (·)x0]CLip([0,s];Xα) + sup
y∈Bρ(x,s)[0,Xα]

‖ (−A)αT (·)F (0, y) ‖L∞([0,s];X)

+ (1 + x)2WF (ρ(x, s))(1 + Wσ(ρ(x, s)))C0,α (Φ1(s) + Φ2(s)) − x,

where ρ(x, s) = xs+ ‖ x0 ‖α. If there are b > σ(0, x0) and R> 0 such that P (R, b) < 0
and 0 ≤ σ(s, x) ≤ b for all s ∈ [0, b] and ‖ x ‖α≤ ρ(R, b) = Rb+ ‖ x0 ‖α, then there
exists a unique mild solution u ∈ CLip([0, b];Xα) of the problem (1.1)–(1.2) on [0, b].

Proof. From the assumptions on P (·), we have that

[T (·)x0]CLip([0,b];Xα) + sup
y∈Bρ(R,b)[0,Xα]

‖ (−A)αT (·)F (0, y) ‖L∞([0,b];X)

+(1 +R)2WF,σ(ρ(R, b))C0,α (Φ1(b) + Φ2(b)) < R, (3.30)
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where WF,σ(θ) = WF (θ)(1 + Wσ(θ).
Let S(R, b) be the space

S(R, b) = {u ∈ C([0, b];Xα) : u(0) = x0, [u]CLip([0,b];Xα) ≤ R},

endowed with the metric d(u, v) =‖ u− v ‖C([0,b];Xα) and Γ : S(R, b) 7→ C([0, b];Xα), the
function defined using Equation (3.2).

For u ∈ S(R, b) and t ∈ [0, b], ‖ u(t) ‖α≤‖ u(t) − u(0) ‖α + ‖ u(0) ‖α≤ Rb+ ‖ x0 ‖=
ρ(R, b), which implies that σ(t, u(t)) ∈ [0, b] and that the functions u(σ(·, u(·))) and Γu(·)
are well defined.

Let u, v ∈ S(R, b). Proceeding as in the estimate (3.5) and remarking that ‖ u(s) ‖α≤
ρ(R, b) for all s ∈ [0, b], for s, h ∈ [0, b] with s+ h ∈ [0, b], we get

‖ F (s+ h, uσ(s+ h)) − F (s, uσ(s)) ‖
≤ [F ](s+h,s)WF (ρ(R, b))(h+ ‖ uσ(s+ h) − uσ(s) ‖α)

≤ [F ](s+h,s)WF (ρ(R, b))(h+ [u]CLip([0,b];Xα)Wσ(ρ(R, b))[σ](s+h,s)

(1 + [u]CLip([0,b];Xα))h)

≤ [F ](s+h,s)WF (ρ(R, b))(1 +RWσ(ρ(R, b))[σ](s+h,s)(1 +R)))h

≤ WF (ρ(R, b))(1 + Wσ(ρ(R, b)))(1 +R)2[F ](s+h,s)(1 + [σ](s+h,s))h
(3.31)

≤ WF,σ(ρ(R, b))(1 +R)2[F ](s+h,s)(1 + [σ](s+h,s))h. (3.32)

Moreover, proceeding as above, we obtain that

‖ F (s, uσ(s)) − F (0, u(σ(0, x0))) ‖≤ (1 +R)2WF,σ(ρ(R, b))[F ](s,0)(1 + [σ](s,0))s.(3.33)

From the above inequalities, for h, t ∈ [0, b] with t+ h ∈ [0, b], we see that

‖ Γu(t+ h) − Γu(t) ‖α

≤ [T (·)x0]CLip([0,b];Xα)h+

∫ h

0

‖ (−A)αT (t+ h− s)F (0, u(σ(0, x0))) ‖ ds

+

∫ h

0

‖ (−A)αT (t+ h− s) ‖‖ F (s, uσ(s)) − F (0, u(σ(0, x0))) ‖ ds

+

∫ t

0

‖ (−A)αT (t− s) ‖‖ F (s+ h, uσ(s+ h)) − F (s, uσ(s)) ‖ ds

≤ [T (·)x0]CLip([0,b];Xα)h+ C0 sup
v∈S(R,b)

‖ (−A)αT (·)F (0, v(σ(0, x0)))

‖L∞([0,b];X) h

+ (1 +R)2WF,σ(ρ(R, b))C0,α(Φ1(b) + Φ2(b))h

≤ [T (·)x0]CLip([0,b];Xα)h+ sup
y∈Bρ(R,b)[0,Xα]

‖ (−A)αT (·)F (0, y) ‖L∞([0,b];X) h
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+ (1 +R)2WF,σ(ρ(R, b))C0,α(Φ1(b) + Φ2(b))h, (3.34)

which implies that [Γu]CLip([0,b];Xα) ≤ R. This shows that Γ(·) is an S(R, b)-valued

function.
To finish, using Lemma 2.2, for u, v ∈ S(R, b) and t ∈ [0, b], it is easy to see that

‖ Γu(t) − Γv(t) ‖

≤ C0,αWF (ρ(R, b))

∫ t

0

[F ](s,s)

(t− s)α
(
1 +RWσ(ρ(R, b))[σ](s,s)

)
‖ u− v ‖C([0,s];Xα) ds

≤ (1 +R)WF (ρ(R, b))(1 + Wσ(ρ(R, b)))C0,α

∫ t

0

[F ](s,s)

(t− s)α
(1 + [σ](s,s)) ds

‖ u− v ‖C([0,b];Xα)

≤ (1 +R)WF,σ(ρ(R, b))C0,αΦ1(b) ‖ u− v ‖C([0,b];Xα), (3.35)

which proves that Γ(·) is a contraction on S(R, b) and that there exists a unique mild
solution u ∈ CLip([0, b];Xα) of the problem (1.1)–(1.2) on [0, b]. �

Corollary 3.8. Suppose that the condition Hq,r
F,σ,a(Xα;X) is satisfied, σ(·) is

Lipschitz, T (·)x0 ∈ CLip([0, a];Xα), a > σ(0, x0) > 0 and that F (0, ·) takes bounded
set of Xα into bounded sets of Xα. Let P : [0,∞) × [0, a] 7→ R be the map defined by

P (x, s) := [T (·)x0]CLip([0,s];Xα) + sup
y∈Bρ(x,s)[0,Xα]

‖ (−A)αT (·)F (0, y) ‖L∞([0,s];X)

+ 2(1 + x)2WF (ρ(x, s))C0,α(1 + [σ]CLip
)
(

Φ̂1(s) + Φ̂2(s)
)
− x,

where Φ̂1(c) := supt,h∈[0,c],t+h≤c

∫ t

0

[F ](s+h,s)
(t−s)α ds, Φ̂2(c) := supt∈[0,c]

∫ t

0

[F ](s,0)
(t−s)α ds and

ρ(x, s) =‖ x0 ‖α +xs. If there are b ∈ (σ(0, x0), a] and R> 0 such that P (R, b) < 0 and
[σ]CLip

(1+R)b+σ(0, x0) ≤ b, then there exists a unique mild solution u ∈ CLip([0, b];Xα)

of (1.1)–(1.2) on [0, b].

Proof. Let S(R, b) and Γ(·) be defined as in the proof of Proposition 3.3. For u ∈
S(R, b) and t ∈ [0, b],

| σ(t, u(t)) | ≤ | σ(t, u(t)) − σ(0, x0)) | +σ(0, x0)

≤ [σ]CLip
(t+ ‖ u(t) − x0 ‖α) + σ(0, x0)

≤ [σ]CLip
(1 +R)b+ σ(0, x0) ≤ b,

which shows σ(t, u(t)) ∈ [0, b] and that the functions u(σ(·, u(·))) and Γu(·) are well
defined. From this fact, we can use the proof of Proposition 3.3 to prove the assertion. �

The next result is an obvious consequence of Corollary 3.8.

Corollary 3.9. Assume F ∈ CLip([0, a] × Xα;X), σ ∈ CLip([0, a] × Xα; [0, a]),
σ(0, x0) > 0, T (·)x0 ∈ CLip([0, a];Xα) and that F (0, ·) ≡ 0. Let P : [0,∞) × [0, a] 7→ R
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be the function given by

P (x, s) := [T (·)x0]CLip([0,s];Xα) + 4[F ]CLip
(1 + [σ]CLip

)C0,α
s1−α

1 − α
(1 + x)2 − x.

If there is b > σ(0, x0) and R> 0 such that P (R, b) < 0 and [σ]CLip
(b+R)+σ(0, x0) ≤ b,

then there exists a unique mild solution u ∈ CLip([0, b];Xα) of the problem (1.1)–(1.2)
on [0, b].

4. Existence and uniqueness of solution on [0,∞)

In the first part of this section, we study the existence of solution on [0,∞) using
the basic ideas in Corollary 3.4 and Corollary 3.5. In the second part, we use a
different approach based in the study of the existence and qualitative properties
of maximal solution. Next, we use use the notation [T (·)x0]CLip,1+α−γ((0,∞);Xα) =

supa>0 [T (·)x0]CLip,1+α−γ((0,a];Xα).

4.1. The case [T (·)x0]CLip,1+α−γ((0,∞);Xα) < ∞

To prove the results in this section, we assume that the conditions in Theorem 3.1 or
the conditions in Proposition 3.1 are satisfied for all a > 0. For convenience, we introduce
some notation.

Notation 4. In this section, we assume F ∈ C([0,∞) ×Xα;X) and σ ∈ C([0,∞) ×
Xα; [0,∞)). Depending on the result, next we assume that the condition Hα,γ

F,σ,a(Xα,Xα)

or that the condition Hα,γ
F,σ,a(Xα,X) is satisfied for all a > 0. Considering it, next we use

the notation ΨF,σ(·) and WF,σ(·) for the functions ΨF,σ(t, s) : {(t, s) : t ≥ s ≥ 0} ×
[0,∞) 7→ [0,∞) and WF,σ : [0,∞) 7→ [0,∞) defined by ΨF,σ(t, s) = [F ](t,s)(1 + [σ](t,s))
and WF,σ(x) = WF (x)(1+Wσ(x)). In addition, for b > 0 and x > 0, we consider the next
notation.

χ
1,∞(x) := sup

s≥0
‖ T (s) ‖‖ %1(·)KF (x) + %2(·) ‖L∞([0,∞))

χ
2
(b, x) := sup

t∈[0,b]

‖‖ T (t− ·) ‖ %1(·)KF (x) + %2(·) ‖L1([0,t])

ϑ1(b) := sup
t,h∈[0,b],t+h∈[0,b]

‖‖ T (t− ·) ‖ ΨF,σ(· + h, ·)Λ2(·) ‖L1([0,t]),

ϑ2(b) = sup
t∈[0,b]

‖‖ T (t− ·) ‖ ΨF,σ(·, ·)Λ(·) ‖L1([0,t]),

ϑ3(b) = sup
t,h∈[0,b],t+h≤b

‖‖ (−A)αT (t− ·) ‖ ΨF,σ(· + h, ·),Λ2(·) ‖L1([0,t]),

ϑ4(b) = sup
t∈[0,b]

‖‖ (−A)αT (t− ·) ‖ ΨF,σ(·, ·)Λ(·) ‖L1([0,t]),

ϑ5(b) = sup
t∈[0,b]

‖‖ (−A)αT (t− ·) ‖ [F ](·,0) ‖L1([0,t]),
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ϑ6(b) = sup
t∈[0,b]

∫ t

0

‖ (−A)αT (t− τ) ‖ [F ](τ,0)τ dτ,

χ
2,∞(x) := sup

b≥0
χ
2
(b, x), ϑi,∞ := sup

b≥0
ϑi(b), i = 1, . . . , 6.

We can establish now the first result of this section.

Proposition 4.4. Assume that the conditions in Theorem 3.1 are satisfied for all
a> 0, the functions %i(·) are bounded on [0,∞), ϑi,∞ <∞ and χ

i,∞(x) <∞ for i = 1, 2
and all x> 0. Let Q∞ : [0,∞) 7→ R be the function given by

Q∞(x) := C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,∞);Xα) + (χ
1,∞(x) + χ

2,∞(x))

+ WF (x)(1 + Wσ(x))
(
(1 + x)2ϑ1,∞ + (1 + x)ϑ2,∞

)
− x.

If Q∞(R) < 0 for some R> 0, then there exists a unique mild solution u(·) of
(1.1)–(1.2) in CLip,1+α−γ,1((0,∞);Xα) such that [u|[0,1] ]CLip,1+α−γ((0,1];Xα) ≤ R and

[u|[1,∞)
]CLip([1,∞);Xα) ≤ R.

Proof. For a > 1, let Qa(·) be the function Qa : [0,∞) 7→ R given by

Qa(x) := C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,∞);Xα) + (χ
1
(a, x) + χ

2
(a, x))

+ WF (x)(1 + Wσ(x))
(
(1 + x)2ϑ1(a) + (1 + x)ϑ2(a)

)
− x.

From the definition of Qa(·) and Q∞(·), we note that Qa(x) ≤ Q∞(x) for all x > 0, which
implies that Qa(R) ≤ Q∞(R) < 0. Moreover, using that Qa(R) < 0 and proceeding as
in the proofs of Theorem 3.1 and Corollary 3.4, we can prove that there exists a ‘unique’
mild solution u|[0,1] ∈ CLip,1+α−γ((0, a];Xα) of the problem (1.1)–(1.2) on [0, a] such

that [ua|[0,1]
]CLip,1+α−γ((0,1];Xα) ≤ R and [ua|[1,a]

]CLip([1,a];Xα) ≤ R. From the uniqueness

of the solution ua(·), it follows that the function u : [0,∞) 7→ Xα defined by u(t) =
ua(t) for t ∈ [0, a] is a mild solution of (1.1)–(1.2) on [0,∞). Moreover, from the above
remarks and the proof of Corollary 3.4, we have that u ∈ CLip,1+α−γ,1((0,∞);Xα),
that [u|[0,1] ]CLip,1+α−γ((0,1];Xα) ≤ R and that [u|[0,∞)

]CLip([1,∞);Xα) ≤ R. The proof is

complete. �

The proof of Proposition 4.4 is done combining the ideas in the proofs of Corollary 3.4
and Theorem 3.1. In a similar way, but using Corollary 3.7 and Proposition 3.1, we can
prove the existence of a solution on [0,∞) for the case in which F ∈ C([0,∞)×Xα;X). In
the next result, we assume that F (0, ·) ∈ CLip,loc(Xα;Xα) and we use the next notation:

χ
3
(t) :=‖ (−A)αF (0, x0) ‖

∫ t

0

‖ T (t− s) ‖ ds, χ
3,∞ = sup

t≥0
χ
3
(t),

χ
4
(t, x) := 2x[F (0, ·)]CLip(Bx(0,Xα);Xα)

∫ t

0

‖ T (t− s) ‖ ds and χ
4,∞(x) = sup

t≥0
χ
4
(t, x).
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Proposition 4.5. Assume that the conditions in Proposition 3.1 are satisfied for all
a> 0, that ϑi,∞ <∞ for i = 3, 4, 5, 6, χ

3,∞ <∞ and χ
4,∞(x) <∞ for all x> 0, and let

Q∞ : [0,∞) 7→ R be the function given by

Q∞(x) = C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα) + (χ
3,∞ + χ

4,∞(x))

+ WF (x)ϑ6,∞ +
(
WF (x)ϑ5,∞ + WF,σ(x)(1 + x)2ϑ3,∞

)
+ WF,σ(x)(1 + x)ϑ4,∞ − x,

where WF,σ(θ) = WF (θ)(1 + Wσ(θ)). If Q∞(R) < 0 for some R> 0, then there exists a
unique mild solution u ∈ CLip,1+α−γ((0,∞);Xα) of (1.1)–(1.2) on [0,∞).

Proof. To prove the assertion, we use the argument in the proof of Corollary 3.7 and
Proposition 3.1. Let a > 0. Considering the definition of the function Pa(·) in the proof
of Corollary 3.7, see (3.26), we introduce the function Qa : [0,∞) 7→ R defined by

Qa(x) := C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα) + (χ
3
(a) + χ

4
(a, x))

+ WF (x)ϑ6,∞ +
(
WF (x)ϑ5,∞ + WF,σ(x)(1 + x)2ϑ3,∞

)
+ WF,σ(x)(1 + x)ϑ4,∞ − x.

Noting that Qa(R) ≤ Q∞(R) < 0 and that the term (χ
3
(a) + χ

4
(a, x)) has the same

sense that the term C0 max{a, a1+α−γ}(‖ F (0, x0) ‖α +2x[F (0, ·)]CLip(Bx(0,Xα);Xα)) in

the definition of Pa(·), it follows that we can use the same argument in the proof of
Corollary 3.7 to prove that there exists a unique mild solution ua ∈ CLip,1+α−γ((0, a];Xα)
of the problem (1.1)–(1.2) on [0, a] such that [ua|[0,1]

]CLip,1+α−γ((0,1];Xα) ≤ R and

[ua|[1,a]
]CLip([1,a];Xα) ≤ R. To finish, we only note that the function u : [0,∞) 7→ Xα

given by u(t) = ua(t) for t ∈ [0, a] satisfies the conditions in the assertion. We omit extra
details. �

We believe it is interesting to make some observations concerning the viability of the
assumptions in last propositions. For sake of brevity, we only consider an example related
to Proposition 4.4. In the next example, we assume that α ∈ (0, 1) and there are l ∈ N
and ε> 0 such that t ≥ σ(t, x) ≥ tl for all (t, x) ∈ [0, 1] × [0,∞), σ(t, x) ≤ t for all
(t, x) ∈ [0,∞) × [0,∞), γ = 1 + α− ε and 1 − 2lε > 0.

In addition to the above, we suppose F ∈ CLip([0,∞) × X;X), σ ∈ CLip([0,∞) ×
X; [0,∞)), that both functions are bounded and that the semigroup (T (t))t≥0 is uniformly
exponentially stable. Specifically, we assume that there are β > 0 and constants D0,θ > 0
such that ‖ (−A)θT (t) ‖≤ D0,θ e−βtt−θ for all t > 0 and θ > 0. Under these conditions, we
can assume that WF,σ(x) ≤ 2, [F ](t,s)(1 + [σ](t,s)) = [F ]CLip

(1 + [σ]CLip
) for all t ≥ s ≥ 0

and x > 0 and that ξ(s) = sl for s ∈ (0, 1] and ξ(s) = 1 for s ≥ 1.
In order to estimate ϑ1,∞, for t > 0 and h > 0, we note that

∫ t

0

‖ T (t− s) ‖
[F ](s+h,s)

ζ2(1+α−γ)(s)
(1 + [σ](s+h,s)) ds
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≤ D0,0[F ]CLip
(1 + [σ]CLip

)

∫ t

0

e−β(t−s)

ξ2(1+α−γ)(s)
ds

≤ D0,0[F ]CLip
(1 + [σ]CLip

)

(
sup

τ∈[0,1]

∫ τ

0

ds

s2lε
+ sup

τ∈[1,∞)

∫ τ

1

e−β(τ−s) ds

)

≤ D0,0[F ]CLip
(1 + [σ]CLip

)

(
1

1 − 2lε
+

1

β

)
,

which implies that ϑ1,∞ ≤ D0,0[F ]CLip
(1 + [σ]CLip

)
(

1
1−2lε + 1

β

)
. In a similar way, we

can prove that ϑ2,∞ ≤ D0,0[F ]CLip
(1 + [σ]CLip

)
(

1
1−lε + 1

β

)
. In addition, noting that

F (·) is bounded, we can assume that the functions %i(·), i = 1, 2, are given by %1(t) =‖
F (·, ·) ‖C([0,∞)×X;X) and %2(t) = 0. From the above, for b > 0 and x > 0, we get

χ
1,∞(x) ≤ D0,0 ‖ F (·, ·) ‖C([0,∞)×X;X),

χ
2,∞(x) ≤ D0,0 sup

t∈[0,b]

∫ t

0

e−β(t−s) ds‖ F (·, ·) ‖C([0,∞)×X;X)≤
D0,0

β
‖ F (·, ·) ‖C([0,∞)×X;X) .

From Lemma 3.1, we also note that [T (·)x0]CLip,1+α−γ((0,∞);Xα) ≤ D0,1+α−γ ‖
(−A)γx0 ‖ if x0 ∈ D(Aγ) for some γ ∈ (α, α + 1). From the above remarks, it fol-
lows that under the current conditions, the function Q∞(·) in Proposition 4.4 is well
defined.

4.2. Maximal and global solutions

In the previous results on the existence of solutions on [0,∞), we use the ideas in
the proof of Corollary 3.4 and Corollary 3.7. Next, we consider a different approach
based on the study of the existence and qualitative properties of maximal solutions. This
approach can be also used to study the global existence and uniqueness of a Lispchitz
solution and is a novelty in this type of study. Considering the above comments, next we
study separately the global existence of Lipschtz and non-Lipschitz solution.

To establish and prove the next results, we include the following condition.

Hα,β
F,σ,a : q ≥ 1, α ∈ (0, 1), β ∈ (α, 1), F ∈ Lq

Lip([0, a] ×X1;Xβ) ∩ Lq
Lip([0, a] ×Xα;X)

and σ ∈ CLip([0, a] ×Xα;R+).

4.2.1. Existence and uniqueness of a Lipschitz solution on [0,∞)

To begin, we study the existence and qualitative properties of maximal solutions. In
the next results, we assume that the condition Hq,r

F,σ,a(Xα;X) is satisfied and that σ(·) is

Lipschitz. In addition, for c ∈ (0, a], we use the notation Φ̂i,c, i = 1, 2, for the functions
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Φ̂i,c : [c, a] 7→ R given by

Φ̂1,c(d) = sup
t∈[c,d]

∫ t

c

[F ](τ,0)

(t− τ)α
dτ and Φ̂2,c(d) = sup

t,h∈[c,d],t+h≤d

∫ t

c

[F ](τ+h,τ)

(t− τ)α
dτ.

The proof of the next proposition follows from the proof of Proposition 3.3 or from
the results in [22]. However, to develop our next results, it is convenient to include some
details of the proof.

Proposition 4.6. Assume that the condition Hq,r
F,σ,a(Xα;X) is satisfied, that σ(·) is

Lipschitz, T (·)x0 ∈ CLip([0, a];Xα), F (0, x0) ∈ Xα and 0 ≤ σ(s, x) ≤ s for all (s, x) ∈
[0, a] × Xα. If Φ̂1,0(b) + Φ̂2,0(b) → 0 as b→ 0, then there exists a unique mild solution
u ∈ CLip([0, b];Xα) of (1.1)–(1.2) on [0, b] for some 0 < b ≤ a.

Proof. Let R > [T (·)x0]CLip([0,a];Xα)+ ‖ T (·)F (0, x0) ‖L∞([0,a];Xα) and 0 < b ≤ a

such that

[T (·)x0]CLip([0,b];Xα)+ ‖ T (·)F (0, x0) ‖L∞([0,a];Xα)

+(1 +R)2WF (ρ(R, b))
(

1 + [σ]CLip

)
C0,α

(
Φ̂1,0(b) + Φ̂2,0(b)

)
< R, (4.36)

where ρ(R, b) := Rb+ ‖ x0 ‖α. Let S(R, b) and Γ(·) be defined as in the proof of
Proposition 3.3.

Let u, v ∈ S(R, b) and t, s ∈ [0, b]. Noting that ‖ uσ(s) ‖α≤‖ uσ(s)− x0 ‖α + ‖ x0 ‖α≤
ρ(R, b) and that u(σ(0, x0)) = u(0) = x0, from the proof of Proposition 3.3, it is easy to
infer that

‖ F (s+ h, uσ(s+ h)) − F (s, uσ(s)) ‖ ≤ WF (ρ(R, b))[F ](s+h,s)(1 +R)2(1 + [σ]CLip
)h,

‖ F (s, uσ(s)) − F (0, x0) ‖ ≤ (1 +R)2WF (ρ(R, b))[F ](s,0)(1 + [σ]CLip
)s,

for all s, h ∈ [0, b] with s + h ∈ [0, b]. From the above and arguing as in the proof of
Proposition 3.3, see (3.34) and (3.35), for h, t ∈ [0, b] with t+ h ∈ [0, b], we get

‖ Γu(t+ h) − Γu(t) ‖α ≤ [T (·)x0]CLip([0,b];Xα)h+

∫ h

0

‖ T (t+ h− s)(−A)αF (0, x0) ‖ ds

+

∫ h

0

‖ (−A)αT (t+ h− s) ‖‖ F (s, uσ(s)) − F (0, x0) ‖ ds

+

∫ t

0

‖ (−A)αT (t− s) ‖‖ F (s+ h, uσ(s+ h))

− F (s, uσ(s)) ‖ ds

≤ [T (·)x0]CLip([0,b];Xα)h+ ‖ T (·)F (0, x0) ‖L∞([0,a];Xα) h

+ (1 +R)2WF (ρ(R, b))(1 + [σ]CLip
)(Φ̂1,0(b) + Φ̂2,0(b))h

≤ Rh,
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and

‖ Γu(t) − Γv(t) ‖ ≤ C0,αWF (ρ(R, b))

∫ t

0

[F ](s,s)

(t− s)α
(1 +R[σ]CLip

) ‖ u− v ‖C([0,s];Xα) ds

≤ (1 +R)WF (ρ(R, b))C0,α(1 + [σ]CLip
)Φ̂2,0(b) ‖ u− v ‖C([0,b];Xα),

(4.37)

which shows that Γ(·) is a contraction from S(R, b) into S(R, b). This completes the
proof. �

In order to use the condition Hα,β
F,σ,a, we remark the next result on strict solution.

Proposition 4.7. [22, Proposition 3.2] Assume that the conditions in Proposition 4.6
are satisfied, x0 ∈ D(A) and let u(·) be the mild solution in Proposition 4.6. If
‖ [F ](s,·) ‖L1([s−µ,s])→ 0 as µ ↓ 0 uniformly for s in bounded subsets of [0, a], or

sups∈[0,a] ‖ [F ](s,·) ‖Lq([0,a]) is finite, or F ∈ CLip([0, a]×;Xα : X), then u(·) is a strict
solution of (1.1)–(1.2) on [0, b].

The next result is concerning the existence of a maximal strict solution.

Proposition 4.8. Assume that the assumptions in Proposition 4.6 and that the con-
dition Hα,β

F,σ,a are satisfied. Suppose in addition, x0 ∈ D(A), limd↓c Φ̂i,c(d) = 0 for i = 1, 2
and every c> 0 and that F (·) satisfies some of the conditions in Proposition 4.7. Then
there exists a unique maximal strict solution u ∈ C(Imax;Xα) of (1.1)–(1.2). Moreover,
Imax = [0, a] if [u]CLip(Imax;Xα) is finite.

Proof. Let u ∈ CLip([0, b];Xα) be the mild solution in the Proposition 4.6, R be the
number in the proof of the cited result and assume b < a. To begin, we study the existence
and uniqueness of solution for the problem

v′(t) = Av(t) + F (t, v(σ(t, v(t)))), t ∈ [b, a], (4.38)

v(θ) = u(θ), θ ∈ [0, b]. (4.39)

Noting that u(·) is a strict solution on [0, b], see Proposition 4.7, from condition Hα,β
F,σ,a,

we obtain that F (·, u(·)) ∈ C([0, b];Xβ). Using this fact, we have that

‖ (−A)1+αu(b) ‖ ≤ ‖ (−A)1+αT (b)x0 ‖ +

∫ b

0

‖ (−A)1+α−βT (b− s) ‖‖ (−A)β

F (s, uσ(s)) ‖ ds

≤ ‖ (−A)1+αT (b)x0 ‖ +

∫ b

0

C0,1+α−β

(b− s)1+α−β
‖ F (·, uσ(·)) ‖C([0,b];Xβ) ds

≤ ‖ (−A)1+αT (b)x0 ‖ + ‖ F (·, uσ(·)) ‖C([0,b];Xβ) C0,1+α−β
bβ−α

β − α
,

(4.40)
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which implies that u(b) ∈ D((−A)1+α).
From the above, T (· − b)u(b) ∈ CLip([b, a];Xα) and F (b, uσ(b)) ∈ Xα, which allows

us to use the same argument of the proof of Proposition 4.6 to study the existence of
solution for the problem (4.38)–(4.39). Let

R1 > R+ [T (· − b)u(b)]CLip([b,a];Xα)+ ‖ T (·)F (b, uσ(b)) ‖L∞([0,a];Xα) .

From the assumptions on the functions Φ̂i,b(·), i = 1, 2, there exists δ > 0 such that

R+ [T (· − b)u(b)]CLip([b,a];Xα)+ ‖ T (·)F (b, uσ(b)) ‖L∞([0,a];Xα)

+(1 +R1)2WF (ρ(R1))C0,α(1 + [σ]CLip
)
(

Φ̂1,b(b+ δ) + Φ̂2,b(b+ δ)
)
< R1, (4.41)

where ρ(R1) := R1a+ ‖ u(b) ‖α. Proceeding as in the proof of Proposition 4.6, we define
the space

S(R1, b+ δ) = {v ∈ C([0, b+ δ];X) : v|[0,b] = u, [v]CLip([b,b+δ];Xα) ≤ R1},

endowed with the metric d(w, v) =‖ w − v ‖C([b,b+δ];Xα). In addition, we define the map
Γ : S(R1, b+ δ) → C([0, b+ δ];X) by Γv(t) = u(t) for t ∈ [0, b] and

Γv(t) = T (t− b)u(b) +

∫ t

b

T (t− s)F (s, vσ(s)) ds, for t ∈ [b, b+ δ].

Arguing as in the proof of Proposition 4.6, we can prove that Γ(·) is a contraction, which
implies that there exists a unique mild solution v ∈ CLip([0, b+ δ];Xα) of (4.38)–(4.39).
Moreover, using Proposition 4.7, it is easy to infer that v(·) is the unique X α-valued
Lipschitz strict solution of (1.1)–(1.2) on [0, b+ δ].

From the above remarks and the Zorn’s Lemma, we infer that there exists a unique
maximal ‘locally Lipschitz’ strict solution w ∈ C(Imax;Xα) of Equations (1.1)–(1.2).

To complete the proof, assume bx0 = sup Imax < a and that [w]CLip(Imax;Xα) < ∞.

Using that [w]CLip(Imax;Xα) < ∞, it follows that X α-limt→bx0
w(t) exists and it is easy

to see that the function w : [0, bx0 ] 7→ Xα defined by w(θ) = w(θ) for θ < bx0 and
w(bx0) = limt→bx0

w(t) is a mild solution of Equations (1.1)–(1.2) on [0, bx0 ] and that

w ∈ CLip([0, bx0 ];Xα). Moreover, from Proposition 4.7, we have that w(·) is also a strict
solution on [0, bx0 ]. Noting that w(·) is a maximal locally X α-valued Lipschitz strict
solution, we infer that w(·) = w(·) and that Imax = [0, bx0 ]. Using now the condition

Hα,β
F,σ,a and proceeding as in the estimative (4.40), we obtain that w(bx0) ∈ X1+α and

F (bx0 , w
σ(bx0)) ∈ Xβ ⊂ Xα.

From the above, T (·−bx0)u(bx0) ∈ CLip([bx0 , a];Xα) and F (bx0 , w
σ(bx0)) ∈ Xβ ⊂ Xα,

which allows us to use the argument in the first part of this proof to prove that there
exists δ1 > 0 and a unique strict solution z ∈ CLip([0, bx0 + δ1];Xα) of (1.1)–(1.2) such
that z(·) = w(·) on Imax, which is absurd because w((·) is a maximal solution. This proves
that bx0 = a if [w]CLip(Imax;Xα) <∞. The proof is complete. �
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In the next result, we establish the existence of an X α-Lipschitz strict solution on [0, a].

Proposition 4.9. Suppose the conditions in Proposition 4.8 hold. If x0 ∈ D((−A)1+α)
and F (·) is Lipschitz, then there exists a unique strict solution u ∈ CLip([0, a];Xα) of
(1.1)–(1.2).

Proof. Let u ∈ C(Imax;Xα) be the unique maximal strict solution in Proposition 4.8
and bx0 = sup Imax. For t ∈ Imax, we have that

‖ (−A)αu(t) ‖ ≤ C0 ‖ (−A)αx0 ‖ +

∫ t

0

C0,α

(t− s)α
‖ F (s, uσ(s)) − F (s, 0) ‖ ds

+ ‖ F (·, 0) ‖C([0,bx0);X) C0,α

b1−α
x0

1 − α

≤ C0 ‖ (−A)αx0 ‖ +C0,α[F ]CLip

∫ t

0

‖ u ‖C([0,s);Xα)

(t− s)α
ds

+ ‖ F (·, 0) ‖C([0,bx0);X) C0,α

b1−α
x0

1 − α
,

and using that the function s→‖ u ‖C([0,s);Xα) is non-decreasing, we obtain that

‖ u ‖C([0,t);Xα) ≤ C0 ‖ (−A)αx0 ‖ +C0,α[F ]CLip

∫ t

0

‖ u ‖C([0,s);Xα)

(t− s)α
ds

+ ‖ F (·, 0) ‖C([0,bx0);X) C0,α

b1−α
x0

1 − α
, (4.42)

which implies (see [39]) that ‖ u ‖C(Imax;Xα)<∞.
We estimate now ‖ Au ‖C(Imax;X). From Lemma 2.1 and Lemma 2.2, we infer that

u ∈ C1−α(Imax;Xα) and uσ ∈ C(1−α)2(Imax;Xα). From the above, for t ∈ Imax, we get

‖ Au(t) ‖ ≤ C0 ‖ Ax0 ‖ +

∫ t

0

‖ AT (t− s) ‖‖ F (s, uσ(s)) − F (t, uσ(t)) ‖ ds

‖ A
∫ t

0

T (t− s)F (t, uσ(t)) ds ‖

≤ C0 ‖ Ax0 ‖ +

∫ t

0

C1[F ]CLip

(t− s)
((t− s) + [uσ]

C(1−α)2(Imax;Xα)
(t− s)(1−α)2) ds

+ ‖ T (t)F (t, uσ(t)) − F (t, uσ(t)) ‖

≤ C0 ‖ Ax0 ‖ +C1[F ]CLip
bx0 + C1[F ]CLip

[uσ]
C(1−α)2(Imax;Xα)

b
(1−α)2

x0

(1 − α)2

+ (C0 + 1) ‖ F (·, uσ(·)) ‖C([0,bx0);X), (4.43)

which implies that ‖ Au ‖C(Imax;X)<∞.
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Using now the condition Hα,β
F,σ,a, we have that ‖ F (·, uσ(·)) ‖C(Imax;Xβ)<∞, and noting

that β > α, we get

‖ (−A)1+αu(t) ‖ ≤ C0 ‖ (−A)1+αx0 ‖ +

∫ t

0

‖ (−A)1+α−βT (t− s) ‖

‖ (−A)βF (s, uσ(s)) ‖ ds

≤ C0 ‖ (−A)1+αx0 ‖ + ‖ F (·, uσ(·)) ‖C(Imax;Xβ) C1+α−β
aβ−α

β − α
,

(4.44)

which shows that u(·) is an X1+α-valued function and that ‖ Au ‖C(Imax;Xα)<∞. Using
the previous estimates and that u′(·) is a strict solution, we obtain that

‖ u′ ‖C(Imax;Xα)≤‖ Au ‖C(Imax;Xα) + ‖ F (·, uσ(·)) ‖C(Imax;Xα),

which implies that [u]CLip(Imax;Xα) is finite and that Imax = [0, a], see Proposition 4.8. �

The next result is an immediate consequence of Proposition 4.9.

Corollary 4.10. If the conditions in Proposition 4.9 are satisfied for all a> 0, then
there exists a unique locally Xα-Lipschitz strict solution u ∈ C([0,∞);Xα) of the problem
(1.1)–(1.2).

4.2.2. Existence and uniqueness of non-Lipschitz solutions on [0,∞)

The results in this section follow combining Proposition 4.8, Proposition 4.9 and
Remark 3.3. In Proposition 4.10 below, we use the ideas in the proof of Proposition 4.8.

Proposition 4.10. Suppose the conditions in Theorem 3.1 hold. Assume that the con-
dition Hα,β

F,σ,a is satisfied, x0 ∈ D(A), limd↓c Φ̂i,c(d) = 0, i = 1, 2, for every a > c > 0 and
that F (·) satisfies some of the conditions in Proposition 4.7. Then there exists a unique
maximal classical solution u ∈ C(Imax;Xα) such that u|(0,c] ∈ CLip,1+α−γ((0, c];Xα) and

u|[ε,d] ∈ CLip([ε, d];Xα) for all 0 < ε ≤ c and d < bx0 = sup Imax ≤ a. Moreover, if

[u]CLip([c,bx0);Xα) <∞ for some 0 < c < bx0 , then Imax = [0, a].

Proof. Let u ∈ CLip,1+α−γ((0, b];Xα) be the mild solution in Theorem 3.1. From
Remark 3.3, we note that u|[ b

2 ,b
] ∈ CLip([ b2 , b];Xα), which in turn implies that uσ|[ b

2 ,b
] ∈

CLip([ b2 , b];Xα). Moreover, it is easy to see that u|[
ξ
(
b
2

)
,b
] is a mild solution of the problem

w′(t) = Aw(t) + F (t, w(σ(t, w(t)))), t ∈
[
b

2
, b

]
, (4.45)

w(s) = u(s), s ∈
[
ξ

(
b

2

)
,
b

2

]
. (4.46)
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Let ρ(b) :=‖ u ‖C([0,b];Xα). For t ∈
(
b
2 , b
]
, we see that

‖ Au(t) ‖ ≤ ‖ AT
(
t− b

2

)
u

(
b

2

)
‖ +

∫ t

b
2

‖ AT (t− s) ‖ F (s, uσ(s)) − F (t, uσ(t))) ‖ ds

+ ‖ A
∫ t

b
2

T (t− s)F (t, uσ(t)) ‖ ds

≤ ‖ AT
(
t− b

2

)
u

(
b

2

)
‖ +

∫ t

b
2

C1WF (ρ(b))

(t− s)
[F ](t,s)(

1 + [uσ]
CLip

([
b
2 ,b

]
;Xα

)) (t− s) ds

+ ‖ T (t)F (t, uσ(t)) − F (t, uσ(t)) ‖

≤ ‖ AT
(
t− b

2

)
u

(
b

2

)
‖ +C1WF (ρ(b)) ‖ [F ](t,·) ‖L1([0,t])(

1 + [uσ]
CLip

([
b
2 ,b

]
;Xα

))
+ (C0 + 1) ‖ F (t, uσ(t)) ‖ (4.47)

which implies that u(t) ∈ D(A) for all t ∈ ( b
2 , b]. Moreover, noting that the same argument

can be used on [ b3 , b], we infer that u
(
b
2

)
∈ D(A) and that

‖ Au ‖
C([ b2 ,b];X)

≤ C0 ‖ Au
(
b

2

)
‖ +C1WF (ρ(b)) sup

t∈[0,a]

‖ [F ](t,·) ‖L1([0,t])(
1 + [uσ]

CLip

([
b
2 ,b

]
;Xα

))
+ (C0 + 1) ‖ F (·, uσ(·)) ‖

C([ b2 ,b];X)
.

From the above and the condition Hα,β
F,σ,a, we obtain that F (·, uσ(·))|[ b

2 ,b
] ∈

C([ b2 , b];Xβ). Using this fact and proceeding as in the estimate (4.44), for t ∈ [ b2 , b],
we see that

‖ (−A)1+αu(b) ‖ ≤ ‖ (−A)1+αT

(
b

2

)
u

(
b

2

)
‖

+

∫ b

b
2

‖ (−A)1+α−βT (b− s) ‖‖ (−A)βF (s, uσ(s)) ‖ ds

≤‖ (−A)1+αT

(
b

2

)
u

(
b

2

)
‖ + ‖ F (·, uσ(·)) ‖

C([ b2 ,b];Xβ)
C1+α−β

bβ−α

β − α
,

(4.48)

which shows that u(b) ∈ X1+α.
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From the above, T (· − b)u(b) ∈ CLip([b, a];Xα) and F (b, uσ(b)) ∈ Xα, and arguing
as in the proof of Proposition 4.8, we can prove that there exists a maximal locally
X α-Lipschitz strict solution v ∈ C(Imax;Xα), with Imax ⊂ [ξ(b), a], of the problem

w′(t) = Aw(t) + F (t, w(σ(t, w(t)))), t ∈ [b, a], (4.49)

w(s) = u(s), s ∈ [ξ(b), b]. (4.50)

Defining z : [0, b] ∪ Imax 7→ Xα by z(θ) = u(θ) for θ ∈ [0, b] and z(θ) = v(θ) for θ ∈ Imax,
we obtain a maximal classical solution of the problem (1.1)–(1.2) in CLip,1+α−γ([0, b] ∪
Imax;Xα). �

We complete this section with the following two results.

Proposition 4.11. If the conditions in Proposition 4.10 are satisfied and F (·), σ(·)
are Lipschitz, then there exists a unique classical solution u ∈ CLip,1+α−γ((0, a];Xα) of
(1.1)–(1.2).

Proof. The assertion follows from the proof of Proposition 4.10. We only note that
under the current conditions, from Proposition 4.9, it is possible to infer that the maximal
strict solution v(·) of the problem (4.49)–(4.50) belongs to CLip[ξ

(
b
2

)
, a];Xα), which

implies that the maximal classical solution z(·) is defined on the whole interval [0, a]. �

The next corollary is an immediate consequence of Proposition 4.11.

Corollary 4.11. If the conditions in Proposition 4.11 are satisfied for all a> 0,
then there exists a unique classical solution u ∈ CLip,1+α−γ((0,∞);Xα) of the problem
(1.1)–(1.2).

5. Examples

In this section, we study the existence of solutions for some PDEs with SDA. Next, A
is the Laplacian operator with domain D(A) = H2(Ω) ∩ H1

0 (Ω) in X = L2(Ω), where
Ω ⊂ RN is an open bounded set with smooth boundary. It is well known that A is the
generator of an analytic C 0-semigroup (T (t))t≥0 on X. Next, for the semigroup (T (t))t≥0,
we adopt all the notation used in the previous sections.

Motivated by the theory of differential equations associated to the Fisher–Kolmogoroff
equation, see for example [25, Example 1]; next we study the diffusion type problem

u′(t, x) = ∆u(t, x) + ζ(t)u(σ(t, u(t)), x)[1 − u(σ(t, u(t)), x)], (t, x) ∈ [0, a] × Ω,
(5.1)

u(t, ·) |∂Ω = 0, t ∈ [0, a], (5.2)

u(0, y) = x0(y), y ∈ Ω, (5.3)

where σ(t, y) = µ(t)%(‖ y ‖) for t > 0 and y ∈ X, µ ∈ CLip([0, a]; (0, a]), % ∈
CLip([0,∞); [δ,∞)) for some 1 > δ > 0 and ζ ∈ C([0, a];R) is the function in the fourth
example of Remark 2.1.
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To represent the problem (5.1)–(5.3) in the form (1.1)–(1.2), we select α ∈ (0, 1)
such that Xα ↪→ C(Ω) and we define the map F : [0, a] × Xα → X by F (t, u)(x) =
ζ(t)u(x)[1−u(x)]. From the previous assumptions, it is obvious that σ(·) is Lipschitz. To
show that F ∈ Lq

Lip([0, a]×Xα;X), we use the notation ‖ ic ‖L(Xα;C(Ω)) and ‖ ic ‖L(Xα;X)

for the norm of the inclusion map from X α into C(Ω;Rn) and from X α into X. For r > 0,
0 ≤ s < t ≤ a and u, v ∈ Br[0, Xα], we get

‖ F (t, u) − F (s, v) ‖
≤ | ζ(t) − ζ(s) |‖ u(1 − u) ‖ + | ζ(s) |‖ u− v − (u2 − v2) ‖
≤ [ζ](t,s)|t− s|(1+ ‖ u ‖C(Ω)) ‖ u ‖ + | ζ(s) |‖ u− v ‖

(1+ ‖ u ‖C(Ω) + ‖ v ‖C(Ω))

≤ [ζ](t,s)|t− s|(1+ ‖ ic ‖L(Xα;C(Ω))‖ u ‖α) ‖ ic ‖L(Xα;X)‖ u ‖α
+ | ζ(s) |‖ ic ‖L(Xα;X)‖ u− v ‖α (1+ ‖ ic ‖L(Xα;C(Ω)) (‖ u ‖α + ‖ v ‖α))

≤ [ζ](t,s)|t− s|(1+ ‖ ic ‖L(Xα;C(Ω)) r) ‖ ic ‖L(Xα;X) r

+ | ζ(s) |‖ u− v ‖α‖‖ ic ‖L(Xα;X) (1+ ‖ ic ‖L(Xα;C(Ω)) 2r)

≤ ([ζ](t,s)+ | ζ(s) |) ‖ ic ‖L(Xα;X) (1 + 2 ‖ ic ‖L(Xα;C(Ω)))(1 + r)2

(|t− s|+ ‖ u− v ‖α).

This shows that F (·) belongs to Lq
Lip([0, a]×Xα;X) with [F ](t,s) = ([ζ](t,s)+ | ζ(s) |) and

WF (r) = 3(1+ ‖ ic ‖L(Xα;C(Ω)) + ‖ ic ‖L(Xα;X))
2(1 + r)2. Moreover, from the definition

of F (·), it is easy to see that ‖ F (t, u) ‖≤| ζ(t) |‖ ic ‖L(Xα;X) (r + r2), and hence, the
condition HF,a(Xα;X) is satisfied with KF (x) =‖ ic ‖L(Xα;X) (x+ x2), %1(t) = ζ(t) and
%2(t) = 0. In addition, from the current assumptions, we can assume that the functions
ξ(·) and Λ(·) in condition Hα,γ

F,σ,a(Y1,Y2) and Notation 1 are given by ξ(t) = µ(t)δ

and Λ(τ) = (1 + 1
(δµ(τ))1+α−γ ). From the above remarks, we have that the conditions

Hq,r
F,σ,a(Xα;X) and HF,a(Xα;X) are satisfied. Moreover, for the sake of simplicity, next

we assume that µ−2(1+α−γ) ∈ Lp([0, a]) for some p > 1 and for all a > 0. In this case, we
have that the functions Λ(·) and Λ2(·) also belongs to Lp([0, a]) for all a > 0.

Remark 5.1. In the remainder of this section, we use the same functions ζ(·), σ(·),
µ(·) and %(·) introduced above.

In Proposition 5.1 below, we said that u ∈ C([0, b];X) is a mild solution of (5.1)–(5.3)
on [0, b] if u(·) is a mild solution of the associated problem (1.1)–(1.2). A similar
nomenclature is used for the other examples of this section.

Proposition 5.1. Assume that the above conditions are satisfied, x0 ∈ Xγ for some
γ ∈ (α, α+ 1) and x0[1 − x0] ∈ Xα.

(a) Let a> 0. If 1
p + 1

q + 1
τ(q,p) = 1, 1 − ατ(q, p) > 0, supt,h∈[0,a],t+h≤a ‖

[ζ](·+h,·) ‖Lq([0,t])< ∞ and ζ(0) = 0, then there exists a unique mild solution
u ∈ CLip,1+α−γ((0, b];Xα) of (5.1)–(5.3) for some b> 0.
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(b) Suppose that the conditions in (a) are satisfied and let Qa : [0,∞) 7→ R be the
function defined by

Qa(x) = C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα) + C0,αaΘ5(a) (5.4)

+ a1+α−γC0,α

(
WF (x)Θ5(a) + WF,σ(x)(1 + x)2Θ3(a)

)
(5.5)

+ C0,αWF,σ(x)(1 + x)Θ4(a) − x, (5.6)

where

Θ3(a) = C0,α(1 + [σ]CLip
) ‖ Λ2 ‖Lp([0,a]) sup

t,h∈[0,a],t+h≤a

‖ [ζ](·+h,·) + ζ(·) ‖Lq([0,a]) Ψ,

Θ4(a) = C0,α(1 + [σ]CLip
) ‖ Λ(·) ‖Lp([0,a]) (‖ [ζ](·,·) + ζ(·) ‖Lq([0,a]))Ψ,

Θ5(b) = C0,α ‖ [ζ](·,0) ‖Lq([0,a]) a
1
q′ −α

[1 − q′α]
− 1

q′ , (5.7)

and Ψ = a
1

τ(q,p)
−α

[1 − τ(q, p)α]
− 1

τ(q,p) . If Qa(R) < 0 for some R> 0, then there
exists a unique mild solution u ∈ CLip,1+α−γ((0, a];Xα) of (5.1)–(5.3) on [0, a].

(c) Suppose that the conditions in (a) are satisfied for all a> 0, that there exists β > 0
such that for all θ ≥ 0, there is D0,θ > 0 such that ‖ (−A)θT (t) ‖≤ D0,θe−βtt−θ for
all t> 0 and that

ϑ3,∞ = D0,α(1 + [σ]CLip
) sup
b>0,t,h∈[0,b],t+h≤b

‖ e−β(t−·)

(t− ·)α
Λ2(·)([ζ](·+h,·) + ζ(·)) ‖L1([0,t]),

ϑ4,∞ = D0,α(1 + [σ]CLip
) sup
t≥0

‖ e−β(t−·)

(t− ·)α
Λ(·)([ζ](·,·) + ζ(·)) ‖L1([0,t]),

ϑ5,∞ = D0,α sup
b>0,t∈[0,b]

‖ e−β(t−·)

(t− ·)α
[F ](·,0) ‖L1([0,t]),

ϑ6,∞ = D0,α sup
b>0,t∈[0,b]

∫ t

0

e−β(t−τ)

(t− τ)α
[F ](τ,0)τ dτ

are finite. Let Q∞ : [0,∞) 7→ R be the function given by

Q∞(x) = C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,a];Xα) + ϑ6,∞

+
(
ϑ5,∞ + WF,σ(x)(1 + x)2ϑ3,∞

)
+ WF,σ(x)(1 + x)ϑ4,∞ − x. (5.8)

If Q∞(R) < 0 for some R> 0, then there exists a unique mild solu-
tion u ∈ C((0,∞);X) of the problem (5.1)–(5.3) on [0,∞) such that u ∈
CLip,1+α−γ((0,∞);Xα).

https://doi.org/10.1017/S0013091523000160 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000160


340 E. Hernandez, D. Fernandes and A. Zada

Proof. The assertions follow from Proposition 3.1, Corollary 3.5 and Proposition 4.5,
respectively. Concerning (a), we only note that

Θ4(b) ≤ sup
t∈[0,b]

∫ t

0

[F ](τ,τ)

(t− τ)α
(1 + [σ](τ,τ))Λ(τ) dτ

≤ (1 + [σ]CLip
) ‖ [F ](·,·) ‖Lq([0,a])‖ Λ(·) ‖Lp([0,a])

b
1

τ(q,p)
−α[

1 − α
τ(q,p)

] 1
τ(q,p)

→ 0 as b→ 0.

The assertion in (b) follows from the first assertion in Corollary 3.5 noting that Pa(x) ≤
Qa(x) for all x > 0. Similarly, the last assertion follows from Proposition 4.5 noting that
Q∞(x) ≤ Q∞(x) for all x > 0. We omit additional details. �

To establish the next result, we assume that N = 1, that (−A)
1
2 = ∂

∂x
and that

D((−A)
1
2 ) = H1

0 (Ω). In this case, F ∈ Lq
Lip([0, a] × Xα;Xα) for α = 1

2 and using the
norm ‖ x ‖α=‖ (−A)αx ‖, it is easy to see that

‖ F (t, u) − F (s, v) ‖α
≤ ([ζ](t,s)+ | ζ(s) |)(2r2 + 5r + 1)(1+ ‖ ic ‖L(Xα;C(Ω)))(|t− s|+ ‖ u− v ‖α).

for 0 ≤ s < t ≤ a and u, v ∈ Br[0, Xα].

Proposition 5.2. Assume α = 1
2 and x0 ∈ Xγ for some γ ∈ (α, α+ 1).

(a) Let a> 0. If 1
p + 1

q ≤ 1 and

Ξ(c) = sup
d∈[0,c],t,h∈[0,d],t+h≤d

‖ [ζ](·+h,·) ‖Lq([0,t])<∞, (5.9)

for some 0 < c ≤ a, then there exists a unique mild solution u ∈
CLip,1+α−γ((0, b];Xα) of (5.1)–(5.3) for some b> 0.

(b) Assume T (·)x0 ∈ CLip([0, a];Xα), 1 − αq′ > 0 and that Equation (5.9) is satisfied.
Then there exists a unique mild solution u ∈ CLip([0, b];Xα) of (5.1)–(5.3) on [0, b]
for some b> 0.

Proof. The assertion in (a) follows from Theorem 3.1 noting that the condition (5.9)
implies Θ1(d) < Ξ(c) ‖ Λ2 ‖Lp([0,c])<∞ for all d < c and that

Θ2(b) ≤ sup
t∈[0,b]

∫ t

0

[F ](τ,τ)(1 + [σ](τ,τ))Λ(τ) dτ ≤ (1 + [σ]CLip
) ‖ [F ](·,·)Λ(·) ‖L1([0,b])→ 0

as b → 0 because 1
p + 1

q ≤ 1. Concerning (b), we note that

Φ̂1(b) ≤ (1 + [σ]CLip
)

∫ b

0

([ζ](s,0)+ | ζ(0) |)
(t− s)α

dτ
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≤ (1 + [σ]CLip
)(‖ ζ(·, 0) ‖Lq([0,b]) + | ζ(0) |)b

1
q′ −α

[1 − q′α]
− 1

q′ → 0,

Φ̂2(b) ≤ (1 + [σ]CLip
) sup
t,h∈[0,b],t+h≤b

∫ t

0

([ζ](s+h,s)+ | ζ(s) |)
(t− s)α

dτ

≤ (1 + [σ]CLip
)(Ξ(b)+ ‖ ζ ‖Lq([0,b]))b

1
q′ −α

[1 − q′α]
− 1

q′ → 0 (5.10)

as b → 0, which implies that the conditions in Proposition 4.6 are satisfied and allows us
to finish the proof. �

The next example is related the diffusive Nicholson’s blowflies equation, see [23] for
additional details. Consider the differential equation

u′(t, x) = ∆u(t, x) + ζ(t)

∫
Ω

u(σ(t, u(t)), y)g(x, y) dy, (t, x) ∈ [0, a] × Ω, (5.11)

u(t, ·) |∂Ω = 0, t ∈ [0, a], (5.12)

u(0, y) = x0(y), y ∈ Ω, (5.13)

where σ(·) and ζ(·) are the functions in the problem (5.1)–(5.3), x0 ∈ X and g ∈ L2(Ω×
Ω;R).

To study this problem, we define F : [0, a] × X 7→ X by F (t, x)(y) =
ζ(t)

∫
Ω
x(z)g(y, z) dz. For 0 < s ≤ t ≤ a x, y ∈ Br[0, X], it is easy to see that

‖ F (t, x) ‖≤ Lg | ζ(t) | r and

‖ F (t, x) − F (s, y) ‖≤ ([ζ](t,s)+ ‖ ζ(s) ‖)(r + 1)Lg(|t− s|+ ‖ x− y ‖),

where Lg =
(∫

Ω

∫
Ω
g2(ξ, η) dξ dη

) 1
2 . Thus, F ∈ Lq

Lip([0, a] × X;X) with [F ](t,s) =
([ζ](t,s)+ | ζ(s) |) and WF (r) = (r + 1)Lg, and the condition HF,a(X;X) is satisfied
with %1(t) =| ζ(t) |, %2(t) = 0 and KF (x) = Lgx.

From the results in the previous sections we have the next one.

Proposition 5.3. Assume that the above conditions concerning the problem
(5.11)–(5.13) are satisfied and that x0 ∈ Xγ for some γ ∈ (0, 1).

(a) If 1
p + 1

q ≤ 1 and the condition in Equation (5.9) is satisfied, then there exists a

unique mild solution u ∈ CLip,1−γ((0, b];X) for some b> 0.
(b) Assume ζ ∈ C([0, a];R), 1

p + 1
q ≤ 1, Ξ(a) < ∞ (see Equation (5.9)) and let P :

[0,∞) 7→ R be the function defined by

Pa(x) = C0 ‖ x0 ‖ +[T (·)x0]CLip,1−γ((0,a];X) + C0Lg(‖ ζ ‖L1([0,a])

+ ‖ ζ ‖L∞([0,a]) a
1−γ)x

+ 2C0WF (x)(1 + [σ]CLip
)(1 + x)2a1−γ sup

t,h∈[0,a],t+h∈[0,a]

∫ t

0

([ζ](τ+h,τ)
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+ | ζ(τ) |)Λ2(τ) dτ

+ 2C0WF (x)(1 + [σ]CLip
)(1 + x)

∫ a

0

([ζ](τ,τ) + ζ(τ))Λ(τ) dτ − x.

If there is R> 0 such that Pa(R) < 0, then there exists a unique mild solution
u ∈ CLip,1−γ((0, a];X) of the problem (5.11)–(5.13).

(c) Suppose that ‖ T (s) ‖≤ C0 for all s> 0, ζ ∈ C([0,∞);R) and that

χ
1,∞(x) = C0Lg ‖ ζ ‖L∞([0,∞)) x, χ

2,∞ = C0Lg ‖ ζ ‖L1([0,∞)) x

ϑ1,∞ = (1 + [σ]CLip
) sup
b>0,t,h>0,t+h∈[0,b]

∫ t

0

‖ T (t− s) ‖ ([ζ](s+h,s)

+ | ζ(s) |)Λ2(s) ds,

ϑ2,∞ = (1 + [σ]CLip
) sup
t>0

∫ t

0

‖ T (t− s) ‖ ([ζ](s,s)+ | ζ(s) |)Λ(s) ds

are finite. Let P∞ : [0,∞) 7→ R be the function given by

P∞(x) := C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,∞);Xα) + (χ
1,∞(x) + χ

2,∞(x))

+ 2WF (x)
(
(1 + x)2ϑ1,∞ + (1 + x)ϑ2,∞

)
− x.

If there is R> 0 such that P (R) < 0, then there exists a unique mild solution
u ∈ CLip,1−γ((0,∞);X) of the problem (5.11)–(5.13).

(d) Assume ζ(0) = 0, that (T (t))t≥0 verify the conditions in item (c) of Proposition 5.1
and that

ϑ3,∞ = (1 + [σ]CLip
) sup
b>0,t,h∈[0,b],t+h≤b

∫ t

0

e−β(t−s)

(t− s)α
([ζ](s+h,s)+ | ζ(s) |)Λ2(s) ds,

ϑ4,∞ = (1 + [σ]CLip
) sup
t>0

‖ e−β(t−·)

(t− ·)α
([ζ](·,·)+ | ζ(·) |)Λ(·) ‖L1([0,t]),

ϑ5,∞ = sup
b>0,t∈[0,b]

‖ e−β(t−·)

(t− ·)α
[ζ](·,0) ‖L1([0,t]),

ϑ6,∞ = sup
b>0,t∈[0,b]

∫ t

0

e−β(t−τ)

(t− τ)α
[ζ](τ,0)τ dτ

are finite. Let P∞ : [0,∞) 7→ R be the function defined by

P∞(x) = C0 ‖ x0 ‖α +[T (·)x0]CLip,1+α−γ((0,∞);Xα) + ϑ6,∞

+
(
ϑ5,∞ + WF,σ(x)(1 + x)2ϑ3,∞

)
+ WF,σ(x)(1 + x)ϑ4,∞ − x. (5.14)

If P∞(R) < 0 for some R> 0, then there exists a mild solution u ∈
CLip,1−γ((0,∞);Xα) of the problem (5.11)–(5.13).
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Proof. The assertions are the consequence of Theorem 3.1, Corollary 3.1,
Proposition 4.4 and Proposition 4.5, respectively. Concerning the last assertion, we only
note that χ

3,t
= 0 and χ

4,∞(x) := 0 for all t > 0 and x ∈ Ω. We omit additional
details. �
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