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Abstract

The northern Alxa region is located in the central segment of the southern Central Asian
Orogenic Belt. Many controversies and deficiencies still exist regarding themagma source char-
acteristics, petrogenesis and tectonic regimes during the late Palaeozoic – earlyMesozoic period
within this region. This study presents whole-rock compositions and zircon U–Pb and Lu–Hf
isotopic data for three early Mesozoic I- and A-type granitic plutons occurring in the northern
Alxa region. The Haerchaoenji and Chahanhada I-type granitoids yielded zircon 206Pb–238U
ages of 245 ± 5Ma and 245 ± 2Ma, respectively. The variable positive zircon ϵHf(t) values
betweenþ1.8 andþ11.8, with young TDM ages of 425–837Ma, indicate that these I-type gran-
itoids were mainly derived from juvenile crustal materials. The Wulantaolegai pluton has a zir-
con 206Pb–238U age of 237 ± 2Ma and is classified as having high-K calc-alkaline A-type affinity.
Furthermore, the positive zircon ϵHf(t) values of the Wulantaolegai granite range fromþ3.3 to
þ8.7 with young TDM ages of 545–778Ma, suggesting the involvement of a juvenile crustal
source as well. Furthermore, the major-element compositions of the Chahanhada and
Wulantaolegai granites suggest the input of metasedimentary components. Geochemically,
the Haerchaoenji and Chahanhada I-type granitoids show an arc affinity, while the
Wulantaolegai granite exhibits a post-collisional affinity. However, with regional data, we sug-
gest that the Haerchaoenji and Chahanhada I-type granitoids were also emplaced in a post-col-
lisional setting, and the arc affinity was probably inherited from recycled subduction-related
materials. These lines of evidence obtained in this study enable us to argue that the Palaeo-
Asian Ocean in the central segment of the Central Asian Orogenic Belt closed before
Middle Triassic time.

1. Introduction

The Central Asian Orogenic Belt (CAOB), which is located in northcentral Asia from the
Uralides to the Pacific Ocean (e.g. Şengör et al. 1993; Jahn et al. 2004; Windley et al. 2007;
Li et al. 2013; Xiao et al. 2015; Liu et al. 2016) (Fig. 1a), has been regarded as one of the world’s
largest and most complex accretionary orogens (Şengör et al. 1993; Windley et al. 2007; Xiao
et al. 2009;Wilhem et al. 2012). The CAOB has been widely considered to have undergone long-
lived, giant orogenic processes driven by the evolution and closure of the Palaeo-Asian Ocean
(PAO) during the Neoproterozoic to Mesozoic period (Şengör et al. 1993; Jahn et al. 2004; Cope
et al. 2005; Windley et al. 2007; Shen et al. 2009; Zhang et al. 2009; Cai et al. 2011a,b; Li et al.
2013, 2016a,b, 2017; Xu et al. 2013; Xiao et al. 2013, 2015; Wang et al. 2017; He et al. 2018; Song
et al. 2018a,b; Chen et al. 2019; Zhao et al. 2020).

Numerous studies have focused on the multi-stage evolution of the PAO and CAOB, with
significant progress made (e.g. Şengör et al. 1993; Windley et al. 2007; Xiao et al. 2009, 2015;
Wilhem et al. 2012; Eizenhöfer et al. 2014; Eizenhöfer & Zhao, 2018). However, the timing of the
final closure of the PAO is still debated, with estimates ranging from Late Devonian to Triassic
time (e.g. Charvet et al. 2011; Xu et al. 2013; Eizenhöfer et al. 2014, 2015a,b; Xiao et al. 2015,
2018; Zhang et al. 2015a,b; Zhang, W. et al. 2015; Shi, G. Z. et al. 2016; Yin et al. 2016; Song et al.
2018b). These controversies are mainly due to: (1) the various objects studied, such as the late
Palaeozoic magmatic rocks (e.g. Shi et al. 2012, 2014a,b; Xiao et al. 2015; Liu et al. 2017, 2018;
Song et al. 2018a), tectonic deformation and regional unconformity (e.g. Tang, 1990; Xu et al.

https://doi.org/10.1017/S0016756822001157 Published online by Cambridge University Press

https://www.cambridge.org/geo
https://doi.org/10.1017/S0016756822001157
https://doi.org/10.1017/S0016756822001157
mailto:wjq@nwu.edu.cn
mailto:zxcnwu@126.com
https://orcid.org/0000-0002-8404-9471
https://orcid.org/0000-0002-7257-2062
https://orcid.org/0000-0002-6738-6396
https://doi.org/10.1017/S0016756822001157


2013; Xu, X. Y. et al. 2014), or detrital zircon indicators (e.g. Chen
et al. 2019; Song et al. 2018b, 2021; Niu et al. 2021); (2) limited
study areas (different segments probably closed at diverse times);
and (3) relatively poor study in some areas because of execrable
natural conditions, e.g. the northern Alxa region. Actually, the
CAOB evolved with multiple convergences and the accretion of
many orogenic components during multiple phases of amalgama-
tion (Xiao et al. 2015), i.e. the closure of the PAO was probably
diachronous. Furthermore, previous studies of magmatic rocks
mainly focused on the Tianshan–Beishan in the western segment
(e.g. Yang et al. 2014; Zhang, W. et al. 2015; Tian et al. 2017) or
Inner Mongolia in the eastern segment (e.g. Jian et al. 2008,
2010; Chen et al. 2009; Xu et al. 2013; Li et al. 2016a,b, 2017;

Shi, Y. R. et al. 2016; Zhao, P. et al. 2017) along the southern
CAOB. Much less is known, however, about the central segment
of the southern CAOB (the northern Alxa region), which is a cru-
cial junction between the North China Block (NCB) and the Tarim
Block (Fig. 1a). It has hampered us from better understanding the
evolutionary history of the PAO and subsequent development of
the CAOB. In the central segment of the southern CAOB, the late
Palaeozoic magmatic rocks are widely exposed and have attracted
the attention of many scholars (e.g. Shi et al. 2014a,b; Zhang et al.
2017; Liu et al. 2017, 2018; Song et al. 2018a; Zhao et al. 2020).
Nevertheless, the timing of tectono-magmatic switching from an
arc-related to a post-collisional process is still actively debated.
Previous research indicated that this region was in a subduction

Fig. 1. (Colour online) (a) Schematic geological map of the Central Asian Orogenic Belt (modified after Liu et al. 2017). (b) Geological map of the northern Alxa region (modified
after 1:200 000 geological maps from BGMRIM, 1991).
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setting during most of the late Palaeozoic period (e.g. Shi et al.
2014a,b; Zhang et al. 2017; Liu et al. 2017, 2018; Song et al.
2018a; Zhao et al. 2020). Therefore, the earliest Mesozoic should
be a key period in the evolution of the PAO and probably provides
significant information to constrain the tectonic switch from a sub-
duction setting to a post-collisional setting.

Thus, this research focused on the earliest Mesozoic magmatic
rocks, which have been rarely reported, exposed in the northern
Alxa region of the central segment of the southern CAOB. We
report new geochronological, geochemical and isotopic data from
three early Mesozoic granitoids in the northern Alxa region and
evaluate their petrogenesis and tectonic implications, in order to
decipher the evolution of the central segment of the
southern CAOB.

2. Geological background

The northern Alxa region is situated in western Inner Mongolia,
which borders the NCB to the east separated by the Zunnbayan
fault belt and the Langshan fault belt (Fig. 1a) (Huang et al.
1999; Geng & Zhou, 2010; Zhang et al. 2013), and the North
Qilian Orogen to the southwest separated by the Longshoushan
fault belt (Liu et al. 2017). Largely covered by the Badain Jaran des-
ert, the Alxa Block exposes sporadic Precambrian rocks, Palaeozoic
to Mesozoic volcanic and intrusive rocks, and Phanerozoic sedi-
mentary rocks. The Alxa Block is generally considered to be a
Precambrian block belonging to the westernmost part of the
NCB at present (Fig. 1a). Based on palaeontology, sedimentary
sequences and magmatic events, some researchers have argued
that the northern Alxa region comprised a complete trench–
arc–basin system during late Palaeozoic time (Wang et al. 1994;
Zhang et al. 2013). In this region, there are two significant ophiolite
belts, i.e. the Qagan Qulu Ophiolite Belt and the Enger Us
Ophiolite Belt (Fig. 1b). The Enger Us Ophiolite Belt (~302Ma)
is regarded as the major suture of the PAO in the northern Alxa
region (BGMRIM, 1991; Wang et al. 1994; Wu et al. 1998; Xie
et al. 2014; Zheng et al. 2014), and the Qagan Qulu Ophiolite
Belt (~275Ma) is considered to have been generated in a back-
arc setting (Wu et al. 1998; Zheng et al. 2014). Based on these
two sutures and the Yagan fault belt, the northern Alxa region
can be further subdivided into four units (from north to south):
the Yagan Tectonic Belt (YTB), the Zhusileng–Hangwula
Tectonic Belt (ZHTB), the Zongnaishan–Shalazhashan Tectonic
Belt (ZSTB) and the Nuoergong–Honggueryulin Tectonic Belt
(NHTB) (Wu & He, 1992, 1993) (Fig. 1b).

The ZSTB extends southwestward to the Badain Jaran desert
and northeastward to the south of the Solonker region in a nearly
ENE–WSWdirection (Fig. 1b). To the south, the ZSTB borders the
NHTB separated by the Qagan Qulu Ophiolite Belt. Northward,
the Enger Us fault separates the ZSTB from the ZHTB.
Palaeozoic–early Mesozoic plutons are widely exposed in the
ZSTB, including voluminous calc-alkaline granitoids and minor
gabbro–diorites (e.g. Shi, G. Z. et al. 2016). The geochemical char-
acteristics show that the late Palaeozoic plutonic rocks were mainly
involved in the subduction process of the PAO (e.g. Wang et al.
1994; Shi et al. 2014a,b). The early Mesozoic plutonic rocks are
mainly medium–fine-grained monzogranite and K-feldspar gran-
ite, which intruded into the pre-Mesozoic rocks as small stocks or
branches (Wang et al. 1994). Minor Precambrian rocks are also
exposed in the ZSTB, which are mainly composed of metamor-
phosed supracrustal rocks and meta-intrusive rocks with an age
of 1.4~1.5 Ga (Shi, X. J. et al. 2016). The lower Palaeozoic

sedimentary rocks are absent, while the upper Palaeozoic sedimen-
tary rocks are more prevalent, represented by the upper
Carboniferous – lower Permian Amushan Formation
(BGMRIM, 1991; Bu et al. 2012; Lu et al. 2012; Zheng et al.
2014; Zhang &Zhang, 2016). The lithology of the lower andmiddle
sections of the Amushan Formation is obviously different from
that of the upper section, suggesting a significant tectonic event
occurred (Shi et al. 2014a; Liu et al. 2017). The Jurassic sequences
are sporadically exposed, which are composed of coarse-grained
clastic rocks. By contrast, the Cretaceous sequences aremore devel-
oped, characterized by volcaniclastic rocks.

3. Field observations and sampling

3.a. Field observations

In the ZSTB, the late Palaeozoic – Early Triassic intrusive rocks
constitute the principal part of the Zongnaishan–Shalazhashan
Mountain (NXBG, 1980a,b, 1982, 2001; Zhang et al. 2013; Xie
et al. 2021). The majority of the Triassic intrusive rocks in this
region are controlled by E–W or NW-directed faults and are
emplaced into the late Palaeozoic granitoids (Fig. 1b) (NXBG,
1980a,b, 1982, 2001). Furthermore, these Triassic plutons are
mainly exposed as small-scale stocks or branches, and mainly con-
sist of granite, monzogranite and granodiorite (NXBG, 1980a,b,
1982; Zhang et al. 2013; Shi et al. 2014a; Zhang, Z. P. et al.
2016; Zhao, Z. L. et al. 2016). In this study, we conducted detailed
studies on three plutons (the Haerchaoenji, Wulantaolegai and
Chahanhada plutons) in the ZSTB. Mafic enclaves associated with
these plutons were not observed during the field studies. The loca-
tions of the investigated plutons are shown in Figures 1 and 2.

The Haerchaoenji pluton is the largest pluton in the
southwestern Zongnaishan area with an outcrop area of
~100 km2 (NXBG, 1982). The shape of this pluton is complex,
and it is mainly exposed as branches and dykes. The strike of this
pluton is mostly near N–S, implying that the rock mass intruded
along a N–S-directed fault (Yebuerhai Fault) (NXBG, 1982). This
pluton intruded the Precambrian gneiss and the Palaeozoic gran-
itoids, and is unconformably covered by the Middle Jurassic strata
in the south (Fig. 2a) (NXBG, 1982). The Haerchaoenji pluton is
dominated by medium–fine-grained granite, biotite granite and
granodiorite (NXBG, 1982). The Wulantaolegai pluton intruded
into the upper Carboniferous strata (Fig. 2b) and is dominated
by medium-grained granite and monzonitic granite (NXBG,
1980a, 2001). The Wulantaolegai pluton is exposed as a rock
branch. The Chahanhada pluton is located in the eastern
Shalazhashan area, and trends in a NE–SW direction with an out-
crop area of ~12 km2 (NXBG, 1980b). This pluton is in the form of
an elliptical stock and intrudes the late Palaeozoic granitoids
(Fig. 2b). The Chahanhada pluton is unconformably covered by
Lower Cretaceous strata (Bayingebi Fm) in the south and east areas
(Fig. 2b) (NXBG, 1982). The main rock types are granite and mon-
zonitic granite with a medium to coarse-grained granitic tex-
ture (Fig. 3g).

3.b. Sampling

A total of 16 samples were collected from the Haerchaoenji,
Wulantaolegai and Chahanhada plutons for systematic zircon
U–Pb–Hf isotopic and whole-rock geochemical analysis. The
detailed description of these samples is carried out below.

The samples (YE-17-69, 69-1, 69-2, 69-3, 69-4) from the
Haerchaoenji pluton are light grey, homogeneous, undeformed
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Fig. 2. (Colour online) Geological map of the (a)
Zongnaishan and (b) Shalazhashan areas.

604 X Zhao et al.

https://doi.org/10.1017/S0016756822001157 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756822001157


medium-grained granodiorites (3–5 mm) (Fig. 3a). The major
mineral assemblages are quartz (~25 vol. %), plagioclase (~45–
55 vol. %), K-feldspar (~10–15 vol. %) and biotite (~5–10 vol. %)
(Fig. 3b, c), while the main accessory minerals are zircon, apatite
and titanite. The plagioclases are subhedral–euhedral and show
polysynthetic twinning (Fig. 3b). Most of the K-feldspars are sub-
hedral to anhedral and show features of alteration on their surfaces
(Fig. 3c). Some quartz crystals exhibit an anhedral granular texture
among other minerals with wavy extinction, indicating dynamic
recrystallization (Fig. 3c). Sub- to anhedral biotite is characterized
by strong pleochroism, and it occasionally appears as mineral
aggregates.

The samples (YE-17-78, 78-1, 78-2, 78-3, 78-4) from the
Wulantaolegai pluton are pale red, fine–medium-grained granite
(Fig. 3d), primarily composed of K-feldspar (~30–35 vol. %),
quartz (~35 vol. %) and plagioclase (20–25 vol. %), withminor bio-
tite (~3 vol. %) (Fig. 3e, f) and accessory minerals (e.g. zircon, mag-
netite, titanite and apatite). K-feldspars are euhedral or subhedral
and show relatively strong alteration. In addition, some

K-feldspars show the distinctive feature of gridiron twinning.
Quartz crystals are anhedral with rounded borders, while plagio-
clases are euhedral with polysynthetic twinning (Fig. 3e, f).

The samples (YE-17-88, 88-1, 88-2, 88-3, 88-4, 88-5) from the
Chahanhada pluton are pale red, homogeneous medium-grained
(3–5 mm) granites (Fig. 3g). Quartz (~35–40 vol. %), K-feldspar
(~35–40 vol. %), plagioclase (~20–27 vol. %) and biotite (~1–2
vol. %) (Fig. 3h, i) are the major minerals. Zircon, apatite and titan-
ite are the main accessory minerals. The K-feldspars show obvious
evidence of alteration. The plagioclases are zoned with idiomor-
phic plates and show polysynthetic twinning. The quartz grains
exhibit an anhedral granular texture among other minerals and
have wavy extinction (Fig. 3h, i).

4. Analytical methods

4.a. Whole-rock major and trace elements

Whole-rock major and trace elements of the studied samples were
analysed at the State Key Laboratory of Continental Dynamics,

Fig. 3. (Colour online) Field photographs and photomicrographs showing petrographic features of the studied samples. (a–c) YE-17-69; (d–f) YE-17-78; (g–i) YE-17-88. Mineral
abbreviations: Pl – plagioclase; Qtz – quartz; Kf-K – feldspar; Bt – biotite. Length of hammer for scale is 290 mm; length of hammer head for scale is 175 mm.
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Northwest University, China. Fresh chips of whole-rock samples
were powdered to ~200 mesh using a tungsten carbide ball mill.
Major elements were analysed using a Rigaku RIX 2100 X-ray fluo-
rescence (XRF) spectrometer, and trace elements were analysed by
an Agilent 7500a inductively coupled plasma mass spectrometer
(ICP-MS) using United States Geological Survey (USGS) and
international rock standards (BHVO-2, AGV-2, BCR-2 and
GSP-1). For the trace-element analysis, sample powders were
digested using an HFþHNO3 mixture in high-pressure Teflon
bombs at 190 °C for 48 hours. The analytical precision and accu-
racy for most of themajor and trace elements is better than 5 % and
10 %, respectively (Liu et al. 2007).

4.b. Zircon Lu–Hf isotopic analyses

In situ zircon Hf isotope analysis was undertaken on a Nu Plasma
HR multi-collector ICP-MS (Nu Instrument Ltd, UK) equipped
with a GeoLas 2005 193 nm ArF excimer laser-ablation system.
Analysis was carried out using a beam size of 44 μm and helium
was used as a carrier gas. The laser repetition rate was 10 Hz
and the energy density applied was 15–20 J cm−2. Instrumental
conditions and data acquisition methods were described by
Zhao, Y. et al. (2017). Time-dependent drifts of Lu–Hf isotopic
ratios were corrected using a linear interpolation according to
the variations of 91500 and GJ-1. A decay constant of
1.867 × 10–11 a−1 for 176Lu (Albarède et al. 2006) and the present
chondritic ratios of 176Hf/177Hf= 0.282772 and 176Lu/
177Hf= 0.0332 (Blichert-Toft & Albarède, 1997) were adopted to
calculate ϵHf(t) values (ϵHf(t)= ((176Hf/177Hf)s− (176Lu/177Hf)s ×
(eλt− 1))/((176Hf/177Hf)CHUR,0− (176Lu/177Hf)CHUR× (eλt− 1))− 1)×
10 000; Wu et al. 2007). Bea et al. (2018) proposed that the
best strategy to calculate the Hf TDM is to use the analytically
determined whole-rock Lu/Hf ratio as a proxy for the source
Lu/Hf. In this study, we use the analytically determined whole-rock
Lu/Hf ratio as described by Bea et al. (2018).

4.c. Zircon U–Pb geochronology

Zircon grains for U–Pb dating were extracted by using a combined
technique of heavy liquid andmagnetic separation, and then hand-
picked under a microscope, mounted in epoxy resin and polished
until the centres of the zircon grains were exposed.
Cathodoluminescence (CL) images were taken to reveal their
internal structures and select the suitable U–Pb dating spots by
using a Quanta 400FEG environmental scanning electron
microscope.

Laser-ablation ICP-MS (LA-ICP-MS) zircon U–Pb dating was
carried out at the State Key Laboratory of Continental Dynamics,
Northwest University, China. The U–Pb dating was conducted on
an Agilent 7500a ICP-MS instrument equipped with a 193 nm ArF
excimer laser and a homogenizing imaging optical system. A fixed
spot size of 32 μm with a laser repetition rate of 6 Hz was adopted
throughout this study. Helium was used as carrier gas to provide
efficient aerosol delivery to the torch. The standard silicate glass
NIST 610 was used to optimize the instrument to obtainmaximum
signal intensity (238U signal intensity>460 cps/ppm) and low oxide
production (ThO/Th<1 %). The ICP-MSmeasurements were car-
ried out using time-resolved analysis operating in fast peak jump-
ing mode and DUAL detector mode using a short integration time.
207Pb/206Pb, 206Pb/238U, 207Pb/235U and 208Pb/232Th ratios were cal-
culated using the GLITTER 4.0 program (Macquarie University).
The zircon 91500 was used as an external standard with a

recommended 206Pb–238U age of 1065.4 ± 0.6 Ma (Wiedenbeck
et al. 1995) for correction of both instrumental mass bias and
depth-dependent elemental and isotopic fractionation. U, Th
and Pb concentrations were calibrated by using 29Si as an internal
standard and NIST SRM 610 as an external standard. Concordia
diagrams and weighted mean calculations were made using the
Isoplot program (version 3.0) (Ludwig, 2003).

5. Analytical results

5.a. Whole-rock geochemistry

In this research, field investigation and photomicrographs reveal
that these intermediate–acid intrusive rocks have rarely been
affected by regional metamorphism. Major- and trace-element
compositions of selected granitoids from the study area are listed
in online Supplementary Material Table S1.

The samples from the Haerchaoenji granodiorite have
SiO2= 63.10–65.80 wt %, total Fe2O3= 3.86–4.65 wt %,
Na2O= 4.52–4.77 wt %, K2O = 1.94–2.15 wt %, MgO = 1.55–
1.91 wt %, Mg no.= 48–49 and CaO= 3.78–4.14 wt % (online
SupplementaryMaterial Table S1). In the plot of total alkalis versus
SiO2, these samples all fall into the subalkaline series field (Fig. 4a).
In the plot of K2O versus SiO2, all samples fall into the medium-K
calc-alkaline field (Fig. 4b). These granodiorites collected from the
Haerchaoenji pluton are metaluminous to slightly peraluminous,
with A/CNK (molecular ratio of Al2O3/(CaOþNa2OþK2O))
ratios ranging from 0.97 to 1.01 (Fig. 4c). In addition, these samples
show enrichment of light rare earth elements (LREEs) ((La/
Yb)N= 27.13–41.31) and no obvious Eu anomalies (Eu = 0.95–
1.02) in the chondrite-normalized REE diagrams (Fig. 5). They also
exhibit depletion of Nb, Ta and Ce, and enrichment of Ba, Th, U
and Pb contents in the primitive mantle-normalized spider dia-
grams (Fig. 5).

The samples of the Wulantaolegai granite show SiO2= 68.6–
70.70 wt %, total Fe2O3= 1.76–1.90 wt %, Na2O = 5.63–6.30
wt %, K2O= 3.52–3.74 wt % and CaO= 0.89–1.12 wt % (online
Supplementary Material Table S1). In addition, they have low
MgO contents of 0.23–0.25 wt % and Mg no. values of 23–24.
Theses granites are light peraluminous, with A/CNK from 1.0 to
1.08 (Fig. 4c). In the plot of K2O versus SiO2, all samples fall into
the high-K calc-alkaline field (Fig. 4b). In the chondrite-normal-
ized REE diagrams, the granite samples show enrichment of
LREEs ((La/Yb)N= 5.87–6.66) and negative Eu anomalies
(δEu= 0.80–0.82) (Fig. 5). They also exhibit depletion of Ba,
Nb, Ce and Sr, and enrichment of Rb, Th, U and Pb contents in
the primitive mantle-normalized spider diagrams (Fig. 5).

The samples from the Chahanhada granite show SiO2= 72.76–
77.70 wt %, total Fe2O3= 0.98–1.26 wt %, Na2O= 4.05–4.77 wt %,
K2O= 3.20–3.77 and CaO= 0.35–0.51 wt % (online
Supplementary Material Table S1). In addition, they have low
MgO contents of 0.26–0.36 wt % with Mg no. values of 38–40.
These granites are peraluminous, with an A/CNK from 1.15 to
1.17 (Fig. 4c). In the plot of K2O versus SiO2, all samples fall into
the medium to high-K calc-alkaline field (Fig. 4b). Chondrite-nor-
malized REE patterns of these samples show enrichment of LREEs
((La/Yb)N= 10.27–12.93) with obvious Eu anomalies
(δEu= 0.49–0.53) (Fig. 5). They exhibit depletion of Ba, Nb, Ce,
Sr and Eu, and enrichment of Rb, Th, U, La, Pb and Nd contents
in the primitive mantle-normalized spider diagrams as
well (Fig. 5).

606 X Zhao et al.

https://doi.org/10.1017/S0016756822001157 Published online by Cambridge University Press

https://doi.org/10.1017/S0016756822001157
https://doi.org/10.1017/S0016756822001157
https://doi.org/10.1017/S0016756822001157
https://doi.org/10.1017/S0016756822001157
https://doi.org/10.1017/S0016756822001157


5.b. U–Pb zircon geochronological data

The results of zircon LA-ICP-MS U–Pb dating are presented in
online Supplementary Material Table S3. The zircons separated
from the granodiorite (YE-17-69) and granites (YE-17-78, YE-
17-88) are mostly colourless, transparent and well crystallized,
with grain diameters of 200–300 μm, 150–200 μm and 50–
120 μm, respectively (Fig. 6). The length/width ratios of the zircon
grains range from 1:1 to 5:1 (YE-17-69), 1:1 to 3:1 (YE-17-78) and
1:1 to 2:1 (YE-17-88), respectively. The CL images revealed that the
selected zircons display clear oscillatory zoning and platy struc-
tures (Fig. 6). All zircon grains are euhedral to subhedral with pris-
matic to sub-prismatic shapes (Fig. 6). Moreover, the relatively
high Th/U ratios of the three samples (0.43–1.34, 0.37–0.62 and
0.47–1.30, respectively) also suggest a magmatic origin (Hoskin
& Schaltegger, 2003). The 206Pb–238U weighted average ages of
concordant points are 245 ± 5Ma (MSWD = 0.56, N= 19) for

YE-17-69, 237 ± 2Ma (MSWD = 0.43, N = 25) for YE-17-78
and 245 ± 2Ma (MSWD = 0.38, N= 17) for YE-17-88.

5.c. Zircon Lu–Hf results

The zircon grains that were previously analysed by U–Pb methods
were also analysed for Lu–Hf isotopes on the same spot, and the
results are listed in online Supplementary Material Table S2.
Fifteen spots on zircons selected from sample YE-17-69 yielded
variable ϵHf(t) values between þ1.8 and þ6.4 (Fig. 7), with Hf
model ages (TDM) of 636–837 Ma, and initial 176Hf/177Hf ratios
from 0.282676 to 0.282807. Fifteen spots on zircons selected from
sample YE-17-78 showed variable ϵHf(t) values ranging fromþ3.3
to þ8.7 (Fig. 7), corresponding to TDM ages varying from 545 to
778 Ma, with the initial 176Hf/177Hf ratios ranging from
0.282712 to 0.282864. Fifteen spots on zircons from sample YE-
17-88 yielded positive ϵHf(t) values ranging from þ5.5 to þ11.8

Fig. 4. (Colour online) (a) (Na2Oþ K2O) versus SiO2, (b) K2O versus SiO2 and (c) A/NK versus A/CNK plots for investigated samples from the ZSTB. The field boundaries in the three
diagrams are from Irvine & Baragar (1971), Peccerillo & Taylor (1976) and Maniar & Piccoli (1989), respectively. Previous data of ZHTB and ZSTB are cited from Shi et al. (2014a) and
Zhang et al. (2017).
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(Fig. 7), corresponding to young TDM ages from 425 to 729Ma, and
the initial 176Hf/177Hf ratios varied between 0.282776 and
0.282955.

6. Discussion

6.a. Geochronological framework of the ZSTB

The geochronological data are important to constrain the mag-
matic event and further understand the tectonic evolution of the
northern Alxa region. In this study, the obtained zircon U–Pb ages
are considered to reflect the timing of magmatic events. The zircon
U–Pb dating of the samples from three plutons in the ZSTB yielded
weighted mean 206Pb–238U ages of 237~245 Ma (Fig. 8). These
dates provide robust evidence for the presence of early Mesozoic
magmatism in the northern Alxa region. Furthermore, we col-
lected previously reported magmatic events in the ZSTB (e.g.
Zhang et al. 2013; Liu & Zhang, 2014a,b; Shi et al. 2014a,b;

Yang et al. 2014; Shi, G. Z. et al. 2016; Zheng et al. 2016; Xie
et al. 2021) and revealed several magmatic episodes in the ZSTB
(Fig. 9; online Supplementary Material Table S4). Although such
late Palaeozoic – early Mesozoic magmatism is successive, the stat-
istical data display three main age peaks at c. 270, 250 and 228 Ma
(Fig. 9). When these age data are combined, they show multi-stage
magmatism in the ZSTB (Fig. 9), implying a long-livedmagmatism
from late Palaeozoic to early Mesozoic times in response to a pro-
longed subduction, collision and extension in the central segment
of the CAOB.

6.b. Genetic type

Granitoids are commonly classified into I-, A-, S- and M-types
based on their source compositions, mineral assemblages and geo-
chemical features (Chappell & White, 2001; Bonin, 2007). The
Haerchaoenji granodiorite and Chahanhada granite are similar
to typical I-type granitoids. Specifically, these granitoids are

Fig. 5. (Colour online) (a, c, e) Chondrite-normalized REE patterns; the normalization values of chondrite are from Taylor &McLennan (1985). (b, d, f) Primitivemantle-normalized
trace-element patterns; data for primitive mantle are from Sun & McDonough (1989).
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metaluminous to weakly peraluminous and medium-K to high-K
calc-alkaline with A/CNK and A/NK ratios of 0.97–1.17 and 1.24–
1.74, respectively. These features suggest that they represent an I-
type or A-type granitoid rather than an S-type (Chappell &White,
1992; Zhang et al. 2017; Zhao et al. 2020). Moreover, these gran-
itoids have relatively lower 10 000 Ga/Al ratios (1.86–2.34) and
ZrþNbþCeþ Y contents (269.88–347.60 ppm) than A-type
granitoids (Whalen et al. 1987) (Fig. 10a–d). The negative corre-
lation between P2O5 and SiO2 appears to follow the I-type trend
(Fig. 10e). The relatively low Zr and Ce contents of the samples
also suggests that these rocks are I-type granitoids. This conclusion
can be further supported by the Na2O versus SiO2 diagram
(Fig. 10f).

However, the Wulantaolegai granite has characteristics more
similar to A-type granitoids. These samples have high
K2OþNa2O, FeOT/MgO, Zr and Ga/Al ratios, which are consis-
tent with those of A-type granitoids (e.g. Dan et al. 2014; Ao et al.
2019). In addition, the samples have higher 10 000*Ga/Al (2.67–
2.74) and ZrþNbþCeþ Y (1051–1230 ppm), and plot into

the A-type granitoid field on the discrimination diagrams
(Fig. 10a–d). Thus, the Haerchaoenji granodiorite and
Chahanhada granite are considered to be I-type granitoids, while
the Wulantaolegai granite is classified as A-type granitoid.

6.c. Temperature–pressure conditions of melting

Zircon saturation thermometry can be used to make an approxi-
mate estimate of the temperature of crustal-derived silicic magmas
at the early stage of crystallization (Hui et al. 2021 and references
therein). Zircon saturation temperatures (TZr) of magma are
estimated using zirconium concentrations of melt using the equa-
tion from Boehnke et al. (2013). Based on the Zr content of the
studied samples, the TZr ranged from 728 to 747 °C (av. 738 °C)
in the Haerchaoenji granodiorites, 928 to 981 °C (av. 955 °C)
in the Wulantaolegai granites, and 740 to 792 °C (av. 778 °C) in
the Chahanhada granites. The mean values of TZr in the
Haerchaoenji granodiorite and Chahanhada granite are consistent
with those in typical I-type granites (781 °C, e.g. Chappell &White,

Fig. 6. (Colour online) (a) Cathodoluminescence (CL) images of representative zircons of investigated samples from the ZSTB. (b) Chondrite-normalized REE patterns of the
zircons from investigated samples.
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1992). The mean value of TZr in the Wulantaolegai granite points
to a hot granitoid (TZr>800 °C; Miller et al. 2003), which is con-
sistent with that of A-type granites (Watson & Harrison, 1983).

With respect to pressure, low Sr contents and Sr/Y ratios, as well
as negative Eu anomalies in the Wulantaolegai and Chahanhada
granites (online Supplementary Material Table S1), reflect low-
pressure conditions of the magma source region (e.g. Martin
et al. 2005). The coupled observations of the two pressure-depen-
dent ratios, namely Sr/Y and La/Yb, point to a low pressure as well
(Fig. 11). The low-pressure conditions inferred for these granites
are consistent with their high silica contents as well (e.g. Blundy
& Cashman, 2001). In contrast, the Haerchaoenji granodiorites
exhibit high Sr and Ba contents with high Sr/Y ratios, low Y
and heavy rare earth element (HREE) contents, implying high-
pressure conditions (pressure >12 kbar) (e.g. Patiño Douce,
1999; Martin et al. 2005; Liu et al. 2016).

6.d. Petrogenesis and magma source

6.d.1. The Haerchaoenji and Chahanhada I-type granitoids
The Haerchaoenji granodiorite and Chahanhada granite are calc-
alkaline and peraluminous I-type granitoids, which could be
formed by: (1) partial melting of pre-existing igneous rocks in
the crust (Clemens et al. 2011; Topuz et al. 2019; Xie et al.
2021); (2) mixing of mantle-derived magmas with crustal-derived

materials (Clemens et al. 2009); and (3) assimilation and fractional
crystallization processes of mantle-derived basaltic melts (Barth
et al. 1995; Quelhas et al. 2020).

The investigated samples have Rb/Sr= 0.80–1.00, K/
Rb= 326.32–435.50 and Zr/Hf = 35.66–46.95, which differs from
the high Rb/Sr (> 5), low K/Rb (110) and low Zr/Hf (20) ratios of
fractionated granitoids (Wu et al. 2020). The fractional crystalliza-
tion of mafic melts would leave large amounts of mafic–ultramafic
cumulates (Clemens et al. 2011), which is obviously different from
the field investigation. This supposition is also evidenced by the
absence of xenocrystic zircons in the investigated granitoids. In
addition, these samples from the Haerchaoenji granodiorite and
Chahanhada granite show low MgO (0.26–1.91), Cr (4.25–
17.04) and Ni (2.61–6.49) contents and moderate Mg no. values
(38–49), similar to those of magma formed by partial melting of
thickened lower crust instead of fractional crystallization from
the mantle directly (Ao et al. 2019; Yomeun et al. 2022).
Furthermore, the positive correlation of La/Sm versus La and
Zr/Nb versus Zr presented by the studied rocks can be produced
by either magma mixing or partial melting rather than fractional
crystallization (Fig. 11). Commonly, the magma mixing model can
generate massive mafic enclaves and geochemical variations
(Kemp et al. 2007). As mentioned above, there are nomafic micro-
granular enclaves discovered in the field investigation. The studied
samples do not show obvious geochemical variations either. In the

Fig. 7. (Colour online) Zircon Hf isotopic
compositions of intrusive rocks from the
CAOB. ZSTB – Zongnaishan–Shalazhashan
Tectonic Belt; ZHTB – Zhusileng–Hangwula
Tectonic Belt; NHTB – Nuoergong–
Honggueryulin Tectonic Belt. The ϵHf(t) values
are cited from Shi et al. (2012, 2014a,b), Dan
et al. (2014, 2015, 2016), Ye et al. (2016),
Zhang, W. et al. (2016), Liu et al. (2017) and
Zhao et al. (2020).
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Mg no. versus SiO2 diagram, these samples are also not in con-
formity with the magma mixing trend (Fig. 12c). The ϵHf(t) values
of the Haerchaoenji and Chahanhada granitoids are distinct from

the variable ϵHf(t) values of granitoids formed by magma mixing
(usually from negative to positive; Griffin et al. 2002). The zircon
trace elements of the Haerchaoenji and Chahanhada granitoids
have medium Th and U contents, indicating a crustal affinity as
well. Thus, the Haerchaoenji and Chahanhada granitoids were
probably generated by partial melting of pre-existing crustal
basements.

Partial melting of different source rocks would generate com-
positional variations in the magmas that could be visualized in
terms of major-element compositions (Altherr et al. 2000). The
major-element compositions of the Haerchaoenji granodiorites
(e.g. high Na2O and Al2O3, medium CaO, low MgO, etc) are sim-
ilar to those of the intermediate to granitic rocks generated by the
partial melting of basaltic (mafic) rocks (Rapp & Watson, 1995;
Patiño Douce, 1999). In the major-element feature diagrams
(Fig. 12a–e), the granodiorites display a similarity with the exper-
imental melts of amphibolite-bearing mafic rocks (Patiño Douce,
1999; Lu et al. 2016, 2017). The low Rb/Ba (0.07–0.08) and Rb/Sr
(0.08–0.10) ratios indicate basalt-derived components as well
(Fig. 12f). The low Th/La ratios (<0.5) of these granodiorites are
also consistent with those of the products yielded by partial melting
of mafic crustal sources. The positive zircon ϵHf(t) values between
þ1.8 andþ6.4 (Fig. 7), with young TDM ages of 636–837Ma, indi-
cate that the granodiorites were mainly derived from
Neoproterozoic juvenile mafic crustal materials. In contrast, the
Chahanhada granite samples have relatively high Al2O3/TiO2

ratios (52.54–93.76), A/CNK values (1.00–1.17) and low CaO/
Na2O ratios (0.09–0.18), suggesting the derivation from a parental
magma that was probably generated by the partial melting of a
metasedimentary source (Sylvester, 1998; Zhu, R. Z. et al. 2018).
In the source discrimination diagrams (Fig. 12), the
Chahanhada granites plot into the fields of metagreywacke and
metapelite melts. Actually, it is common that the source of I-type
granites involves mature sedimentary materials (Zhu, Y. et al.
2018). However, the positive zircon ϵHf(t) values ranged from
þ5.5 to þ11.8 (Fig. 7), with young TDM ages of 425–729 Ma, sug-
gesting the significant involvement of juvenile crustal materials.
Thus, the Chahanhada granites might have originated from juve-
nile crust with the input of metasedimentary components.

Fig. 8. (Colour online) Zircon U–Pb concordia diagrams and histograms for investi-
gated samples.

Fig. 9. (Colour online) Histogram of zircon U–Pb ages of the Phanerozoic magmatism
in the ZSTB, northern Alxa region. Data sourced from online Supplementary Material
Table S4.
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Fig. 10. (Colour online) Petrogenetic discrimination diagrams for early Mesozoic granitoids in the ZSTB. (a) (K2Oþ Na2O/CaO) versus Zrþ Nbþ Ceþ Y. (b) FeOT/MgO versus
Zrþ Nbþ Ceþ Y. (c) Zr versus 10 000Ga/Al. (d) FeOT/MgO versus 10 000Ga/Al. (e) P2O5 versus SiO2. (f) Na2O versus SiO2 (a–d are after Whalen et al. 1987, and e, f are after
Chappell & White, 1992).
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6.d.2. The Wulantaolegai A-type granite
The Wulantaolegai granite displays the features of A-type granite,
which is generally attributed to: (1) differentiation of mantle-
derived alkaline basalts (Turner et al. 1992; Mushkin et al.
2003); (2) partial melting of crustal materials at high temperatures
(Collins et al. 1982; King et al. 1997), and (3) a combination of
crustal and mantle sources, i.e. crustal assimilation and fractional
crystallization of mantle-derived magmas, or magma mixing of
mantle-derived melts and crustal magmas (Kemp et al. 2005).
The Mg no. values and Cr and Ni contents of the Wulantaolegai
granites are much lower than those of the mantle-derived melts
(Mg no.= 73–81, Cr >1000 ppm, Ni >400 ppm) (Wilson,
1989). The Nb/Ta (8 on average) and Zr/Hf (43 on average) ratios
of the Wulantaolegai granites in this study are consistent with
those of the crust. The low Nb/Y (0.38–0.41) and Rb/Y (2.37–
2.71) ratios also suggest a lower crustal source (Rudnick &
Fountain, 1995). Furthermore, the Wulantaolegai granites have
higher Y/Nb (2.45–2.60, >1.2), i.e. A2-type granite affinities
(Eby, 1992; Frost & Frost, 2011), which also suggests that the mag-
mas were derived from continental crust or underplated basaltic

protoliths (Eby, 1992). So far, coeval mantle-derived mafic rocks
have not been recognized in the study area. The absence of mafic
microgranular enclaves in the Wulantaolegai pluton does not sup-
port the model of a combination of crustal and mantle sources. In
theMg no. versus SiO2 diagram (Fig. 12c), theWulantaolegai gran-
ite samples are not in conformity with the magma mixing trend. In
the La/Sm versus La and Zr/Nb versus Zr diagrams, the
Wulantaolegai granite samples also display the feature of partial
melting processes rather than magma mixing or fractional crystal-
lization (Fig. 11). TheWulantaolegai granite samples have positive
ϵHf(t) values ranging from þ3.3 to þ8.7, indicating a magma
source from juvenile crustal basement rather than a mixed source.
In addition, the zircon saturation temperatures of the
Wulantaolegai granite indicate high-temperature conditions.
Thus, the model of partial melting of juvenile crustal materials
at high temperatures is reasonable for the petrogenesis of the
Wulantaolegai granite.

The relatively low Sr (57.50–62.60 ppm) and high HREE con-
tents, and weakly fractionated HREEs and low Sr/Y ratios (1.72–
1.99) suggest these rocks were mainly derived from a crustal source

Fig. 11. (Colour online) Plots of (a) La/Sm versus La; (b) Zr/Nb versus Zr; (c) Sr/Y versus Y; and (d) Sr/Y versus LaN/YbN (a, b are after Xie et al. 2021, and c, d are after Castro et al. 2011).
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Fig. 12. (Colour online) (a) Al2O3/(MgOþ FeOTþ TiO2) versus Al2O3þMgOþ FeOTþ TiO2 (Patiño Douce, 1999). (b) (Na2Oþ K2O)/CaO versus Na2Oþ K2Oþ CaO (Patiño Douce,
1999). (c) Mg no. versus SiO2 diagram (after Zhu, R. Z. et al. 2018; reference fields after Patiño Douce, 1999; Wolf & Wyllie, 1994). (d) (Na2Oþ K2O)/(FeOTþMgOþ TiO2) versus
(Na2Oþ K2Oþ FeOTþMgOþ TiO2) (Patiño Douce, 1999). (e) CaO/(MgOþ FeOTþ TiO2) versus (CaOþMgOþ FeOTþ TiO2) (Patiño Douce, 1999). (f) Rb/Ba versus Rb/Sr (Patiño
Douce, 1999).
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Fig. 13. (Colour online) Tectonic setting discrimination diagrams for the early Mesozoic granitoids in the ZSTB. (a) Ta*3–Rb/30–Hf ternary plot (Harris et al. 1987). (b) Th/Yb versus
Ta/Yb (Gorton & Schandl, 2000). (c) Rb versus Yþ Nb (Pearce et al. 1984; Pearce, 1996). (d) Ta versus Yb (Pearce et al. 1984). (e) Rb versus Taþ Yb (Pearce et al. 1984). (f) Nb versus Y
(Pearce et al. 1984). Syn-COLG – syn-collision granites; VAG – volcanic arc granites; WPG – within plate granites; ORG – ocean ridge granites.
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above the garnet stability depth (Cai et al. 2011b), and the high Rb/
Y ratios (2.37–2.71) and low Nb/Y ratios (0.38–0.41) display the
approach to the upper crustal source (Taylor & McLennan,
1985). These features suggest that the source region of these gran-
ites is relatively shallow. In the source discrimination diagrams

(Fig. 12), the Wulantaolegai granites variably fall into the overlap-
ping fields of the partial melts of metagreywackes, psammite and
meta-igneous rocks. The positive zircon ϵHf(t) values betweenþ3.3
and þ8.7 (Fig. 7) with young TDM ages of 545–778 Ma suggest the
involvement of juvenile mafic crust for theWulantaolegai granites,

Fig. 14. (Colour online) (a) Palaeogeographic reconstructions of Eastern Asian blocks (modified after Huang et al. 2018). (b, c) Diagrams illustrate the tentative tectonic scenario
showing the Middle Triassic evolution of the ZSTB and adjacent areas. IC – Indochina Block; MOB –Mongolian Block; NCB – North China Block; NQ – North Qiangtang block; SCB –
South China Block; Si – Sibumasu block; SQ – South Qiangtang block.
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which is similar to other granitoids in the southern CAOB (e.g. Shi
et al. 2014a; Xie et al. 2021). The low Th/La ratios (<0.5) of the A-
type granites in this study are also consistent with that of the partial
melting products of mafic crustal sources. The variable zircon
ϵHf(t) units of these granites were probably caused by some
recycled sediments in the magma source.

6.e. Tectonic setting and geological implications

6.e.1. Tectonic setting
In this study, the investigated granitoids display the common fea-
tures of volcanic arc granites, such as the depletion of Nb, Ta and
enrichment of large ion lithophile elements with low Sr/Y and (La/
Yb)N (e.g. Zhao, Y. et al. 2017; Xie et al. 2021). On the Th/Yb versus
Ta/Yb and Ta*3–Rb/30–Hf ternary diagram, these granitoids also
display the affinity of volcanic arc granitoids, analogous to a sub-
duction-related compressional setting (Fig. 13a, b). On the tectonic
discrimination diagrams, the Haerchaoenji and Chahanhada gran-
itoid samples plot in the volcanic arc field, while theWulantaolegai
samples show trends from the arc to post-collisional fields
(Fig. 13a–f). These findings suggest that these granitoids either
formed in a subduction-related setting, or a post-collisional setting
with arc-like geochemical signatures which are inherited from a
previous arc source. In this study, we prefer a post-collisional set-
ting with arc affinity based on the following regional data: (1) the
magmatism ranging from late Carboniferous to middle–late
Permian times exhibits a marked petrogenetic, geochemical and
isotopic transition and trends from the subduction to post-
collisional fields (e.g. Zhang et al. 2013; Shi et al. 2014a,b;
Xu, D. Z. et al. 2014; Yang et al. 2014; Zheng et al. 2014; Chen
et al. 2015; Xie et al. 2015; Liu et al. 2017, 2018); (2) the regional
unconformity and the change of sedimentary facies also suggest
that a significant tectonic event happened during early–middle
Permian time (Zhang, 2019); (3) the palaeomagnetic, provenance
and palaeontological studies further suggest that the PAO in the
northern Alxa region closed before earliest Mesozoic time
(Fig. 14a) (Pu et al. 2013; Huang et al. 2018; Zhang et al. 2018).

Therefore, the Middle Triassic granitoids in the ZSTB are inter-
preted as post-collisional granites (Fig. 14b, c). Furthermore, in the
scenario of subduction and subsequent continental collision proc-
esses, asthenospheric mantle upwelling would be inevitable owing
to slab roll-back or break-off (Ersoy et al. 2017; Collins et al. 2020).
The Wulantaolegai A-type granite was probably generated by an
extensional setting in response to slab break-off during the final
amalgamation (Fig. 14c).

6.e.2. Geological implications
Asmentioned above, extensive studies have been carried out on the
closure of the PAO, producing a large quantity of data and com-
peting models (e.g. Xiao et al. 2013, 2015, 2018; Eizenhöfer et al.
2014, 2015a,b; Li et al. 2015, 2016a, 2017; Liu et al. 2017, 2018,
2019a,b; Han & Zhao, 2018; Eizenhöfer & Zhao, 2018; Du et al.
2019; Shen et al. 2019; Zheng et al. 2019; Niu et al. 2021).
Generally, the western segment of the PAO closed along the
Tianshan Orogen during the Carboniferous–early Permian period
(e.g. Han & Zhao, 2018; Zheng et al. 2019). However, the eastern
segment of the PAO closed during late Permian to Middle Triassic
times along the Solonker Suture Belt (e.g. Eizenhöfer et al. 2014,
2015a,b; Li et al. 2015, 2016a, 2017; Eizenhöfer & Zhao, 2018).
Recent studies demonstrated that the central segment of the
PAO closed at c. 280–265Ma (Liu et al. 2016, 2017, 2018; Zhao
et al. 2018), which is also consistent with this study. Combining

these data together, we still tend to support the scissor-like closure
manner, which is in accordance with previous studies (e.g. Boucot
et al. 2013; Xiao et al. 2015; Zhao et al. 2018; Han & Zhao, 2018;
Shen et al. 2019). This conclusion is also supported by the con-
straints from sedimentary strata (Zhao, Y. L. et al. 2016; Liu
et al. 2019a; Du et al. 2019), syn-collisional magmatic rocks
(Wang et al. 2015; Chen et al. 2017; Ma et al. 2017), structural evi-
dence (Xiao et al. 2015) and plate reconstruction (Domeier &
Torsvik, 2014; Domeier, 2018).

In order to decipher the nature of the different tectonic units of
the northern Alxa region, we collected comprehensive Hf isotopic
data in this region (Fig. 7) (Shi et al. 2012, 2014a,b; Dan et al. 2014,
2015, 2016; Ye et al. 2016; Zhang, W. et al. 2016; Liu et al. 2017;
Zhao et al. 2020). It turns out that the magmatic rocks from the
ZHTB and ZSTB have the most positive to low negative ϵHf(t) val-
ues and relatively young Hf model ages (Fig. 7), suggesting a juve-
nile nature for the basement (Shi et al. 2014a,b; Zhao et al. 2020).
Significantly, these characteristics are similar to those of the gran-
itoids in the CAOB (Guo et al. 2007; Cao et al. 2011, 2012; Meng
et al. 2011; Li et al. 2012, 2013). However, the magmatic rocks from
the southernmost NHTB display negative ϵHf(t) values and ancient
Hf model ages (Fig. 7), indicating an ancient nature for the base-
ment (Zhang, J. J. et al. 2015; Ye et al. 2016). Therefore, the juvenile
nature of the ZHTB and ZSTB is similar to the CAOB (Shi et al.
2014a,b; Zhang, J. J. et al. 2015; Xie et al. 2021), but is different from
the Alxa Block (NHTB). This conclusion is further reinforced by
whole-rock Nd isotopic studies of the Phanerozoic granitoids and
volcanic rocks (e.g. Dolgopolova et al. 2013; Shi et al. 2014a), and
obvious differences in magmatism record and Precambrian rock
constitution (e.g. Geng & Zhou, 2010, 2011; Shi et al. 2014a).
Thus, the boundary of the CAOB and Alxa Block is most likely
the border between the ZSTB and NHTB (Badain Jaran fault or
Qagan Qulu Ophiolite Belt) rather than the Enger Us belt previ-
ously proposed (e.g. Shi, 2015; Zhang, J. J. et al. 2015). On a larger
scale, this boundary is most likely the central segment of the
Tianshan–Solonker suture zone, which connects the northern
CAOB with the southern Tarim and North China cratons.

7. Conclusion

(1) New LA-ICP-MS zircon U–Pb dating results have revealed
the Middle Triassic magmatism in the Zongnaishan and
Shalazhashan areas: the Haerchaoenji granodiorite
(245 ± 5Ma), the Wulantaolegai granite (237 ± 2Ma) and
the Chahanhada granite (245 ± 2Ma). This study and pre-
vious data provide evidence of a prolonged mafic–inter-
mediate magmatism in the ZSTB related to the
subduction and closure of the PAO.

(2) The Haerchaoenji granodiorite and Chahanhada granite are
classified as I-type granitoids, while theWulantaolegai gran-
ite is considered to be an A-type granite. They were probably
derived from partial melting of juvenile crustal materials,
inferred from the variable positive Hf isotopic signature
and young TDM model ages. The major-element composi-
tions of the Chahanhada granite andWulantaolegai granites
suggest input of a metasedimentary component as well.

(3) Based on the compilation of magmatic, sedimentary, palae-
omagnetic and palaeobiogeographic evidence, we propose
that theMiddle Triassic granitoids in this study were formed
in a post-collisional setting, and the arc affinity was probably
inherited from recycled subduction-related materials.
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(4) The findings of this study support the scissor-like closure
mode of the PAO as well as the different tectonic affinities
of the ZHTBþ ZSTB and NHTB.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S0016756822001157
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