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Buoyancy-driven bubbly flows play pivotal roles in various scenarios, such as the
oxygenation and mixing in the upper ocean and the reaction kinetics in chemical and
bio-reactors. This work focuses on the convective flow induced by the localised release
of large air bubbles (Db = 3.7 mm, Reb = 950) in a water tank, exploring the resulting
flow and the transition from laminar to disturbed states as a function of the Rayleigh
number ranging from 3 × 103 to 2 × 105. At low Ra the flow is smooth and laminar
with weak temporal oscillations, while a highly disturbed state appears above a critical
value Rac. A theoretical analysis is presented that links the mean flow circulation to
the Rayleigh number. Through an experimental investigation, utilising three-dimensional
particle tracking velocimetry and flow visualisation, we confirm the theory presented, and
characterise the laminar to disturbed transition in the system. These findings not only
enhance our fundamental understanding of buoyancy-driven convective flows but also
hold significant implications for practical applications, particularly in the optimisation
of bio-reactor design and other industrial processes reliant on controlled convective
dynamics.
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1. Introduction

Buoyancy forces acting on bubbles due to Archimedes’ principle can drive liquid flows.
Such buoyancy-driven bubbly flows occur in many natural and industrial settings, such as
in the upper ocean (Thorpe 1992; Deike 2022) and in chemical or bio-reactors (Harteveld,
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Mudde & Van Den Akker 2003; Oresta et al. 2009; Liu et al. 2010; Mezui, Obligado
& Cartellier 2022), where they induce mixing of dissolved materials. Buoyancy driven
flows appear due to the fundamental requirement that the spatial mass density distribution
is non-uniform. In single phase flows, such differences often appear due to temperature
or solute concentration differences, such as in the well-known Rayleigh–Bénard (Lohse
& Xia 2010) or the horizontal convection (Hughes & Griffiths 2008). In multiphase
systems, on the other hand, flows are driven by the interfacial forces, such as in liquids
with dispersed gas bubbles. The present work focuses on the convective flow generated by
releasing air bubbles at the bottom side of a liquid tank.

The introduction of air bubbles into a liquid tank can lead to a vast variety of different
phenomena depending on the particular parameter regime, as reviewed in Lohse (2018).
Our work focuses on the water flow generated by air bubbles whose diameters are in the
few millimetres range. Such bubbles ascend through the water column in plumes and their
bubble Reynolds numbers are much larger than 1. As these bubbles rise through the liquid,
agitation and vorticity is generated in their wakes (Alméras et al. 2015; Mathai, Lohse &
Sun 2020). At high volume fractions, a regime of strongly disturbed flow exists that bears
some similarity to turbulence in the sense that it is chaotic and possesses a continuous
kinetic energy spectrum (Risso 2018; Innocenti et al. 2021). Notably, the kinetic energy
spectrum in these flows is steeper, scaling as −3 power of the wave number, and this
regime initiates at scales on the order of the bubble diameter.

When bubbles are added non-uniformly to a flow, the uneven density distribution
results in large-scale convective flows. In bubble columns, uneven injection leads to
highly chaotic flow patters with spatiotemporal fluctuations in the volume fraction (Gong,
Takagi & Matsumoto 2009; Mezui, Obligado & Cartellier 2023). When such bubbles
are released from a fixed position they result in unstable bubble plumes that carry the
liquid upwards with them (Caballina, Climent & Dušek 2003; Simiano et al. 2006). An
important characteristic of these buoyancy-driven bubbly flows is that they are very often
unstable. For example, horizontal layers of bubbles are known to exhibit an instability
with characteristics very similar to the Rayleigh–Bénard instability convection (Climent
& Magnaudet 1999; Ruzicka & Thomas 2003; Nakamura et al. 2021).

The present work focuses on the convective flow generated in a water tank due to the
introduction of air bubbles at the bottom of one of the side walls of the tank (figure 1a).
This configuration is observed to generate a convective circulation across the whole tank,
with characteristics similar to the cavity flows explored in Rockwell & Naudascher (1978)
and Koseff & Street (1984). Furthermore, while at sufficiently low air flow rates the
flow is laminar and smooth, above a certain threshold a new regime is reached in which
strong fluctuations ensue at a range of scales. The system is explored experimentally by
three-dimensional particle tracking velocimetry (3D-PTV) (Shnapp et al. 2019; Shnapp
2022) and flow visualisation. The experimental system is described in § 2. In § 3 a theory
is presented for the dependence of the mean flow circulation on the Rayleigh number
which is controlled through the bubble injection rate. In § 4 experimental results are used
to confirm our theory and to characterise the transition in this flow. Lastly, a brief summary
and discussion are presented in §§ 5 and 6.

2. Methods

2.1. Experimental system
We studied the buoyancy-driven flow generated in a small tank filled with fresh tap water.
The rectangular prism shaped tank has its length along the x axis equal to L = 100 mm,
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Figure 1. (a) Front-view schematics of the experimental apparatus; the bubble source is shown as a black
circle in the lower left corner, and the region of interest for the measurements is shown in dashed lines. (b) An
image of one of a bubble from the experiment. (c) Top-view schematic of the experiment measurement system.
(d), (e) and ( f ) Flow visualisation made by overlaying experimental images. The images correspond to air flow
rates of Qair = 0.018, 0.083, and 1.0 ml s−1, and time durations of 10 seconds for (d,e), and 3.3 seconds for
( f ).

its width, namely the size along the z axis, is l = 1
2 L (50 mm), and it was filled with water

up to a height of L (figure 1a). Air bubbles were injected to the tank through a 1 mm
diameter plastic tube at the bottom wall, located adjacent to one of the tank’s side walls at
its central cross section. The air was pumped into the tank at a precise volume flow rate by
connecting the injection tube to a syringe pump fitted with either 20 or 60 ml syringes. The
set-up yielded discrete bubbles that rose in a narrow columnar region, confined to one of
the sides of the tank. The bubbles in our experiment had an oblate spheroidal shape, with a
horizontal to vertical aspect ration of approximately 2 : 1 with slight oscillations that they
experienced as they were ascending in slightly undulating trajectories (figure 1a,b).

The bubble injection at one side provided a strongly inhomogeneous buoyancy
distribution, which generated an overturning, tank-wide circulating flow. As the air flow
rate was changed, the bubbles appeared at different frequencies, and this allowed us
to control the buoyancy forcing. Indeed, the flow had complex features that whose
characteristics depended on the air flow rate. At low flow rate the overturning flow was
slow and the flow was laminar; importantly, and as will be discussed in the following,
the flow is never exactly steady in this set-up due to the discrete nature of the bubble
forcing. At higher flow rate, the flow became unstable in the sense that the flow spatial
structure became more convoluted and the intensity of the fluctuations grew rapidly with
the forcing. This is demonstrated by the sequence of three flow visualisation images shown
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in figure 1(d–f ), and in supplementary movies 1 and 2 available at https://doi.org/10.1017/
jfm.2024.712.

2.2. System parameters
We define the characteristic bubble size as Deq ≡ (V–b/(π/6))1/3 = 3.7 ± 0.2 mm, where
V–b is the bubble volume that was measured by stereo matching points along bubble
perimeters through our 3D-PTV system (§ 2.4). The bubble Prandtl number, defined as
Prb = ν/(DeqUb), is approximately equal to 10−3 in this work, where ν is the water
kinematic viscosity, and Ub = 260 ± 30 mm s−1 is the average bubble rise velocity that
was calculated by measuring the time it took for bubbles to ascend from their release
point to the free surface and dividing it by the water height. For higher air injection rates
we observed a weak tendency towards larger scatter of the bubble rise velocities, and the
mean bubble velocities slightly increased with the air injection rate (a change of about
10 % throughout the whole range of parameters tested). The bubble Reynolds number is
thus Reb = DeqUb/ν = 950 ± 50, and the bubble Weber number is Web = ρU2

bDeq/σ =
3.4 ± 0.2, where σ is the water–air surface tension.

An important parameter in bubbly flows is the volume fraction of gas in the liquid.
As bubbles were released locally in our system, we use an analogue of the volume
fraction, defined as the mean inter-bubble vertical spacing divided by the bubble size.
This parameter can be calculated as

α = bubble convective time
bubble generation time

= Deq/Ub

V–b/Qair
, (2.1)

and in this work α is in the range from 1 % to 54 %.
The flow in our system is driven by the buoyancy supplied through the air injection. As

such, an analogy can be found with single phase buoyancy driven flows that are usually
generated through temperature or solute non-uniformity, such as the Rayleigh–Bénard
convection. We therefore quantify the forcing in our system using an analogue Rayleigh
number. In bubble-induced flows this can be defined as Climent & Magnaudet (1999)

Ra = gL2α

νUb
, (2.2)

and in our work it is in the range between 3.8 × 103 and 2.1 × 105. An increase in Ra can
be interpreted as an increase in the forcing applied on the flow. Furthermore, at low Ra the
flow is laminar, while at higher Ra the flow destabilises and the fluctuations intensify. The
values of the various experimental parameters used in this work are outlined in table 1.

2.3. Data acquisition
The flow was visualised and velocities measured by adding polyamide tracer particles,
55 μm in diameter (Dantec Dynamics) to the water at a moderate seeding density
(approximately 1000 particles per frame were in the region of interest). The particles were
illuminated from one side of the tank using a white LED panel, and the light was reflected
back into the tank through a mirror at the opposite end. Three digital cameras (Mikrotron,
1280 × 1024), each fitted with a 60 mm lens, were placed in a configuration approximately
perpendicular to the illumination direction, and looking towards the central region of the
tank (figure 1c). The cameras were connected to an external DVR recording system that
was also responsible for the synchronous camera triggering (IO industries). The cameras
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Run Qair [ml s−1] Prb Reb α Ra

1 0.018 10−3 950 0.01 3.8 × 103

2 0.028 10−3 950 0.015 5.7 × 103

3 0.037 10−3 950 0.02 7.6 × 103

4 0.055 10−3 950 0.03 1.1 × 104

5 0.083 10−3 950 0.045 1.7 × 104

6 0.11 10−3 950 0.06 2.3 × 104

7 0.17 10−3 950 0.09 3.4 × 104

8 0.22 10−3 950 0.12 4.6 × 104

9 0.33 10−3 950 0.18 6.8 × 104

10 0.50 10−3 950 0.27 1.0 × 105

11 0.67 10−3 950 0.36 1.4 × 105

12 1.00 10−3 950 0.54 2.1 × 105

Table 1. Nominal system parameter values for the various experimental runs. The air flow rate column is
given in millilitre of air injected by the syringe pump per second.

viewed the whole tank from one side to the other. Images were recorded at various rates
starting from 30 Hz for the lowest air flow rate and up to 90 Hz for the highest flow rate.
Data were recorded in separate runs, each lasting 1 minute. A total of 21 experimental
runs were conducted, using 11 values of the air flow rate, starting from 0.018 ml s−1 and
up to 1 ml s−1. Flow visualisations using overlaid tracer particle images from this set-up
are shown in figure 1(d–f ).

2.4. 3D-PTV measurement
The flow was measured by using 3D-PTV. All of the experimental analysis was conducted
through our in-house developed, open-source software, MyPTV (Shnapp 2022). The
region of interest in the measurements covered a volume in the centre of the tank, of
dimensions 70 × 70 × 40 mm, that allowed us to focus on the overturning circulation
flow there. While the measurements used the images of the full tank, the particle tracking
analysis was performed only on particles found in the region of interest described. In
particular, the velocity measurements did not cover the region of the bubble column, but
instead focused on the region of the overturning circulating flow (figure 1a).

Before and after the experiment a calibration target, made of a single piece anodised
aluminium was placed in the tank. The target had 420 small calibration points distributed
over three parallel planes. These dots were used to calibrate the cameras, by fitting the
external and internal camera parameters, altogether 15 parameters. Our system, using our
MyPTV open-source software (Shnapp 2022), adopts the pinhole camera paradigm with a
quadratic polynomial used to correct for nonlinear aberrations. The particle positioning
uncertainty in our system after this calibration scheme was approximately 0.15 mm,
measured by the root-mean-square (RMS) of the calibration point deviations relative to
their projections.

Following camera calibration we subtracted a static background from each experimental
image, applied a Gaussian blur with standard deviation of 0.5 pixel, and segmented the
tracer particles by thresholding and searching for bright spots. The segmented particles
were then stereo matched to obtain 3-D particle clouds using the so-called ray traversal
algorithm (Bourgoin & Huisman 2020), and the particle clouds were tracked in time
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Figure 2. A 3-D rendering of reconstructed flow tracer trajectories is shown for the Ra = 3.8 × 103 case
(before the transition). Points along the trajectories are shown, where their colours correspond to their vertical
velocity component (blue means that particles are moving with gravity direction, while red means particles are
moving upwards, against gravity). The rendering was generated by superimposing the positions of the particles
recorded during 10 seconds of one of the experimental runs.

through the four-frame best estimate paradigm (Ouellette & Eberhard Bodenschatz 2005).
Finally, trajectories were smoothed by spline fitting with a window of nine frames, that
was also used to calculate the particle velocities and accelerations (Lüthi, Tsinober &
Kinzelbach 2005). A subset of reconstructed samples, taken during 10 seconds of the
experiment at Ra = 3.8 × 103 is shown in figure 2.

The experiments described yielded approximately ∼ O(5 × 106) velocity samples for
each flow rate, with ∼ O(103) samples at each moment in time. The data were gathered
inside a volume that begins approximately 15 mm away from the bubble column and
15 mm above the bottom tank wall. The dimensions of the volume are approximately
70 × 70 × 20 mm in the x, y and z directions. There is approximately 2 minutes of data
recorded per flow rate value (except for the highest flow rate for which the recording
duration was 1 min). The spatial resolution, i.e. the typical spacing between simultaneous
velocity vectors, is approximately 5 mm.

3. A buoyancy–wall friction equilibrium

The flow in our system is driven by the buoyancy forces applied by the air bubbles. Further,
assuming a steady state is achieved, or at least a quasi-steady state, this kinetic energy
supply is balanced out by viscous dissipation of kinetic energy. Furthermore, if the flow in
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the tank is laminar, most of the viscous dissipation would occur in the boundary layer near
the tank walls, because this is where the velocity gradients are the strongest. Thus, it is fair
to approximate that at sufficiently low Ra the buoyancy energy input is balanced with the
fluid friction in the boundary layer. This equilibrium assumption allows to derive a scaling
law for the dependence of the Reynolds number of the overturning circulation flow.

As for the energy input, in a duration T long enough for several bubbles to be released
into the fluid, the work done on the fluid is equal to W = FBLT(Qair/V–b), where Fb is
the average force acting on a single bubble; T(Qair/V–b) is the number of bubbles released
during the time T and FBL is the mechanical work done per bubble. The average force
on the bubble can be calculated using Archimedes’ principle as FB = ρgV–b where g is
the gravitational acceleration and ρ is the fluid density. Dividing the work done by T , and
using (2.1), we get the mean energy injection rate by buoyancy into the flow as

Ein = ρgV–bUbα
L

Deq
. (3.1)

The friction force along the tank walls can be estimated using boundary layer theory.
For not too high Reynolds numbers it is fair to assume the boundary layer to be laminar.
This assumption leads to the well-known scaling of the wall shear stress, τw ≡ Ff /A =
CρU2Re−1/2 (Schlichting & Gersten 2016), where Ff is the friction force, A is the surface
area, and

Re = LU
ν

(3.2)

is the Reynolds number. In flows with known geometry, such as the flow above a flat plate,
U is the free-stream velocity above the wall and C is a constant that depends on the velocity
profile shape. In the context of the flow in the tank studied here, the definition of U is not
straightforward, and the value of C cannot be simply predicted; in fact, they might change
slowly with Ra if the mean flow structure changes with Ra. To proceed forwards, we define
U as the characteristic velocity scale associated with the overturning circulation flow in
the bulk of the tank, giving an exact empirical definition later on (§ 4.1). Furthermore, for
the sake of comparison, let us recall that in the Blasius boundary layer profile, C ≈ 1.32
(Schlichting & Gersten 2016). Overall, the rate of energy loss due to the friction of the
fluid against the tank walls is

Eout = CρU3Re−1/2Atank, (3.3)

where Atank is the wetted surface area of the tank walls.
Following through with the equilibrium assumption, by equating (3.1) and (3.3) and

rearranging the terms we obtain that

Re5/2 = gUbV–bαL4

Deqν3AtankC
. (3.4)

We can also express the bubble volume as (π/6)Deq according to the definition in § 2.2,
and in our case Atank = 7

2 L2 (L being the length of our tank, § 2). Rearranging this
expression by using (2.2) and the definition of the bubble Reynolds number, Reb, we obtain
the following relation:

Re = ARa2/5Re4/5
b . (3.5)

In the experimental tank used in this study, A = (π/21C)2/5. As long as the structure of
the mean circulation flow will not vary with Ra and as long as the laminar boundary layer
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assumption holds the value of C will be constant and, thus, A will not change with Ra. Due
to the ambiguity in the definition of U, the numerical value of A cannot be determined a
priori without knowing the full flow field.

Scaling laws in which Re ∼ Ra2/5 are not uncommon in buoyancy-driven flows. For
example, the same scaling exponent is found also in low Pr, medium Ra numbers in the
Rayleigh–Bénard convection (regime II in Grossmann & Lohse 2000), and in horizontal
convection, in which an overturning circulation is driven by a horizontal temperature
gradient (Hughes & Griffiths 2008). Indeed, the 2

5 exponent will pop up in every case
in which the forcing is independent of the velocity while the dissipation occurs due to
friction in a laminar boundary layer. In our case, the U independence of the forcing results
from using the bubble rise velocity in the calculation of Ein in (3.1). In other words, we
assumed that the bubble velocity does not change with U nor with Ra, which is reasonable
since the bubble rise velocity is more than an order of magnitude larger than the range of
U investigated here (see § 4).

4. Results

4.1. Tank-scale circulation
To test (3.5), we first considered the characteristic velocity scale of the mean overturning
circulation in the tank. For that, we used the volumetric average of the temporal mean flow
field

U ≡ 1
V–m.v.

∫∫∫
m.v.

|u| dV, (4.1)

where u(x) is the time-averaged flow velocity field and V–m.v. is whole the measurement
volume. This particular definition of U was motivated by the relation it has to the mean
flow kinetic energy per unit mass, E = 1

2 U2, as the argument leading to (3.5) is essentially
an energy balance. In practice, calculating u(x) from our Lagrangian particle tracking
measurement requires some manipulation as the velocity samples in this method are taken
at the positions the particle happen to be. Thus, the mean Eulerian velocity field was
calculated by binning the particle velocities according to their positions and averaging the
binned samples. For the binning, we used a grid of 900 voxels with volumes of 100 mm3

each. The bins were uniformly distributed along the volume in which we reconstructed
the flow, as described in § 2. Following that, U was calculated with (4.1) by numerical
integration. Then, after calculating the characteristic velocity the flow Reynolds number is
calculated using (3.2).

In figure 3(a), U and Re are plotted against the Rayleigh number in log–log scales.
The error bars in the figure represent the statistical convergence of the calculation of the
time averages, as estimated by dividing the dataset into two time-based subsamples and
repeating the calculation over each. Using least-squares fitting to the data with respect
to (3.5), the Re1/2 = 6.9Ra2/5 power law, shown as a continuous line in the figure, was
obtained. The fit is seen to capture the trend well, although the scatter around the fit,
which is highlighted also in the inset, is larger that the error bars.

As the error bars in the figure that correspond to statistical convergence are smaller than
the scatter, a physical explanation is needed. As discussed in § 3.5, the coefficient A in (3.5)
is sensitive to the structure of the mean flow: changes in the patterns of the streamlines in
different experimental repetitions would effectively change the value of A. Such deviations
in the flow structure could result from undulations of the bubbles’ raising trajectories. This
could affect the mean flow pattern, which in a feed back loop with the bubbles’ trajectory
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Figure 3. (a) The characteristic velocity, defined according to (4.1), and the corresponding Reynolds number,
are plotted against the Rayleigh number in log–log scales. A fit to the data with respect to (3.5) is shown as a
straight line and results are shown on the graph. A best-fit power law to the data with Ra ∝ Rea is also shown
where a = 0.41 was obtained with a least-squares minimisation. The inset shows the same data, divided by
Ra2/5, thus showing the scatter in the estimation of the coefficient A = 6.9 in (3.5). Error bars were calculated
by dividing the data into two time-based subsamples (first and last half) and repeating the calculation on each.
(b) Quiver plots showing two dimensional cross sections of the mean velocity field at four Rayleigh number
values.

undulations will further increase the deviations in the mean flow from one repetition to
the other. The mean flow fields illustrated in four different experimental runs in figure 3(b)
demonstrate this issue. Indeed, although in all cases shown an overturning circulating
patterns could be identified, the details of the flow, such as the location of the centre of
rotation seen in each case, differ somewhat from one case to another. These changes mean
that the mean flow fields from each repetition are not self-similar, and they can affect
value of A in each run. Effectively, this mechanism means that ergodicity in this flow is
not ensured, meaning that the convergence to the time average does not imply the true
mean value is resolved. This is consistent with the scatter in figure 3 being larger than the
error bars.

Despite the scatter observed, a trend in the data could be observed over the two orders
of magnitude in Ra range used. Thus, to reaffirm that the 2

5 power law was not imposed
by the previous fit, another fit to the data was performed while keeping the exponent of
the Rayleigh number free, namely Re1/2 = a Rab. The results, shown as the ‘best-fit power
law’ in figure 3, gave an exponent of b = 0.41. The value is very close to the theoretical
prediction of 2

5 . Overall, this result suggests that the equilibrium argument and (3.5) are
indeed consistent with our results.

From the coefficient multiplying the Ra2/5 fit, the average value of A could be estimated.
Rearranging (3.5) and using the results of the data fit we obtain A = (6.9 ± 0.65)Re−4/5

b =
0.029 ± 0.003, where the uncertainty was taken as the standard deviation of the residuals
shown in the inset of figure 3. In addition to that the average value of the boundary layer
coefficient, C = (9.5 ± 2.5) × 10−4, can also be calculated. It is emphasised here, again,
however, that the values of these coefficients are expected to depend on the geometry of
the experimental set-up used.
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Figure 4. (a) The kinetic energy of the fluctuations is plotted as a function of the Rayleigh number in log-linear
scales. A continuous line shows a base level of the fluctuation energy, e0 = 0.84 mm2 s−2. A linear growth of
the fluctuations above a critical Rayleigh number, Rac = (1.6 ± 0.1) × 104 is shown as a dashed line. (b) The
intensity of the fluctuations relative to the mean flow energy is shown as a function of the Rayleigh number. The
baseline intensity of 0.3 is marked by the continuous horizontal line. Error bars were calculated by dividing the
data into two time-based subsamples (first and last half) and repeating the calculation on each.

4.2. The growth of fluctuations and emergence of unstable flow
With the intensification of the bubble injection the Rayleigh number and the Reynolds
number grow. While the flow at the low values of bubble injection was laminar, as Ra was
increased fluctuations began to appear and grow and the structure of the (instantaneous)
flow became more complex. In this section we will characterise the fluctuating component
of the flow.

The strength of the fluctuations is characterised by considering the mean kinetic energy
per unit mass of the fluctuating component of the flow. Specifically, the variance of the
ith velocity component at each point is defined as σ 2

i = (ui − ui)2, and this allows us to
define the fluctuation strength as

e ≡ 1
V–m.v.

∫∫∫
m.v.

1
2
(σ 2

x + σ 2
y + σ 2

z ) dV. (4.2)

In practice, the variances, σi, were calculated by binning the velocity samples in space
and calculating the variance of the samples in each bin, followed by the numerical volume
integration.

The fluctuation strength is shown as a function of the Rayleigh number in figure 4(a).
Even at the smallest Rayleigh number used, for which Re ≈ 190 and the flow was laminar,
the fluctuation energy was not zero. Temporal fluctuations in this flow are expected even at
very low Re due to the discrete nature of energy injection in this set-up. Indeed, bubbles in
this system are released in discrete events, where at the lowest air flow rates single bubbles
rose through the tank. This can be understood by noting the low values of α, that reached
as low as 1 % (table 1). Thus, the forcing applied on the flow for all Ra was inherently
time dependent. Therefore, there is no wonder that even at the laminar flow regime time
variations of the flow existed.

In the low-Ra (defined empirically here as Ra ≤ 1.1 × 104) range of our measurements
no significant change of the fluctuation magnitude with Ra was detected. Thus, the level
of the fluctuation strength at the low-Ra regime, e0 = 0.84 mm2 s−2, was calculated as the
average of e in the first four experimental runs. This value of e0 is approximately 30 % of
the mean flow energy at this Rayleigh number range, as seen in figure 4(b).
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While in the low-Ra range of our measurements the fluctuation kinetic energy was
approximately constant, at higher Ra the fluctuation energy increased rapidly with Ra
(figure 4). This corresponds to a transition from the regime of constant e ≈ e0 to a regime
in which e is growing significantly with the Rayleigh number. As can be seen in figure 4(b),
the fluctuation kinetic energy in the second regime reached up to values of approximately
150 % of the kinetic energy of the mean flow ( 1

2 U2) at the highest Ra case. Indeed, at the
highest Ra the fluctuations were significantly stronger than the mean overturning flow.

To characterise the transition between the two regimes we fit an empirical power law

e =
{

e0 for Ra < Rac

β(Ra − Rac)
γ for Rac ≤ Ra

(4.3)

to the data using least-squares fitting, where Rac is a critical Rayleigh number for which the
transition occurred. The results of the fit gave Rac = (1.6 ± 0.1) × 104 for the transition
value. Furthermore, the fit gave an exponent of γ = 1.05 ± 0.05, which corresponds to
slightly faster than linear growth of the fluctuation energy above the critical Rayleigh
number. The data and a linear fit above the transition are shown in log–log scales against
the order parameter (Ra − Rac)/Rac in the inset of figure 4(a), showing good agreement
with the data over two orders of magnitude in Rac above the transition.

The transition of the flow to a different state was observed also in the topology of the
flow. A qualitative observation of this transition can be observed in the flow visualisation
images in figure 1(d–f ). Below the transition the flow topology is smooth where the
particle streaks clearly outline the large-scale circulation, while above the transition many
of the particles exhibit helical shapes that could indicate the existence of vortical structures
at scales much smaller than the tank size, L. This qualitative view of the flow topology
is also shown in supplementary movies 1 and 2 at Ra = 7.6 × 103 and Ra = 2.1 × 105,
respectively.

To characterise the change in the flow structure more quantitatively we consider the
longitudinal velocity spatial difference, defined as

δur(x, r, t, Ra) = [u(x, t, Ra) − u(x + r, t, Ra)] · r
r
, (4.4)

where we examine its second moment,

SLL(r, Ra) = 〈δur(x, r, t, Ra)2|r〉. (4.5)

Here, SLL is defined by averaging over all samples keeping the distance between them
fixed, as implied by the conditional space (〈·|〉) and time (·) averages. In turbulence, SLL is
analogous to the second-order Eulerian structure function (Pope 2000). The difference
between SLL and the structure functions is that in inhomogeneous flows, such as that
considered here, the structure function depends on space, namely, it is a function of x.
However, here we average over x in order to obtain a macroscopic observable, as this will
suffice to demonstrate our point. Thus, SLL in this work is a function of the separation
distance and the Rayleigh number only. Being the second moment of the spatial relative
velocities, higher values of SLL at some point as compared with another can be interpreted
as having more kinetic energy associated with the scale r at Rayleigh number Ra.

In figure 5(a) SLL(r, Ra) is shown for the various experimental runs, where it is
normalised by U2. For all Ra cases the curves are seen to increase with r, indicating that
more kinetic energy is associated with the large scales of the flow as compared with smaller
ones. Furthermore, similar to figure 4(b), a trend is seen for the normalised SLL curves
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Figure 5. (a) The second-order longitudinal structure function, normalised using the characteristic velocity,
is shown as a function of scale normalised by the tank length for various Rayleigh number values. (b) The
second-order longitudinal structure function, divided by the values at the respective Rayleigh number and
the largest separation distance, r = 0.39L. (c) The local (logarithmic) slope of the second-order longitudinal
structure function shown as a function of scale normalised by the tank length.

increase with Ra; scatter around this trend exists, presumably due to the same mechanism
that led to the scatter of A in figure 3(a). This demonstrates that the growth of the kinetic
energy with the forcing (Ra) is not confined to a single scale, but instead it occurs at all
the scales available for our measurement.

To focus in on the appearance of small flow scales with the growth of Ra, we show SLL
for various Ra, normalised by its values at the largest scale available for our measurement
in figure 5(b). As Ra grows, the kinetic energy of the small scales relative the kinetic
energy of large scales increases. Specifically, in the range of our measurement this fraction
increases approximately from 0.1 to 0.2 at the smallest scale available, namely an increase
by a factor of two. This is corroborated by figure 5(c), which shows the local logarithmic
slope of SLL:

ζLL(r, Ra) = ∂(log SLL)

∂(log r)
. (4.6)

The positive values of ζLL indicate that the kinetic energy grows with the scale, r, as
expected. Higher positive values indicate that the energy grows faster with r as compared
with a lower positive values. For all Ra, ζLL is approximately equal to 1 at small r, and
it decreases as r increases, meaning that the kinetic energy at larger scales grows slower
with r. Furthermore, for the larger-Ra cases the slopes decrease faster and their decrease
begins at smaller r. This indicates that for the higher Ra, i.e. above the transition, the
kinetic energy is spread more evenly across the scales, namely that a larger fraction of total
the kinetic energy of the flow is present at smaller scales as compared with the lower-Ra
case. Overall, these observations demonstrate that as the Rayleigh number grew above
the transition, larger fractions of the kinetic energy resided in the smaller scales of the
flow. Notably, in the inertial range of homogeneous isotropic turbulence, Kolmogorov
theory predicts ζLL = 2/3 (Pope 2000); the lack of this plateau (or any other) in our
measurements indicate the absence of an inertial range in our experiment, as expected
in low-Reynolds-number flows.
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1.7 × 104 2.3 × 104 3.4 × 104 6.8 × 104 1.0 × 105 1.4 × 105Ra = 5.7 × 103

Stable Unstable

1.1 × 104

Figure 6. Visualisation of the wake of individual bubbles, produced by overlapping experimental images.
The images were recorded at 500 Hz. The Rayleigh number is Ra = 2.3 × 104.

4.3. The bubble column
We now focus on the behaviour of the bubble column. Notably, the vast differences
between the characteristic flow velocity in the bulk of the tank (∼ O(10 mm s−1)) and
the rise velocity of the bubbles (Ub ≈ 260 mm s−1) precluded us from analyzing both
phenomena quantitatively using the same raw data sets. Therefore, we mainly rely on
visualisations in this section.

The bubbles in our system had moderate–high Reynolds numbers (Reb ≈ 950), and they
rose quickly through the water column in spiralling trajectories. Spiralling trajectories
are typical for bubbles with Reynolds number in this range as undulations in the bubble
trajectories result from instabilities in the bubbles’ wakes (Mathai et al. 2020). A typical
bubble in our system ascended through the tank while performing two to three turns
before reaching the free surface. If given sufficient time the random undulations lead to
a diffusive lateral dispersion of the bubbles; although this regime was not fully realised
in our experiment, we did observe that the column became wider with height above the
release point (figure 6).

The bubbles in the column did not generally follow the same trajectories. Instead, any
two consecutive bubbles could have followed completely different paths. As can be seen in
figure 6, these qualitative characteristics of the bubble column did not change significantly
or in a consistent manner through the experiment under the various Rayleigh numbers we
used. In particular, no clear change was observed in the bubble column behaviour when
the critical Rayleigh number was crossed.

The fluid in the wake of individual bubbles in our experiment was disturbed: a known
phenomenon that occurs due to the vortex shedding for bubbles with Reynolds number
above approximately 300 (Brücker 1999). Visualisation of tracer particles in the immediate
wake of the bubbles, shown in figure 7, highlight the spiralling particle trajectories in the
wakes. Previous investigations showed that bubble wakes can be very long (Risso et al.
2008), namely, the induced flow can be felt tens of bubble diameters behind the bubble.
Therefore, for all Ra values used in our experiments the bubbles interacted with the wakes
of their preceding bubbles, both above and below the transition.

The spatial distribution of the velocity fluctuation intensity highlights the role of the
bubble column in disturbing the flow and exciting fluctuations. Figure 7 shows the
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Wake

Bubble

Figure 7. Visualisation of the wake of three bubbles raising through the column, produced by superimposing
several experimental images. The images correspond to different bubbles but they are all at the same Rayleigh
number, Ra = 2.3 × 104. The wake is seen through several particle tracks that are longer and more convoluted
as compared with other particles in their neighbourhood.

z-averaged standard deviation normalised by the global mean U with colour maps, and
arrows represent the mean velocity field. The data are shown for Ra = 3.4 × 104, slightly
above the transition. In both the x and y velocity components the strongest fluctuations
occurred in the top left corner of the tank: the region in which the bubble column reached
the free surface. The region of strongest x component fluctuations is extended horizontally,
and the region of strongest vertical fluctuations is extended vertically along the top part
of the bubble column. The high fluctuations of both components are seen to also extend
towards the central region of the tank while gradually becoming weaker. The penetration
of the fluctuating part of the flow into the tank coincides with the location of a central
vortex of the mean flow, which seems to transport fluctuations. The coincidence of the
mean vortex with the stretched high fluctuations region shows that fluctuations created in
the top part of the bubble column were carried by the mean flow circulation into the central
region of the tank, leading to the observed growth of fluctuations. This is discussed further
in § 5.

5. Discussion on the cause for the transition

A central question is what is the mechanism responsible for the observed transition
from laminar to disturbed flow? Several possible explanations come to mind given the
data presented previously. Here we examine three potential mechanisms, evaluate their
plausibility, and advocate for the one that we determine most closely corresponds with the
data elucidated in the preceding section.

The first mechanism we consider arises due to the resemblance of the flow in our
system to the case of driven cavity flows. Similar to the cavity flows, the fluid in our
system is enclosed in a cubical container and is driven along one of its walls. The main
circulation in our system also has some resemblance to the primary vortex observed in
cavity flows. Furthermore, cavity flows undergo a transition from laminar to unsteady and
then to fully turbulent flows as the driving force increases, as reviewed in Shankar &
Deshpande (2000). These similarities prompt us to inquire whether the transition observed
in our system could be described using the phenomenology of transition in cavity flow.
As summarised recently (des Boscs & Kuhlmann 2024), cavity flows can be categorised
according to their driving element, for example, be it a moving lid, shear stress or a free
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stream; however, the details of the transition in all these cases seems to be common, a
centrifugal instability that leads to the formation of Taylor–Görtler-like vortices whose
axes are parallel to the cavity walls (Albensoeder, Kuhlmann & Rath 2001). The transition
in these flows manifests a breaking of the mirror symmetry that exists at low Reynolds
numbers with respect to the cavity mid-plane (z = 0). For example, the first transition from
steady to unsteady flow in lid-driven square cavity flows occurs due to a subcritical Hopf
bifurcation at Re ≈ 1914 (Feldman & Gelfgat 2010) (here the Reynolds number is based
on the lid velocity) that break the mid-plane symmetry. Following the initial instability,
this flow becomes fully turbulent approximately at Re = 10 000 (Koseff & Street 1984)
through intermittent symmetry breaking bursts (Pomeau & Manneville 1980; Shankar &
Deshpande 2000). In another example, the transition to unsteady flow was observed for an
open cavity flow, driven by a free stream above it, at a Reynolds number of approximately
3700 (Picella et al. 2018) (based on the free-stream velocity). In another example, a similar
transition to unsteady flow due to spanwise Taylor–Görtler-like vortices occurs in the
shear-driven cavity flows at the Reynolds number Reτ ≈ 1918; here too the transition
manifests an asymmetric flow state (des Boscs & Kuhlmann 2024).

Considering the details of the transition in cavity flows and the data observed for our
system, it seems unlikely that the transition in our system is of the same nature as the
transition observed in cavity flows (i.e. a symmetry-breaking centrifugal instability). The
difference that stands out the most between the two cases is that the Reynolds numbers
for the transition are markedly different. While in the cavity flows the first instability
occurs at Reynolds number of around 1000–2000 depending on the aspect ratio, in our
flow the instability occurred at a much lower Reynolds number of approximately 330
(this argument stands when considering the differences in the definitions of the Reynolds
number). Furthermore, we did not see a clear signature of the Taylor–Görtler-like vortices
in our flow. We believe that the disparity between the transition observed in our system and
that in cavity flows stems from differences in the underlying driving mechanisms. In cavity
flows, the driving mechanisms are symmetric with respect to z and are steady in time,
and correspondingly, the transition is associated with symmetry breaking. Conversely, the
bubbles that drove the flow in our apparatus are discrete in time, and their trajectories
fluctuate in the z and x directions as they rise. Thus, our system lacks the symmetry
associated with cavity flows even at the lowest Reynolds number considered, and the
transition scenario is also different. Interestingly, if we imagined the bubble column as
if it were a lid-driven cavity, then the Reynolds number based on the bubble rise velocity,
Vbl/ν ≈ 26 000, would predict the flow to be fully turbulent independent of the Rayleigh
number, which, as observed previously, is not the case.

The second mechanism that could be responsible for the transition observed in our
system is that the agitation caused by the bubble wakes directly destabilise the flow.
Such bubble-induced agitation in high-volume-fraction flows is known to induce random,
anisotropic flow fluctuations called pseudo-turbulence (Rensen, Luther & Lohse 2005;
Risso et al. 2008; Riboux, Legendre & Risso 2013; Risso 2018). The liquid phase in
such flows possess continuous spectra with a range of wavelengths k with a steep decay
slope of k−3, and the velocity probability density functions (PDFs) are characterised by
broad exponential tails which imply the prevalence of strong fluctuations (Riboux, Risso &
Legendre 2009). The random state in these flows is thought to occur due to the interaction
between the bubble wakes, and accordingly, the intensity of the velocity fluctuations
increases with the volume fraction, α.

To understand whether bubble agitation could have caused the transition observed in
our system, we consider the volume fractions used in our experiments. As discussed in
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Figure 8. Colour maps showing the intensity of velocity fluctuations, standard deviation normalised by the
mean, in the x and y components for Ra = 3.4 × 104. The x–y plane projection of the mean velocity field is
shown as arrows. Both for the fluctuations and for the mean field, data are averaged in the z direction. Black
circles represent the approximate location of the bubble column.

§ 4.3, for all the experimental conditions tested, the bubbles were close enough to one
another to interact via their wakes. Indeed, the lowest value of α in our experiments was
1 %, and previous works on the topic were clearly able to observe the fully developed
bubble-induced pseudo-turbulence regime at volume fractions even lower than that
(Riboux et al. 2009). Therefore, the flow in the region of the bubble column probably
possessed the characteristics of bubble-induced turbulence for all the Rayleigh numbers
used in our experiments; this suggests that if bubble agitation is the reason for the
disturbed flow state we observed, this state should occur for all Rayleigh numbers used
in our experiments. Nevertheless, the flow was laminar below the transition, while
the disturbed flow state with growing fluctuation intensity was observed only above
Rac (figure 4, α = 4.5 %). Therefore, the sudden transition to a disturbed flow state
at a relatively high value of the volume fraction is inconsistent with the possibility
that bubble agitation caused the transition. We therefore find it is unlikely that the
observed transition occurred due to the direct agitation of the bubbles. Nevertheless, it
is reasonable that the weak unsteadiness observed even at the lowest Rayleigh number
used was indeed associated with pseudo-turbulence localised in the region of the bubble
column.

This prompts us to propose a third potential mechanism for the transition in our flow.
The mechanism we propose is based on the observation that the velocity fluctuations
were strongest near the top of the bubble column, as seen in figure 8. This localisation of
the velocity fluctuations suggests that disturbances are generated in the region where the
bubbles approach the free surface and that these disturbances are then carried by the mean
circulation to the bulk region of the tank. In other words, figure 8 suggests the transition
is due to a convective instability above the bubble column. This convection is depicted
schematically by step 4 in figure 9.

The question that still remains is what triggers the velocity fluctuations observed at
the top of the bubble column. Since our measurements were concentrated only on the
bulk of the tank, the region where the bubbles reach the free surface is inaccessible to
our quantitative assessment. Hence, we presently suggest a mechanism aligned with the
existing data, deferring quantitative validation for future investigations. Thus, a mechanism
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2 Bubbles induce a

vertical water jet

Bubbles released1

Figure 9. A schematic diagram showing the mechanism proposed for the observed transition. Arrows
represent the impinging jet of raising fluid, and coloured regions schematically represent areas with varying
intensities of velocity fluctuations with intensity decreasing from yellow to light blue.

that could trigger the velocity fluctuations in this region is related to the interaction of the
rising fluid in the bubble column region with the free surface. The bubble column forces
the fluid in its vicinity upwards, driving a vertical stream of water in this region (steps 1
and 2 in figure 9). This rising jet of fluid then impinges on the free surface, imposing it
to make a sharp turn (step 3 in figure 9). The turning of the jet thus introduces vorticity
which increases with the bubble injection rate. Therefore, the main source of the instability
scenario proposed here is the jet impingement on the free surface and its consequent
turning, which amplifies vorticity fluctuations within the rising jet. It is well-documented
that jet impingement is susceptible to instability, characterised by the emission of vortex
pairs from the impingement region and the amplification of initial disturbances within
the jet (e.g. Popiel & Trass (1991), Tsubokura et al. (2003) and citations therein). This
mechanism is consistent with the flow visualisations in figure 1(d–f ) and in supplementary
movies 1 and 2, where spiralling particle trajectories emanating from the region in which
the bubble column reaches the free surface and helical trajectories can be clearly seen
across the free surface and the wall opposite to the bubble column. Indeed, the mechanism
just described aligns best with our flow visualisations, and warrants further quantitative
analysis in future investigations.

6. Discussion and conclusions

This work have presented an experimental characterisation of the flow driven by buoyant
bubbles rising at moderate Reynolds numbers in a water tank. The flow was studied
through quantitative 3D-PTV measurements and flow visualisations, as the system was
driven at Rayleigh numbers covering roughly two orders of magnitude. Despite the
seemingly simple settings, the flow presents complex dynamics. The first feature is the
appearance of a tank-scale circulation. The circulation is balanced by the wall friction,
which leads to a power law of Re ∼ Ra2/5 (3.5), as confirmed in our measurements
(figure 3). Due to the discrete nature of the forcing the circulation is unsteady even
at the lowest Rayleigh number used as it exhibits slow temporal fluctuations with an
intensity of approximately 30 % of the mean circulation. Furthermore, the topology
of the mean circulation was seen, through flow visualisations, to be rather complex,
three dimensional and lacking symmetry with respect to z. We believe that this lack of
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symmetry is responsible for a lack of ergodicity in our flow, which manifested itself in the
scatter around the trend observed in figure 3(a). As the Rayleigh number was increased
by increasing the bubble injection rate, a transition to a state of fluctuation growth
occurred. Above this transition, the energy of the fluctuating flow component grew with
the Rayleigh number scaling of Raγ with γ = 1.05 ± 0.05, reaching approximately 150 %
of the mean circulating flow energy at the highest Rayleigh number tested. Increasing
Rayleigh number above the transition caused increasing fractions of the fluctuation energy
to appear in smaller scales; this coincided with the emergence of helical trajectories in
the flow visualisations (figure 3(e, f ), and in supplementary movies 1 and 2). Notably,
despite the observed instability and growth of fluctuations, turbulence was never fully
developed in the sense that no inertial range was found in the structure functions
(figure 5). This is in concurrence with the relatively low Reynolds numbers in our
experiment.

Despite its apparent simplicity in configuration, this system has the capacity to generate
intricate physical behaviours. First, the forcing applied on the flow is ‘free’ in the sense
that the flow in the tank has a feedback effect on the bubble column. This could change the
system behaviour in complex, unexpected ways, as for example was observed by the scatter
of the A value in figure 3. An analogous kind of feedback loop occurs in cavity flows, where
interactions of the free shear layer with the flow impingement on the downstream cavity
wall is known to produce coherent acoustic oscillations through a feedback mechanism
(Rockwell & Naudascher 1978). Second, the forcing in our bubble system is applied in a
temporally discrete fashion, so oscillations and fluctuations can occur already at very low
Reynolds numbers. Furthermore, the fluid agitation in the bubble wakes, that is known
to lead to pseudo-turbulence states in bubbly flows (Risso 2018) could make the problem
even more difficult, as energy is injected to the system at various scales. All in all, these
issues are expected to lead to significant difficulties should low-order modelling of this
system be attempted.

The system under investigation in this study presents several interesting features,
including flow oscillations and fluctuations at low Reynolds numbers, and a transition
to a regime of highly disturbed flow. The potential to manipulate these features could be
utilised in applications such as bio-reactors used for growing aquatic organisms, such as
plankton. In these systems, bubbles play a crucial role in oxygenation and nutrient mixing.
By precisely adjusting air flow rates, one could potentially achieve desired mixing rates
while ensuring that the flow remains below the transition point. This strategy could be
leveraged to prevent excessive flow fluctuations that might harm the organisms being
cultivated in the reactor. For the flow conditions tested here, velocity fluctuations are
moderate and representative of turbulence levels in the ocean (Franks et al. 2021). This
set-up could thus also serve as a platform to systematically investigate interactions between
turbulence and phytoplankton or zooplankton.

There exist various parameters beyond the airflow rate utilised in this study that could
impact the behaviour of the system, including the bubble size, the tank aspect ratio and the
bubble injector position. Indeed, studying the phase space of this system holds potential for
other flow regimes to be discovered. Several questions, such as verifying the mechanism
behind the observed transition, remain open for future research.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.712.
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