
TPLP 23 (3): 559–593, 2023. c© The Author(s), 2021. Published by Cambridge University Press.

doi:10.1017/S1471068421000582 First published online 27 December 2021
559

Declarative Approaches to Counterfactual
Explanations for Classification∗

LEOPOLDO BERTOSSI
Universidad Adolfo Ibáñez, Faculty of Engineering and Sciences, Santiago, Chile

and
Millennium Institute for Foundational Research on Data (IMFD)

Santiago, Chile
(e-mail: leopoldo.bertossi@uai.cl)

submitted 15 November 2020; revised 25 November 2021; accepted 1 December 2021

Abstract

We propose answer-set programs that specify and compute counterfactual interventions on enti-
ties that are input on a classification model. In relation to the outcome of the model, the resulting
counterfactual entities serve as a basis for the definition and computation of causality-based ex-
planation scores for the feature values in the entity under classification, namely responsibility
scores. The approach and the programs can be applied with black-box models, and also with
models that can be specified as logic programs, such as rule-based classifiers. The main focus
of this study is on the specification and computation of best counterfactual entities, that is,
those that lead to maximum responsibility scores. From them one can read off the explanations
as maximum responsibility feature values in the original entity. We also extend the programs
to bring into the picture semantic or domain knowledge. We show how the approach could be
extended by means of probabilistic methods, and how the underlying probability distributions
could be modified through the use of constraints. Several examples of programs written in the
syntax of the DLV ASP-solver, and run with it, are shown.

KEYWORDS: classification, explanations, counterfactuals, causality, answer-set programming,
constraints

1 Introduction

Counterfactual explanations. Providing explanations to results obtained from

machine-learning (ML) models has been recognized as critical in many applications. It

has also become an active research direction in explainable ML (Molnar 2020), and the

broader area of explainable AI. Explanations become particularly relevant when decisions

are automatically made by those models, possibly with serious consequences for stake

holders. Since most of those models are algorithms learned from training data, providing

explanations may not be easy or possible. These models are or can be seen as black-box

models. Even if the components of the models, say their structure, mathematical func-

tions, and parameters, are relatively clear and accessible, characterizing and measuring

∗ In memory of Prof. Jack Minker (1927–2021), a scientist, a scholar, a visionary; a generous, wise and
committed man.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582
https://orcid.org/0000-0002-1144-3179
mailto:leopoldo.bertossi@uai.cl
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068421000582&domain=pdf
https://doi.org/10.1017/S1471068421000582

560 L. Bertossi

the relevance of a particular feature value for the classification of an entity may not be

that clear from a sheer inspection of the model.

In AI, explanations have been investigated, among other areas, under actual causality

(Halpern and Pearl 2005), where counterfactual interventions on a causal structural model

are central. They are hypothetical updates on the model’s variables, to explore if and

how the outcome of the model changes or not. In this way, explanations for an original

output are defined and computed. Counterfactual interventions have been used, explicitly

or implicitly, with ML models, in particular with classification models (Martens and

Provost 2014; Wachter et al . 2017; Russell 2019; Karimi et al . 2020a; Datta et al . 2016;

Bertossi et al . 2020). Counterfactual explanations for query answers from databases have

also been investigated (Meliou et al . 2010; Bertossi and Salimi 2017a; Bertossi 2021), an

area that is not unrelated to classification results (c.f. Section 4).

In this study, we start by introducing and formalizing the notion of counterfactual

explanation for the classification of an entity e (think of a finite record of feature values)

with a certain label �. Counterfactual explanations are alternative versions, e′, of e that

differ from e by a set of feature values, but are classified with a different label �′. In
this study, “best counterfactual explanations” come in two forms, as s-explanations and

c-explanations. The former minimize (under set inclusion) the set of features whose values

are changed; while the latter, minimize the number of changed feature values.

Explanation scores and responsibility. We use counterfactual explanations to define

the x-Resp score, an explanation responsibility score for a feature value of the entity

under classification. The idea is to identify and compute the most responsible feature

values for the outcome. This score is adapted from the general notion of responsibility

used in actual causality (Chockler and Halpern 2004).

More specifically, in this study, we concentrate our interest mostly and mainly on

specifying and computing, for a given and fixed classified entity e, all the best explanations

as represented as counterfactual entities (that have feature values changed and a different

label), where “best” for a counterfactual entity means that the number of changes of

feature values (with respect to e) takes a minimum value (the c-explanations mentioned

above). At the same time, we are also interested in the maximum-responsibility feature

values. These two goals are directly related: The maximum-responsibility feature values

(in the original entity e) are exactly those that appear as changed in a best counterfactual

entity.

The x-Resp score belongs to the family of feature attribution scores, among which one

finds the popular Shap score (Lundberg et al . 2020). While Shap is based on the Shapley

value that is widely used in game theory, the x-Resp score is based on actual causality.

Experimental results with an extended version (that we briefly describe) of the respon-

sibility score investigated in this work, and comparisons with other scores, in particu-

lar, with Shap, are reported in Bertossi et al . (2020). However, only a fully procedural

approach to the x-Resp score was followed in Bertossi et al . (2020). Furthermore, for

performance and comparison-related reasons, the number of counterfactually changeable

feature values was bounded a priori.

Specifying counterfactuals and reasoning. Answer-set programming (ASP) is

an elegant and powerful logic programming paradigm that allows for declarative

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 561

specifications of a domain or a problem. From those specifications one can do logical

reasoning, and quite usefully, non-monotonic reasoning (Brewka et al . 2011; Gelfond and

Kahl 2014). ASP has been applied to the specification and solution of hard combinatorial

problems, and also to different tasks related to databases. Among the latter, we find the

specification of repairs of databases w.r.t. integrity constraints, virtual data integration,

specification of privacy views (Bertossi 2011; 2019), and causality in databases (Bertossi

2021).

In this study, we also introduce Counterfactual Intervention Programs (CIPs), which

are ASPs that specify counterfactual interventions and counterfactual explanations, and

also allow to specify and compute the responsibility scores. More specifically, CIPs are

designed to be used to compute: (a) counterfactual explanations (best or not), (b) best

counterfactual explanations (i.e. c-explanations), and (c) highest-responsibility features

values (in the original entity), that is, with maximum x-Resp score.

As already mentioned above, c-explanations lead to maximum responsibility scores,

and maximum-responsibility scores are associated to c-explanations. However, in order

to compute a maximum-responsibility score (or a feature value which attains it), we

may not need all the best counterfactual entities that “contain” that particular feature

value. Actually, only one of them would be good enough. Still, our CIPs compute all the

counterfactual entities, and all (and only) the best counterfactual entities if so required.

In this regard, it is worth mentioning that counterfactual explanations, best or not, are

interesting per se, in that they could show what could be done differently in order to be

obtain a different classification (Schleich et al . 2021). For example, someone, represented

as an entity e, who applies for a loan at a bank, and is deemed by the bank’s classifier as

unworthy of the loan, could benefit from knowing that a reduction of the number of credit

cards he/she owns might lead to a positive assessment. This counterfactual explanation

would be considered as actionable (or feasible or a recourse) (Ustun et al . 2019; Karimi

et al . 2020b).

Furthermore, having all (or only the best) counterfactual explanations, we could think

of doing different kinds of meta-analysis and meta-analytics on top of them. In some

cases, query answering on the CIP can be leveraged, for example, to know if a highest

responsibility feature value appears as changed in every best counterfactual entity (c.f.

Section 9).

CIPs can be applied to black-box models that can be invoked from the program; and

also with any classifier that can be specified within the program, such as a rule-based

classifier. Decision trees for classification can be expressed by means of rules. As recent

research shows, other established classifiers, such as random forests, Bayesian networks,

and neural networks, can be compiled into Boolean circuits (Shi et al . 2020; Shih et al .

2018; Choi et al . 2020; Narodytska et al . 2010), opening the possibility of specifying them

by means of ASPs.

ASP and semantic knowledge. Our declarative approach to counterfactual inter-

ventions is particularly appropriate for bringing into the game additional, declarative,

semantic knowledge. As we show, we could easily adopt constraints when computing

counterfactual entities and scores. In particular, these constraints can be used to con-

centrate only on actionable counterfactuals (as defined by the constraint). In the loan

example, we could omit counterfactual entities or explanations that require from the ap-

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

562 L. Bertossi

plicant to reduce his/her age. Imposing constraints in combination with purely procedural

approaches is much more complicated. In our case, we can easily and seamlessly inte-

grate logic-based semantic specifications with declarative programs, and use the generic

and optimized solvers behind ASP implementations. In this study, we include several

examples of CIPs specified in the language of the DLV system (Leone et al . 2006) and

its extensions, and run on them.

We establish that ASPs are the right declarative and computational tool for our prob-

lem since they can be used to: (a) Compute all the counterfactual explanations, in par-

ticular, the best ones. (b) Provide through each model of the program all the informa-

tion about a particular counterfactual explanation. (c) Compute maximum-responsibility

scores and the counterfactual explanations associated to them. (d) In many cases, specify

as a single program the classifier together with the explanation machinery. (d) Alterna-

tively, call a classifier from the program as an external predicate defined in, say Python.

(e) Bring into the picture additional, logic-based knowledge, such as semantic and

actionability constraints. (f) Do query answering, under the skeptical and brave seman-

tics, to analyze at a higher level the outcomes of the explanation process. Furthermore,

and quite importantly, the ASPs we use match the intrinsic data complexity of the prob-

lem of computing maximum-responsibility feature values, as we will establish in this

work.

We discuss why and how the responsibility score introduced and investigated early in

this work has to be extended in some situations, leading to a generalized probabilistic

responsibility score introduced in Bertossi et al . (2020). After doing this, we show how

logical constraints that capture domain knowledge can be used to modify the underlying

probability distribution on which a score is defined.

Article structure and contents. This paper is structured as follows. In Section 2, we

provide background material on classification models and ASPs. In Section 3, we intro-

duce counterfactual interventions and the responsibility score. In Section 4, we investigate

the data complexity of the computation of maximum-responsibility feature values. In Sec-

tion 5, we introduce and analyze the CIPs. In Section 6, we consider some extensions

of CIPs that can be used to capture additional domain knowledge. In Section 7, and

for completeness, we briefly motivate and describe the probabilistic responsibility score

previously introduced in Bertossi et al . (2020). In this regard, we also show how to bring

logical constraints into the probabilistic setting of the responsibility score. In Section 8,

the discuss related work. In Section 9, we conclude with a discussion and concluding

remarks.

This paper is an extended version of the conference paper (Bertossi 2020). This cur-

rent version, in addition to improving and making more precise the presentation in com-

parison with the conference version, includes a considerable amount of new material.

Section 2, containing background material, is new. In particular, it contains a new exam-

ple of a decision-tree classifier that is used as an additional running example throughout

the paper. Section 4 on the complexity of x-Resp computation is completely new, so as

Section 5.2 that retakes complexity at the light of CIPs. This version also contains several

examples of the use of the DLV system for specifying and running CIPs. There were no

such examples in the conference version. Section 7 is new. It contains two subsections;

the first dealing with non-binary features and the need to extend in probabilistic terms

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 563

the definition of the x-Resp score; and the second, with the combination of probabilistic

uncertainty and domain knowledge. We now have the new Section 8 on related work.

The final Section 9 has been considerably revised and extended.

2 Background

2.1 Classification models and counterfactuals

In a particular domain, we may have a finite set F = {F1, . . . , Fn} of features (a.k.a. as

variables). More precisely, the features Fi are functions that take values in their domains

Dom(Fi).
1 As is commonly the case, we will assume that these domains are categorical,

that is, finite and without any a priori order structure. These features are used to describe

or represent entities in an underlying population (or application domain), as records (or

tuples) e formed by the values the features take on the entity. Actually, with a bit

of abuse of notation, we represent entities directly as these records of feature values:

e = 〈F1(e), . . . , Fn(e)〉. A feature F is said to be Boolean or propositional if Dom(F) =

{true, false}, for which we sometimes use {yes, no} or simply, {1, 0}.
For example, if the underlying population contains people, and then, each en-

tity represents a person, features could be F = {Weight, Age,Marrid,EdLevel}, with

domains: Dom(Weight) = {overweight, chubby, fit, slim, underweight}; Dom(Age) =

{old,middle, young, child}; Dom(Married) = {true, false}; Dom(EdLevel) = {low,
medium, high, top}. A particular entity could be (represented by) e = 〈fit, young,
false, top〉. Here, Married is a propositional (or binary) feature.

A classifier, C, for a domain of entities E is a computable function C : E → L, where

L = {�1, . . . , �k} is a set of labels. We classify the entity by assigning a label to it.

We do not have to assume any order structure on L. In the example above, we may

want to classify entities in the people’s population according to how appropriate they

are for military service. The set of labels could be L = {good,maybe, noway}, then the

classifier could be such, that C(〈fit, young, false, top〉) = good, but C(〈overweight, old,
true, low〉) = noway. When the set of labels has two values, typically, {yes, no}, we have

a binary or Boolean classifier. In this study, we will consider mostly binary classifiers.

Example 2.1

This is a popular example taken from Mitchell (1997). Consider the set of fea-

tures F = {Outlook,Humidity,Wind}, with Dom(Outlook) = {sunny, overcast, rain},
Dom(Humidity) = {high, normal}, Dom(Wind) = {strong, weak}. An entity under classifi-

cation has a value for each of the features, for example, e = ent(sunny, normal,weak). The

problem is about deciding about playing tennis or not under the conditions represented

by that entity, which can be captured as a classification problem, with labels yes or no

(sometimes we will use 1 and 0, resp.).

The Boolean classifier is given as a decision-tree, as shown in Figure 1. The decision

is computed by following the feature values along the branches of the tree. The entity

e at hand gets label yes. �

1 This is customary parlance, but, since a feature is a function, in Mathematics we would call this the
range of Fi.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

564 L. Bertossi

Fig. 1. A decision tree.

Of course, a decision tree could be just arbitrarily given, but the common situation is to

learn it from training examples, that is from a collection of entities that come already with

an assigned label. In more general terms, building a classifier, C, from a set of training

data, that is, a set of pairs T = {〈e1, �(e1)〉, . . . , 〈eM , �(eM)〉}, with �(ei) ∈ L, is about

learning a (computational) model for the label function L for the entire domain of entities,

beyond T . We say that L “represents” the classifier C. This supervised learning task is

one of the most common in machine learning. (C.f. (Mitchell 1997) or (Flach 2012) for

great introductions to the subject.) Classifiers may take many different internal forms.

They could be decision trees, random forests, rule-based classifiers, logistic regression

models, neural network-based classifiers, etc.

In this study, we are not concerned with learning classifiers. We will assume the classi-

fier is given as an input/output computable relation, or that we know how to specify it,

for example, through a logic program. By the same token, we are not dealing here with

any kind of program learning.

Some classes of classifiers are more “opaque” than others, that is, with a more complex

and less interpretable internal structure and results (Molnar 2020). Hence, the need for

explaining the classification outcomes. The decision tree above is clearly a computable

function. Since we have the classifier at hand with an explicit and clear specification, we

would consider this classifier to be interpretable. In this direction, if we obtain a label for

a particular entity at hand, we can inspect the model and explain why we obtained that

label, and we could identify the feature values that were relevant for the outcome.

Instead of a decision tree as above, we could have, for example, a very complex neural

network. Such a model would be much more difficult to interpret, or use to explain why

we got a particular output for a particular input. This kind of models are considered to

be black-box models (or al least, opaque) (Rudin 2019).

Assume for a moment that we do not have the explicit classifier in Example 2.1, but we

interact only with the box that contains it. We input entity e = ent(sunny, normal,weak),

and we obtain the output yes. We want to know what are the feature values in e that

influenced the outcome the most. Actually, we want to get a numerical score for each of

the entity’s feature values, in such a way that the higher the score, the more relevant is

the feature value for the outcome.

Different scores may be defined. A popular one is Shap (Lundberg et al . 2020), which

has been investigated in detail for some classes of classifiers (Arenas et al . 2021; Van den

Broeck et al . 2021). In this study, we concentrate on x-Resp, a responsibility score that

was introduced, in a somewhat ad hoc manner, in Bertossi et al . (2020). In this work, we

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 565

present x-Resp in a causal setting, on the basis of counterfactual interventions and their

responsibilities, following the general approach to causal responsibility in Chockler and

Halpern (2004).

Just for the gist, and at the light of the example at hand, we want to detect

and quantify the relevance (technically, the responsibility) of a feature value in e =

ent(sunny, normal,weak), say for feature Humidity (underlined), by hypothetically inter-

vening its value; in this case, changing it from normal to high, obtaining a new entity

e′ = ent(sunny, high,weak), a counterfactual version of e. If we input this entity into

the classifier, we now obtain the label no. This is an indication that the original feature

value for Humidity is indeed relevant for the original classification. Through numerical

aggregations over the outcomes associated to the alternative, counterfactually intervened

entities, we can define and compute the x-Resp score. The details can be found in Sec-

tion 3. As mentioned in Section 1, these counterfactual entities are also interesting per se,

and not only as a basis for the definition and computation of feature attribution scores.

2.2 Answer-set programming

As customary, when we talk about ASPs, we refer to disjunctive Datalog programs with

weak negation and stable model semantics (Gelfond and Lifschitz 1991). Accordingly, an

ASP Π consists of a finite number of rules of the form

A1 ∨ . . . ∨An ← P1, . . . , Pm, not N1, . . . , not Nk, (1)

where 0 ≤ n,m, k, and Ai, Pj , Ns are (positive) atoms, that is, of the form Q(t̄), where

Q is a predicate of a fixed arity, say, �, and t̄ is a sequence of length � of variables or

constants. In rule (1), A1, . . . , not Nk are called literals, with A1 positive, and not Nk,

negative. All the variables in the Ai, Ns appear among those in the Pj . The left-hand

side of a rule is called the head, and the right-hand side, the body. A rule can be seen

as a (partial) definition of the predicates in the head (there may be other rules with the

same predicates in the head).

The constants in program Π form the (finite) Herbrand universe H of the program.

The ground version of program Π, gr(Π), is obtained by instantiating the variables in Π

in all possible ways using values from H. The Herbrand base, HB , of Π contains all the

atoms obtained as instantiations of predicates in Π with constants in H.

A subset M of HB is a model of Π if it satisfies gr(Π), that is: For every ground

rule A1 ∨ . . . ∨ An ← P1, . . . , Pm, not N1, . . . , not Nk of gr(Π), if {P1, . . . , Pm} ⊆ M

and {N1, . . . , Nk} ∩M = ∅, then {A1, . . . , An} ∩M
= ∅. M is a minimal model of Π

if it is a model of Π, and Π has no model that is properly contained in M . MM (Π)

denotes the class of minimal models of Π. Now, for S ⊆ HB(Π), transform gr(Π) into

a new, positive program gr(Π)S (i.e., without not), as follows: Delete every rule A1 ∨
. . . ∨ An ← P1, . . . , Pm, not N1, . . . , not Nk for which {N1, . . . , Nk} ∩ S
= ∅. Next,
transform each remaining rule A1 ∨ . . . ∨ An ← P1, . . . , Pm, not N1, . . . , not Nk into

A1 ∨ . . . ∨ An ← P1, . . . , Pm. Now, S is a stable model of Π if S ∈ MM (gr(Π)S). Every

stable model of Π is also a minimal model of Π. Stable models are also commonly called

answer sets, and so are we going to do most of the time.

A program is unstratified if there is a cyclic, recursive definition of a predicate that

involves negation. For example, the program consisting of the rules a ∨ b ← c, not d;

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

566 L. Bertossi

d ← e, and e ← b is unstratified, because there is a negation in the mutually recur-

sive definitions of b and e. The program in Example 2.2 below is not unstratified, that

is, it is stratified. A good property of stratified programs is that the models can be up-

wardly computed following strata (layers) starting from the facts, that is from the ground

instantiations of rules with empty bodies (in which case the arrow is usually omitted).

We refer the reader to Gelfond and Kahl (2014) for more details.

Query answering under the ASPs comes in two forms. Under the brave semantics, a

query posed to the program obtains as answers those that hold in some model of the

program. However, under the skeptical (or cautious) semantics, only the answers that

simultaneously hold in all the models are returned. Both are useful depending on the

application at hand.

We will use disjunctive programs. However, sometimes it is possible to use instead

normal programs, which do not have disjunctions in rule heads, and with the same stable

models, in the sense that disjunctive rules can be transformed into a set of non-disjunctive

rules. More precisely, the rule in (1) can be transformed into the rules:

A1 ← P1, . . . , Pm, not N1, . . . , not Nk, not A2, . . . , not An

· · ·
An ← P1, . . . , Pm, not N1, . . . , not Nk, not A1, . . . , not An−1.

This shift operation is possible if the original program is head-cycle free (Ben-Eliyahu

and Dechter 1994; Dantsin et al . 2001), as we define now. The dependency graph of

a program Π, denoted DG(Π), is a directed graph whose nodes are the atoms of the

associated ground program gr(Π). There is an arc from L1 to L2 iff there is a rule in

gr(Π) where L1 appears positive in the body and L2 appears in the head. Π is head-cycle

free (HCF) iff DG(Π) has no cycle through two atoms that belong to the head of a same

rule.

Example 2.2

Consider the following program Π that is already ground.

a ∨ b ← c

d ← b

a ∨ b ← e, notf

e ←

The program has two stable models:

S1 = {e, a} and S2 = {e, b, d}.
Each of them expresses that the atoms in

it are true, and any other atom that does

not belong to it, is false.

These models are incomparable under set inclusion, and they are minimal models in

that any proper subset of any of them is not a model of the program.

The dependency graph is shown in Figure 2. We can see that the program Π is head-

cycle free, because there is no cycle involving both a and b, the atoms that appear in the

disjunctive head. As a consequence, the program can be transformed into the following

non-disjunctive program

a ← c, not b

b ← c, not a

d ← b

a ← e, notf , not b

b ← e, notf , not a.

e ←

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 567

Fig. 2. Dependency graph DG(Π).

This program has the same stable models as the original one. �

We will return to HCF-programs in Section 5.2.

3 Counterfactual explanations and the x-Resp score

We consider classification models, C, that are represented by an input/output relation.

Inputs are the so-called entities, e, which are represented as records, e = 〈x1, . . . , xn〉,
where xi is the value Fi(e) ∈ Domi := Dom(Fi) taken on e by the feature Fi ∈ F =

{F1, . . . , Fn}. The entities form a population E . The output of a classifier is represented

by a label function L that maps entities e to 0 or 1, the binary result of the classification.

That is, to simplify the presentation, we concentrate here on binary classifiers, but this

is not essential. Furthermore, we consider domains Dom(Fi) with a finite number of

categorical values.

In this work, we are not assuming that we have an explicit classification model, and

we do not need it. All we need is to be able to invoke it. It could be a “black-box” model.

The problem is the following: Given an entity e that has received the label L(e),

provide an “explanation” for this outcome. In order to simplify the presentation, and

without loss of generality, we assume that label 1 is the one that has to be explained. It

is the “negative” outcome one has to justify, such as the rejection of a loan application.

Counterfactual explanations are defined in terms of counterfactual interventions that

simultaneously change feature values in e, in such a way that the updated record gets a

new label. A counterfactual explanation for the classification of e is, then, an alternative

entity e′ that is classified with a label different from that of e. In general, we are interested

in counterfactual explanations that are more informative about the role of the feature

values in e, which lead to its obtained label. These are the entities that are obtained

from e through a minimal counterfactual interventions. Minimality can be defined in

different ways, and we adopt an abstract approach, assuming a partial order relation �
on counterfactual interventions.

Definition 3.1

Consider a binary classifier represented by its label function L, and a fixed input entity

e = 〈x1, . . . , xn〉, with Fi(e) = xi, 1 ≤ i ≤ n, and L(e) = 1.

(a) An intervention ι̂ on e is a set of the form {〈Fi1 , x
′
i1
〉, . . . , 〈FiK , x′

iK
〉}, with Fis
= Fi� ,

for s
= �, xis
= x′
is
∈ Dom(Fis). We denote with ι̂(e) the record obtained by applying

to e intervention ι̂, that is, by replacing in e every xis = Fis(e), with Fis appearing in ι̂,

by x′
is
.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

568 L. Bertossi

(b) A counterfactual intervention on e is an intervention ι̂ on e, such that L(ι̂(e)) = 0.

The resulting entity e′ = ι̂(e) is called a counterfactual entity (for e).

(c) A �-minimal counterfactual intervention ι̂ is such that there is no counterfactual

intervention ι̂′ on e with ι̂′ ≺ ι̂ (i.e., ι̂′ � ι̂, but not ι̂ � ι̂′). The resulting entity

e′ = ι̂(e) is called a �-minimal counterfactual entity.

(d) A counterfactual explanation for L(e) is a set of the form ε̂ = {〈Fi1 , xi1〉, . . . ,
〈FiK , xiK 〉}, with Fij (e) = xij , for which there is a counterfactual intervention ι̂(ε̂) =

{〈Fi1 , x
′
i1
〉, . . . , 〈FiK , x′

iK
〉} for e.

(e) A counterfactual explanation ε̂ for L(e) is �-minimal if its associated counterfactual

intervention ι̂(ε̂) is a �-minimal counterfactual intervention on e. �

Remark 3.1

Counterfactual explanations contain feature values of the original entity e. They contain

relevant information about the classification result, and interventions are used to

characterize and identify them. For this reason, we will usually call an alternative entity

e′ obtained from e through a counterfactual intervention, a counterfactual explanation

as well: The counterfactual explanation in the sense of Definition 3.1(d) can be read-off

from e′. �

Several minimality criteria can be expressed in terms of partial orders. We will explic-

itly consider two of them.

Definition 3.2

Let ι̂1 and ι̂2 be interventions on an entity e. (a) ι̂1 ≤s ι̂2 iff π1(ι̂1) ⊆ π1(ι̂2), with π1(ι̂)

the projection of ι̂ on the first position. (b) ι̂1 ≤c ι̂2 iff |̂ι1| ≤ |̂ι2|. �

This definition introduces minimality under set inclusion and cardinality, resp. The for-

mer minimizes – under set inclusion – the set of features whose values are changed.

The latter, the number of features that see their values changed. In the following, we will

consider only these minimality criteria, mostly the second (c.f. Section 9 for a discussion).

Example 3.1

Consider three binary features F = {F1, F2, F3}, that is, they take values 0 or 1. The

input/output relation of a classifier C is shown in Table 1. Let e be e1 in the table.

We want counterfactual explanations for its label 1. Any other record in the table can

be seen as the result of an intervention on e1. However, only e4, e7, e8 are (results of)

counterfactual interventions in that they switch the label to 0.

For example, e4 corresponds to the intervention ι̂4 = {〈F1, 1〉, 〈F2, 0〉}, in that e4 is

obtained from e1 by changing the values of F1, F2 into 1 and 0, resp. For ι̂4, π1(ι̂4) =

{〈F1〉, 〈F2〉}. From ι̂4 we obtain the counterfactual explanation ε̂4 = {〈F1, 0〉, 〈F2, 1〉},
telling us that the values F1(e1) = 0 and F2(e1) = 1 are the joint cause for e1 to be

classified as 1.

There are three counterfactual explanations: ε̂4 := {〈F1, 0〉, 〈F2, 1〉}, ε̂7 :=

{〈F2, 1〉}, and ε̂8 := {〈F2, 1〉, 〈F3, 1〉}. Here, e4 and e8 are incomparable under

�s, e7 ≺s e4, e7 ≺s e8, and ε̂7 turns out to be �s- and �c-minimal (actually,

minimum). �

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 569

Table 1. Classifier C

entity (id) F1 F2 F3 L

e1 0 1 1 1

e2 1 1 1 1
e3 1 1 0 1
e4 1 0 1 0
e5 1 0 0 1
e6 0 1 0 1
e7 0 0 1 0
e8 0 0 0 0

Notice that what matters here is what is intervened, and not how. By taking a projec-

tion, the partial order �s does not care about the values that replace the original feature

values, as long as the latter are changed. Furthermore, given e, it would be good enough

to indicate the features whose values are relevant, for example, ε̂7 = {F2} in the previous

example. However, the introduced notation emphasizes the fact that the original values

are those we concentrate on when providing explanations.

Every �c-minimal explanation is also �s-minimal. However, it is easy to produce an

example showing that a �s-minimal explanation may not be �c-minimal.

Notation: An s-explanation for L(e) is a �s-minimal counterfactual explanation

for L(e). A c-explanation for L(e) is a �c-minimal counterfactual explanation for

L(e). So as prescribed in Remark 3.1, we will usually use the terms s-explanation and

c-explanation to refer to the alternative, intervened entities e′ that are associated to

s- and c-explanations in the sense of Definition 3.2. �

So far, we have characterized explanations as sets of (interventions on) features. How-

ever, one would also like to quantify the “causal strength” of a single feature value in

a record representing an entity. Something similar has been done for a single tuple in

a database as a cause for a query answer (Meliou et al . 2010), or for a single attribute

value in a database tuple (Bertossi and Salimi 2017a; Bertossi 2021). Different scores

for feature values have been proposed in this direction, for example, Shap in Lundberg

et al . (2020) and Resp in Bertossi et al . (2020). Following (Chockler and Halpern 2004),

we will now formulate the latter as the responsibility of a feature value as an actual cause

(Halpern and Pearl 2005) for the observed classification.

Definition 3.3

Consider an entity e represented as a record of feature values xi = Fi(e), Fi ∈ F .
(a) A feature value v = F (e), with F ∈ F , is a value-explanation for L(e) if there is an

s-explanation ε̂ for L(e), such that 〈F, v〉 ∈ ε̂.

(b) The explanatory responsibility of a value-explanation v = F (e) is:

x-Respe,F (v) := max{ 1|ε̂| : ε̂ is s-explanation with 〈F, v〉 ∈ ε̂}.

(c) If v = F (e) is not a value-explanation, x-Respe,F (v) := 0. �

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

570 L. Bertossi

Notice that (b) can be stated as x-Respe,F (v) := 1
|ε̂�| , with ε̂� = argmin{|ε̂| : ε̂

is s-explanation with 〈F, v〉 ∈ ε̂}.
Adopting the terminology of actual causality (Halpern and Pearl 2005), a counterfac-

tual value-explanation for e’s classification is a value-explanation v with x-Respe,F (v) = 1.

That is, it suffices, without company from other feature values in e, to explain the classifi-

cation. Similarly, an actual value-explanation for e’s classification is a value-explanation

v with x-Respe,F (v) > 0. That is, v appears in an s-explanation ε̂, say as 〈F, v〉, but
possibly in company of other feature values. In this case, ε̂�{〈F, v〉} is a contingency set

for v (c.f. (Halpern and Pearl 2005), and (Meliou et al . 2010) for the case of databases).

Example 3.2

(Example 3.1 continued) ε̂7, equivalently entity e7, is the only c-explanation for e1’s

classification. Its value 1 for F2 is a counterfactual value-explanation, and its explanatory

responsibility is x-Respe1,F2
(1) := 1. The empty set is its contingency set. Now, entity

e4 shows that the intervened value for F2, that is, 1, needs {〈F1, 0〉} as contingency set

for the label to switch to 0. �

In this study, we are interested mostly in c-explanations, which are our best explana-

tions, and in maximum-responsibility feature values. Notice that maximum x-Resp scores

can be obtained by concentrating only on c-explanations. Maximum-responsibility value-

explanations appear in c-explanations, and only in them. C.f. Section 9 for considerations

on s-explanations and features with non-maximum responsibility scores.

4 Complexity of x-Resp computation

A natural question is about the complexity of computing the x-Resp score. Not only for

the obvious reason of knowing the complexity, but also to determine if the ASP-based

approach we will present is justified from the complexity point of view. We can shed

some light on this matter by taking advantage of complexity results for actual causality

in databases (Meliou et al . 2010; Bertossi and Salimi 2017a). It is known that there are

Boolean Conjunctive Queries (BCQs), Q, for which deciding if the responsibility of a

tuple for Q being true in a database D is above a given threshold is NP -complete, in the

size of D (Bertossi and Salimi 2017a).

In our case, given a fixed classifier C, the computational problem is about deciding,

for an arbitrary entity e� and rational number v, if x-Resp(e�) > v. The complexity is

measured as a function of |e�|, the size M of cartesian product of the the underlying

domains, and the complexity of computing C. (Under our ASP-based approach, M will

be associated to the extensional database for the program.)

Given a relational database schema S = {R1, . . . , Rk}, with predicates with arities

ar(Ri), we can see each attribute A as a feature that takes values in a finite domain

Dom(A). Without loss of generality, we assume the predicates Ri do not share attributes

(but attributes may share a same domain). Then, we have a sequence of attributes 〈A1
1,

. . . , A1
ar(R1)

, . . . , Ak
1 , . . . , A

k
ar(Rk)

〉. For a database D, for each of the potential database

tuples τ1, . . . τM (in D or not), with M = |Dom(A1
1)| × · · · × |Dom(A1

ar(R1)
)| + · · · +

|Dom(Ak
1)| × · · · × |Dom(Ak

ar(Ak)
)|, define binary features Fj(τj) := 1 if τj ∈ D, and 0,

otherwise.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 571

Now, define a binary entity e� = 〈F (τj)〉τj∈D. This entity, containing only 1s, repre-

sents the contents of database D, and its length coincides with the number of tuples in D,

say |D|. Now, the population of entities is E = {1, 0}|D|, that is, all the binary sequences

with the same length as e�. Intuitively, each entity in E represents a sub-instance De of

D, by keeping only the tuples of D that are assigned the value 1. We do not need to

consider the insertion of tuples in D, as will be clear soon.

Now, given the fixed BCQ Q, for which D |= Q, define a binary classifier CQ as follows:

For e ∈ E, CQ(e) := 1 iff De |= Q. Notice that this classifier runs in polynomial-time

in the length of e. Also, CQ(e�) = 1. The monotonicity of Q allows us to concentrate

on sub-instances of D. Only subinstances can invalidate the query, and superinstances

will always make it true. In this way, we have reduced the problem of computing the

responsibility of a tuple τj as an actual cause for D |= Q to the problem of computing

x-Respe�,Fj
(1).

Theorem 1

There is a binary polynomial-time classifier C over a finite set of binary entities E for

which deciding if x-Respe,F (v) is above a certain threshold is NP -complete in the size of

e plus the size of E . �

So as in Bertossi and Salimi (2017a), several other problems in relation to responsibility

can be investigated; and it is likely that most (if not all) the results in Bertossi and Salimi

(2017a) can be used to obtain similar results for the x-Resp score.

5 Counterfactual intervention programs

An ASP has a possible-world semantics, given in terms of its stable models, which are

the intended models of the program (Gelfond and Kahl 2014). A program consists of a

set of rules with variables, possibly with negated atoms in a rule body (antecedent) and

disjunctions in the head (consequent). This negation is non-monotonic, which is partic-

ulary useful for doing commonsense reasoning and specifying persistence of properties.

A program has an extensional database consisting of ground atoms (the facts). In our

case, the facts will be related to the entity under classification for whose label we want

counterfactual explanations. The program specifies the possible interventions. Final, in-

tervened versions of the original entity, that have their label switched, correspond to

different stable models of the program.

Entities will be represented by means of a predicate with n+ 2 arguments E(·; · · · ; ·).
The first one holds a record (or entity) id (which may not be needed when dealing with

single entities). The next n arguments hold the feature values.2 The last argument holds

an annotation constant from the set {o, do, �, s}. Their semantics will be specified below,

by the generic program that uses them.

Initially, a record e = 〈f1, . . . , fn〉 has not been subject to interventions, and the

corresponding entry in predicate E is of the form E(e, f̄ , o), where e is (with a bit of abuse

of notation) a constant used a an entity identifier, f̄ is an abbreviation for f1, . . . , fn, that

2 For performance-related reasons, it might be more convenient to use n 3-ary predicates to represent
an entity with an identifier, but the presentation here would be more complicated.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

572 L. Bertossi

is, the feature values for entity e; and the annotation constant “o” stands for “original

entity”.

When the classifier gives label 1 to e, the idea is to start changing feature values,

one at a time. The intervened entity becomes then annotated with constant do in the

last argument.3 When the resulting intervened entities are classified, we may not have

the classifier specified within the program. For this reason, the program uses a special

predicate C(· · · , ·), where the first arguments take the feature values of an entity under

classification, and the last argument returns the binary label. This predicate can be

explicitly given as a set of facts (c.f. Example 5.1), or can be specified within the program

(c.f. Example 5.7), or can be invoked by the program as an external predicate (c.f.

Example 5.8), much in the spirit of HEX-programs (Eiter et al . 2017; 2019). Since the

original instance may have to go through several interventions until reaching one that

switches the label to 0, the intermediate entities get the “transition” annotation �. This

is achieved by a generic program.

5.1 Counterfactual intervention programs

The generic Counterfactual Intervention Program (CIP) is as follows:

P1. The facts of the program are the atoms of the form Domi(c), with c ∈ Domi, plus

the initial entity E(e, f̄ , o), with f̄ the initial vector of feature values.

P2. The transition entities are obtained as initial, original entities, or as the result of

an intervention. Here, e is a variable standing for a record id.

E(e, x̄, �) ←− E(e, x̄, o).

E(e, x̄, �) ←− E(e, x̄, do).

P3. The program rule specifying that, every time the entity at hand (original or

obtained after a “previous” intervention) is classified with label 1, a new value

has to be picked from a domain, and replaced for the current value. The new value

is chosen via the non-deterministic “choice operator”, well-known in ASP (Gian-

notti et al . 1997). In this case, the values are chosen from the domains, subject to

the condition of not being the same as the current value:

E(e, x′
1, x2, . . . , xn, do) ∨ · · · ∨ E(e, x1, x2, . . . , x

′
n, do) ←− E(e, x̄, �), C(x̄, 1),

Dom1(x
′
1), . . . ,Domn(x

′
n), x

′
1
= x1, . . . , x

′
n
= xn,

choice(x̄, x′
1), . . . , choice(x̄, x

′
n).

In general, for each fixed x̄, choice(x̄, y) chooses a unique value y subject to the other

conditions in the same rule body. The use of the choice operator can be eliminated by

replacing each choice(x̄, x′
i) atom by the atom Choseni(x̄, x

′
i), and defining each predicate

3 The do-operator is common to denote interventions (Pearl 2009). Here, it is just a constant.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 573

Choseni by means of “classical” rules (Giannotti et al . 1997), as follows:4

Choseni(x̄, y) ← E(e, x̄, �), C(x̄, 1), Domi(y), y
= xi,

not DiffChoicei(x̄, y). (2)

DiffChoicei(x̄, y) ← Choseni(x̄, y
′), y′
= y. (3)

P4. The following rule specifies that we can “stop”, hence annotation s, when we reach

an entity that gets label 0:

E(e, x̄, s) ←− E(e, x̄, do), C(x̄, 0).
P5. We add a em program constraint specifying that we prohibit going back to the

original entity via local interventions:

←− E(e, x̄, do), E(e, x̄, o).

P6. The counterfactual explanations can be collected by means of a predicate Expl(·, ·, ·)
specified by means of:

Expl(e, i, xi) ←− E(e, x1, . . . , xn, o), E(e, x′
1, . . . , x

′
n, s), xi
= x′

i,

with i = 1, . . . , n. They collect each value that has been changed in the original

instance e, with its position in e (the second argument of the predicate). Actually,

each of these is a value-explanation. �

The program will have several stable models due to the disjunctive rule and the choice

operator. Each model will hold intervened versions of the original entity, and hopefully

versions for which the label is switched, that is, those with annotation s. If the classifier

never switches the label, despite the fact that local interventions are not restricted, we

will not find a model with a version of the initial entity annotated with s. Due to

the constraint in P5., none of the models will have the original entity annotated with

do, because those models would be discarded (Leone et al . 2006). The definition of the

choice operator contains non-stratified negation. The semantics of ASP, which involves

model minimality, makes only one of the atoms in a head disjunction true (unless forced

otherwise by the program).

Example 5.1

(Example 3.1 continued) Most of the CIP above is generic. Here we have the facts:

Dom1(0), Dom1(1), Dom2(0),Dom2(1),Dom3(0), Dom3(1) and E(e1, 0, 1, 1, o), with e1
a constant, the record id of the first row in Table 1. The classifier is explicitly given by

Table 1. Then, predicate C can be specified with a set of additional facts: C(0, 1, 1, 1),
C(1, 1, 1, 1), C(1, 1, 0, 1) C(1, 0, 1, 0) C(1, 0, 0, 1) C(0, 1, 0, 1) C(0, 0, 1, 0) C(0, 0, 0, 0). In

them, the last entry corresponds the label assigned to the entity whose feature values are

given in the first three arguments.

The stable models of the program will contain all the facts above. One of them, say

M1, will contain (among others) the facts: E(e1, 0, 1, 1; o) and E(e1, 0, 1, 1; �). The

4 We emphasize that we are using here the “choice operator”, which is definable in ASP (as done here),
and not the newer choice rules, which could be used here for the same purpose (and many more) and
are included in the ASP-Core-2 Standard (Calimeri et al . 2020). We use the choice operator, because
most of our programs are being run with DLV-Complex, which does not support choice rules.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

574 L. Bertossi

presence of the last atom activates rule P3., because C(0, 1, 1, 1) is true (for e1 in Table 1).

New facts are produced for M1 (the new value due to an intervention is underlined):

E(e1, 1, 1, 1, do), E(e1, 1, 1, 1, �). Due to the last fact and the true C(1, 1, 1, 1), rule P3.

is activated again. Choosing the value 0 for the second disjunct, atoms E(e1, 1, 0, 1, do),

E(e1, 1, 0, 1, �) are generated. For the latter, C(1, 0, 1, 0) is true (coming from e4 in

Table 1), switching the label to 0. Rule P3. is no longer activated, and we can apply

rule P4., obtaining E(e1, 1, 0, 1, s).

From rule P6., we obtain explanations Expl(e1, 1, 0),Expl(e1, 2, 1), showing the

changed values in e1. All this in model M1. There are other models, and one of them

contains E(e1, 0, 0, 1, s), the minimally intervened version of e1, that is, e7. �

In the next example, we will show how to write and run the counterfactual intervention

program for Example 3.1 with the DLV system (Leone et al . 2006).5 When numerical

aggregations and, specially, set operations are needed, we use instead the DLV-Complex

system (Calimeri et al.. 2009) (c.f. Section 9). In Example 5.8 we show a program that

can be used with the newer version, DLV2 (Alviano et al . 2017; 2019), of DLV, which

follows the ASP-Core-2 standard (Calimeri et al . 2020).

Example 5.2

(Example 5.1 continued) The answer-set program for Examples 3.1 and 5.1, written in

the language for the DLV-Complex system is shown next. (The program portion shown

right below would also run with DLV since it does not contain numerical aggregations.)

In it, the annotation “tr” stands for the transition annotation “�” used in Example 5.1,

and X, Xp stand for x, x′, etc. In a DLV program, terms starting with a lower-case letter

are constants; and those starting with an upper-case letter are variables.

#include<ListAndSet>
% the classifier:
cls(0,1,1,1). cls(1,1,1,1). cls(1,1,0,1). cls(1,0,1,0). cls(1,0,0,1).
cls(0,1,0,1). cls(0,0,1,0). cls(0,0,0,0).
% the domains:
dom1(0). dom1(1). dom2(0). dom2(1). dom3(0). dom3(1).
% original entity at hand:
ent(e,0,1,1,o).

% transition rules:
ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,o).
ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,do).

% admissible counterfactual interventions:
ent(E,Xp,Y,Z,do) v ent(E,X,Yp,Z,do) v ent(E,X,Y,Zp,do) :- ent(E,X,Y,Z,tr),

cls(X,Y,Z,1), dom1(Xp), dom2(Yp), dom3(Zp),
X != Xp, Y != Yp, Z!= Zp, chosen1(X,Y,Z,Xp),
chosen2(X,Y,Z,Yp), chosen3(X,Y,Z,Zp).

% definitions of chosen operators as in equations (2) and (3):
chosen1(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(U), U != X,

not diffchoice1(X,Y,Z,U).
diffchoice1(X,Y,Z, U) :- chosen1(X,Y,Z,Up), U != Up, dom1(U).
chosen2(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom2(U), U != Y,

not diffchoice2(X,Y,Z,U).

5 We have experimented, with the examples in this paper and others, with each of DLV, DLV-Complex,
and DLV2. They have been extremely useful. At this moment, each of them seems to have some nice
features the others lack.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

http://www.dlvsystem.com/?s=manual
https://www.mat.unical.it/dlv-complex
https://dlv.demacs.unical.it/
https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 575

diffchoice2(X,Y,Z, U) :- chosen2(X,Y,Z,Up), U != Up, dom2(U).
chosen3(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom3(U), U != Z,

not diffchoice3(X,Y,Z,U).
diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z,Up), U != Up, dom3(U).

% stop when label has been changed:
ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% hard constraint for not returning to original entity:
:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

% auxiliary predicate to avoid unsafe negation in the hard constraint below:
entAux(E) :- ent(E,X,Y,Z,s).

% hard constraint for not computing models where label does not change:
:- ent(E,X,Y,Z,o), not entAux(E).

% collecting explanatory changes per argument:
expl(E,1,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.
expl(E,2,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.
expl(E,3,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

If we run this program with DLV-Complex, we obtain the following three models; for
which we do not show (most of) the original program facts, as can be requested from
DLV:

{ent(e,0,1,1,o), ent(e,0,1,1,tr), chosen1(0,1,1,1), chosen2(0,1,1,0),
chosen3(0,1,1,0), ent(e,0,0,1,do), ent(e,0,0,1,tr), ent(e,0,0,1,s),
diffchoice3(0,1,1,1), diffchoice2(0,1,1,1), diffchoice1(0,1,1,0),
entAux(e), expl(e,2,1)}

{ent(e,0,1,1,o), ent(e,0,1,1,tr), chosen1(0,1,1,1), chosen2(0,1,1,0),
chosen3(0,1,1,0), ent(e,0,1,0,do), ent(e,0,1,0,tr), chosen1(0,1,0,1),
chosen2(0,1,0,0), chosen3(0,1,0,1), ent(e,0,0,0,do), ent(e,0,0,0,tr),
ent(e,0,0,0,s), diffchoice3(0,1,0,0), diffchoice3(0,1,1,1),
diffchoice2(0,1,0,1), diffchoice2(0,1,1,1), diffchoice1(0,1,0,0),
diffchoice1(0,1,1,0), entAux(e), expl(e,2,1), expl(e,3,1)}

{ent(e,0,1,1,o), ent(e,0,1,1,tr), chosen1(0,1,1,1), chosen2(0,1,1,0),
chosen3(0,1,1,0), ent(e,1,1,1,do), ent(e,1,1,1,tr), chosen1(1,1,1,0),
chosen2(1,1,1,0), chosen3(1,1,1,0), ent(e,1,0,1,do), ent(e,1,0,1,tr),
ent(e,1,0,1,s), diffchoice3(0,1,1,1), diffchoice3(1,1,1,1),
diffchoice2(0,1,1,1), diffchoice2(1,1,1,1), diffchoice1(0,1,1,0),
diffchoice1(1,1,1,1), entAux(e), expl(e,1,0), expl(e,2,1)}

These models correspond to the counterfactual entities e7, e8, e4, resp. in Example 3.1.

Notice that the program, except for the fact ent(e,0,1,1,o) in the 10th line, is

completely generic, and can be used with any input entity that has been classified with

label 1.6 We could remove it from the program, obtaining program theProgram2.txt,

and we could run instead

C:\DLV>dlv.exe ent.txt program2.txt > outputFile.txt

where ent.txt is the file containing only ent(e,0,1,1,o). . �

In the previous example, the classifier was given as an input/output relation, that is,

as a set of facts inserted directly in the program. In other situations, we may have the

6 If the initial label is 0 instead, no interventions would be triggered, and the only model would corre-
spond to the initial entity.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

576 L. Bertossi

Table 2. Classifier C′

entity (id) F1 F2 F3 L

e′
1 0 1 1 1

e′
2 1 1 1 1

e′
3 1 1 0 0

e′
4 1 0 1 1

e′
5 1 0 0 0

e′
6 0 1 0 1

e′
7 0 0 1 0

e′
8 0 0 0 1

classifier invoked from the program as an external predicate. In others, the classifier can

be specified directly in the program, as shown in Example 2.1.

Our CIPs compute all the counterfactual versions (or counterfactual explanations) of

the original entity e. Each counterfactual version is represented (or characterized) by at

least one of the stable models of the CIP; one that contains the counterfactual version

of e annotated with “s”. There may be more that one stable model associated to a

counterfactual version e′ due to the use of the choice operator. Different choices may end

up leading to the same e′.
The counterfactual explanations obtained through the CIP are not necessarily

s-explanations or c-explanations (c.f. Section 3), as Example 5.2 shows. The CIPs pre-

sented so far have (only) minimal models with respect to set-inclusion of the extensions

of full predicates, whereas when we compare explanations, we do it at the “attribute (or

feature, or argument) level”. Of course, s-explanations and c-explanations are all included

among the counterfactual explanations, and are represented by stable models of the CIP.

We will consider this point in Section 5.3.

Example 5.3

(Example 3.1 continued) To show the different kinds of counterfactual versions of an

original entity, let us change the classifier we had before by the one shown in Table 2.

The changed values appear underlined. In this case, we have three counterfactual

versions: (a) e′7 that is c-explanation. Only one value is changed to switch the label to

0. (b) e′3 is an s-explanation, but not a c-explanation. It shows two changes, but not the

one for e′7. (c) e′5 is neither an s- nor a c-explanation. Its changes include those for e′7
and those for e′3.
The CIP we have so far would return the three of them. With the additional elements

for CIP programs to be introduced in Section 5.3, we will be able to obtain only

c-explanations. In Section 9, we briefly discuss the case of s-explanations (that may not

be c-explanations). �

5.2 Complexity of CIPs

The complexity result obtained in Section 4 makes us wonder whether using ASP-

programs for specifying and computing the x-Resp score is an overkill, or, more precisely,

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 577

whether they have the right and necessary expressive power and complexity to confront

our problem. In fact they do. It is known that reasoning with disjunctive answer-set

programs (DASP) falls in the second level of the polynomial hierarchy (in data com-

plexity) (Dantsin et al . 2001), and slightly above that by the use of weak constraints

(Leone et al . 2006) that we will use in Section 5.3. However, CIPs have the property of

being head-cycle free (HCF), which brings down the complexity of a DASP to the first

level of the polynomial hierarchy (Dantsin et al . 2001). This is in line with the result in

Theorem 1.

It is easy to check that CIPs are HCF (c.f. Section 2): The ground chains in the

directed graph DG(Π) associated to a CIP Π are, due to rules P2. and P3, of the form:

E(e, ā, do) → E(e, ā, �) → E(e, ā′, do), with ā
= ā′. They never create a cycle in the

head of a ground instantiation of the disjunctive rule.

One can also see the HCF property from the fact that the CIPs become repair-programs

(Bertossi 2011) for a database w.r.t. the integrity constraint, actually denial constraint,

∀e∀x̄¬(E(e, x̄) ∧ C(x̄, 1)). Denial constraints are common in databases, and their repairs

and repair-programs have been investigated (Caniupan and Bertossi 2010; Bertossi 2021).

C.f. (Bertossi 2011) for additional references.

As a consequence of being HCF, a CIP can be transformed, by means of the shift

operation, into an equivalent non-disjunctive ASP (c.f. Section 2).

Example 5.4
(Example 5.1 continued) The disjunctive rule in Example 5.1 can be replaced by the
three rules:

ent(E,Xp,Y,Z,do) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(Xp), dom2(Yp), dom3(Zp),
X != Xp, Y != Yp, Z!= Zp, chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp),
chosen3(X,Y,Z,Zp), not ent(E,X,Yp,Z,do), not ent(E,X,Y,Zp,do).

ent(E,X,Yp,Z,do) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(Xp), dom2(Yp), dom3(Zp),
X != Xp, Y != Yp, Z!= Zp, chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp),
chosen3(X,Y,Z,Zp), not ent(E,Xp,Y,Z,do), not ent(E,X,Y,Zp,do).

ent(E,X,Y,Zp,do) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(Xp), dom2(Yp), dom3(Zp),
X != Xp, Y != Yp, Z!= Zp, chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp),
chosen3(X,Y,Z,Zp), not ent(E,Xp,Y,Z,do), not ent(E,X,Yp,Z,do).

The resulting program has the same answer-sets as the original program. �

5.3 C-explanations and maximum responsibility

As discussed at the end of Section 5.1, an intervened entity of the form E(e, c1, . . . ,

cn, s), that is, representing a counterfactual explanation, may not correspond to an

s- or a c-explanation. We are interested in obtaining the latter, and only them, because:

(a) They are our “best explanations”, and (b) They are used to define and compute the

maximum x-Resp scores.

Moving towards computing x-Resp scores, notice that in each of the stable modelsM of

the CIP, we can collect the corresponding counterfactual explanation for e’s classification

as the set ε̂M = {〈Fi, ci〉 | Expl(e, i; ci) ∈ M}. This can be done within a ASP system

such as DLV, which allows set construction and aggregation, in particular, counting

(Leone et al . 2006). Actually, counting comes handy to obtain the cardinality of ε̂M, by

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

578 L. Bertossi

means of:

inv -resp(e,m)←− #count{i : Expl(e, i; ci)} = m. (4)

For each modelM of the CIP, we will obtain such a value m(M) that shows the number

of changes of feature values that lead to the associated counterfactual explanation. Notice

that, in each of the modelsMo that correspond to c-explanations, these, now minimum

values m(Mo) will be the same, say mo, and can be used to compute the responsibility

of a feature value in ε̂M
o

, as follows: For Expl(e, i; ci) ∈Mo,

x-Respe,Fi
(ci) =

1

|ε̂M| =
1

mo
. (5)

Example 5.5

(Example 5.2 continued) Let us add to the CIP above the rule:

% computing the inverse of x-Resp:
invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

By running DLV-Complex with the new program, we obtain the models above extended

with atoms representing the changes in arguments of the original entity (we omit most

of the old atoms):

{ent(e,0,1,1,o), ... , ent(e,0,0,1,s), expl(e,2,1), invResp(e,1)}
{ent(e,0,1,1,o), ..., ent(e,0,0,0,s), expl(e,2,1), expl(e,3,1), invResp(e,2)}
{ent(e,0,1,1,o), ..., ent(e,1,0,1,s), expl(e,1,0), expl(e,2,1), invResp(e,2)}

As before, we obtain three models, and each of them shows, in the last atom, the

number of changes that were made to obtain the corresponding counterfactual explana-

tion. For example, for the last model, say M3, corresponding to entity e4, we obtain

m(M3) = 2. Similarly for the second one, corresponding to entity e8. The first model

corresponds to the counterfactual entity e7 that is a c-explanation, which is shown by

the minimum value “1” that predicate inResp takes in its second argument among all

the stable models.

We can see that the first model is the one corresponding to a maximum responsibility

feature value. �

In order to obtain only the models associated to c-explanations, we add weak program

constraints to the CIP. They can be violated by a stable model of the program (unlike

strong program constraints), but the number of violations has to be minimized. In this

case, for 1 ≤ i ≤ n, we add to the CIP:7

:∼ E(e, x1, . . . , xn, o), E(e, x′
1, . . . , x

′
n, s), xi
= x′

i. (6)

Only the stable models representing an intervened version of e with a minimum number

of value discrepancies with e will be kept.

Example 5.6

(Example 5.5 continued) The best explanations, that is, the c-explanations, can be ob-

tained by adding weak program constraints to the combined CIP above:
% weak constraints for minimizing number of changes:
:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

7 This notation follows the standard in Calimeri et al . (2020); Alviano et al . (2017).

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 579

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.
:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

If we run DLV-Complex with the extended program, we obtain a single model, corre-

sponding to e7:
Best model: {ent(e,0,1,1,o), ent(e,0,1,1,tr), chosen1(0,1,1,1), chosen2(0,1,1,0),

chosen3(0,1,1,0), ent(e,0,0,1,do), ent(e,0,0,1,tr), ent(e,0,0,1,s),
diffchoice3(0,1,1,1), diffchoice2(0,1,1,1), diffchoice1(0,1,1,0),
expl(e,2,1), entAux(e), invResp(e,1)}

This model shows that counterfactual entity e7 has one change in the second attribute

wrt. the original entity. This new entity gives a minimum inverse responsibility mo = 1 to

the original value in the second argument of ent, which leads, via (5), to its (maximum)

responsibility x-Respe1,F2
(1) = 1

mo = 1. �

Example 5.7

(Example 2.1 continued) We present now the CIP for the classifier based on the decision-

tree, in DLV-Complex notation. Notice that after the facts, that now do not include the

classifier, we find the rule-based specification of the decision tree.

#include<ListAndSet>

% facts:
dom1(sunny). dom1(overcast). dom1(rain). dom2(high). dom2(normal).
dom3(strong). dom3(weak).
ent(e,sunny,normal,weak,o). % original entity at hand

% spec of the classifier:
cls(X,Y,Z,1) :- Y = normal, X = sunny, dom1(X), dom3(Z).
cls(X,Y,Z,1) :- X = overcast, dom2(Y), dom3(Z).
cls(X,Y,Z,1) :- Z = weak, X = rain, dom2(Y).
cls(X,Y,Z,0) :- dom1(X), dom2(Y), dom3(Z), not cls(X,Y,Z,1).

% transition rules:
ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,o).
ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,do).

% counterfactual rule
ent(E,Xp,Y,Z,do) v ent(E,X,Yp,Z,do) v ent(E,X,Y,Zp,do) :-

ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(Xp), dom2(Yp),
dom3(Zp), X != Xp, Y != Yp, Z!= Zp,

chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp), chosen3(X,Y,Z,Zp).

% definitions of chosen operators:
chosen1(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(U), U != X,

not diffchoice1(X,Y,Z,U).
diffchoice1(X,Y,Z, U) :- chosen1(X,Y,Z, Up), U != Up, dom1(U).
chosen2(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom2(U), U != Y,

not diffchoice2(X,Y,Z,U).
diffchoice2(X,Y,Z, U) :- chosen2(X,Y,Z, Up), U != Up, dom2(U).
chosen3(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom3(U), U != Z,

not diffchoice3(X,Y,Z,U).
diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):
:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

% stop when label has been changed:
ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

580 L. Bertossi

% collecting changed values for each feature:
expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.
expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.
expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to
% avoid unsafe negation
% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where
% label does not change

% computing the inverse of x-Resp:
invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

Two counterfactual versions of e are obtained, as represented by the two essentially

different stable models of the program, and determined by the atoms with the annotation

s (we keep in them only the most relevant atoms, omitting initial facts and choice-related

atoms):

{ent(e,sunny,normal,weak,o),cls(sunny,normal,strong,1),cls(sunny,normal,weak,1),
cls(overcast,high,strong,1),cls(overcast,high,weak,1),cls(rain,high,weak,1),
cls(overcast,normal,weak,1),cls(rain,normal,weak,1),cls(overcast,normal,strong,1),
cls(sunny,high,strong,0),cls(sunny,high,weak,0),cls(rain,high,strong,0),
cls(rain,normal,strong,0),ent(e,sunny,high,weak,do),ent(e,sunny,high,weak,tr),
ent(e,sunny,high,weak,s),expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,
cls(rain,normal,strong,0),ent(e,rain,normal,strong,do),ent(e,rain,normal,strong,tr),
ent(e,rain,normal,strong,s),expl(e,outlook,sunny),expl(e,wind,weak),invResp(e,2)}

The first model shows the classifiers as a set of atoms, and its last line, that

ent(e,sunny,high,weak,s) is a counterfactual version, with label 0, of the original

entity e, and is obtained from the latter by means of changes of values in feature Humidity,

leading to an inverse score of 1. The second model shows a different counterfactual ver-

sion of e, namely ent(e,rain,normal,strong,s), now obtained by changing values for

features Outlook and Wind, leading to an inverse score of 2.

Let us now add, at the end of the program the following weak constraints (labeled

with (*)):

% Weak constraints to minimize number of changes: (*)
:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.
:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.
:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

If we run the program with them, the number of changes is minimized, and we

basically obtain only the first model above, corresponding to the counterfactual entity

e′ = ent(sunny, high,weak). �

As can be seen at the light of this example, more complex rule-based classifiers could be

defined inside a CIP. It is also possible to invoke the classifier as an external predicate,

as the following example shows.

Example 5.8

(Example 5.7 continued) The program below calls the classifiers through a predicate that

has an external extension, as defined by a Python program. The program has the same

facts and the same rules as the the program in Example 5.7, except for a new rule that

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 581

defines the classification predicate, cls here (and C in the general formulation in Section

5.1), and replaces the internal specification of the classifier:

cls(X,Y,Z,L) :- &classifier(X,Y,Z;L), dom1(X), dom2(Y), dom3(Z).

Here, the atom &classifier(X,Y,Z;L) corresponds to the invocation of the external

classifier with parameters X,Y,Z, which gets an external value through variable L. The

program was run with the version of DLV2 for Linux that supports interaction with

Python, and can be downloaded from:
https://dlv.demacs.unical.it/publications#h.cgg9mbi41jq9

The program in Python that specifies the classifier is very simple, and it can be invoked

in combination with DLV2, as follows:

sudo ./dlv2-python-linux-x86_64 program_dlv2.txt def_class.py.

Here, program_dlv2.txt is the CIP, and def_class.py is the very simple Python pro-

gram that specifies the classifier, namely

def classifier(X,Y,Z):
if (X == "sunny") and (Y == "normal"):

return 1
if (X == "overcast"):

return 1
if (X == "rain") and (Z == "weak"):

return 1
else:

return 0

We obtain as answer-set the first one in Example 5.7. �

6 Semantic knowledge

Counterfactual interventions in the presence of semantic conditions requires considera-

tion. As the following example shows, not every intervention, or combination of them,

may be admissible (Bertossi and Geerts 2020). In these situations declarative approaches

to counterfactual interventions become particularly useful.

Example 6.1

A moving company makes automated hiring decisions based on feature values in appli-

cants’ records of the form R = 〈appCode, ability to lift, gender, weight, height, age〉. Mary,

represented by R� = 〈101, 1, F, 160 pounds, 6 feet, 28〉 applies, but is denied the job, that

is, the classifier returns: L(R�) = 1. To explain the decision, we can, hypothetically,

change Mary’s gender, from F into M , obtaining record R�′, for which we now observe

L(R�′) = 0. Thus, her value F for gender can be seen as a counterfactual explanation for

the initial decision.

As an alternative, we might keep the value of gender, and counterfactually change other

feature values. However, we might be constrained or guided by an ontology containing,

for example, the denial semantic constraint ¬(R[2] = 1∧R[6] > 80) (2 and 6 indicating

positions in the record) that prohibits someone over 80 to be qualified as fit for lifting

weight. We could also have a rule, such as (R[3] = M ∧ R[4] > 100 ∧ R[6] < 70) →
R[2] = 1, specifying that men who weigh over 100 pounds and are younger than 70 are

automatically qualified to lift weight.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

582 L. Bertossi

In situations like this, we could add to the CIPs we had before: (a) program constraints

that prohibit certain models, for example,

←− R(e, x, 1, y, z, u, w, �), w > 80;

(b) additional rules, for example,

R(e, x, 1, y, z, u, w, �)←− R(e, x, y,M, z, u, w, �), z > 100, w < 70,

that may automatically generate additional interventions. In a similar way, one could

accommodate certain preferences using weak program constraints. �

Causality and responsibility in databases in the presence of integrity constraints was

introduced and investigated in Bertossi and Salimi (2017b).

Example 6.2

(Example 5.7 continued) It might be the case that in a particular region, some com-

binations of weather conditions are never possible, for example, raining with a strong

wind at the same time. When producing counterfactual interventions for the entity e,

such a combination should be prohibited. This can be done by imposing a hard program

constraint, that we add to the program in Example 5.7:

% hard constraint disallowing a particular combination (**)
:- ent(E,rain,X,strong,tr).

If we run in DLV-Complex the program with this constraint, but without the weak

constraints labeled with (*) in Example 5.7, we obtain only the first model shown in

Example 5.7, corresponding to the counterfactual entity e′ = ent(sunny, high,weak). �

As the previous example shows, we can easily impose constraints that make the coun-

terfactual entities, or equivalently, the associated explanations, actionable (Ustun et al .

2019; Karimi et al . 2020b). As mentioned in Section 1, for the loan application example,

we could impose a hard program constraint (i.e., add it to a CIP) of the form

←− E (e, . . . , age, . . . , o), E (e, . . . , age ′, . . . , ∗), age ′ < age, (7)

which prevents decreasing an applicant’s age.

Logic-based specifications also allow for compilation of constraints into rules. For

example, instead of using a hard constraint, such as (7), we could directly impose the

condition on a counterfactual age in the disjunctive counterfactual rule P3., of the form

· · · ∨ E(e, x1, . . . , x
′
a, . . . , do) ∨ · · · ←− E(e, x̄, �), C(x̄, 1), . . . ,Doma(x

′
a),

. . . , xa < x′
a, . . . , choice(x̄, x

′
a),

Here, the subscript a refers to the domain and variables for the Age feature. On this basis,

one could only increase the age. If this intervention leads to a successful counterfactual

entity (i.e., with a positive label), we could tell the applicant that he/she has to wait to

possibly succeed with the loan application.

We could also think of explicitly specifying actionable counterfactual entities, starting

with a rule of the form

E(e, x̄, a) ←− E(e, x̄, s), · · · ,

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 583

where the new annotation a stands for “actionable”, and the rule defines an entity as

actionable if it is a counterfactual (final) entity that satisfies some extra conditions.

Several possibilities offer themselves in this direction. All of them require simple, sym-

bolic changes in the overall specification. Doing something similar with a purely procedu-

ral approach would be much more complex, and would require modifying the underlying

code.

Another situation where not all interventions are admissible occurs when features take

continuous values, and their domains have to be discretized. The common way of do-

ing this, namely the combination of bucketization and one-hot-encoding, leads to the

natural and necessary imposition of additional constraints on interventions, as we will

show. Through bucketization, a feature range is discretized by splitting it into finitely

many, say N , usually non-overlapping intervals. This makes the feature basically cat-

egorical (each interval becoming a categorical value). Next, through one-hot-encoding,

the original feature is represented as a vector of length N of indicator functions, one

for each categorical value (intervals here) (Bertossi et al . 2020). In this way, the original

feature gives rise to N binary features. For example, if we have a continuous feature

“External Risk Estimate” (ERE), its buckets could be: [0, 64), [64, 71), [71, 76), [76, 81),

[81,∞). Accordingly, if for an entity e, ERE(e) = 65, then, after one-hot-encoding,

this value is represented as the vector [0, 1, 0, 0, 0, 0], because 65 falls into the second

bucket.

In a case like this, it is clear that counterfactual interventions are constrained by the

assumptions behind bucketization and one-hot-encoding. For example, the vector cannot

be updated into, say [0, 1, 0, 1, 0, 0], meaning that the feature value for the entity falls

both in intervals [64, 71) and [76, 81). Bucketization and one-hot-encoding can make use

of program constraints, such as ←− ERE(e, x, 1, y, 1, z, w, �), etc. Of course, admissible

interventions on predicate ERE could be easily handled with a disjunctive rule like that

in P3., but without the “transition” annotation �. However, the ERE record is commonly

a component, or a sub-record, of a larger record containing all the feature values for an

entity (Bertossi et al . 2020). Hence, the need for a more general and uniform form of

specification.

Here, we are considering the simple scenario in which the values are treated as un-

ordered and categorical (binary) values. In some applications of bucketization and one-

hot-encoding, one assumes and takes advantage of an underlying order inherited from

the values in the buckets. Such an order could be adopted and brought into this frame-

work by using additional rules that define that order. Developing the details is somehow

outside the scope of this work.

7 Beyond binary features and uncertainty

7.1 Expectation over interventions for the x-Resp score

The x-Resp introduced in Section 3 could be considered as a first approach to quantifying

the relevance of a feature value. However, as the following example shows, we might want

to go one step further.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

584 L. Bertossi

Example 7.1

Consider a simple entity E(e; 0, a1), with 0 ∈ Dom(F1) = {0, 1} and a1 ∈ Dom(F2) =

{a1, . . . ak}. Assume that C(E(e; 0, a1)) = 1 = C(E(ei; 0, ai)) = C(E(e′j ; 1, aj)), for 1 ≤
i ≤ k, 1 ≤ j ≤ k − 1, but C(E(e′k; 1, ak)) = 0.

We can see that changing only the original first feature value does not change the

label provided by the classifier. Nor does additionally changing the second feature value,

except when using the last possibly value, ak, for F2. In this case, x-Respe,F1
(0) = 1

2 ,

despite the fact that almost all interventions on the second feature value do not change

the label.

A similar phenomenon would appear if we had Dom(F1) = {b1, ..., bk}, with large k,

and C(E(e; b1, a1)) = 1 = C(E(ei; bj , a1)), for j = 1, . . . , k − 1, but C(E(ek; bk, a1)) = 0.

In this case, the value b1 is a counterfactual cause with explanation responsibility 1,

despite the fact that most of the interventions of b1 do not switch the label. A way

to compensate for this could be taking the label average over all possible interventions. �

In order to extend the definition of the x-Resp by considering all possible interventions,

we may consider the average of counterfactual labels over a given population, which

would assume all entities are equally likely. In more general terms, we may assume the

underlying entity population, E , has a probability distribution, P , which we can use to

express the extended x-Resp in terms of expected values, as follows.

Consider e ∈ E , an entity under classification, for which L(e) = 1, and a feature

F � ∈ F . Assume we have:

1. Γ ⊆ F � {F �}, a set of features that may end up accompanying feature F �.

2. w̄ = (wF)F∈Γ, wF ∈ Dom(F), wF
= eF , that is, new values for features in Γ.

3. e′ := e[Γ := w̄], that is, reset e’s values for Γ as in w̄.

4. L(e′) = L(e) = 1, that is, there is no label change with w̄ (but maybe with an

extra change for F �, in next item).

5. There is v ∈ Dom(F �), with v
= F �(e) and e′′ := e[Γ := w̄, F � := v].

As in Definition 3.3 and the paragraph that follows it, if L(e)
= L(e′′) = 0, F �(e) is

an actual causal explanation for L(e) = 1, with “contingency set” 〈Γ, eΓ〉, where eΓ is

the projection of e on Γ.

In order to define the “local” responsibility score, make v vary randomly under condi-

tions 1.– 5.:

RespP(e, F �,Γ, w̄) :=
L(e′)− E[L(e′′) | e′′F�{F�} = e′F�{F�}]

1 + |Γ| . (8)

If, as so far, label 1 is what has to be explained, then L(e′) = 1, and the numerator is

a number between 0 and 1. Here, Γ is fixed. Now we can minimize its size, obtaining

the (generalized) responsibility score as the maximum local value; everything relative to

distribution P :

RespPe,F�(F �(e)) := max RespP(e, F �,Γ, w̄) (9)

|Γ| min. (8) > 0

〈Γ, w̄〉 |= 1.− 4.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 585

This score was introduced, with less motivation and fewer details, and definitely not

on a causal basis, in Bertossi et al . (2020), where experiments are shown, and different

probability distributions are considered.

7.2 Domain knowledge under uncertainty

Different probability distribution on the entity population E can be considered in the

definition and computation of the generalized responsibility score (c.f. Section 7.1). A

natural choice is the uniform distribution, Pu, that gives equal probability, 1
|E| , to each

entity in E . Another natural distribution is the product distribution, P×, that is obtained,
under the assumption of independence, as the product of given marginal distributions,

p
F
, of the features F ∈ F : P×(f1, · · · , fn) := Π

Fi∈F pFi
(fi).

We can also assume we have a sample from the entity population S ⊆ E that is used as a

proxy for the latter. In this case, the distributions above become empirical distributions.

In the uniform case, it is given by: P̂u(e) := 1
|S| if e ∈ S, and 0, otherwise. In the

case of the product, P̂×(f1, . . . , fn) := Π
Fi∈F p̂Fi

(fi), with p̂
Fi
(fi) := |{e∈S | ei=fi}|

|S| . A

discussion on the use of these distributions in the context of explanation scores can be

found in Bertossi et al . (2020).

In general, one can say that the uniform distribution may not be appropriate for

capturing capturing correlations between feature values. One could argue that certain

combinations of feature values may be more likely than others; or that certain correlations

among them exist. This situation is aggravated by the product distribution due to the

independence assumption. For these reasons, an empirical distribution may be better for

this purpose.

In any way, having chosen a distribution on the population, P �, to work with; in par-

ticular, to compute the expectations needed for the responsibility score in (8), one could

consider modifying the probabilities in the hope of capturing correlations and logical

relationships between feature values. In particular, one could introduce constraints that

prohibit certain combinations of values, in the spirit of denial constraints in databases,

but in this case admitting positive and negative atoms. For example, with propositional

features Old standing for “Is older than 20” and OverDr for “Gets an account overdraft

above $50K”, we may want to impose the prohibition ¬(Old ∧ OverDr), standing for

“nobody under 20 gets at overdraft above $50K”.

These constraints, which are satisfied or violated by a single entity at a time, are of

the form:

χ : ¬
(∧

F∈F1

F ∧
∧

F ′∈F2

F̄ ′
)
, (10)

where F1 ∪ F2 ⊆ F , F1 ∩ F2 = ∅, and F, F̄ ′ mean that features F, F ′ take values 1 and

0, resp.

The event associated to χ is E(χ) = {e ∈ E | e |= χ}, where e |= χ has the obvious

meaning of satisfaction of χ by entity e. In order to accommodate the constraint, given

the initial probability space 〈E , P �〉, we can redefine the probability as follows. For E ⊆ E ,

P �
χ(E) := P �(E|E(χ)) =

P �(E ∩ E(χ))

P �(E(χ))
. (11)

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

586 L. Bertossi

If χ is consistent with the population, that is, satisfiable in E , the conditional distribution
is well-defined. Now, the probability of χ’s violation set is:

P �
χ(E � E(χ)) =

P �(∅)
P �(E(χ))

= 0.

This definition can be extended to finite and consistent sets, Θ, of constraints, by using

P �
∧Θ(E) in (11), with ∧Θ the conjunction of the constraints in Θ.

Of course, one could go beyond constraints of the form (10), applying the same ideas,

and consider any propositional formula that is intended to be evaluated on a single entity

at a time, as opposed to considering combinations of feature values for different entities.

The resulting modified distribution that accommodates the constraints could be used

in the computation of any of the scores expressed in terms of expected values or in

probabilistic terms.

An alternative approach consists in restricting the (combinations of) interventions in

the definitions and computation of the responsibility score, as suggested in Section 6 (and

any other score based on counterfactual interventions, as a matter of fact). It is worth

performing experimental comparisons between the two approaches.

8 Related work

In this study, we consider only local methods in that we are not trying to explain the

overall behavior of a classifier, but a particular output on the basis of individual feature

values. We also consider model-agnostic methods that can be applied to black-box models,

that is, without the need for an access to the internal components of the model. Of course,

these approaches can be applied to open models, that is, that make all its components

transparent for analysis. Actually, in some cases, it is possible to take computational

advantage of this additional source of knowledge (more on this below in this section).

There are several approaches to the explanation of outcomes from classification models.

These methods can be roughly categorized as those that provide attribution scores and

those that provide sufficient explanations. Those in the former class assign a number to

each feature value that reflects its relevance for the outcome at hand. x-Resp falls in this

category. For comparison with other approaches, we repeat that, in the case of x-Resp,

one counterfactually modifies feature values to see if the outcome changes. The score is

computed from those changes.

Counterfactual changes are omnipresent in attribution-score-based methods, and they

can be used to consider alternative entities to the one under explanation, and a notion of

distance between those alternatives and the latter (Martens and Provost 2014; Wachter

et al . 2017; Russell 2019; Karimi et al . 2020a; Datta et al . 2016; Bertossi et al . 2020).

Sometimes the counterfactuals are less explicit, as with the popular Shap score (Lundberg

et al . 2020), that is based on the Shapley value of game theory. It can be seen as a

counterfactual-based score in that all possible combinations of features values (and then,

most of the time departing from the initial entity) are considered in a complex aggregation

(an average or expected value).

The Shap score is designed as a model-agnostic method. However, for a large class

of classifiers whose internal components can be used for the score computation, Shap

becomes computable in polynomial-time, while its general computational complexity

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 587

is #P -hard (Arenas et al . 2021; Van den Broeck et al . 2021). As we showed in this

paper, the computation of the x-Resp is NP -hard. Actually, the generalized, probabilistic

extension of x-Resp (c.f. Section 7.1), for certain classifiers and probability distributions

on the underlying population, x-Resp can be #P -hard (Bertossi et al . 2020). An investi-

gation of classes of classifiers for which the x-Resp score (deterministic as in this work or

probabilistic) can be computed in polynomial time is still open.

The popular LIME score (Ribeiro et al . 2016) is also an attribution score. It appeals

to an explainable model that locally approximates the agnostic model around the entity

under classification. From the resulting approximation feature scores can be computed.

Sufficient-explanation methods try to identify those (combinations of) feature values

that alone determine the outcome at hand, in the sense that, by keeping those values

and possibly changing all the others, the outcome remains the same (Ribeiro et al . 2018;

Wang et al . 2021). One could say, in some sense, that the outcome is entailed by the

values that appear in a sufficient explanation. Identifying those values is reminiscent of

performing an abductive diagnosis task, as done with rule-based specifications (Eiter

et al . 1997), actually (Ribeiro et al . 2018) does appeal to rule-based methods.

There are some approaches to logic-based explanations for classification. They mostly

follow the sufficient-explanation paradigm we mentioned above. More specifically, it has

been shown how to “reconstruct” certain classes of classifiers, for example, random

forests, Bayesian classifiers, and binary neural networks, as Boolean circuits (Shih et al .

2018; Shi et al . 2020; Choi et al . 2020). Once a circuit is available, one can use it in

particular to obtain explanations for the outcomes of the model using methods that are,

in essence, abductive (Darwiche and Hirth 2020). In this context the work presented in

Ignatiev et al . (2019); Ignatiev (2019); Izza and Marques-Silva (2021) is also relevant,

in that logic-based encodings of neural networks, boosted trees, and random forests are

proposed and exploited for explanation purposes. Abductive and SAT-based approaches

are followed. Notice that abductive methods that generate sufficient explanations can

also be the basis for score definitions and their computation. Just for the gist, if a feature

value appears in the large number of sufficient explanations, then it could be assigned a

large individual score.

To the best of our knowledge, none of the approaches described above, and others,

are based on logical specifications of the counterfactuals involved in the score definition

and computation. Furthermore, these are specifications that can easily adopt domain or

desirable logical constraints in a seamless manner, and for combined use. Actually, the

logic-based representations of complex classifiers that we just mentioned above, could

be the starting point for the use of our approach. For example, a Boolean circuit can

be represented as a set of rules that becomes a first component of a CIP that does the

counterfactual analysis on that basis.

9 Discussion

This work is about interacting via ASP with possibly external classifiers, and reasoning

about their potential inputs and outputs. The classifier is supposed to have been learned

by some other means. In particular, this work is not about learning ASPs, which goes in

quite a different direction (Law et al . 2019).

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

588 L. Bertossi

In this study, we have treated classifiers as black-boxes that are represented by external

predicates in the ASP. However, we have also considered the case of a classifier that is

specified within the CIP by a set of rules, to define the classification predicate C. This
was the case of a deterministic Decision Tree. Basically, each branch from the root to a

label can be represented by a rule, with the branching direction at intermediate nodes

represented by values in literals in a rule body, and with the label in the rule head.

Something similar can be done with Boolean Circuits used as classifiers. Actually, it is

possible to represent more involved classifiers as Boolean circuits (c.f. Section 8).

Our CIPs can be easily enhanced with different extensions. For example, the feature

domains can be automatically specified and computed from training or test data (Bertossi

et al . 2020), or other sources. As done in Bertossi et al . (2020) for experimental purposes

and using purely procedural approaches, it is possible in our ASP setting to restrict the

sizes of the contingency sets, for example, to be of size 2 (c.f. Section 3). This can be

easily done by adding a cardinality condition to the body of the disjunctive intervention

rule (which is supported by DLV-Complex and DLV2). Doing this would not lead to any

loss of best explanations (as long as they fall within the imposed bound), and may reduce

the computational work.

It is also possible to extend CIPs to make them specify and compute the contingency

sets (of feature values) that accompany a particular value that has been counterfactually

changed (c.f. Section 3). This requires a set-building operation, which is provided by

DLV-Complex. Doing this would allow to obtain s-explanations, that is, with minimal

(not necessarily minimum) contingency sets (c.f. Example 5.3). One could try if, by

deleting one element from the contingency set, the label changes or not. Again, DLV-

Complex could be used here. In Bertossi and Reyes (2021) a detailed example can be

found where this is illustrated at the light of the naive Bayes classifier. This approach

was also followed in Bertossi (2021) to compute contingency sets for individual database

tuples as causes for query answers.

Our specification of counterfactual explanations is in some sense ideal, in that the

whole product space of the feature domains is considered, together with the applicability

of the classifier over that space. This may be impractical or unrealistic. However, we see

our proposal as a conceptual and generic specification basis that can be adapted in order

to include more specific declarative practices and mechanisms.

For example, restricting the product space can be done in different manners. One can

use constraints or additional conditions in rule bodies. A different approach consists in

replacing the product space with the entities in a data sample S ⊆ Πn
i=1Dom(Fi). We

could even assume that this sample already comes with classification labels, that is,

SL = {〈e′1, L(e′1)〉, . . . , 〈e′K , L(e′K)〉}. This dataset may not be disjoint from the training

dataset T (c.f. Section 3). The definition of counterfactual explanation and CIPs could

be adapted to these new setting without major difficulties.

The CIPs we have introduced are reminiscent of repair programs that specify and

compute the repairs of a database that fails to satisfy the intended integrity constraints

(Caniupan and Bertossi 2010). Actually, the connection between database repairs and

actual causality for query answers was established and exploited in (Bertossi and Salimi

2017a). ASPs that compute tuple-level and attribute-level causes for query answers were

introduced in Bertossi (2021). Attribute-level causes are close to interventions of feature

values, but the ASPs for the former are much simpler that those presented here, because

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 589

in the database scenario, changing attribute values by nulls is good enough to invalidate

the query answer (the “equivalent” in that scenario to switching the classification label

here). Once a null is introduced, there is no need to take it into account anymore, and a

single “step” interventions are good enough.

Our CIPs are designed to obtain general counterfactual explanations, and in particular

and mainly, c-explanations. The latter are associated to minimum-size contingency sets

of feature values, and, at the same time, to maximum-responsibility feature values. This

is achieved via the weak constraints in (6). If we wanted to obtain the responsibility of

a non-maximum-responsibility feature value, that is associated to an s-explanation that

is not a c-explanation, we can remove the weak constraints (and by so doing keeping all

the models of the CIP), and pose a query under the brave semantics about the values of

inv-resp in (4). An approach like this was followed in Bertossi (2021) for database tuples

as causes for query answers.

Apropos query answering, that we have not exploited in this work, several opportunities

offer themselves. For example, we could pose a query under the brave semantics to detect

if a particular feature value is ever counterfactually changed, or counterfactually changed

in a best explanation. Under the skeptical semantics, we can identify feature values that

change in all the counterfactual entities. Fully exploiting query answering is a matter of

ongoing work.

In this study, we have considered s- and c-explanations, that are associated to

two specific and related minimization criteria. However, as done in abstract terms in

Section 3, counterfactual explanations could be cast in terms of different optimization

criteria (Karimi et al . 2020a; Russell 2019; Schleich et al . 2021). One could investigate the

specification and implementation of other forms of preference, the generic � in Definition

3.1, by using ASPs as in Gebser et al . (2011); Brewka et al . (2015).

Specifying and computing the generalized, probabilistic responsibility score of

Section 7.1 goes beyond the usual capabilities of ASP systems. However, it would be

interesting to explore the use of probabilistic ASPs for these tasks (Baral et al . 2009; Lee

and Yang 2017). Along a similar line, probabilistic ASPs could be in principle used to deal

with the integration of semantic constraints with underlying probability distributions on

the entity population, as described in Section 7.2. This is all matter of ongoing work.

Acknowledgements

The author has been a member of RelationalAI’s Academic Network, which has been

a source of inspiration for this work, and much more. Part of this work was funded

by ANID – Millennium ScienceInitiative Program – Code ICN17002. Help from Jessica

Zangari and Mario Alviano with information about DLV2, and from Gabriela Reyes with

the DLV program runs is much appreciated.

References

Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, L., Perri, S., Ricca, F.,

Veltri, P. and Zangari, J. 2017. The ASP system dlv2. In Proceedings of the 14th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2017, M.
Balduccini and T. Janhunen, Eds. LNCS, vol. 10377, Springer, 215–221.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

590 L. Bertossi

Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M. and Ricca, F. 2019.
Evaluation of disjunctive programs in WASP. In Proceedings of the 15th International Con-
ference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2019. M. Marcello
Balduccini, Y. Lierler and S. Woltran, Eds. LNCS, vol. 11481, Springer, 241–255.

Arenas, M., Pablo Barceló, P., Bertossi, L. and Monet, M. 2012. The tractability
of shap-scores over deterministic and decomposable boolean circuits. In Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021. AAAI Press, 6670–6678.

Baral, C., Gelfond, M. and Rushton, N. 2009. Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming, 9, 1, 57–144.

Ben-Eliyahu, R. and Dechter, R. 1994. Propositional semantics for disjunctive logic pro-
grams. Annals of Mathematics in Artificial Intelligence, 12, 53–87.

Bertossi, L. 2011. Database Repairing and Consistent Query Answering. Synthesis Lectures in
Data Management, Morgan & Claypool.

Bertossi, L. 2019. Database repairs and consistent query answering: origins and further devel-
opments. Gems of PODS paper. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2019, D. Suciu, S. Skritek and Ch.
Koch, Eds. ACM, 48–58.

Bertossi, L. and Salimi, B. 2017a. From causes for database queries to repairs and model-
based diagnosis and back. Theory of Computing Systems, 61, 1, 191–232.

Bertossi, L. and Salimi, B. 2017b. Causes for query answers from databases: datalog abduc-
tion, view-updates, and integrity constraints. International Journal of Approximate Reason-
ing, 90, 226–252.

Bertossi, L. 2020. An ASP-based approach to counterfactual explanations for classification. In
Proceedings “Rules and Reasoning” - 4th International Joint Conference, RuleML+RR 2020,
V. Gutiérrez-Basulto, T. Kliegr, A. Soylu, M. Giese and D. Roman, Eds.. LNCS vol. 12173,
Springer, 70–81.

Bertossi, L. 2021. Characterizing and computing causes for query answers in databases from
database repairs and repair programs. Knowledge and Information Systems, 63, 1, 199–231.

Bertossi, L., Li, J., Schleich, M., Suciu, D. and Vagena, Z. 2020. Causality-based explana-
tion of classification outcomes. In Proceedings of the Fourth Workshop on Data Management
for End-To-End Machine Learning, In Conjunction with the 2020 ACM SIGMOD/PODS
Conference, DEEM@SIGMOD 2020, S. Sebastian Schelter, S. Whang and J. Stoyanovich,
Eds., 6:1–6:10.

Bertossi, L. and Geerts, F. 2020. Data quality and explainable AI. ACM Journal of Data
and Information Quality, 12, 2, 1–9.

Bertossi, L. and Reyes, G. 2021. Answer-set programs for reasoning about counterfactual
interventions and responsibility scores for classification. In Proceedings of the 1st International
Joint Conference on Learning and Reasoning, IJCLR 2021. LNCS, to appear, Springer. Ex-
tended version posted as ArXiv 2107.10159.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
Commununications of the ACM, 54, 12, 92–103.

Brewka, G., Delgrande, J., Romero, J. and Schaub, T. 2015. asprin: Customizing answer
set preferences without a headache. In Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, AAAI 2015, B. Blai Bonet and S. Koenig, Eds.. AAAI Press,
1467–1474.

Calimeri, F., Cozza, S., Ianni, G. and Leone, N. 2009. An ASP system with functions,
lists, and sets. In Proceedings of the 10th International Conference on Logic Programming and
Nonmonotonic Reasoning, LPNMR 2009, E. Erdem, F. Lin and T. Schaub, Eds.. LNCS, vol.
5753, Springer, 483–489.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,

Leone, N., Maratea, M., Ricca, F. and Schaub, T. 2020. ASP-core-2 input language
format. Theory and Practice of Logic Programming, 20, 2, 294–309.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 591

Caniupan, M. and Bertossi, L. 2010. The consistency extractor system: Answer set programs
for consistent query answering in databases. Data & Knowledge Engineering, 69, 6, 545–572.

Chockler, H. and Halpern, J. Y. 2004. Responsibility and blame: a structural-model ap-
proach. Journal of Artificial Intelligence Research, 22, 93-115.

Choi, A., Shih, A., Goyanka, A. and Darwiche, A. 2020. On symbolically encoding the
behavior of random forests. ArXiv 2007.01493, 2020.

Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. 2001. Complexity and expressive
power of logic programming. ACM Computing Surveys, 33, 3, 374-425.

Datta, A., Sen, S. and Zick, Y. 2016. Algorithmic transparency via quantitative input influ-
ence: theory and experiments with learning systems. In Proceedings of the IEEE Symposium
on Security and Privacy, SP 2016. IEEE Computer Society, 598–617.

Darwiche, A. and Hirth, A. 2020. On the reasons behind decisions. In Proceedings of the
24th European Conference on Artificial Intelligence, ECAI 2020, G. De Giacomo, A. Catalá,
B. Dilkina, M. Milano, S. Barro, B. Bugaŕın and J. Lang, Eds. IOS Press, 712–720.

Eiter, T., Gottlob, G. and Leone, N. 1997. Abduction from logic programs: semantics and
complexity. Theoretical Computer Science, 189, 1–2, 129–177.

Eiter, T., Germano, S., Ianni, G., Kaminski, T., Redl, C., Schüller, P. and

Weinzierl, A. 2019. The dlvhex system. Künstliche Intelligenz, 32, 2–3, 187–189.

Eiter, T., Kaminski, T., Redl, C., Schüller, P. and Weinzierl, A. 2017. Answer set
programming with external source access. In Reasoning Web. Semantic Interoperability on
the Web - 13th International Summer School 2017, Tutorial Lectures, G. Ianni, D. Lembo,
L. Bertossi, W. Faber, B. Glimm, G. Gottlob and S. Staab, Eds. LNCS, vol. 10370, Springer,
204–275.

Flach, P. Machine Learning. Cambridge University Press, 2012.

Gebser, M., Kaminski, R. and Schaub, T. 2011. Complex optimization in answer set pro-
gramming. Theory and Practice of Logic Programming, 11, 4–5, 821-839.

Izza, Y. and Marques-Silva, J. 2021. On explaining random forests with SAT. In Proceedings
of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Z.-H.
Zhou, Ed., 2584–2591.

Gelfond, M. and Kahl, Y. 2014. Knowledge Representation and Reasoning, and the Design
of Intelligent Agents. Cambridge University Press.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9, 365–385.

Giannotti, F., Greco, S., Sacca, D. and Zaniolo, C. 1997. Programming with non-
determinism in deductive databases. Annals of Mathematics in Artificial Intelligence, 19,
1–2, 97–125.

Halpern, J. and Pearl, J. 2005. Causes and explanations: a structural-model approach: part
1. British Journal Philosophy of Science, 56, 843–887.

Ignatiev, A., Narodytska, N. and Marques-Silva, J. 2019. Abduction-based explanations
for machine learning models. In Proceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, AAAI Press, 1511–1519.

Ignatiev, A. 2020. Towards trustable explainable AI. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020, C. Bessiere, Ed., 5154–
5158.

Karimi, A-H., Barthe, G., Balle, B. and Valera, I. 2020a. Model-agnostic counterfactual
explanations for consequential decisions. In Proceedings of the 23rd International Conference
on Artificial Intelligence and Statistics, AISTATS 2020, S. Chiappa and R. Calandra, Eds.
PMLR, vol. 108, 895–905.

Karimi, A-H., von Kügelgen, B. J., Schölkopf, B. and Valera, I. 2020b. Algorithmic
recourse under imperfect causal knowledge: a probabilistic approach. In Advances in Neural

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

592 L. Bertossi

Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, H. Larochelle, M. Ranzato, R., M.-F. Balcan and H.-T. Lin,
Eds.

Law, M., Russo, A. and Broda K. 2019. Logic-based learning of answer set programs. In
Reasoning Web. Explainable Artificial Intelligence - 15th International Summer School 2019,
Tutorial Lectures, M. Krötzsch and D. Stepanova, Eds. LNCS, vol. 11810, Springer, 196–231.

Lee, J. and Yang, Z. 2017. LPMLN, weak constraints, and p-log. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, AAAI 2017, S. P. Singh and S. Markovitch,
Eds. AAAI Press, 1170–1177.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Koch, C., Mateis, C.,

Perri, S. and Scarcello, F. 2006. The DLV system for knowledge representation and
reasoning. ACM Transactions on Computational Logic, 7, 3, 499–562.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J., Nair, B., Katz, R.,

Himmelfarb, J., Bansal, N. and Lee, S-I. 2020. From local explanations to global under-
standing with explainable ai for trees. Nature Machine Intelligence, 2, 1, 56–67.

Martens, D. and Provost, F. J. 2014. Explaining data-driven document classifications. MIS
Quarterly, 38, 1, 73–99.

Meliou, A., Gatterbauer, W., Moore, K. F. and Suciu, D. 2010. The complexity of
causality and responsibility for query answers and non-answers. Proceedings of the VLDB
Endowment, 4, 1, 34–45.

Mitchell, T. M. 1997. Machine Learning. McGraw-Hill.

Molnar, C. 2020. Interpretable Machine Learning: A Guide for Making Black Box Models
Explainable. https://christophm.github.io/interpretable-ml-book

Narodytska, N., Shrotri, A., Meel, K., Ignatiev, A. and Marques-Silva, J. 2019. As-
sessing heuristic machine learning explanations with model counting. In Proceedings of the
22nd International Conference on Theory and Applications of Satisfiability Testing, SAT 2019,
M. Janota and I. Lynce, LNCS, vol. 11628, Springer, 267–278.

Pearl, J. 2009. Causality: Models, Reasoning and Inference, 2nd edition. Cambridge University
Press.

Rudin, C. 2019. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence, 1, 206–215.

Russell, Ch. 2019. Efficient search for diverse coherent explanations. In Proceedings of the
Conference on Fairness, Accountability, and Transparency, FAT∗ 2019, D. Boyd and J. H.
Morgenstern, Eds. ACM, 20–28.

Ribeiro, M. T., Singh, S. and Guestrin, C. 2016. “Why should I trust you?”: Explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2016, B. Krishnapuram, M.
Shah, A. J. Smola, C.C. Aggarwal, D. Shen and R. Rastogi, Eds. ACM, 1135–1144.

Ribeiro, M. T., Singh, S. and Guestrin, C. 2018. Anchors: high-precision model-agnostic
explanations. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
AAAI 2018, S. A. McIlraith and K. Q. Weinberger, Eds. AAAI Press, 1527–1535.

Schleich, M., Geng, Z., Zhang, Y. and Suciu, D. 2021. GeCo: Quality counterfactual
explanations in real time. Proceedings of the VLDB Endowment, 14, 9, 1681–1693.

Shi, W., Shih, A., Darwiche, A. and Choi, A. 2020. On tractable representations of binary
neural networks. In Proceedings of the 17th International Conference on Principles of Knowl-
edge Representation and Reasoning, KR 2020, D. Calvanese, E. Erdem and M. Thielscher,
Eds., 882–892.

Shih, A., Choi, A. and Darwiche, A. 2018. Formal verification of Bayesian network classifiers.
In Proceedings of the International Conference on Probabilistic Graphical Models, PGM 2018,
M. Studený, and V. Kratochv́ıl, Eds. PLMR, vol. 72, 157–168.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

Declarative Approaches to Counterfactual Explanations 593

Ustun, B., Spangher, A. and Liu, Y. 2019. Actionable recourse in linear classification. In
Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT∗ 2019, D.
Boyd and J. H. Morgenstern, Eds. ACM, 10–19.

Van den Broeck, G., Lykov, A., Schleich, M. and Suciu, D. 2021. On the tractabil-
ity of SHAP explanations. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021. AAAI Press, 6505-6513.

Wachter, S., Mittelstadt, B. D. and Russell, C. 2017. Counterfactual explanations with-
out opening the black box: Automated decisions and the GDPR. Harvard Journal of Law &
Technology, 31, 841.

Wang, E., Khosravi, P. and Van den Broeck, G. 2021. Probabilistic sufficient explanations.
In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI
2021, Z.-H. Zhou, Ed., 3082–3088.

https://doi.org/10.1017/S1471068421000582 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000582

	Introduction
	Background
	Classification models and counterfactuals
	Answer-set programming

	Counterfactual explanations and the x-Resp score
	Complexity of x-Resp computation
	Counterfactual intervention programs
	Counterfactual intervention programs
	Complexity of CIPs
	C-explanations and maximum responsibility

	Semantic knowledge
	Beyond binary features and uncertainty
	Expectation over interventions for the x-Resp score
	Domain knowledge under uncertainty

	Related work
	Discussion
	References

