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Abstract

We investigate geometric aspects of complete spacelike mean curvature flow solitons of codimension one
in a generalized Robertson–Walker (GRW) spacetime −I × f Mn, with base I ⊂ R, Riemannian fiber Mn

and warping function f ∈ C∞(I). For this, we apply suitable maximum principles to guarantee that such a
mean curvature flow soliton is a slice of the ambient space and to obtain nonexistence results concerning
these solitons. In particular, we deal with entire graphs constructed over the Riemannian fiber Mn, which
are spacelike mean curvature flow solitons, and we also explore the geometry of a conformal vector field
to establish topological and further rigidity results for compact (without boundary) mean curvature flow
solitons in a GRW spacetime. Moreover, we study the stability of spacelike mean curvature flow solitons
with respect to an appropriate stability operator. Standard examples of spacelike mean curvature flow
solitons in GRW spacetimes are exhibited, and applications related to these examples are given.
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1. Introduction

Given a spacelike hypersurface ψ : Σn � Rn+1
1 (which means that the induced metric of

Σn via the immersion ψ is Riemannian) in the (n + 1)-dimensional Minkowski space
R

n+1
1 , we recall that the spacelike mean curvature flow associated to ψ is a family

of smooth spacelike immersions Ψt = Ψ(t, ·) : Σn → Rn+1
1 with corresponding images

Σn
t = Ψt(Σn) satisfying the evolution equation,
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222 H. F. de Lima et al. [2]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂Ψ

∂t
= �H,

Ψ(0, x) = ψ(x),

on some time interval, where �H stands for the (nonnormalized) mean curvature vector
of the spacelike submanifold Σn

t in Rn+1
1 .

Mean curvature flow in the Minkowski space and, more generally, in a Lorentzian
manifold has been extensively studied by several authors (see, for example, [28, 31, 41])
and an important justification for this interest is the fact that spacelike self-shrinkers
and, in a more general setting, spacelike mean curvature flow solitons (which constitute
singularities of the spacelike mean curvature flow) can be regarded as a natural way
of foliating spacetimes by almost null-like hypersurfaces. Particular examples may
give insight into the structure of certain spacetimes at null infinity and have possible
applications in general relativity. For example, they were used in the first proof of
the positive mass theorem [39, 40] and in the analysis of the Cauchy problem for
asymptotically flat spacetimes [23, 33].

In [22], Chen and Qiu proved that any complete m-dimensional spacelike
self-shrinkers in pseudo-Euclidean spaces Rm+n

n of index n must be affine planes,
and that there exists no complete m-dimensional spacelike translating soliton in
R

m+n
n . Subsequently, Xu and Liu [44] classified m-dimensional complete spacelike

translating solitons in Rm+n
n by affine techniques and classical gradient estimates, and

they obtained a Bernstein-type theorem when the translating vector is spacelike. In
addition, Lambert and Lotay [32] proved long-time existence and convergence results
for spacelike solitons to mean curvature flow in Rn+m

n that are entire or defined on
bounded domains and satisfy Neumann or Dirichlet boundary conditions.

Related to the Riemannian setting, Alías, de Lira and Rigoli [9] introduced the
general definition of self-similar mean curvature flow in a Riemannian manifold M

n+1

endowed with a conformal vector field K, and they established the corresponding
notion of a mean curvature flow soliton. In particular, when M

n+1
is a Riemannian

warped product of the type I × f Mn and K = f (t)∂t, they applied weak maximum
principles to guarantee that a complete n-dimensional mean curvature flow soliton is a
slice of M

n+1
. In [24], Colombo et al. also studied some properties of mean curvature

flow solitons in general Riemannian manifolds and in warped products, focusing on
splitting and rigidity results under various geometric conditions, ranging from the
stability of the soliton to the fact that the image of its Gauss map be contained in
suitable regions of the sphere.

More recently, Alías et al. [10] established a natural framework for the stability of
mean curvature flow solitons in warped product spaces. By regarding these solitons
as stationary immersions for a weighted volume functional, they were able to find
geometric conditions for finiteness of the index and some characterizations of stable
solitons. When the ambient space is a Lorentzian product space, the first author jointly
with Batista [15] established nonexistence results for complete spacelike translating
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solitons under suitable curvature constraints on the curvatures of the Riemannian base
of the ambient space.

Here, our purpose is to investigate geometric aspects of complete spacelike mean
curvature flow solitons of codimension one in a generalized Robertson–Walker (GRW)
spacetime −I × f Mn, with base I ⊂ R, Riemannian fiber Mn and warping function
f ∈ C∞(I). In this context and inspired by the techniques developed in [9, 15, 24],
in Section 3 we apply suitable maximum principles to guarantee that such a mean
curvature flow soliton is a slice of the ambient space and to obtain nonexistence results
concerning these solitons. For example, we apply an extension of Hopf’s theorem to
prove the following rigidity result (see Theorem 3.4).

THEOREM 1.1. Let M
n+1
= −I × f Mn be a GRW spacetime that obeys the null

convergence condition (3-20), with equality holding only in isolated points of I. Let
ψ : Σn � M

n+1
be a complete spacelike mean curvature flow soliton with soliton

constant c � 0 lying in a timelike bounded region Bt1,t2 . If its second soliton function

ζ̃c = |A|2 + c f ′(h) is nonnegative and |∇H| ∈ L1(Σn), then Σn is a slice of M
n+1

.

In the previous statement, L1(Σn) stands for the space of Lebesgue integrable
functions on Σn. Moreover, among other results, we apply Omori–Yau’s maximum
principle to prove the following nonexistence result, which can be regarded as a sort
of extension of [22, Theorem 3] (see Theorem 3.20).

THEOREM 1.2. Let M
n+1
= −I × f Mn be a GRW spacetime satisfying the strong

null convergence condition (3-25). There is no complete spacelike mean curvature
flow soliton immersed in M

n+1
with soliton constant c � 0 such that c f ′(h) ≥ 0 and

((n − 1) f ′′(h) + c f (h) f ′(h))/ f (h) is bounded from below.

In particular, in Section 3.3, we deal with entire graphs constructed over the
Riemannian fiber Mn that are spacelike mean curvature flow solitons. Then, in
Section 4, we explore the geometry of a conformal vector field to establish topological
and further rigidity results for compact (without boundary) mean curvature flow
solitons in a GRW spacetime. For example, we obtain the following result (see
Theorem 4.9).

THEOREM 1.3. Let M
n+1
= −I × f Mn be a GRW spacetime and let ψ : Σn � M

n+1
be

a compact spacelike mean curvature flow soliton with soliton constant c � 0. Suppose
that Σn is totally umbilical and is not contained in a slice of M

n+1
. If Σn has finite

fundamental group, then Σn is diffeomorphic to an Euclidean sphere.

Furthermore, motivated by [10], in Section 5, we study the stability of spacelike
mean curvature flow solitons with respect to an appropriate stability operator Lcu,
which is defined in (5-11). In this setting, we deduce the following result (see
Theorem 5.6).
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THEOREM 1.4. Let ψ : Σn � −I × f Mn be a spacelike mean curvature flow soliton
with soliton constant c � 0.

(a) If ζ′c(t) ≤ 0 on Σn, then ψ : Σn � −I × f Mn is Lcu-stable.
(b) If Σn is compact and ζ′c(t) ≥ 0 on it, then ψ : Σn � −I × f Mn is Lcu-stable if and

only if ζc(t) is constant on Σn.
(c) If Σn is compact and ζ′c(t) > 0 on it, then ψ : Σn � −I × f Mn cannot be Lcu-stable.

According to the terminology introduced in [9, 24], ζc(t) denotes the soliton
function and it is defined in (2-7). Standard examples of spacelike mean curvature
flow solitons in GRW spacetimes are given in this paper (see Section 2.3) as well as
applications related to these examples.

2. Background

In this section, we quote some basic concepts, facts and standard examples which
will be used and addressed in the following sections.

2.1. Some preliminaries. Let (Mn, 〈 , 〉M) be a connected, n-dimensional, oriented
Riemannian manifold, let I ⊂ R be an open interval and let f : I → R be a positive
smooth function. Also, in the product manifold M

n+1
= I ×Mn let πI and πM denote

the canonical projections onto the factors I and Mn, respectively.
The class of Lorentzian manifolds of concern here is the one obtained by furnishing

M
n+1

with the Lorentzian metric 〈 , 〉 given by

〈 , 〉 = −dt2 + f (t)2〈 , 〉M,

where −dt2 stands for the standard metric of I ⊂ R. In this article, we simply write

M
n+1
= −I × f Mn. (2-1)

According to the nomenclature established in [11], we say that M
n+1

is a GRW
spacetime with warping function f and Riemannian fiber Mn. When Mn has con-
stant sectional curvature, (2-1) has been known in the mathematical literature as a
Robertson–Walker (RW) spacetime, an allusion to the fact that, for n = 3, it is an exact
solution of Einstein’s field equations (see, for example, [35, Ch. 12]).

In this setting, we consider the timelike conformal closed vector field

K(t, y) = f (t)∂ t |(t,y), (t, y) ∈ −I × f Mn, (2-2)

globally defined on M, where ∂t = ∂/∂t stands for the coordinate timelike vector field
tangential to I. From the relationship between the Levi–Civita connections of M

n+1

and those of I and Mn (see [35, Proposition 7.35]), it follows that

∇VK = f ′(πI)V ,

for all V ∈ X(M), where ∇ is the Levi–Civita connection of M
n+1

.
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Let Σn be an n-dimensional connected manifold. A smooth immersion
ψ : Σn � M

n+1
is said to be a spacelike hypersurface if Σn, furnished with the metric

induced from 〈 , 〉 via ψ, is a Riemannian manifold. We denote by ∇ the Levi–Civita
connection of Σn endowed with its induced metric (which will be denoted by 〈 , 〉).
Since M is time-orientable, it follows from the connectedness of Σn that one can
uniquely choose a globally defined timelike unit vector field N ∈ X⊥(Σ) that has the
same time-orientation as ∂t, that is, such that 〈N, ∂t〉 < 0. In this case, one says that
N is the future-pointing Gauss map of Σn and we always assume such a timelike
orientation for Σn. From the inverse Cauchy–Schwarz inequality (see [35, Proposition
5.30]), we have that 〈N, ∂t〉 ≤ −1, with the equality holding at a point p ∈ Σn if and
only if N = ∂t at p.

We denote by A and H = −trace(A) the shape operator and the mean curvature func-
tion of the spacelike hypersurface ψ : Σn � M

n+1
with respect to its future-pointing

Gauss map N. Throughout this paper, the mean curvature H, taken with respect to such
a choice of orientation N, will be called the future mean curvature of Σn. In particular,
for a fixed t∗ ∈ I, from [6, Example 5.6] we have that the slice {t∗} ×Mn has constant
future mean curvature

H = n
f ′(t∗)
f (t∗)

with respect to N = ∂t.
It follows from (2-2) that

∇V∂ t = ∇V

( 1
f (t)
K
)
= − 1

f (t)2 〈V ,∇ f 〉K + 1
f (t)

f ′(t)V (2-3)

and a simple computation shows that

∇πI = −〈∇πI , ∂t〉∂t = −∂t. (2-4)

So, from (2-3),

∇V∂t =
f ′(πI)
f (πI)

{V + 〈V , ∂t〉∂t}. (2-5)

2.2. Spacelike mean curvature flow solitons in GRW spacetimes. We recall
that the spacelike mean curvature flow Ψ : [0, T) × Σn � M

n+1
related to a spacelike

hypersurface ψ : Σn � M
n+1

in an (n + 1)-dimensional Lorentzian manifold M
n+1

,
satisfying Ψ(0, ·) = ψ(·), looks for solutions of the equation

∂Ψ

∂t
= �H,

where �H(t, ·) is the (nonnormalized) mean curvature vector of Σn
t = Ψ(t,Σn) (see, for

example, [32]). In our context, according to [9, Definition (1.1)] and [24, Definition
(1.1)], a spacelike hypersurface ψ : Σn � M

n+1
immersed in a GRW spacetime
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M
n+1
= −I × f Mn is called a spacelike mean curvature flow soliton with respect to

K = f (t)∂t and has soliton constant c ∈ R when its (nonnormalized) future-pointing
mean curvature vector �H = HN satisfies

�H = cK⊥, (2-6)

where K⊥ stands for the orthogonal projection of K in the direction of the
future-pointing Gauss map N. Adopting the terminology introduced in [9, 24], we
also consider the soliton function

ζc(t) = n f ′(t) + c f (t)2. (2-7)

So, each slice Mt∗ = {t∗} ×Mn is a spacelike mean curvature flow soliton with respect
to K = f (t)∂t and with soliton constant c given by

c = −n
f ′(t∗)
f (t∗)2 . (2-8)

Moreover, t∗ is implicitly given by the condition ζc(t∗) = 0.

2.3. Standard examples. In this subsection, we quote standard examples of space-
like mean curvature flow solitons in GRW spacetimes.

EXAMPLE 2.1. Using a method similar to that of [27], for the Lorentzian product
space −I ×Mn, from (2-8) we get that the slices {t} ×Mn are spacelike mean curvature
flow solitons with soliton constant c = 0 with respect to vector field K = ∂ t. Similarly
to what happens in the Minkowski space Rn+1

1 = −R × Rn, such solitons are called
spacelike translating solitons.

EXAMPLE 2.2. As in [8, Section 4], the future temporal cone Λ+ of the Minkowski
space Rn+1

1 is defined as the set

Λ+ = {x ∈ Rn+1
1 : 〈x, x〉 < 0 and 〈x, e1〉 < 0},

where e1 = (1, 0, . . . , 0). We observe that Λ+ can be regarded as the GRW spacetime

−R+ ×t H
n,

where Hn = {x ∈ Rn+1
1 : 〈x, x〉 = −1, x1 > 0} denotes the n-dimensional hyperbolic

space. Indeed, it is not difficult to verify that the map Φ : −R+ ×t H
n → Λ+, given

by Φ(t, x) = tx, is an isometry. In this setting, we have that the slices {
√
−n/c} × Hn

are spacelike mean curvature flow solitons with soliton constant c < 0 with respect to
vector field K = t∂ t.

EXAMPLE 2.3. The four-dimensional Einstein–de Sitter spacetime −R+ ×t2/3 R
3,

where R3 stands for the three-dimensional Euclidean space endowed with its canonical
metric, is a classical exact solution to the Einstein field equation without a cosmolog-
ical constant. It is an open Friedmann–Robertson–Walker model, which incorporates
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homogeneity and isotropy (the cosmological principle) and permitted expansion
(for more details, see [35, Ch. 12]). Here, we consider the (n + 1)-dimensional
Einstein–de Sitter spacetime −R+ ×t2/3 R

n. From (2-8), we conclude that the slices
{(−2n/3c)3/5} × Rn are spacelike mean curvature flow solitons with respect to
K = t2/3∂t and with soliton constant c < 0.

EXAMPLE 2.4. According to the terminology introduced by Albujer and Alías [2], a
GRW spacetime −R ×et Mn is called a steady-state-type spacetime. This terminology is
due to the fact that the steady-state model of the universeH4, proposed by Bondi–Gold
[17] and Hoyle [30] when looking for a model of the universe that looks the same not
only at all points and in all directions (that is, is spatially isotropic and homogeneous)
but also at all times, is isometric to the GRW spacetime −R ×et R

3 (for more details,
see [29]). From (2-8), we conclude that the slices {ln(−n/c)} ×Mn are spacelike mean
curvature flow solitons with respect to K = et∂t and with soliton constant c < 0.

EXAMPLE 2.5. From [34, Example 4.2], the (n + 1)-dimensional de Sitter space Sn+1
1

is isometric to the GRW spacetime −R ×cosh t S
n, where Sn denotes the n-dimensional

unit Euclidean sphere endowed with its standard metric. Taking into account the
terminology introduced in [5], the open half-space R+ × Sn ⊂ Sn+1

1 (respectively,
R
− × Sn ⊂ Sn+1

1 ) is called the chronological future (respectively, past) of Sn+1
1 with

respect to the totally geodesic equator {0} × Sn. From (2-8), we see that the equator is
a spacelike mean curvature flow soliton with respect to K = cosh t ∂t and with soliton
constant c = 0 and that the slices {sinh−1((−n ±

√
n2 − 4c2)/2c)} × Sn are spacelike

mean curvature flow solitons with respect to K = cosh t ∂t and with soliton constant
0 < |c| ≤ (n/2).

EXAMPLE 2.6. Taking into account once more [34, Example 4.2], we consider
the open region of Sn+1

1 that is isometric to the GRW spacetime −R+ ×sinh t H
n,

where Hn denotes the n-dimensional hyperbolic space endowed with its standard
metric. From (2-8), we have that the slices {cosh−1((−n −

√
n2 + 4c2)/2c)} × Hn are

spacelike mean curvature flow solitons with respect to K = sinh t ∂t and with soliton
constant c < 0.

EXAMPLE 2.7. Motivated by [34, Example 4.3], we consider the open subset of the
(n + 1)-dimensional anti-de Sitter space Hn+1

1 that is isometric to the GRW spacetime
−(−π/2, π/2) ×cos t H

n. Analogous to the nomenclature of the de Sitter space, the open
half-space (0, π/2) × Hn ⊂ Hn+1

1 (respectively, (−π/2, 0) × Hn ⊂ Hn+1
1 ) will be called

the chronological future (respectively, past) ofHn+1
1 with respect to the totally geodesic

equator {0} × Hn. From (2-8), we see that the equator is a spacelike mean curvature
flow soliton with respect to K = cos t ∂t and with soliton constant c = 0, and that the
slices {sin−1((−n ±

√
n2 + 4c2)/2c)} × Hn are spacelike mean curvature flow solitons

with respect to K = cos t ∂t and with soliton constant c � 0.
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3. Nonexistence and rigidity of spacelike mean curvature flow solitons

In this section, we study the nonexistence and rigidity of complete spacelike mean
curvature flow solitons immersed in a GRW spacetime. For this, we need to develop
some previous computations.

3.1. Some previous computations. Let ψ : Σn � −I × f Mn be a spacelike mean
curvature flow soliton, as described in Section 2. The height function of ψ : Σn �
−I × f Mn, denoted by h, is the restriction of the projection πI(t, y) = t to Σn: that is,
h : Σn → I is given by

h = πI |Σn = πI ◦ ψ. (3-1)

Thus, the hyperbolic angle Θ of Σn verifies

Θ = 〈N, ∂ t〉 ≤ −1, (3-2)

where N denotes the future-pointing Gauss map of Σn. From (2-4), we have that the
gradient of πI on −I × f Mn is given by ∇πI = −∂ t. Then, the gradient of h on Σn is
given by

∇h = (∇πI)
� = −∂�t = −∂t − ΘN, (3-3)

where ∂ t = ∂
�
t + ∂

⊥
t . Here, ∂�t ∈ X(Σn) and ∂⊥t ∈ X⊥(Σn) denote, respectively, the

tangential and normal components of ∂ t.
Thus, (3-3) gives the relationship

|∇h|2 = Θ2 − 1, (3-4)

where | · | stands for the norm of a tangential vector field on Σn considered with its
induced metric.

Hence, from (3-3) and (2-5), we deduce that, for any X ∈ X(Σn), the Hessian of h in
the metric 〈 , 〉 is given by

∇2h(X, X) = 〈∇X∇h, X〉

= − f ′(h)
f (h)
{|X|2 + 〈X,∇h〉2} + 〈AX, X〉Θ. (3-5)

In what follows, we also consider the function

u = g(h) ∈ C∞(Σn), (3-6)

where g : I → R is an arbitrary primitive of f. Since g′ = f > 0, u = g(h) can be
thought as a reparametrization of the height function. In particular, from (3-3), we
have that the gradient of u on Σn is given by

∇u = f (h)∇h = − f (h)∂�t = −K�, (3-7)
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where K� denotes the tangential component of the closed conformal vector field K ,
defined in (2-2). Taking into account this previous digression, we obtain the following
auxiliary result.

LEMMA 3.1. Let ψ : Σn � −I × f Mn be a spacelike mean curvature flow soliton with
respect to K = f (t)∂ t and with soliton constant c � 0. Then,

H〈AX, Y〉 − c∇2u(X, Y) = c f ′(h)〈X, Y〉, (3-8)

for all X, Y ∈ X(Σ). Furthermore,

∇H = cA(∇u).

PROOF. First, we note that

∇2u(X, X) = 〈∇X∇u, X〉
= 〈∇X( f (h)∇h), X〉
= f (h)〈∇X∇h, X〉 + 〈∇X f (h)∇h, X〉
= f (h)∇2h(X, X) + f ′(h)〈X,∇h〉2.

Thus, from (3-5), we get that

∇2u(X, X) = f (h)
(
− f ′(h)

f (h)
{|X|2 + 〈X,∇h〉2} + 〈AX, X〉Θ

)
+ f ′(h)〈X,∇h〉2

= − f ′(h)|X|2 − f ′(h)〈X,∇h〉2 + f (h)〈AX, X〉Θ + f ′(h)〈X,∇h〉2

= − f ′(h)|X|2 + f (h)〈AX, X〉Θ.

On the other hand,

1
c
〈∇H, X〉 = 〈∇XK , N〉 + 〈K ,∇XN〉

= − 〈A(X),K〉 = 〈X, A(∇u)〉, (3-9)

for every vector field X ∈ X(Σn), so that, from (3-7), we conclude the desired
result. �

REMARK 3.2. We point out that (3-8) is close to the definition of Ricci solitons and,
therefore, it is interesting to make a study of mean curvature flow solitons with this
point of view.

Naturally attached to ψ : Σn � −I × f Mn, we can consider the support function

ϕK : Σn → R
q �→ ϕK (q)〈K(q), N(q)〉. (3-10)

Hence, from (3-2),

ϕK = f (h)〈N, ∂ t〉 = f (h)Θ ≤ − f (h) < 0. (3-11)

https://doi.org/10.1017/S1446788723000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788723000095


230 H. F. de Lima et al. [10]

Furthermore, from [19, Proposition 2.1] and (3-4),

Δ(ϕK ) = {Ric(N, N) + |A|2}ϕK − {nN( f ′) − H f ′} + 〈K ,∇H〉, (3-12)

where ∇H is the gradient of H in the metric of Σn, Ric is the Ricci tensor of M
n+1

and
|A| is the Hilbert–Schmidt norm of A.

In addition, we get that

N( f ′) = − f ′′Θ = − f ′′

f
ϕK . (3-13)

On the other hand, since N = N∗ − Θ∂ t, where N∗ = πM(N) is the orthogonal
projection of N onto Mn, it follows from [35, Corollary 7.43] that

Ric(N, N) = Ric(N∗, N∗) + Θ2Ric(∂ t, ∂ t)

= RicM(N∗, N∗) + 〈N∗, N∗〉
{ f ′′

f
+ (n − 1)

( f ′)2

f 2

}
− n f ′′

f
Θ2

= RicM(N∗, N∗) −
{ f ′′

f
+ (n − 1)

( f ′)2

f 2

}
− (n − 1)

( f ′

f

)′
Θ2, (3-14)

where RicM denotes the Ricci tensor of Mn. We note that the relationship
〈N∗, N∗〉 = Θ2 − 1 is used in the last equality above.

Thus, inserting (3-13) and (3-14) into (3-12), we obtain

Δ(ϕK ) =
{
RicM(N∗, N∗) + |A|2 −

{ f ′′

f
+ (n − 1)

( f ′)2

f 2

}
− (n − 1)

( f ′

f

)′
Θ2
}
ϕK

+

{
n

f ′′

f
ϕK + H f ′

}
+ 〈K ,∇H〉

=

{
RicM(N∗, N∗) + |A|2 + f ′′ f − ( f ′)2

f 2 − (n − 1)
( f ′

f

)′
Θ2
}
ϕK + H f ′ + 〈K ,∇H〉

= {RicM(N∗, N∗) + (n − 1)(ln f )′′(1 − Θ2) + |A|2}ϕK + H f ′ + 〈K ,∇H〉
= {RicM(N∗, N∗) − (n − 1)(ln f )′′|∇h|2 + |A|2}ϕK + H f ′ + 〈K ,∇H〉. (3-15)

From Equations (2-6) and (3-10), we have that H = cϕK , and from (3-7) we get
∇u = −K�, where u is the reparametrization of the height function h given in (3-6).
Consequently, we can rewrite (3-15) as

Δ(ϕK ) = {c f ′(h) + RicM(N∗, N∗) − (n − 1)(ln f )′′(h)|∇h|2 + |A|2}ϕK + 〈∇(cu),∇(ϕK )〉.
(3-16)

We recall that the drift Laplacian on Σn is defined by

Δcu(ϕ) = Δ(ϕ) − 〈∇(cu),∇ϕ 〉 (3-17)
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for all ϕ ∈ C∞(Σn). So, from (3-16) and (3-17), we conclude that the drift Laplacian
Δcu acting on ϕK is given by

Δcu(ϕK ) = {ζ̃c + RicM(N∗, N∗) − (n − 1)(ln f )′′(h)|∇h|2}ϕK , (3-18)

where ζ̃c ∈ C∞(Σn) is the function defined by

ζ̃c(q) = c f ′(h(q)) + |A(q)|2 (3-19)

for every q ∈ Σn, which will be called the second soliton function associated to the
spacelike mean curvature flow soliton ψ : Σn � −I × f Mn. Such nomenclature for ζ̃c

is motivated by [9, Equation (6.11)].

3.2. Rigidity and nonexistence results. In this subsection, beyond nonexistence
results, we establish several theorems that guarantee that, under some necessary
hypothesis (see Remark 3.25), a spacelike mean curvature flow soliton must coincide
with a slice of the ambient GRW spacetime. We observe that these results are related
to each other in the sense that they ensure the rigidity of a complete spacelike mean
curvature flow soliton with nonnegative second soliton function that lies in a timelike
bounded region of a GRW spacetime and obeys a suitable convergence condition.

In what follows, we assume that the GRW spacetime −I × f Mn satisfies the null
convergence condition (NCC)

RicM ≥ (n − 1)( f f ′′ − f ′2)〈 , 〉M, (3-20)

which was originally established by Montiel [34], where RicM denotes the Ricci tensor
of the Riemannian fiber Mn. It is not difficult to verify that all the GRW spacetimes
described in Section 2.2 satisfy the NCC. For this, in the case of a steady-state-type
spacetime (see Example 2.4), it is necessary to assume that its Riemannian fiber has
nonnegative Ricci curvature.

Before we prove the first rigidity result, we start by quoting an extension of Hopf’s
theorem on a complete Riemannian manifold Σn due to Yau in [45]. For this, we adopt
the notation

L1(Σn) =
{
ϕ ∈ C∞(Σn) :

∫
Σn
|ϕ| dΣ � +∞

}
for the space of Lebesgue integrable functions on Σn, where dΣ stands for the volume
element induced by the metric of Σn, and we denote by L1

cu(Σn) the set of Lebesgue
integrable functions on Σn with respect to the modified volume element

dμ = ecu dΣ. (3-21)

We also recall that a smooth function ϕ on Σn is said to be (cu)-subharmonic
(respectively, (cu)-superharmonic) if Δcu(ϕ) ≥ 0 (respectively, Δcu(ϕ) ≤ 0) on Σn. So,
it is not difficult to verify that, from [18, Proposition 2.1], we obtain the following
auxiliary lemma.
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LEMMA 3.3. Let Σn be an n-dimensional complete oriented Riemannian manifold. If
ϕ ∈ C∞(Σn) is a (cu)-subharmonic function (or a (cu)-superharmonic function) on Σn

and |∇ϕ| ∈ L1
cu(Σn), then Δcu(ϕ) = 0 on Σn.

Given a GRW spacetime M
n+1
= −I × f Mn obeying the NCC (3-20), we require

a suitable behavior of the second soliton function associated to a spacelike mean
curvature flow soliton ψ : Σn � M

n+1
, and of the norm of the gradient of its mean

curvature function, to establish our first uniqueness result. For this, we consider a
timelike bounded region of M

n+1
defined by

Bt1,t2 := {(t, p) ∈ −I × f Mn : t1 ≤ t ≤ t2 and p ∈ Mn}.

Taking into account that all spacelike mean curvature solitons that appear in this
paper are considered with respect to the closed conformal vector field K = f (t)∂ t, we
are in position to present our first main result.

THEOREM 3.4. Let M
n+1
= −I × f Mn be a GRW spacetime that obeys the NCC

(3-20), with equality holding only in isolated points of I. Let ψ : Σn � M
n+1

be a
complete spacelike mean curvature flow soliton with soliton constant c � 0 that lies
in a timelike bounded region Bt1,t2 . If its second soliton function ζ̃c = |A|2 + c f ′(h) is

nonnegative and |∇H| ∈ L1(Σn), then Σn is a slice of M
n+1

.

PROOF. From (3-20), we obtain that

RicM(N∗, N∗) − (n − 1)(ln f )′′(h)|∇h|2

≥ (n − 1)( f (h) f ′′(h) − f ′(h)2)|N∗|2M − (n − 1)(ln f )′′(h)|∇h|2

= (n − 1)( f (h) f ′′(h) − f ′(h)2)|N + Θ∂ t |2M − (n − 1)
( f ′

f

)′
(h)|∇h|2

= (n − 1)
{
( f (h) f ′′(h) − f ′(h)2)

|∇h|2

f (h)2 −
( f (h) f ′′(h) − f ′(h)2

f (h)2

)
|∇h|2
}
= 0. (3-22)

Thus, since ζ̃c ≥ 0 on Σn, from (3-18) and (3-22) we get that the support function
ϕK defined in (3-10) satisfies

Δcu(ϕK ) ≤ f (h)ζ̃cΘ ≤ 0. (3-23)

On the other hand, since ψ : Σn � −I × f Mn is contained in a timelike bounded
region Bt1,t2 of −I × f Mn, h is bounded on Σn and, consequently, the same happens
with u = g(h) and ecu. So, since c � 0, from (3-21), (2-6), (3-10) and |∇H| ∈ L1(Σn) we
get |∇(ϕK )| ∈ L1

cu(Σn). Next, from Lemma 3.3 we obtain that Δcu(ϕK ) = 0 on Σn. Since
f (h) > 0 and Θ < 0 on Σn, from (3-22) and (3-23) we must have on Σn that

ζ̃c = 0 and RicM(N∗, N∗) − (n − 1)(ln f )′′(h)|∇h|2 = 0.
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But, taking into account that the equality in (3-20) occurs only in isolated points of I,
we can conclude that |∇h| = 0 on Σn and, consequently, h is constant on Σn. Therefore,
ψ(Σn) is a slice. �

REMARK 3.5. From (2-5), we have that the slice Mn
t is a spacelike hypersurface whose

shape operator (with respect to the orientation ∂ t) At is given by

At∗ : X(Mn
t∗)→ X(Mn

t∗)

V �→ At∗(V) = −∇V (∂ t∗) = −
f ′(t∗)
f (t∗)

V . (3-24)

Thus, from (3-24) we obtain that the principal curvatures κt∗
i of the shape operatorAt∗

of a slice Mn
t∗ = {t∗} ×Mn, t∗ ∈ I, are given by κt∗

i = − f ′(t∗)/ f (t∗) for all i ∈ {1, . . . , n}.
So, from (2-8) and (3-19),

ζ̃c = c f ′(t∗) + |At∗ |2 =
n∑

i=1

(κt∗
i )2 +

(
− n f ′(t∗)

f 2(t∗)

)
f ′(t∗) = 0

on Mn
t∗ . Hence, our restriction on the values of the second soliton function ζ̃c in

Theorem 3.4 constitutes a mild hypothesis in the sense that it is natural to detect slices
of −I × f Mn.

From Theorem 3.4, we derive the following consequence.

COROLLARY 3.6. Let ψ : Σn � −R+ ×t2/3 R
n be a complete spacelike mean curvature

flow soliton with soliton constant c < 0 lying in a timelike bounded region of the
Einstein–de Sitter spacetime −R+ ×t2/3 R

n. If |A| does not vanish and h ≥ −8c3/27|A|6
and |∇H| ∈ L1(Σn), then Σn is the slice {(−2n/3c)3/5} × Rn.

When the ambient space is a steady-state-type spacetime, Theorem 3.4 gives the
following rigidity result.

COROLLARY 3.7. Let M
n+1
= −I ×et Mn be a steady-state-type spacetime whose

Riemannian fiber Mn has positive Ricci curvature. Let ψ : Σn � M
n+1

be a complete
spacelike mean curvature flow soliton with soliton constant c < 0 and lying in a
timelike bounded region. If |A| does not vanish and h ≥ ln(−|A|2/c) and |∇H| ∈ L1(Σn),
then Σn is the slice {ln(−n/c)} ×Mn.

From Theorem 3.4 we also get the following nonexistence results.

COROLLARY 3.8. There is no complete spacelike translating soliton lying in a timelike
bounded region of a Lorentzian product space −I ×Mn, whose Riemannian fiber Mn

has positive Ricci curvature, that has soliton constant c � 0 and is such that |∇H| ∈
L1(Σn).

COROLLARY 3.9. There is no complete spacelike mean curvature flow soliton lying
in a timelike bounded region of a steady-state-type spacetime −I ×et Mn, whose
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Riemannian fiber Mn has positive Ricci curvature, that has soliton constant c > 0 and
is such that |∇H| ∈ L1(Σn).

According to the classical terminology in linear potential theory, a Riemannian
manifold Σn is called (cu)-parabolic if the constant functions are the only functions
ϕ ∈ C2(Σ) that are bounded from below and satisfy Δcu(ϕ) ≤ 0. Inspired by the ideas
of Romero et al. [37, 38], Albujer et al. established in [4, Theorem 1] the following
parabolicity criterion, which provides conditions for a complete spacelike hypersurface
immersed in GRW spacetime −I × f Mn to be (cu)-parabolic. For this, we consider
the function ũ := g(πI) ◦ π̃, where π̃ : M̃n → Mn is the universal covering map of the
Riemannian fiber Mn.

LEMMA 3.10. Let ψ : Σn � −I × f Mn be a complete spacelike hypersurface immersed
in a GRW spacetime −I × f Mn, whose Riemannian fiber Mn has (cũ)-parabolic
universal Riemannian covering for some constant c � 0. If the hyperbolic angle Θ
is bounded from below, and the warping function f and the height function h are such
that supΣn f (h) < +∞ and infΣn f (h) > 0, then Σn is (cu)-parabolic.

We can state the following rigidity result for spacelike mean curvature flow solitons
in GRW spacetimes.

THEOREM 3.11. Let M
n+1
= −I × f Mn be a GRW spacetime obeying the NCC (3-20),

with equality holding only in isolated points of I and such that the Riemannian fiber
Mn has (cũ)-parabolic universal Riemannian covering for some constant c � 0. Let
ψ : Σn � M

n+1
be a complete spacelike mean curvature flow soliton with soliton

constant c, lying in a timelike bounded region Bt1,t2 . If the hyperbolic angle Θ is
bounded from below and the second soliton function ζ̃c = |A|2 + c f ′(h) is nonnegative,
then Σn is a slice of M

n+1
.

PROOF. From (3-23), we get that Δcu(ϕK) ≤ 0 on Σn. Thus, since we are assuming that
ψ : Σn � −I × f Mn is contained in a timelike bounded region, Lemma 3.10 guarantees
that Σn is (cu)-parabolic and, consequently, ϕK is constant on Σn. At this point, we can
reason as in the last part of the proof of Theorem 3.4 to conclude that there is t ∈ I
such that Σn is a slice of M

n+1
. �

From Theorem 3.11, we obtain the following applications.

COROLLARY 3.12. Let M
n+1
= −I ×et Mn be a steady-state-type spacetime whose

Riemannian fiber Mn has positive Ricci curvature and (cũ)-parabolic universal
Riemannian covering for some constant c < 0. Let ψ : Σn � M

n+1
be a complete

spacelike mean curvature flow soliton with soliton constant c, lying in a timelike
bounded region Bt1,t2 . If Θ is bounded from below and h ≥ ln(−|A|2/c), then Σn is
the slice {ln(−n/c)} ×Mn.

COROLLARY 3.13. Let M
n+1
= −I ×et Mn be a steady-state-type spacetime whose

Riemannian fiber Mn has positive Ricci curvature and (cũ)-parabolic universal
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Riemannian covering for some constant c > 0. There is no complete spacelike mean
curvature flow soliton lying in a timelike bounded region of M

n+1
that has soliton

constant c and is such that Θ is bounded from below.

COROLLARY 3.14. Let M
n+1
= −I ×Mn be a Lorentzian product space, whose

Riemannian fiber Mn has positive Ricci curvature and (cũ)-parabolic universal
Riemannian covering for some constant c � 0. There is no complete spacelike
translating soliton in M

n+1
that has soliton constant c and is such that Θ is bounded

from below.

Considering the strong null convergence condition (SNCC)

KM ≥ sup
I

( f f ′′ − f ′2), (3-25)

which was introduced by Alías and Colares [7], where KM denotes the sectional
curvature of the Riemannian fiber Mn, and adding a suitable control to the growing of
the height function through the second soliton function of a spacelike mean curvature
flow soliton, we get the following version of Omori–Yau’s maximum principle.

PROPOSITION 3.15. Let M
n+1
= −I × f Mn be a GRW spacetime obeying the SNCC

(3-25), and let ψ : Σn � −I × f Mn be a complete spacelike mean curvature flow
soliton with soliton constant c � 0. If the function ((n − 1) f ′′(h) + c f (h) f ′(h))/ f (h)
is bounded from below on Σn, then Omori–Yau’s maximum principle holds for the drift
Laplacian Δcu: that is, for ϕ ∈ C2(Σn) with supΣ ϕ < +∞, there exists a sequence of
points {pk}k≥1 in Σn such that

lim
k
ϕ(pk) = sup

Σ

ϕ, lim
k
|∇ϕ(pk)| = 0 and lim

k
Δcuϕ(pk) ≤ 0.

PROOF. We recall that the curvature tensor R of Σn can be described in terms of its
Weingarten operator A and the curvature tensor R of the ambient −I × f Mn by the
so-called Gauss equation, which is given by

〈R(X, Y)Z, W〉 = 〈R(X, Y)Z, W〉 − 〈AX, Z〉〈AY , W〉 + 〈AX, W〉〈AY , Z〉, (3-26)

for every tangential vector field X, Y , Z ∈ X(Σn). Here, as in [35], the curvature tensor
R is given by

R(X, Y)Z = ∇[X,Y]Z − [∇X ,∇Y ]Z,

where [ , ] denotes the Lie bracket and X, Y , Z ∈ X(Σn).
We consider X ∈ X(Σn) and take a (local) orthonormal frame {E1, . . . , En}. It follows

from the Gauss equation (3-26) that the Ricci curvature Ric of Σn satisfies

Ric(X, X) =
∑

i

〈R(X, Ei)X, Ei〉 + |AX|2 + H〈AX, X〉. (3-27)

Thus, from (3-8) and (3-27), we get

Ric(X, X) − c∇2u(X, X) ≥
∑

i

〈R(X, Ei)X, Ei〉 + c f ′(h)|X|2. (3-28)
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To estimate the first summand on the right-hand side of inequality (3-28), we
consider X∗ = (πM)∗(X) and E∗i = (πM)∗(Ei). So, from [35, Proposition 7.42] and (3-3),∑

i

〈R(X, Ei)X, Ei〉 =
∑

i

〈RM(X∗, E∗i )X∗, E∗i 〉 + (n − 1)((ln f )′(h))2|X|2

− (n − 2)(ln f )′′(h)〈X,∇h〉2 − (ln f )′′(h)|∇h|2|X|2, (3-29)

where RM denotes the curvature tensor of the Riemannian fiber Mn. By writing
X∗ = X + 〈X, ∂t〉∂t, we can estimate the first summand on the right-hand side of (3-29)
to get ∑

i

〈RM(X∗, E∗i )X∗, E∗i 〉 = f 2(h)(|X∗|2M |E∗|2M − 〈X∗, E∗〉2M)KM(X∗, E∗)

≥ 1
f 2(h)

((n − 1)|X|2 + |∇h2||X|2

+ (n − 2)〈X,∇h〉2) min
i

KM(X∗, E∗i ). (3-30)

Consequently, since our ambient space obeys (3-25), from (3-30),∑
i

〈RM(X∗, E∗i )X∗, E∗i 〉

≥ ((n − 1)|X|2 + |∇h|2|X|2 + (n − 2)〈X,∇h〉2)(ln f )′′(h). (3-31)

Substituting (3-31) into (3-29) gives∑
i

〈R(X, Ei)X, Ei〉 ≥ ((n − 1)|X|2+|∇h|2|X|2+(n − 2)〈X,∇h〉2)(ln f )′′(h)

+ (n − 1)((ln f )′(h))2|X|2 − (n − 2)(ln f )′′(h)〈X,∇h〉2

− (ln f )′′(h)|∇h|2|X|2

= (n − 1)
f ′′(h)
f (h)
|X|2. (3-32)

Hence, from (3-28) and (3-32), we obtain

Ric − c∇2u ≥ ((n − 1)
f ′′(h)
f (h)

+ c f ′(h))〈 , 〉.

Therefore, since the right-hand side of the above inequality is bounded from below,
we conclude our proof by applying [22, Theorem 1]. �

To proceed, we use Proposition 3.15 to establish the following result.

THEOREM 3.16. Let M
n+1
= −I × f Mn be a GRW spacetime obeying the SNCC (3-25),

and let ψ : Σn � −I × f Mn be a complete spacelike mean curvature flow soliton with
soliton constant c � 0 such that ((n − 1) f ′′(h) + c f (h) f ′(h))/ f (h) is bounded from
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below. If infΣ f (h) > 0, the second soliton function ζ̃c = |A|2 + c f ′(h) is nonnegative
and the height function h satisfies

|∇h| ≤ inf
Σn
ζ̃c on Σn, (3-33)

then Σn is a slice of M
n+1

.

PROOF. Since ϕK < 0 on Σn, Proposition 3.15 ensures the existence of a sequence of
points {pk}k∈N ⊂ Σn such that

lim
k→+∞

ϕK (pj) = sup
Σn
ϕK and lim

k→+∞
Δcu ϕK (pk) ≤ 0.

Hence, from (3-23), we get

0 ≥ lim
k→+∞

Δcu(ϕK )(pj) = sup
Σn
ϕK lim

k→+∞
ζ̃c(pk) ≥ 0. (3-34)

But, since we are assuming that infΣ f (h) > 0, we have that supΣn ϕK < 0. Con-
sequently, from (3-34) we must have limj→+∞ ζ̃c(pk) = 0, and hence infΣn ζ̃c = 0.
Therefore, the result follows from hypothesis (3-33). �

REMARK 3.17. We note that in Theorem 3.16 the hypotheses that the expression
((n − 1) f ′′(h) + c f (h) f ′(h))/ f (h) is bounded from below and infΣ f (h) > 0 are auto-
matically satisfied if we assume that the spacelike mean curvature flow soliton lies in
a timelike bounded region of the ambient spacetime.

From Theorem 3.16, we obtain the following applications.

COROLLARY 3.18. Let ψ : Σn � −R+ ×t H
n be a complete spacelike mean curvature

flow soliton with soliton constant c < 0. If infΣ h > 0, the second soliton function
ζ̃c = |A|2 + c is nonnegative and |∇h| ≤ infΣn ζ̃c, then Σn is a slice {

√
−n/c} × Hn.

COROLLARY 3.19. There is no complete spacelike mean curvature flow soliton
ψ : Σn � −R+ ×t H

n with soliton constant c > 0 such that infΣ h > 0 and |∇h| ≤
infΣn |A|2 + c.

Our next result can be regarded as a sort of extension of [22, Theorem 3].

THEOREM 3.20. Let M
n+1
= −I × f Mn be a GRW spacetime satisfying the SNCC

(3-25). There is no complete spacelike mean curvature flow soliton immersed in M
n+1

with soliton constant c � 0 such that c f ′(h) ≥ 0 and ((n − 1) f ′′(h) + c f (h) f ′(h))/ f (h)
is bounded from below.

PROOF. Let us suppose, by contradiction, the existence of such a complete spacelike
mean curvature flow soliton Σn immersed in M

n+1
. Since we are supposing that

c f ′(h) ≥ 0 and that M
n+1

satisfies the SNCC (3-25), we conclude from (3-18) and
(3-22) that

ΔcuϕK ≤ |A|2ϕK .
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From the above equation, we get

Δcuϕ
2
K ≥ 2ϕKΔcuϕK ≥ 2|A|2ϕ2

K .

Since ϕK = H/c,

ΔcuH2 ≥ 2H2|A|2 ≥ 2
H4

n
. (3-35)

With a straightforward computation, we can verify that

Δcu

( −1
√

1 + H2

)
=

ΔcuH2

2(1 + H2)3/2 −
3
4
|∇H2|2

(1 + H2)5/2 . (3-36)

Hence, from (3-35) and (3-36), we obtain

Δcu

( −1
√

1 + H2

)
≥ H4

n(1 + H2)3/2 −
3
4
|∇H2|2

(1 + H2)5/2 .

Therefore, since ((n − 1) f ′′(h) + c f (h) f ′(h))/ f (h) is bounded from below, from
Proposition 3.15 we can apply Omori–Yau’s maximum principle and reason as in
the proof of [22, Theorem 3] to conclude that H ≡ 0, which corresponds to an
absurdity. �

From Theorem 3.20, we get the following nonexistence results.

COROLLARY 3.21. There is no complete spacelike translating soliton with soliton
constant c � 0 immersed in −I ×Mn whose Riemannian fiber Mn has nonnegative
sectional curvature.

COROLLARY 3.22. There is no complete mean curvature flow soliton with soliton
constant c > 0, lying in a timelike bounded region of the steady-state-type spacetime
−R ×et Mn, whose Riemannian fiber Mn has nonnegative sectional curvature.

COROLLARY 3.23. There is no complete spacelike mean curvature flow soliton with
soliton constant c > 0 lying in a timelike bounded region of the Einstein–de Sitter
spacetime −R+ ×t2/3 R

n.

COROLLARY 3.24. There is no complete mean curvature flow soliton with soliton
constant c � 0 immersed in −(−π/2, π/2) ×cos t H

n ⊂ Hn+1
1 such that c sin(h) ≤ 0.

REMARK 3.25. Fixing a constant c ∈ R with 0 < |c| < 1, from [26, Example 4.4] we
have that

Σn = {(c ln xn, x1, . . . , xn) : xn > 0} ⊂ −R × Hn

is a complete spacelike translating soliton of the mean curvature flow with respect to
∂t that has soliton constant c and constant future mean curvature

H =
c

√
1 − c2

= cΘ.
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Moreover, we also get that

|∇h| = |c|
√

1 − c2
= |A|.

Hence, since the static GRW spacetime −R × Hn obeys neither the NCC (3-20) nor the
SNCC (3-25), we can verify that it works as a counterexample related to our previous
theorems. Consequently, we conclude that some hypothesis is needed.

Now, we deal with compact (without boundary) mean curvature flow solitons.

THEOREM 3.26. Let M
n+1
= −I × f Mn be a GRW spacetime and let ψ : Σn � M

n+1
be

a compact mean curvature flow soliton with soliton constant c � 0. If c > 0, then

min
Σ

H2 ≤ −cn f ′(h∗) and max
Σ

H2 ≥ −cn f ′(h∗),

where h∗ and h∗ are the minimum and maximum of the height function on Σn. Similarly,
if c < 0, then

min
Σ

H2 ≤ −cn f ′(h∗) and max
Σ

H2 ≥ −cn f ′(h∗).

PROOF. From (3-8),

cΔu = −nc f ′(h) − H2. (3-37)

We consider c > 0 and let p0 be a minimum point of the height function h. Since a
primitive g of f is an increasing function, we have that h(p0) = h∗ is a minimum point
of the function u = g(h), and hence Δu(p0) ≥ 0. Thus, from (3-37), we get that

min
Σ

H2 ≤ H2(p0) ≤ −nc f ′(h∗).

Analogously, taking a maximum point of h, we are able to conclude that

max
Σ

H2 ≥ −cn f ′(h∗).

The proof of the case c < 0 follows the same steps as the case c > 0. �

From the above result, we conclude directly the following nonexistence result.

COROLLARY 3.27. There exists no compact spacelike translating soliton with soliton
constant c � 0 immersed in −I ×Mn.

We finish this subsection by establishing a rigidity result derived from
Theorem 3.26.

COROLLARY 3.28. Let M
n+1
= −I × f Mn be a GRW spacetime and let ψ : Σn � M

n+1

be a compact mean curvature flow soliton with soliton constant c � 0. Assume that
f ′′(t) ≤ 0 for h∗ ≤ t ≤ h∗, where h∗ and h∗ are the minimum and maximum on Σn of its
height function h, respectively. If H is constant, then Σn is a slice of M

n+1
.
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PROOF. Indeed, since f ′′(t) ≤ 0, we have that f ′ is nondecreasing. In addition, since
H is constant, from Theorem 3.26 we conclude that

−nc f ′(t) = H2

for h∗ ≤ t ≤ h∗. Thus, from the above equation jointly with (3-37), we have that Δu = 0.
Therefore, since Σn is compact, we conclude that u is constant, which means that Σn is
a slice of M

n+1
. �

3.3. The spacelike mean curvature flow soliton equation. Let Ω ⊆ Mn be a
connected domain and let z ∈ C∞(Ω) be a smooth function such that z(Ω) ⊆ I. Then
Σn(z) will denote the (vertical) graph over Ω determined by z, that is,

Σn(z) = {(z(p), p) : p ∈ Ω} ⊂ M
n+1
= −I × f Mn.

The graph is said to be entire if Ω = Mn. Observe that h(z(p), p) = z(p), p ∈ Ω. Hence,
h and z can be identified in a natural way. The metric induced onΩ from the Lorentzian
metric of the ambient GRW spacetime via Σn(z) is

gz = −dz2 + f 2(z)gM . (3-38)

It follows from (3-38) that a graph Σn(z) is a spacelike hypersurface if and only if
|Dz|M < f (z), where Dz stands for the gradient of z in Mn and |Dz|M denotes its norm,
both with respect to the metric gM . On the other hand, in the case where Mn is a simply
connected manifold, from [11, Lemma 3.1] we have that every complete spacelike
hypersurface ψ : Σn � −I × f Mn such that the warping function f is bounded on Σn is
an entire spacelike graph over Mn. In particular, this happens for complete spacelike
hypersurfaces lying in a timelike bounded region of −I × f Mn. It is also interesting
to point out that, in contrast to the case of graphs in a Riemannian space, an entire
spacelike graph Σn(z) in a GRW spacetime is not necessarily complete, in the sense
that the induced Riemannian metric (3-38) is not necessarily complete on Mn. For
example, Albujer [1, Section 3] constructed explicit examples of noncomplete entire
maximal spacelike graphs (that is, whose mean curvature is identically zero) in the
Lorentzian product space −R × H2.

The future-pointing Gauss map of a spacelike graph Σn(z) over Ω is given by the
vector field

N(p) =
f (z(p))√

f 2(z(p)) − |Dz(p)|2M

(
∂t |(z(p),p) +

Dz(p)
f 2(z(p))

)
∀p ∈ Ω. (3-39)

From (3-39), we have that the shape operator related to the future-pointing Gauss
map (3-39) is given by
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AX = − 1

f (u)
√

f 2(z) − |Dz|2M
DXDz − f ′(z)√

f 2(z) − |Dz|2M
X

+

( −gM(DXDz, Dz)

f (z)( f 2(z) − |Dz|2M)3/2
+

f ′(z)gM(Dz, X)

( f 2(z) − |Dz|2M)3/2

)
Dz, (3-40)

for any vector field X tangential to Ω, where D denotes the Levi–Civita connection of
(Mn, gM). Consequently, if Σn(z) is a spacelike graph defined over a domain Ω ⊆ Mn,
it is not difficult to verify from (3-40) that the future mean curvature function H(z) of
Σn(z) is given by

H(z) = divM

( Dz

n f (z)
√

f 2(z) − |Dz|2M

)
+

f ′(z)

n
√

f 2(z) − |Dz|2M

(
n +
|Dz|2M
f 2(z)

)
, (3-41)

where divM stands for the divergence operator computed in the metric gM .
Hence, from (2-6) and (3-41), we have that Σn(z) is a spacelike mean curvature flow

soliton with respect to K = f (t)∂t and with soliton constant c if and only if |Dz|M < f (z)
and z is a solution of the nonlinear differential equation

divM

( Dz

f (z)
√

f (z)2 − |Dz|2M

)
= − 1√

f (z)2 − |Dz|2M

{
c f (z)2 + f ′(z)

(
n +
|Dz|2M
f (z)2

)}
. (3-42)

We say that z ∈ C∞(M) has finite C2 norm when

||z||C2(M) := sup
|k|≤2
|Dkz|L∞(M) < +∞.

In this context, we obtain the following result.

THEOREM 3.29. Let M
n+1
= −I × f Mn be a GRW spacetime obeying the SNCC (3-20),

with equality occurring only in isolated points of I and whose Riemannian fiber Mn

is complete. Let z ∈ C∞(M) be an entire solution of Equation (3-42) for c � 0, with
finite C2 norm, such that |Dz|M ≤ α f (z), for some constant 0 < α < 1, and the second
soliton function ζ̃c(z) = |A|2 + c f ′(z) is nonnegative. If |Dz|M ∈ L1(M), then z ≡ t∗ for
some t∗ ∈ I, which is implicitly given by the condition ζ(t∗) = 0.

PROOF. Let z ∈ C∞(M) be such a solution of Equation (3-42). It follows from (3-40)
that the shape operator A of Σn(z) is bounded provided that z has finite C2. We note
also that the finiteness of the C2 norm of z implies, in particular, that z is bounded,
which, in turn, guarantees that Σn(z) is contained in a bounded timelike region of
M

n+1
. Consequently, since we are also assuming that |Dz|M ≤ α f (z), for some constant

0 < α < 1, we get that

|Dz|2M ≤ f 2(z) − β
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for β = (1 − α2) infΣ(z) f 2(z). Thus, we can apply [3, Proposition 1] to conclude that
Σn(z) is complete.

We also have that N = N∗ − Θ∂t, where N∗ denotes the projection of N onto the
fiber Mn. Consequently, from (3-39), we get

|∇z|2 = 〈N∗, N∗〉 = f 2(z)〈N∗, N∗〉M . (3-43)

Thus, from (3-39) and (3-43), we obtain

|∇z|2 =
|Dz|2M

f 2(z) − |Dz|2M
. (3-44)

On the other hand, it follows from (3-38) that dΣ =
√
|G|dM, where dM and dΣn

stand for the Riemannian volume elements of (Mn, gM) and (Σn(z), gz), respectively,
and G = det(gij) with

gij = gz(Ei, Ej) = f 2(z)δij − Ei(z)Ej(z).

Here, {E1, . . . , En} denotes a local orthonormal frame with respect to the metric gM .
So, it is not difficult to verify that

|G| = f 2(n−1)(z)( f 2(z) − |Dz|2M).

Consequently,

dΣ = f n−1(z)
√

f 2(z) − |Dz|2MdM. (3-45)

Thus, from (3-44) and (3-45), we get

|∇z|dΣ = f (z)n−1|Dz|MdM. (3-46)

Hence, since z is bounded and |Dz|M ∈ L1(M), from Equation (3-46) we conclude
that |∇z| ∈ L1(Σn(z)). Consequently, from (3-9) we get that |∇(ϕK )| ∈ L1

cu(Σn(z)).
Therefore, we can reason as in the last part of the proof of Theorem 3.4 to conclude
the result. �

From Theorem 3.11, we obtain the following consequence.

THEOREM 3.30. Let M
n+1
= −I × f Mn be a GRW spacetime obeying the SNCC (3-20),

with equality occurring only in isolated points of I and whose Riemannian fiber Mn

is complete with a (cũ)-parabolic universal Riemannian covering for some constant
c � 0. If z ∈ C∞(M) is an entire solution of Equation (3-42) for c, with finite C1 norm,
such that |Dz|M ≤ α f (z), for some constant 0 < α < 1, and the second soliton function
ζ̃c(z) = |A|2 + c f ′(z) is nonnegative, then z ≡ t∗ for some t∗ ∈ I, which is implicitly given
by the condition ζ(t∗) = 0.
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PROOF. Observing that h satisfies (3-2) and (3-43), from (3-40) we obtain

|∇h|2 =
|Dz|2M

f (z)2 − |Dz|2M
. (3-47)

Hence, since we are assuming that z has finite C1 norm and taking into account
once more that Θ2 = |∇h|2 + 1, with the aid of (3-47) we conclude that Θ is bounded.
Therefore, the result follows by applying Theorem 3.11. �

From Theorem 3.16, we also obtain the following result.

THEOREM 3.31. Let M
n+1
= −I × f Mn be a GRW spacetime obeying the SNCC (3-20)

whose Riemannian fiber Mn is complete. Let z ∈ C∞(M) be a bounded entire solution
of Equation (3-42) for some constant c � 0 such that |Dz|M ≤ α f (z), for some constant
0 < α < 1, and the second soliton function ζ̃c(z) = |A|2 + c f ′(z) is nonnegative. If

|Dz|M ≤ inf
M
ζ̃c, (3-48)

then z ≡ t∗ for some t∗ ∈ I, which is implicitly given by the condition ζ(t∗) = 0.

PROOF. From (3-47) and (3-48), we see that hypothesis (3-33) is satisfied. Therefore,
the result follows by applying Theorem 3.16. �

We close this subsection with the following application of Theorem 3.20

THEOREM 3.32. Let M
n+1
= −I × f Mn be a GRW spacetime obeying the SNCC (3-25)

whose Riemannian fiber Mn is complete. For any constant c � 0, there is no bounded
entire solution z ∈ C∞(M) of Equation (3-42) such that |Dz|M ≤ α f (z), for some
constant 0 < α < 1, and c f ′(z) ≥ 0.

4. Further rigidity and topological results

Given a smooth function ϕ : Σn → R and a (0, 2)-tensor T defined on a Riemannian
manifold Σn, we recall that the ϕ-divergence of T is given by

divϕT = eϕdiv(e−ϕT) = divT − T(∇ϕ, .). (4-1)

From Equation (4-1), we get the following auxiliary result.

LEMMA 4.1. Given a (0, 2)-tensor T and smooth functions v,ϕ : Σn → R,

divϕ(T(∇v)) = 〈T ,∇2v〉 + (divϕT)(∇v).

PROOF. Indeed, let {Ei} be a geodesic referential at a point p ∈ Σn. Then

(divT)(∇v) =Ei(T(Ei,∇v)) − T(Ei,∇Ei∇v)

= div[T(∇v)] − 〈T(Ei),∇2v(Ei)〉
= div[T(∇v)] − 〈T ,∇2v〉.
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Hence, since divϕ(T(∇v)) = div(T(∇v)) − T(∇v,∇ϕ), we get the desired result from
(4-1). �

We also need the following lemma, the proof of which can be found in [20, Equation
(3.8)].

LEMMA 4.2. Given a smooth function v : Σn → R, we have that

div(∇2v) = ∇Δv + Ric(∇v),

where Ric(.) stands for the linear operator metrically equivalent to the Ricci tensor
of Σn.

We recall that the traceless tensor associated with a tensor T is defined by

◦
T= T − tr(T)

n
〈 , 〉.

With this notation, from Equation (3-8), we can verify the equation

H
◦
A= c

◦
∇2 u,

where u = g(h).
Now, we are able to state and prove our next result.

THEOREM 4.3. Let M
n+1
= −I × f Mn be a GRW spacetime and let ψ : Σn � M

n+1

be a compact spacelike mean curvature flow soliton with soliton constant c � 0. If
H2 ≥ n2 f ′′(h)/2 f (h) and Ric(∇h,∇h) ≥ 0, then Σn is a slice of M

n+1
.

PROOF. We recall that, from (3-8),

HA − c∇2u = c f ′(h)〈 , 〉. (4-2)

Taking the trace of Equation (4-2), we get that

cΔu = −nc f ′(h) − H2. (4-3)

On the other hand, taking the divergence of (4-2) and using the relationship given
in Lemma 4.2, we obtain the divergence of HA as

divHA − c∇Δu − cRic(∇u) = c f ′′(h)∇h. (4-4)

Inserting (4-3) into (4-4) gives

divHA = −c f ′′(h)∇h(n − 1) − ∇H2 + cRic(∇u). (4-5)

Since H
◦
A= H(A − trA/n〈 , 〉) = H(A + H/n〈 , 〉), we reach

div(H
◦
A) = div(HA) +

∇H2

n
. (4-6)
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Hence, from (4-6) and (4-5), we obtain

divH
◦
A = −c f ′′(h)∇h(n − 1) − (n − 1)

n
∇H2 + cRic(∇u). (4-7)

Therefore, from (3-9) and (4-7), we deduce that

divH
◦
A + 2

(n − 1)c
n

H
◦
A (∇u) =

2(n − 1)c
n2 H2∇u − c f ′′(h)∇h(n − 1) + cRic(∇u).

From now on, we take ϕ = −2(n − 1)c/nu. So, we conclude that

(divϕH
◦
A)(c∇u) =

2(n − 1)c2

n2 H2|∇u|2 − c2 f ′′(h) f (h)|∇h|2(n − 1) + c2Ric(∇u,∇u).

(4-8)

But, from Lemma 4.1,

divϕ[H
◦
A(c∇u)] = 〈H

◦
A, c∇2u〉 + (divϕH

◦
A)(c∇u)

= |H
◦
A |2 + (divϕH

◦
A)(c∇u). (4-9)

Thus, from Equations (4-9) and (4-8), we obtain∫
Σn

(
(n − 1)c2|∇u|2

(− f ′′(h)
f (h)

+
2H2

n2

)
+ c2Ric(∇u,∇u)

)
e−ϕ dΣ ≤ 0, (4-10)

with equality holding if and only if Σn is totally umbilical. Hence, from our hypothesis
we conclude that Σn is totally umbilical and that RicΣ(∇u,∇u) = 0.

Consequently, since Σn is totally umbilical, we conclude from (4-9) that ∇u is a
conformal vector field on Σn with

∇2u =
Δu
n
〈 , 〉. (4-11)

From Lemma 4.2 and Equation (4-11),

0 = Ric(∇u,∇u) = − (n − 1)
n
〈∇Δu,∇u〉. (4-12)

Therefore, from (4-12) jointly with Stokes’ theorem, we deduce that Δu = 0, and
hence we conclude that h is constant on Σn. �

Proceeding, we present our next rigidity result for compact spacelike mean curva-
ture flow solitons in a GRW spacetime.

THEOREM 4.4. Let M
n+1
= −I × f Mn be a GRW spacetime satisfying the SNCC (3-25)

and let ψ : Σn � M
n+1

be a compact spacelike mean curvature flow soliton with soliton
constant c � 0. If L∇u(H) ≤ 0, where L∇u stands for the Lie derivative on Σn with
respect to ∇u, then Σn is a slice of M

n+1
.
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PROOF. From (3-27), (3-32) and (3-8), we conclude that

Ric(∇u,∇u) − (n − 1)
f ′′(h)
f (h)
|∇u|2 ≥ H〈A∇u,∇u〉

=
H
c
〈∇H,∇u〉.

Since H/c is negative and L∇u(H) = 〈∇H,∇u〉 ≤ 0, we conclude, from (4-10) and
the above inequality, that Σn is totally umbilical.

Since Σn is totally umbilical, from (3-9),

cH∇u + n∇H = 0.

Thus,

cH〈∇u,∇u〉 = −n〈∇H,∇u〉 ≥ 0.

Now, taking into account that cH < 0, we conclude from the above inequality that
∇u = 0. Therefore, Σn must be a slice of M

n+1
. �

Motivated by [43, Theorem 10], we establish the following diameter estimate.

THEOREM 4.5. Let M
n+1
= −I × f Mn be a GRW spacetime and let ψ : Σn � M

n+1
be

a compact spacelike mean curvature flow soliton with soliton constant c � 0 such that
the mean curvature is not constant. If f ′ � 0, then we have the lower estimate for the
diameter of Σn given by

diam(Σ) ≥ |c| umax − umin√
H2

max − H2
min

,

where H2
max and H2

min are the maximum and minimum values of H2 on Σn, respectively.

PROOF. First, from (3-4) we get that

−H2 + c2|∇u|2 = −c2 f 2(h). (4-13)

Let p ∈ Σn be a minimum point of f 2(h). Then

c2 f 2(h(p)) = H2(p). (4-14)

On the other hand,

c2 f 2(h(p)) ≤ c2 f 2(h(x)) = H2(x) − c2|∇u|2(x),

for any x ∈ Σn. From the above inequality and (4-14), we conclude that

H2(x) − H2(p) ≥ c2|∇u|2(x). (4-15)

In particular, p is a minimum point of H2, that is, H2 = H2
min. From (4-15) we

conclude that

H2
max − H2

min ≥ c2|∇u|2.
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From the above equation and the mean value theorem,

umax − umin ≤ max
Σ
|∇u|diam(Σ) ≤

√
H2

max − H2
min

|c| diam(Σ),

and hence we have the desired estimate. �

From the previous theorem, we obtain the following consequence.

COROLLARY 4.6. Let M
n+1
= −I × f Mn be a GRW spacetime and let ψ : Σn � M

n+1

be a compact spacelike mean curvature flow soliton with soliton constant c � 0 such
that the mean curvature is constant. If f ′(h) � 0, then Σn is a slice of M

n+1
.

Our next result provides a sufficient condition to guarantee that a compact spacelike
mean curvature flow soliton is totally umbilical.

THEOREM 4.7. Let M
n+1
= −I × f Mn be a GRW spacetime and let ψ : Σn � M

n+1
be

a compact spacelike mean curvature flow soliton with soliton constant c � 0. If∫
Σn

Ric(∇u,∇u) dΣ ≥ n − 1
nc2

∫
Σ

(H2 + nc f ′(h))2 dΣ,

then ∇u is a conformal vector field and, therefore, Σn is totally umbilical. Moreover, if
H is constant, then Σn is a slice of M

n+1
.

PROOF. From Bochner’s formula [16],

Δ|∇u|2
2
= Ric(∇u,∇u) + 〈∇Δu,∇u〉 + |∇2u|2. (4-16)

But, we note that

|∇2u|2 = |
◦
∇2u|2 + (Δu)2

n
.

Substituting the above equality into (4-16) and applying Stokes’ theorem gives∫
Σn
|
◦
∇2u|2 dΣ =

n − 1
n

∫
Σn

(Δu)2 dΣ −
∫
Σn

Ric(∇u,∇u) dΣ.

From our hypothesis on the Ricci tensor and (4-3), we conclude that ∇u is a
conformal vector field. Moreover, since c � 0, from equality (4-13) we have that H � 0.
Finally, from (4-9), we conclude that Σn is totally umbilical.

On the other hand, since Σn is totally umbilical, from (3-9),

cH∇u + n∇H = 0.

From the above equation, a straightforward calculation shows that Hec/nu is
constant. Thus, supposing that H is a constant, we conclude that Σn is a slice
of M. �
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Inspired by [36], we also obtain the following result.

PROPOSITION 4.8. Let M
n+1
= −I × f Mn be a GRW spacetime and let ψ : Σn � M

n+1

be a compact spacelike mean curvature flow soliton with soliton constant c � 0.
Suppose that Σn is totally umbilical and Ric is nonpositive. Then Σn is a slice of M

n+1
.

PROOF. Using the same ideas as in the previous theorem, we conclude that ∇u is a
conformal vector field. Thus, from (4-12),

〈∇u,∇Δu〉 ≥ 0.

Applying Stokes’ theorem, we conclude that∫
Σn

(Δu)2 dΣ = 0

and, therefore, h is constant. �

The last result of this section provides an interesting topological characterization
for a compact spacelike mean curvature flow soliton.

THEOREM 4.9. Let M
n+1
= −I × f Mn be a GRW spacetime and let ψ : Σn � M

n+1
be

a compact spacelike mean curvature flow soliton with soliton constant c � 0. Suppose
that Σn is totally umbilical and it is not contained in a slice of M

n+1
. If Σn has finite

fundamental group, then Σn is diffeomorphic to an Euclidean sphere.

PROOF. Since we are assuming that Σn is totally umbilical and that Σn it is not
contained in a slice, we conclude that ∇u is a non-Killing conformal vector field.
Therefore, since Σn has finite fundamental group, we conclude the desired result from
[42, Theorem 2]. �

5. Stability of spacelike mean curvature flow solitons in GRW spacetimes

Let ψ : Σn � −I × f Mn be a complete spacelike mean curvature flow soliton with
soliton constant c. We recall that a variation with compact support and fixed boundary
of ψ : Σn � −I × f Mn is a smooth mapping

F : (−ε, ε) × Σn → −I × f Mn (5-1)

such that:

(i) for s ∈ (−ε, ε), the map Fs : Σn � −I × f Mn given by Fs(q) = F(s, q) is an
spacelike immersion with F0 = x; and

(ii) Fs|∂Σ = ψ|∂Σ for all s ∈ (−ε, ε).

In all that follows, we let dMs denote the volume element of the metric induced on
Σn by Fs and let Ns denote the unit normal vector field along Fs. Moreover, we also
consider in Σn the weighted volume form given by dμs = e− f dMs. When s = 0, all of
these objects coincide with the ones defined in Σn.
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The variational field associated to the variation F is the vector field ∂F/∂s|s=0.
Letting

us = −
〈
∂F
∂s

, Ns

〉
,

we get

∂F
∂s

∣∣∣∣∣
s=0
= u0N +

(
∂F
∂s

∣∣∣∣∣
s=0

)�
,

where (·)� stands for tangential components.
Denoting the set of all smooth functions on Σn with compact support by C∞0 (Σn),

according to [14, Lemma 2.1] and [13, Lemma 2.1], every function ϕ ∈ C∞0 (Σn) with∫
Σn
ϕ dΣ = 0 (5-2)

induces a variation of ψ : Σn � −I × f Mn of the type (5-1), with variational normal
field ∂F/∂s|s=0 = ϕN and with first variation δϕA of the area functional

A : (−ε, ε)→ R

s �→ A(s) = Area(Fs(Σ
n)) =

∫
Σn

dΣs,

given by

δϕA =
dA
ds

(0) =
∫
Σn
ϕH dΣ. (5-3)

Here, N stands for a normal unit vector field globally defined on Σn, dΣs denotes the
volume element of Σn with respect to the metric induced by Fs : Σn � −I × f Mn and
H is the mean curvature function of ψ : Σn � −I × f Mn with respect to N.

As a consequence of (5-3), maximal compact spacelike mean curvature flow
solitons of −I × f Mn (that is, with mean curvature identically zero) are characterized as
critical points of the area functionalA, whereas any compact spacelike mean curvature
flow soliton ψ : Σn � −I × f Mn with constant mean curvature H is a critical point of
A restricted to functions ϕ ∈ C∞(Σn) that satisfy condition (5-2). Geometrically, this
additional condition means that the variations under consideration preserve a certain
volume functional (for more details, see [13]).

For these critical points, [14, Proposition 2.3] asserts that the stability of the
corresponding variational problem is given by the second variation of the area
functional A, which is given by

δ 2
ϕ A =

d 2
A

ds2 (0)(ϕ) =
∫
Σn
{Δ(ϕ) − {Ric(N, N) + |A|2}ϕ}ϕ dΣ,
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where Δ stands for the Laplacian operator on Σn, Ric is the Ricci tensor of the GRW
spacetime −I × f Mn and |A| denotes the length of the shape operator A of ψ : Σn �
−I × f Mn with respect to N. In this setting, we establish the following definition.

DEFINITION 5.1. A compact spacelike mean curvature flow soliton ψ : Σn � −I × f

Mn with constant mean curvature H is said to be strongly stable if δ 2
ϕ A ≤ 0 for every

ϕ ∈ C∞(Σn).

In our next result, we impose a suitable behavior on the warping function f to
obtain a nonexistence result for strongly stable spacelike mean curvature flow solitons
immersed in −I × f Mn.

THEOREM 5.2. There is no strongly stable compact spacelike mean curvature flow
soliton ψ : Σn � −I × f Mn with soliton constant c � 0 whose mean curvature H is
constant and whose height function h satisfies c f ′(h) f (h) + n f ′′(h) > 0 on Σn.

PROOF. By contradiction, let us suppose the existence of such a soliton ψ : Σn �
−I × f Mn. From the first equation in the proof of [19, Proposition 2.1], we have

Δ(ϕK ) = {Ric(N, N) + |A|2}ϕK − {nN( f ′(h)) − H f ′(h)} + 〈K ,∇H〉
= {Ric(N, N) + |A|2}ϕK + cϕK f ′(h) − nN( f ′(h)), (5-4)

where ϕK ∈ C∞(Σn) is the support function defined in (3-10).
On the other hand, we also have

N( f ′(h)) = −〈 f ′′(h)∂ t, N〉 = − f ′′(h)
f (h)

ϕK . (5-5)

Thus, from (5-4) and (5-5), we get

Δ(ϕK ) = {Ric(N, N) + |A|2}ϕK + cϕK f ′(h) − nN( f ′(h))

= {Ric(N, N) + |A|2}ϕK +
{
c f ′(h) + n

f ′′(h)
f (h)

}
ϕK . (5-6)

Moreover, since H = cϕK is constant and c � 0, we have that ϕK is also constant
on Σn. Hence, from (5-6), we obtain

−{Ric(N, N) + |A|2}ϕK =
{
c f ′(h) + n

f ′′(h)
f (h)

}
ϕK . (5-7)

Now, from our hypothesis of strong stability and taking into account Definition 5.1,
we currently have

δ 2
ϕ A =

∫
Σn
{Δ(ϕ) − {Ric(N, N) + |A|2}ϕ}ϕ dΣ ≤ 0

for every ϕ ∈ C∞(Σn).

https://doi.org/10.1017/S1446788723000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788723000095


[31] On the geometry of spacelike mean curvature flow solitons 251

Thus, making ϕ = ϕK < 0 (see (3-11)), from the hypothesis that c f ′(h) f (h) +
n f ′′(h) > 0 jointly with (5-7) we get

0 <
∫
Σn

{
c f ′(h) + n

f ′′(h)
f (h)

}
ϕ2
K =

∫
Σn
{Δ(ϕK )︸︷︷︸

0

−{Ric(N, N) + |A|2}ϕK}ϕK dΣ ≤ 0,

and we reach an absurdity. �

From Theorem 5.2, we get the following application.

COROLLARY 5.3. There is no strongly stable compact spacelike mean curvature flow
soliton in a steady-state-type spacetime −I ×et Mn with soliton constant c > 0 and
constant mean curvature.

In what follows, we consider the function

u = −g(πI) ∈ C∞(−I × f Mn),

where g : I → R is the primitive of the warping function f that was used to define
the reparametrization u = −g(h) of the height function h of the spacelike mean
curvature flow soliton ψ : Σn � −I × f Mn (see (3-6)). From (3-1), we observe that
u = u on Σn, and hence ū is a smooth extension of u. Following [12], we consider the
Bakry–Émery–Ricci tensor Riccū of −I × f Mn, which is given by

Riccū = Ric + c∇
2

ū = Ric − c f ′(h)〈 , 〉, (5-8)

where Ric and ∇
2

are the standard Ricci tensor and the Hessian in −I × f Mn,
respectively. We also consider the modified volume element

dμ̄ = ecūdV ,

where dV denotes the standard volume element of −I × f Mn. We note that, on Σn, dμ̄
coincides with the modified volume element dμ previously defined in (3-21).

With all of these considerations, we have that any function ϕ ∈ C∞0 (Σn) with∫
Σn
ϕ dμ = 0

induces a variation of ψ : Σn � −I × f Mn, having compact support and fixed bound-
ary, with variational normal field ∂F/∂s|s=0 = ϕN and with first variation δϕ(Acu) of
the modified area functional

A cu : (−ε, ε)→ R

s �→ Acu(s) =
∫
Σn

dμ

given by

δϕ(A cu) =
dA cu

ds
(0) =

∫
Σn
ϕHcū dμ (5-9)
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(see, for example, [21, Lemma 3.2]), where Hcū is the modified mean curvature of
ψ : Σn � −I × f Mn defined by

Hcū = H − c〈∇(ū), N〉.

But, since ψ : Σn � −I × f Mn is a spacelike mean curvature flow soliton with respect
to the closed conformal vector field K = f (t)∂ t and with soliton constant c � 0, from
(2-6) and (3-7) we get that

Hcu = c f (h)Θ − c〈∇(ū), N〉 = c f (h)Θ − c〈(∇(ū)� + ∇(ū)⊥), N〉
= c f (h)Θ − c〈∇(ū)⊥ , N〉 = c f (h)Θ − c〈(−g′(h)∇πI))

⊥ , N〉.
= c f (h)Θ − c f (h)〈∂ t , N〉 = 0. (5-10)

Therefore, from (5-9) and (5-10), we obtain that any spacelike mean curvature
flow soliton ψ : Σn � −I × f Mn with respect to the closed conformal vector field
K = f (t)∂ t and with soliton constant c � 0 is a critical point of the modified area
functional Acu. Furthermore, the stability operator Lcu : C∞0 (Σn)→ C∞0 (Σn) for this
variational problem is given by the second variation formula δ2

ϕ(Acu) of Acu, which, in
our case, is written as (see, for example, [21, Proposition 3.5] for the case Hcū = 0)

δ2
ϕ(Acu) =

d 2
Acu

ds2 (0)(ϕ) =
∫
Σn
ϕLcu(ϕ) dμ,

with

Lcu = Δcu − {Riccū(N, N) + |A|2}, (5-11)

where Δcu is the drift Laplacian operator on Σn given in (3-17). So, using (5-8), we can
rewrite the stability operator Lcu as

Lcu = Δcu − {Ric(N, N) − c f ′(h) + |A|2}.

The following notion of stability concerning spacelike mean curvature flow solitons
in GRW spacetime now makes sense.

DEFINITION 5.4. Let ψ : Σn � −I × f Mn be a spacelike mean curvature flow soliton
with soliton constant c � 0. We say that ψ : Σn � −I × f Mn is Lcu-stable if δ2

ϕ(Acu) ≤ 0
for all ϕ ∈ C∞0 (Σn).

The next auxiliary result gives a sufficient condition to guarantee that a spacelike
mean curvature flow soliton must be Lcu-stable (for its proof, see [25, Lemma 3.2]).

LEMMA 5.5. Let ψ : Σn � −I × f Mn be a spacelike mean curvature flow soliton with
soliton constant c � 0. If there exists a positive smooth function ϕ ∈ C∞(Σn) such that
Lcu(ϕ) ≤ 0, then Σn is Lcu-stable.

Now, we analyze the behavior of the warping function f along a spacelike mean
curvature flow soliton to infer its Lcu-stability.
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THEOREM 5.6. Let ψ : Σn � −I × f Mn be a spacelike mean curvature flow soliton
with soliton constant c � 0.

(a) If ζ′c(t) ≤ 0 on Σn, then ψ : Σn � −I × f Mn is Lcu-stable.
(b) If Σn is compact and ζ′c(t) ≥ 0 on it, then ψ : Σn � −I × f Mn is Lcu-stable if and

only if ζc(t) is constant on Σn.
(c) If Σn is compact and ζ′c(t) > 0 on it, then ψ : Σn � −I × f Mn cannot be Lcu-stable.

PROOF. From (5-6),

Δ(ϕK ) = {Ric(N, N) + |A|2}ϕK +
{
c f ′(h) + n

f ′′(h)
f (h)

}
ϕK ,

where ϕK ∈ C∞(Σn) is the support function defined in (3-10). So, by applying ϕK to
the stability operator Lcu and using the last equation, we get

Lcu(ϕK ) = Δcu(ϕK ) − {Ric(N, N) − c f ′(h) + |A|2}ϕK =
{
2c f ′(h) + n

f ′′(h)
f (h)

}
ϕK .

Hence,

Lcu(−ϕK ) = {2c f ′(h) f (h) + n f ′′(h)} (−ϕK ), (5-12)

where −ϕK is a positive smooth function on Σn and, with a direct application of Lemma
5.5, the result of item (a) is obtained directly.

Now, let us consider item (b). Note that, in this case, C∞0 (Σn) = C∞(Σn). So, if ψ :
Σn � −I × f Mn is Lcu-stable, from Definition 5.4 and Equation (5-12) we get

0 ≥ δ 2
(−ϕK )(Acu) =

∫
Σn

(−ϕK )Lcu(−ϕK ) dμ

=

∫
Σn
{2c f ′(h) f (h) + n f ′′(h)}(−ϕK )2 dμ ≥ 0, (5-13)

which guarantees that ζc(t) is constant on Σn. The converse follows from item (a).
Finally, we prove item (c). Assuming the opposite, if ψ : Σn � −I × f Mn is

Lcu-stable, then, from the analysis of signs studied in (5-13),

0 ≥
∫
Σn
{2c f ′(h) f (h) + n f ′′(h)}(−ϕK )2 dμ > 0,

which is an absurdity. �

From Theorem 5.6, we obtain the following applications.

COROLLARY 5.7. Every spacelike translating soliton immersed in the Lorentzian
product space −I ×Mn with soliton constant c � 0 is Lcu-stable.

COROLLARY 5.8. Every spacelike mean curvature flow soliton immersed in the future
temporal cone −R+ ×t H

n with soliton constant c < 0 and such that h ≥
√
−n/c is

Lcu-stable.
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COROLLARY 5.9. There is no Lcu-stable compact spacelike mean curvature flow
soliton immersed in a steady-state-type spacetime −I ×et Mn with soliton constant
c > 0.
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