
ON THE GLUING OF GERMS OF COMPLEX ANALYTIC SPACES,
BETTI NUMBERS AND THEIR STRUCTURE

T. H. FREITAS AND J. A. LIMA

Abstract. In this paper, we introduce new classes of gluing of complex analytic space
germs, called weakly large, large, and strongly large. We describe their Poincaré series and,
as applications, we give numerical criteria to determine when these classes of gluing of germs
of complex analytic spaces are smooth, singular, complete intersections and Gorenstein, in
terms of their Betti numbers. In particular, we show that the gluing of the same germ of
complex analytic space along any subspace is always a singular germ.

1. Introduction

In modern algebraic geometry, gluing constructions are a relevant topic of investigation
by several authors over the years (for instance [6], [7], [10] and [20]). In the case that
(X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z) are germs of complex analytic spaces,
in [6] the authors have shown that the gluing (X, x) ⊔(Z,z) (Y, y) is also a germ of a complex
analytic space, provided OX,x → OZ,z and OY,y → OZ,z are both surjective homomorphisms.
Also, it is given the description of some algebraic/geometric and topological invariants such
as the degree of a finite map germ, multiplicity and the Milnor number.

Gluing of two surfaces along a curve

The study of the structure of a germ of a complex analytic space deserves special attention
from the Singularity Theory viewpoint ([8], [9], [16], [17] and [19]). Some results concerning
the Cohen-Macaulayness of the gluing (X, x) ⊔(Z,z) (Y, y) are provided in [6], when (Z, z) is
a reduced point, and show that the structure of the gluing of germs of analytic spaces may
have severe changes, depending on how this gluing is being made. For instance, the gluing
of two Cohen-Macaulay surfaces can not be Cohen-Macaulay, and the gluing of two germs
of analytic spaces that are complete intersections with isolated singularities (ICIS) is not
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always a complete intersection (see [6, Proposition 4.1, Theorem 4.3]). When (Z, z) is not
a reduced point, results concerning the structure of the gluing (when is singular, smooth,
complete intersection or Gorenstein) are not known.

The main focus of the present paper is to define classes of gluing of germs of a complex
analytic space, called weakly large, large and strongly large gluing, and give numerical criteria
to determine when it is smooth, singular, hypersurface, complete intersection and Gorenstein.
The class of strongly large gluing contains, for instance, the gluing (X, x) ⊔(Z,z) (Y, y) when
(Z, z) is a reduced point, and the gluing (X, x) ⊔(Z,z) (X, x). For this purpose, we give a
description of their Poincaré series and the Betti numbers in terms of the germs involved.

We briefly describe the contents of the paper. In Section 2, we recall the main definitions
and results for the rest of the work. Section 3 is devoted to defining the classes of weakly
large, large and strongly large gluing of complex analytic space germs, to give a shape of
their Poincaré series (see Lemma 3.9 and Theorem 3.13) and, as the main consequence, the
description of their Betti numbers (Corollaries 3.12 and 3.15).

The last section contains the applications of the paper. Actually, using the obtained
Betti numbers, we give numerical criteria to determine when the defined classes of gluing in
Section 2 are singular, hypersurfaces, complete intersections and Gorenstein. For instance,
large gluing of germs of complex analytic spaces can be smooth, but any strongly large
gluing is singular (Proposition 4.3 and Theorem 4.6 (i)). Despite the defined classes have a
subtle difference, these results also illustrate that, for instance, the Betti numbers of strongly
large gluing of complex analytic space germs provide a better understanding concerning their
structure. As the main consequence of this section, we derive that the gluing (X, x) ⊔(Z,z)
(X, x) is always singular (see Corollary 4.9).

2. Setup and Background

In this section, we recall the main concepts and results for the rest of the paper. For the
basic definitions see [12] and [13].
Definition 2.1. Let Ω ⊂ Cn be an open subset. A closed subset X ⊂ Ω is called an analytic
subset (or analytic set) of Ω if for all x ∈ X, there is an open neighborhood V ⊂ Ω of x and
a finite set of analytic functions f1, . . . , fs ∈ On(Ω) defined on V such that

X ∩ V = {x ∈ V | f1(x) = · · · = fs(x) = 0}.

Definition 2.2. A ringed space (X, OX) is a Hausdorff topological space X together with
a sheaf of rings OX . In this case, OX is a sheaf of commutative rings on an analytic set X.
To simplify, we write X for the pair (X, OX). In particular, if the stalk OX,x is a local ring
for every x ∈ X, we call (X, OX) a locally ringed space.

A pair (φ, φ∗) : (X, OX) → (Y, OY ) is called a morphism of ringed spaces if the map
φ : X → Y is continuous and φ∗ : OY → φ∗OX is a morphism of sheaves of rings. Also,
φ∗OX is the sheaf of commutative rings given by φ∗OX(U) = Γ(φ−1(U), OX), for any open
subset U ⊂ Y .

A morphism of locally ringed spaces (X, OX) and (Y, OY ) is a morphism of ringed spaces
(φ, φ∗) : (X, OX) → (Y, OY ) such that for all x ∈ X, the homomorphism φ∗

x : OY,φ(x) → OX,x

induced from φ∗ is a local homomorphism, i.e., φ∗−1(mX,x) = mY,φ(x).
A morphism (φ, φ∗) : (X, OX) → (Y, OY ) is an isomorphism if φ is a homeomorphism and

φ∗ is an isomorphism of sheaves of rings.
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From now on, the ringed space (X, OX) and the morphism of ringed spaces (φ, φ∗) will be
denoted by X and φ, respectively.
Lemma 2.3. [13, Theorem 6.1.10] Let φ : X → Y be a morphism of C-ringed spaces. Then
φ is an isomorphism if and only if φ is a homeomorphism and φ∗

x is an isomorphism for
every x ∈ X.
Definition 2.4. A ringed space (X, OX) is called an analytic space if every x ∈ X has
a neighborhood U such that (U, OX(U)) is isomorphic to a local model (V, OV ) as locally
ringed spaces, i.e., V is an analytic subset of an open set Ω ⊂ Cn for some n, and OV =
(On(Ω)/IV )|V .
Definition 2.5. On the set A of pairs (X, x) consisting of an analytic space X and its point
x, we define a relation ∼ as follows:
(X, x) ∼ (Y, y) ⇔ there is a neighborhood U ⊂ X of x, a neighborhood V ⊂ Y of y and an
isomorphism f : U ∼= V such that f(x) = y.
The relation becomes an equivalence relation; let the quotient set G := A/ ∼. An element
of G is called a germ of an analytic space, denoted by (X, x).

A morphism of germs (X, x) → (Y, y) is a germ of an analytic spaces map X → Y. For an
open U ⊂ X, a point x ∈ U , and an analytic map φ : U → Y with φ(x) = y, we denote the
induced germ by φx : (X, x) → (Y, y).
Remark 2.6. It should be noted that the elements of the stalks OX,x are seen as germs
at x of holomorphic functions on X. Each germ is represented by a holomorphic function
f ∈ OX(U), defined on an open neighborhood U of x. Conversely, each f ∈ OX(U) defines
a unique germ at x ∈ U , which is denoted by fx. Hence, since (X, OX) is an analytic space
and x = (a1, . . . , an) ∈ X ⊂ Ω ⊂ Cn, one has the isomorphism

OX,x
∼= OCn,x/IX,x

∼= C{x1 − a1, . . . , xn − an}/IX,x,

where IX,x = {fx ∈ OCn,x | ∃ f ∈ OCn(U) representing fx and f |U∩X = 0}. Now, the fact
that OCn,x is Noetherian gives that the ideal IX,x is finitely generated, and so there exists
f1, . . . , fk ∈ OCn,x such that IX,x = ⟨f1, . . . , fk⟩. For this paper, IX,x is an ideal that defines
the germ (X, x) of an analytic space. Note that OX,x is an analytic C-algebra and is a local
ring with maximal ideal mX,x = {f ∈ OX,x | f(x) = 0}.

Set X
∐

Y as the co-product or disjoint union of sets X and Y .
Definition 2.7. Let α : Z → X and β : Z → Y be morphisms of ringed spaces. Set

X ⊔Z Y = X
∐

Y/ ∼,

where the relation ∼ is generated by relations of the form x ∼ y (x ∈ X, y ∈ Y ), provided
there exists z ∈ Z such that α(z) = x and β(z) = y.

Namely, it is the smallest equivalence relation on X
∐

Y such that after passing to the
quotient X

∐
Y/ ∼ the following square becomes commutative

Z
α //

β
��

X

f
��

Y
g // X ⊔Z Y.

(2.1)

where f and g are the continuous natural maps.
3
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Since (X, OX), (Y, OY ) and (Z, OZ) are ringed spaces, [20, Proposition 2.2] provides that
(X ⊔Z Y, OX⊔ZY ) is also a ringed space, and so f and g becomes morphisms of ringed spaces.
Also, note that this definition satisfies the universal property by [20, Theorem 2.3].

Analogous to the morphisms of germs αz : (Z, z) → (X, α(z)) and βz : (Z, z) → (Y, β(z)),
the previous definition can be made for germs of analytic spaces (X, x), (Y, y) and (Z, z),
and denoted by (X, α(z)) ⊔(Z,z) (Y, β(z)). In the rest of the paper (X, α(z)) ⊔(Z,z) (Y, β(z))
will be denoted by (X, x) ⊔(Z,z) (Y, y), where α(z) = x and β(z) = y. When a germ (Z, z) is
a reduced point, i.e, (Z, z) = (z, z), we will denote (Z, z) by {z}.

Now, we recall an important definition for this paper.
Definition 2.8. The fiber product of homomorphisms α∗

z : OX,x → OZ,z, β∗
z : OY,y → OZ,z

of C-algebras is defined by
OX,x ×OZ,z

OY,y := {(s, t) ∈ OX,x × OY,y | α∗
z(s) = β∗

z (t)}.

By [2, Lemma 1.2], the fiber product is also a commutative and local ring with maximal
ideal given by m = mX,x ×mZ,z

mY,y, where mX,x, mY,y and mZ,z are the maximal ideals of
OX,x, OY,y and OZ,z, respectively. Also it is a subring of OX,x × OY,y and universal with
respect to the commutative diagram

OX,x ×OZ,z
OY,y

π1 //

π2

��

OX,x

α∗
z

��
OY,y

β∗
z // OZ,z,

(2.2)

where π1(s, t) = s and π2(s, t) = t are natural surjections. Also in [2, Section 1 (1.0.3)] and [5,
Lemma 2.1] the authors have shown that OX,x ×OZ,z

OY,y is a Noetherian local ring if both α∗
z

and β∗
z are surjective maps. It is important to realize that the assumptions over the maps are

crucial for the Noetherianess of the fiber product ring [6, Example 2.9]. Also, if (X, x), (Y, y)
and (Z, z) are germs of analytic spaces, then OX,x×OZ,z

OY,y is a reduced ring ([3, Proposition
4.2.18]). For the fiber product OX,x ×OZ,z

OY,y we assume that OX,x ̸= OZ,z ̸= OY,y. Note
that every OX,x-module (or OY,y-module) is an OX,x ×OZ,z

OY,y-module via Diagram 2.2.
Remark 2.9. [6, Remark 2.11] Let (X, x) ⊂ (Cn, x) and (Y, y) ⊂ (Cm, y) be two germs of
analytic spaces, where x = (a1, . . . , an) and y = (b1, . . . , bm). Let IX,x and IY,y be defining
ideals of (X, x) and (Y, y), respectively. Consider R = On+m,(x,y)

(IX,x+IY,y+((xi−ai)(yj−bj))) , i = 1, . . . , n

and j = 1, . . . , m, and let I = (x1 − a1, . . . , xn − an) and J = (y1 − b1, . . . , ym − bm) be two
ideals of R. Note that I ∩ J = 0 and therefore

On+m,(x,y)

(IX,x + IY,y + ((xi − ai)(yj − bj)))
∼= OX,x ×C OY,y.

In particular, OX,x×COY,y is an analytic C-algebra and the ideal IX,x+IY,y+((xi−ai)(yj−bj))
defines (X, x) ⊔{z} (Y, y).

Below we summarize the key results shown in [6] which establishes the good structure of
the gluing of complex analytic space germs.
Lemma 2.10. [6, Proposition 2.10] Let α : Z → X and β : Z → Y be holomorphic mappings
of analytic spaces. Then,

O(X,α(z))⊔(Z,z)(Y,β(z)) ∼= OX,α(z) ×OZ,z
OY,β(z).

4
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Lemma 2.11. [6, Lemma 3.1 and Corollary 3.3(b)] Let (X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y)
and (Z, z) ⊂ (Cl, z) be germs of analytic spaces such that OX,x → OZ,z and OY,y → OZ,z are
both surjective homomorphisms.

(i) Then, OX,x ×OZ,z
OY,y is an analytic C-algebra.

(ii) There is a germ (W, w) and an isomorphism OW,w → OX,x ×OZ,z
OY,y of local analytic

C-algebras. In particular (X, x) ⊔(Z,z) (Y, y) ∼= (W, w).

Theorem 2.12. [6, Theorem 3.4] Let X, Y and Z be analytic spaces such that OX → OZ

and OY → OZ are both surjective homomorphisms. Then, X ⊔Z Y is an analytic space.

3. Poincaré series and Betti numbers of gluing of Germs of analytic spaces

The main focus of this section is to define new classes of gluing of germs of complex analytic
spaces and give the shape of their Poincaré series and Betti numbers. For this purpose, two
important definitions are necessary:

Definition 3.1. Let (X, x) ⊂ (Cn, x) be a germ of an analytic space. Let M be a finitely
generated OX,x-module. The Poincaré series of M is given by

P
OX,x

M (t) :=
∑
i≥0

dimC TorOX,x

i (M,C) ti,

where C := OX,x

mX,x
is the residue field. The number β

OX,x

i (M) := dimC TorOX,x

i (M,C) is called
i-th Betti number of M . Let I be an ideal of OX,x. The Poincaré series of OX,x/I is denoted
by

P
(X,x)
(Z,z) (t) := P

OX,x

OX,x/I(t),

where (Z, z) is subspace of (X, x) defined by the reduced ideal I of OX,x. The i-th Betti
number of (Z, z) is defined by β

(X,x)
i (Z, z) := β

OX,x

i

(
OX,x

I

)
.

Remark 3.2. Let (Z, z) be a subspace of (X, x) defined by the reduced ideal I. Set µ(Z, z)
as the minimal number of generators of OX,x/I. Then

P
(X,x)
(Z,z) (t) = µ(Z, z) + tP

(X,x)
(Ω1,ω1)(t),

where (Ω1, ω1) is the subspace that represents the first syzygy of OX,x/I over OX,x (see [4]).

The next definition is motivated by the work of Levin [15].

Definition 3.3. Let f : (Y, y) → (X, x) be a morphism of germs of complex analytic spaces,
such that the induced map OX,x → OY,y is a surjective homomorphism. Then f is said to
be large provided, for any (Z, z) subspace of (Y, y) considered as a subspace of (X, x), the
following equality happens

P
(X,x)
(Z,z) = P

(Y,y)
(Z,z) P

(X,x)
(Y,y) .

Now, we are able to define new classes of gluing of germs of analytic spaces.

Definition 3.4. Let (X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z) be germs of
analytic spaces such that OX,x → OZ,z and OY,y → OZ,z are both surjective homomorphisms.
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(i) We say that the gluing (X, x) ⊔(Z,z) (Y, y) is weakly large, provided

P
(X,x)⊔(Z,z)(Y,y)
(K,k) (t) = P

(X,x)
(K,k) (t)P (X,x)⊔(Z,z)(Y,y)

(X,x) (t) ,

where (K, k) is the subspace of (X, x) that represents the kernel of the map α∗
z as

OX,x-module (see Diagram 2.2).
(ii) The gluing (X, x)⊔(Z,z) (Y, y) is called large provided the map f is large (see Diagram

2.1 and Definition 3.3). In addition, if the map g is also large, we call the gluing
(X, x) ⊔(Z,z) (Y, y) as strongly large gluing of germs of analytic spaces.

It easy to see that every strongly large gluing is large and therefore weakly large. The
next example and remark show that these new classes of gluing of germs of analytic spaces
are non-empty and contain interesting types of gluing.
Example 3.5. Let (X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z) be germs of
analytic spaces such that OX,x → OZ,z and OY,y → OZ,z are both surjective homomorphisms.

(i) If the germ (Z, z) is a reduced point, the gluing (X, x) ⊔{z} (Y, y) is strongly large. In
fact, by [14, Proposition 3.1] the maps f and g are large.

(ii) Suppose that there are surjective ring homomorphism OX,x → OY,y and the kernel
of OY,y → OZ,z is a weak complete intersection ideal in OX,x. Then the gluing
(X, x) ⊔(Z,z) (Y, y) is large [18, Theorem 3.12].

Remark 3.6. If we assume germs (X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z)
of analytic spaces such that OY,y → OX,x → OZ,z are both surjective homomorphisms, [18,
3.11] gives that the map g (Diagram 2.1) is large and therefore the gluing (X, x) ⊔(Z,z) (Y, y)
is large. In particular one has that the gluing (X, x) ⊔(Z,z) (X, x) is strongly large.
Notation 3.7. Throughout this paper, in order to use the structural results given in Lemma
2.10, Lemma 2.11 and Theorem 2.12, we assume germs of analytic spaces (X, x) ⊂ (Cn, x),
(Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z) such that OX,x → OZ,z and OY,y → OZ,z are both
surjective homomorphisms.

We pose the following conjecture:
Conjecture 3.8. Every gluing (X, x) ⊔(Z,z) (Y, y) of complex analytic space germs is large.

The next result is a key ingredient for the rest of the paper and shows the explicit shape
of the Poincaré series of certain gluing of germs of analytic spaces.
Lemma 3.9. Let (X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z) be germs of analytic
spaces.

(i) If the gluing (X, x) ⊔(Z,z) (Y, y) is weakly large, then

P
(X,x)⊔(Z,z)(Y,y)
(X,x) (t) =

1 − P
(X,x)⊔(Z,z)(Y,y)
(Y,y) (t)

1 − P
(X,x)
(Z,z) (t)

.

(ii) Suppose that the gluing (X, x) ⊔(Z,z) (Y, y) is large. If (W, w) is a subspace of (X, x),
then

P
(X,x)⊔(Z,z)(Y,y)
(W,w) (t) =

P
(X,x)
(W,w)(t)

(
1 − P

(X,x)⊔(Z,z)Y,y

(Y,y) (t)
)

1 − P
(X,x)
(Z,z) (t)

.
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Proof. (i) The exact sequence

0 −→ ker(α∗
z) −→ OX,x ×OZ,z

OY,y
π2−→ OY,y −→ 0 (3.1)

and Remark 3.2 gives

P
(X,x)⊔(Z,z)(Y,y)
(Y,y) (t) = 1 + tP

(X,x)⊔(Z,z)(Y,y)
(K,k) (t), (3.2)

where (K, k) is the subspace of (X, x) that represents the kernel of the map α∗
z. Since

(X, x) ⊔(Z,z) (Y, y) is weakly large, one obtains

tP
(X,x)⊔(Z,z)(Y,y)
(K,k) (t) = tP

(X,x)
(K,k) (t)P (X,x)⊔(Z,z)(Y,y)

(X,x) (t) =
(
P

(X,x)
(Z,z) (t) − 1

)
P

(X,x)⊔(Z,z)(Y,y)
(X,x) (t), (3.3)

where the last equality follows by the exact sequence

0 −→ ker(α∗
z) −→ OX,x

ker(α∗
z)−→ OZ,z −→ 0 (3.4)

and Remark 3.2. Hence (3.2) and (3.3) provide

P
(X,x)⊔(Z,z)(Y,y)
(Y,y) (t) = 1 +

(
P

(X,x)
(Z,z) (t) − 1

)
P

(X,x)⊔(Z,z)(Y,y)
(X,x) (t), (3.5)

and therefore

P
(X,x)⊔(Z,z)(Y,y)
(X,x) (t) =

1 − P
(X,x)⊔(Z,z)(Y,y)
(Y,y) (t)

1 − P
(X,x)
(Z,z) (t)

. (3.6)

(ii) Since the gluing (X, x)⊔(Z,z) (Y, y) is large, by definition it is also weakly large. Hence,
multiplying both sides of (3.6) by P

(X,x)
(W,w)(t), one has

P
(X,x)⊔(Z,z)(Y,y)
(W,w) (t) = P

(X,x)
(W,w)(t) + P

(X,x)
(Z,z) (t)P (X,x)⊔(Z,z)(Y,y)

(W,w) (t) − P
(X,x)⊔(Z,z)(Y,y)
(Y,y) (t)P (X,x)

(W,w)(t).

Therefore

P
(X,x)⊔(Z,z)(Y,y)
(W,w) (t) =

P
(X,x)
(W,w)(t)

(
1 − P

(X,x)⊔(Z,z)(Y,y)
(Y,y) (t)

)
1 − P

(X,x)
(Z,z) (t)

.

□

As a consequence, we derive a formula to compute the Betti numbers of any subspace of
the complex analytic germ (X, x) as a subspace of the large gluing (X, x) ⊔(Z,z) (Y, y).

For the next two results, in order to simplify the notation, let (V , v) denote the gluing of
germs (X, x) ⊔(Z,z) (Y, y) and βT

i (U) := β
(T,t)
i (U, u), for any germs (T, t) and (U, u).

Proposition 3.10. Let (X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z) be germs of
analytic spaces. Suppose that the gluing (V , v) is large. Then, for any (W, w) subspace of
(X, x),

j−1∑
i=0

βV
i (W )βX

j−i(Z) =
j−1∑
i=0

βX
i (W )βV

j−1(Y ),

for each j ≥ 1 positive integer.
7
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Proof. Since the gluing (V , v) is large, Lemma 3.9 (ii) provides

P
(V,v)
(W,w)(t) =

P
(X,x)
(W,w)(t)

(
1 − P

(V,v)
(Y,y) (t)

)
1 − P

(X,x)
(Z,z) (t)

.

Set P
(V,v)
(W,w)(t) =

∑
i

βV
i (W )ti, P

(X,x)
(W,w)(t) =

∑
i

βX
i (W )ti, P

(X,x)
(Z,z) (t) =

∑
i

βX
i (Z)ti and

P
(V,v)
(Y,y) (t) =

∑
i

βV
i (Y )ti. The previous equality yields

∑
i

βV
i (W )ti

(
1 −

∑
i

βX
i (Z)ti

)
=
∑

i

βX
i (W )ti

(
1 −

∑
i

βV
i (Y )ti

)
. (3.7)

Note that∑
i

βV
i (W )ti

(
1 −

∑
i

βX
i (Z)ti

)
=
∑

i

βV
i (W )ti −

∑
i

βV
i (W )ti

∑
i

βX
i (Z)ti

=
∑

i

βV
i (W )ti −

∑
j≥0

 j∑
i=0

βV
i (W )βX

j−i(Z)
 tj.

Similarly, the right side of equality (3.7) gives
∑

i

βV
i (W )ti −

∑
j≥0

(
j∑

i=0
βV

i (W )βX
j−i(Z)

)
tj =

∑
i

βX
i (W )ti −

∑
j≥0

(
j∑

i=0
βX

i (W )βV
j−i(Y )

)
tj . (3.8)

Therefore, for each j ≥ 1,

βV
j (W ) −

j∑
i=0

βV
i (W )βX

j−i(Z) = βX
j (W ) −

j∑
i=0

βX
i (W )βV

j−i(Y ).

The fact βX
0 (Z) = 1 = βV

0 (Y ) furnishes
j−1∑
i=0

βV
i (W )βX

j−i(Z) =
j−1∑
i=0

βX
i (W )βV

j−1(Y ),

for each j ≥ 1 positive integer and therefore, the desired conclusion follows. □

Remark 3.11. It is important to realize that βX
1 (Z) ̸= 0 ̸= βY

1 (Z), because otherwise, for
instance, if βX

1 (Z) := β
OX,x

1 (OZ,z) = 0, then OZ,z is a free OX,x-module. The surjective map
OX,x

α⋆
z→ OZ,z and the fact that OZ,z = O⊕r

X,x, implies that r = 1, (i.e., OX,x = OZ,z). This is
a contradiction because OX,x ̸= OZ,z.

Corollary 3.12. Let (X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z) be germs of
analytic spaces. Suppose that the gluing (X, x) ⊔(Z,z) (Y, y) is large. Then, for any (W, w)
subspace of (X, x),

(i) βV
0 (W ) = βX

0 (W )βV
1 (Y )

βX
1 (Z) .

(ii) βV
1 (W ) = 1

βX
1 (Z)

[
βV

1 (Y )
(
βX

1 (W )βX
1 (Z) − βX

0 (W )βX
2 (Z)

)
βX

1 (Z)
+ βX

0 (W )βV
2 (Y )

]
.
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(iii) βV
2 (W ) =

βX
0 (W )

βX
1 (Z)

[
βV

3 (Y ) +
βV

1 (Y )
βX

1 (Z)

(
βX

2 (Z)k − βX
3 (Z)

)
− kβV

2 (Y )
]

+
βX

1 (W )
βX

1 (Z)

[
βV

2 (Y )−kβV
1 (Y )

]
+

βX
2 (W )βV

1 (Y )
βX

1 (Z)
,

where k = βX
2 (Z)

βX
1 (Z) .

Proof. (i) By Proposition 3.10 in the case j = 1, one has

βV
0 (W )βX

1 (Z) = βX
0 (W )βV

1 (Y ),

which implies that

βV
0 (W ) = βX

0 (W )βV
1 (Y )

βX
1 (Z) .

This gives (i). The proof of (ii) and (iii) follows analogous by taking j = 2 and j = 3 in
Proposition 3.10, respectively, together with the fact obtained in (i). □

Theorem 3.13. Let (X, x)⊔(Z,z) (Y, y) be the gluing of the germs of analytic spaces (X, x) ⊂
(Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z), satisfying one of the following conditions:

(i) (X, x) ⊔(Z,z) (Y, y) is weakly large and there is a surjective map OY,y ↠ OX,x.
(ii) (X, x) ⊔(Z,z) (Y, y) is strongly large.

If (W, w) is a subspace of (Y, y), the Poincaré series of (W, w) as a subspace of the gluing
(X, x) ⊔(Z,z) (Y, y) is given by

P
(X,x)⊔(Z,z)(Y,y)
(W,w) (t) =

P
(Y,y)
(W,w)(t)P

(X,x)
(Z,z) (t)

P
(X,x)
(Z,z) (t) + P

(Y,y)
(Z,z) (t) − P

(X,x)
(Z,z) (t)P (Y,z)

(Z,z) (t)
.

Proof. (i) Note that Lemma 3.9 (i) (see (3.5)) furnishes

P
(X,x)⊔(Z,z)(Y,y)
(Y,y) (t) = 1 + P

(X,x)
(Z,z) (t)P (X,x)⊔(Z,z)(Y,y)

(X,x) (t) − P
(X,x)⊔(Z,z)(Y,y)
(X,x) (t). (3.9)

From the exact sequence

0 −→ ker(β∗
z ) −→ OX,x ×OZ,z

OY,y−→OX,x −→ 0, (3.10)

similarly to the proof of Lemma 3.9 (i), one obtains

P
(X,x)⊔(Z,z)(Y,y)
(X,x) (t) = 1 + tP

(X,x)⊔(Z,z)(Y,y)
(K,k) (t) = 1 + tP

(Y,y)
(K,k)(t)P

(X,x)⊔(Z,z)(Y,y)
(Y,y) (t) = 1 + (P (Y,y)

(Z,z) (t) − 1)P
(X,x)⊔(Z,z)(Y,y)
(Y,y) (t),

(3.11)

where (K, k) is the subspace of (X, x) that represents the kernel of the map α∗
z, and the

second equality follows by the hypothesis and Remark 3.6.
Replacing (3.11) in (3.9) one has

P
(X,x)⊔(Z,z)(Y,y)
(Y,y) (t) =

P
(X,x)
(Z,z) (t)

P
(X,x)
(Z,z) (t) + P

(Y,y)
(Z,z) (t) − P

(X,x)
(Z,z) (t)P (Y,y)

(Z,z) (t)
. (3.12)

Again, by the hypothesis and Remark 3.6, multiplying both sides of equation (3.12) by
P

(Y,y)
(W,w)(t) the desired conclusion follows.
(ii) Since (X, x) ⊔(Z,z) (Y, y) is strongly large, it is also weakly large. So, as in (3.9),

P
(X,x)⊔(Z,z)(Y,y)
(Y,y) (t) = 1 + P

(X,x)
(Z,z) (t)P (X,x)⊔(Z,z)(Y,y)

(X,x) (t) − P
(X,x)⊔(Z,z)(Y,y)
(X,x) (t). (3.13)
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With an analogous argument used in (i) and a base change, it is possible to show that

P
(X,x)⊔(Z,z)(Y,y)
(X,x) (t) = 1 + P

(Y,y)
(Z,z) (t)P (X,x)⊔(Z,z)(Y,y)

(Y,y) (t) − P
(X,x)⊔(Z,z)(Y,y)
(Y,y) (t), (3.14)

and therefore the statement is similarly obtained. □

Corollary 3.14. Let (X, x) ⊂ (Cn, x) and (Z, z) ⊂ (Cl, z) be germs of analytic spaces. If
(W, w) is a subspace of (X, x), then

P
(X,x)⊔(Z,z)(X,x)
(W,w) (t) =

P
(X,x)
(W,w)(t)

2 − P
(X,x)
(Z,z) (t)

.

Proof. The result is a consequence of Remark 3.6 and Theorem 3.13 (ii). □

The next result shows the explicit shape of certain Betti numbers of the subspace (W, w)
of (Y, y) seen as a subspace of the gluing (X, x) ⊔(Z,z) (Y, y). We omit the proof because it is
similar to Corollary 3.12.

Corollary 3.15. Let (X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z) be germs
of analytic spaces. Consider (W, w) a subspace of (Y, y). If the gluing (X, x) ⊔(Z,z) (Y, y)
satisfies one of the conditions of Theorem 3.13, then

(i) β
(X,x)⊔(Z,z)(Y,y)
0 (W, w) = β

(Y,y)
0 (W, w).

(ii) β
(X,x)⊔(Z,z)(Y,y)
1 (W, w) = β

(Y,y)
0 (W, w)β(X,x)

1 (Z, z) + β
(Y,y)
1 (W, w).

(iii) β
(X,x)⊔(Z,z)(Y,y)
2 (W, w) = β

(Y,y)
0 (W, w)β(Y,y)

1 (Z, z)β(X,x)
1 (Z, z)+β

(Y,y)
0 (W, w)β(X,x)

2 (Z, z)+
β

(Y,y)
1 (W, w)β(X,x)

1 (Z, z) + β
(Y,y)
2 (W, w).

4. Applications

This section is devoted to show some consequences of the previous Betti numbers obtained.
First, we recall some basic definitions for the convenience of the reader.
Embedding dimension: For a Noetherian local ring (R,m), the minimal number of gener-
ators of m will be denoted by edim(R) := dimC m/m2 and is called the embedding dimension
of R. Recall that, in general, edim(R) ≥ dim(R). If this inequality is an equality, then R is
called a regular local ring. The embedding dimension of a germ of an analytic space (X, x),
denoted by edim(X, x), means the embedding dimension of the local ring OX,x.

Again, let (V , v) denote the gluing (X, x) ⊔(Z,z) (Y, y), βT
i (U) := β

(T,t)
i (U, u), dim(T, t) :=

dim(T ) and the embedding dimension edim(T, t) := edim(T ), for any germs (T, t) and (U, u).
An important fact for the rest of this section is that ([2, Lemma 1.5 (1.5.2)])

dim(V) = max{dim(X), dim(Y )}.

As a consequence of the characterization of the Betti numbers of the gluing of germs of
complex analytic spaces (Corollary 3.12 (ii) and Corollary 3.15 (ii)), a formula for their
embedding dimension is also provided.

Corollary 4.1. Let (X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z) be germs of
analytic spaces.
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(i) If the gluing (V , v) is large, then

edim(V) = 1
βX

1 (Z)

βV
1 (Y )

(
edim(X)βX

1 (Z) − βX
2 (Z)

)
βX

1 (Z) + βV
2 (Y )

 .

(ii) If the gluing (V , v) satisfies one of the conditions of Theorem 3.13, then
edim(V) = βX

1 (Z) + edim(Y ).

Example 4.2. Let X = C2 and Y = V (v2 − u3) be two analytic subspaces of C2 and
consider (X, 0) and (Y, 0) its respective germs at the origin. By Remark 2.9 one has that
the ideal that defines (X, 0) ⊔{0} (Y, 0) is given by I(X,0)⊔{0}(Y,0) = (v2 − u3, xu, xv, yu, yv). In
addition, Example 3.5 (i) gives that the gluing (X, 0) ⊔{0} (Y, 0) satisfies the condition (ii) of
Theorem 3.13. Note that edim((X, 0) ⊔{0} (Y, 0)) = 4, edim((Y, 0)) = 2, βX

1 (0) = 2, and this
illustrates Corollary 4.1 (ii).

Proposition 4.3. Let (X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z) be germs of
analytic spaces such that dim(V) = dim (X). Suppose that the gluing (V , v) is large. Then
(V , v) is smooth if and only if the following equality holds

βX
1 (Z)

(
βV

1 (Y ) edim (X) − dim (X)βX
1 (Z) + βV

2 (Y )
)

= βV
1 (Y )βX

2 (Z).

Proof. By definition, (V , v) is smooth if and only if edim(V) = dim(V). Hence, using Corol-
lary 4.1 (i), one has that (V , v) is smooth if and only if

dim(X) =
βV

1 (Y )
(
edim(X)βX

1 (Z) − βX
2 (Z)

)
βX

1 (Z)2 + βV
2 (Y )βX

1 (Z)
βX

1 (Z)2 . (4.1)

Solving (4.1) for βX
1 (Z), one obtains that (V , v) is smooth if and only if

βX
1 (Z)

(
βV

1 (Y ) edim(X) − dim(X)βX
1 (Z) + βV

2 (Y )
)

= βV
1 (Y )βX

2 (Z),
and this shows the statement. □

As an immediate consequence of Proposition 4.3, we derive the following.

Corollary 4.4. Let (X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z) be germs of
analytic spaces such that dim(V) = dim(X). Suppose that the gluing (V , v) is large and
βV

1 (Y ) = βX
1 (Z) = 1. Then (V , v) is smooth if and only if

edim (X) − dim(X) = βX
2 (Z) − βV

2 (Y ).
Proposition 4.5. Let (X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z) be germs of
analytic spaces. Suppose that (V , v) is large and βX

2 (Z) = 0. Then (V , v) is a complete
intersection if and only if

m dim(X)+edim(X)
[
βV

2 (Y )(1− l

m
)− l

2
]

= 1
2m

[
l2 edim(X)2 +βV

2 (Y )2
]
+ βV

2 (Y )
2 −βV

3 (Y )− lβX
2 (0),

where l = βV
1 (Y ) and m = βX

1 (Z).

Proof. By [1, Theorem 7.3.3] (or [11, Proposition 2.8.4 (3)]), (V , v) is a complete intersection
if and only if

βV
2 (0) =

(
βV

1 (0)
2

)
+ βV

1 (0) − dim(V). (4.2)
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Since βX
2 (Z) = 0, we obtain that the projective dimension of the germ (Z, z) over (X, x) is

smaller than 1, and so βX
3 (Z) = 0. Now, by Corollary 3.12 (ii)-(iii), the shape of the Betti

numbers βV
1 (0) and βV

2 (0) are given by

βV
1 (0) = βV

1 (Y ) edim(X) + βV
2 (Y )

βX
1 (Z) ; (4.3)

βV
2 (0) = βV

3 (Y ) + edim (X)βV
2 (Y ) + βX

2 (0)βV
1 (Y )

βX
1 (Z) . (4.4)

Replacing (4.3) in (4.2) and comparing with (4.4), the desired result follows immediately. □

It should be noted that the last results show that it is difficult to have large gluing of germs
of analytic spaces that are smooth and complete intersection. For the cases of Theorem 3.13,
the next result yields a better understanding of their structure.

Theorem 4.6. Let (X, x) ⊂ (Cn, x), (Y, y) ⊂ (Cm, y) and (Z, z) ⊂ (Cl, z) be germs of
analytic spaces such that dim(V) = dim(Y ). Suppose that the gluing (V , v) satisfies one of
the conditions of Theorem 3.13.

(i) Then (V , v) is singular.
(ii) Suppose that (V , v) is Cohen-Macaulay. Then (V , v) is a hypersurface if and only if

(Y, y) is smooth and βX
1 (Z) = 1.

(iii) Suppose that (X, x) is a complete intersection. Then (V , v) is a complete intersection
if and only if

βX
1 (Z)2 + βX

1 (Z)
βX

1 (Z)βY
1 (Z) + βX

2 (Z) = 2.

(iv) Suppose that (V , v) is Cohen-Macaulay. If βV
1 (W ) ≤ βV

0 (W ) for some (W, w) subspace
of (Y, y), then (V , v) is Gorenstein if and only if (Y, y) is smooth.

Proof. (i) Suppose that (V , v) is smooth. Then, Corollary 4.1 (ii) gives
dim(Y ) = dim(V) = edim(V) = βX

1 (Z) + edim(Y ).
So βX

1 (Z) = 0 because edim(Y ) ≥ dim(Y ), which is a contradiction (Remark 3.11).
(ii) By (i), since (V , v) is singular one has edim(V) − dim(V) > 0. Hence (V , v) is a

hypersurface if and only if edim(V) − depth(V) = 1. Since (V , v) is Cohen-Macaulay by
hypothesis, Corollary 4.1 (ii) furnishes

βX
1 (Z) + edim(Y ) − dim(Y ) = 1.

The facts βX
1 (Z) ̸= 0 (Remark 3.11) and edim(X) ≥ dim(X) yield that (V , v) is a hypersur-

face if and only if βX
1 (Z) = 1 and edim(Y ) = dim(Y ) (i.e., Y is smooth).

(iii) Set d := dim(V). By [11, Proposition 2.8.4 (3)]), (V , v) is a complete intersection if
and only if

βV
2 (0) =

(
e

2

)
+ e − d, (4.5)

where e := edim(V) = βX
1 (Z) + edim(Y ) (Corollary 4.1 (ii)). By Corollary 3.15 (iii) and the

fact that (X, x) is a complete intersection ([11, Proposition 2.8.4 (3)]) yield

βV
2 (0) = βY

1 (Z)βX
1 (Z) + βX

2 (Z) + e2β
X
1 (Z) +

(
e2

2

)
+ e2 − d, (4.6)
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where e2 := edim(Y ). Therefore, comparing (4.5) and (4.6) we obtains that (V , v) is a
complete intersection if and only if

βX
1 (Z)2 + βX

1 (Z) = 2
(
βY

1 (Z)βX
1 (Z) + βX

2 (Z)
)

.

The desired conclusion follows, because βY
1 (Z) ̸= 0 ̸= βX

1 (Z) (Remark 3.11).
(iv) Suppose that (Y, y) is smooth. Since βX

1 (Z) ̸= 0 (Remark 3.11), the hypothesis and
Corollary 3.15 (i)-(ii) provide βX

1 (Z) = 1 and βY
1 (W ) = 0. Therefore (V , v) is Gorenstein by

(ii). The converse immediately follows from [5, Proposition 4.19]. □

Example 4.7. Let X = C and Y = C be two analytic spaces and consider (X, 0) and
(Y, 0) its respective germs at the origin. Since (X, 0) and (Y, 0) are regular germs, Remark
2.9 provides that the ideal that defines (X, 0) ⊔{0} (Y, 0) is given by I(X,0)⊔{0}(Y,0) = (xy).
Therefore, the gluing (X, 0)⊔{0}(Y, 0) is a complete intersection, and strongly large (Example
3.5 (i)). In addition, it satisfies both conditions of Theorem 3.13. This example illustrates
that even considering the most natural and simple smooth germs of analytic spaces, their
gluing is singular, as stated in the previous result.

Example 4.8. Let X = V (x5), Y = V (y5) and Z = V (z2) be analytic subspaces of C and
consider (X, 0), (Y, 0) and (Z, 0) their respective germs at the origin. Note that (X, 0) is a
complete intersection and the gluing (X, 0) ⊔(Z,0) (Y, 0) is defined by the ideal

I(X,0)⊔(Z,0)(Y,0) = (u5, uv2, v2 − u2v)

in C{u, v}, which is not a complete intersection ([2, Example 3.4]). By Example 3.5 (ii), the
gluing (X, 0) ⊔(Z,0) (Y, 0) is large, because the ideal (y2) in C{y}/(y5) is the kernel of the
map C{y}/(y5) → C{z}/(z2) and it is a weak complete intersection ideal (by [18, Example
2.3 (ii)]). Since βY

1 (Z) = βX
1 (Z) = βX

2 (Z) = 1, one has

βX
1 (Z)2 + βX

1 (Z)
βX

1 (Z)βY
1 (Z) + βX

2 (Z) ̸= 2.

As mentioned in Remark 3.6, the gluing (X, x) ⊔(Z,z) (X, x) is always strongly large. Since
the dimension of dim (X, x)⊔(Z,z) (X, x) and dim(X) are equal, as a consequence of Theorem
3.13 we derive the following result.

Corollary 4.9. Let (X, x) ⊂ (Cn, x), and (Z, z) ⊂ (Cl, z) be germs of analytic spaces.
(i) Then (X, x) ⊔(Z,z) (X, x) is singular.
(ii) If (X, x) ⊔(Z,z) (X, x) is Cohen-Macaulay, then (X, x) ⊔(Z,z) (X, x) is a hypersurface

if and only if X is smooth and βX
1 (Z) = 1.

(iii) If (X, x) is a complete intersection, then (X, x)⊔(Z,z) (X, x) is a complete intersection
if and only if βX

1 (Z) = 1 and βX
2 (Z) = 0.

(iv) Suppose that (X, x) ⊔(Z,z) (X, x) is Cohen-Macaulay. If βV
1 (W ) ≤ βV

0 (W ) for some
(W, w) subspace of (X, x), then (V , v) is Gorenstein if and only if (X, x) is smooth.

Proof. The proof of (i), (ii) and (iv) are immediate consequences of Theorem 3.13 (i)-(ii)-(iv).
For (iii), Theorem 3.13 (iii) furnishes

βX
1 (Z) − βX

1 (Z)2 = 2βX
2 (Z). (4.7)
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Note that, if βX
1 (Z) > 1, then left side of (4.7) is a negative number. Since βX

2 (Z) ≥ 0, the
equality (4.7) occurs if and only if βX

1 (Z) = 1 and βX
2 (Z) = 0 or βX

1 (Z) = 0 and βX
2 (Z) = 0.

But βX
1 (Z) ̸= 0 (Remark 3.11), and therefore the result follows. □
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