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Abstract

We consider a linear operator pencil with complex parameter mapping one Hilbert space onto another.
It is known that the resolvent is analytic in an open annular region of the complex plane centred at
the origin if and only if the coefficients of the Laurent series satisfy a doubly-infinite set of left and
right fundamental equations and are suitably bounded. If the resolvent has an isolated singularity at the
origin we propose a recursive orthogonal decomposition of the domain and range spaces that enables us
to construct the key nonorthogonal projections that separate the singular and regular components of the
resolvent and subsequently allows us to find a formula for the basic solution to the fundamental equations.
We show that each Laurent series coefficient in the singular part of the resolvent can be approximated by
a weakly convergent sequence of finite-dimensional matrix operators and we show how our analysis can
be extended to find a global expression for the resolvent of a linear pencil in the case where the resolvent
has only a finite number of isolated singularities.

2010 Mathematics subject classification: primary 47A10; secondary 47B40, 47L30.

Keywords and phrases: linear operator pencils, perturbation theory, resolvent operators, Laurent series,
fundamental equations.

1. Introduction

We wish to calculate the generalized resolvent for a linear pencil that is singular in
the unperturbed state but is nonsingular for small perturbations. Our main aim is to
reconcile two different methods that have been used to define the resolvent operator.
The first is an indirect method based on a system of fundamental equations. This
method is valid for linear pencils that map one Banach space onto another. The
second uses a sequence of unitary transformations to progressively reduce the original
resolvent problem to an equivalent problem on a smaller space. This method is valid
for linear pencils that map one Hilbert space onto another.

c© 2018 Australian Mathematical Publishing Association Inc.

145

https://doi.org/10.1017/S1446788718000411 Published online by Cambridge University Press

https://orcid.org/0000-0001-7302-0369
https://orcid.org/0000-0003-2382-8137
https://doi.org/10.1017/S1446788718000411


146 A. Albrecht, P. Howlett and G. Verma [2]

1.1. Applications. We outline one application and cite two others.

1.1.1. Input retrieval in linear control systems. For a general discussion about
semigroups, we refer to the classic texts by Kato [12] and Yosida [21]. The following
description was originally published in [10] and can also be found in [3, pages 261–
262]. Let H be a Banach space and let A ∈ B(H) be a bounded linear map on H.
Suppose that there exists someω > 0 and further suppose that for each ε with 0 < ε < ω
we can find Mε > 0 such that

‖(sI − A)−1‖ ≤
Mε

|s|

for all s ∈ C with |arg s| < π/2 + ω − ε. Then A generates a bounded holomorphic
semigroup eAt in the region | arg t| < ω and the resolvent of A is given by the formula

(sI − A)−1 =

∫ ∞

0
e−st · eAt · dt

for s ∈ C with real part <(s) > 0. Thus, the resolvent of A can be interpreted as the
Laplace transform of the semigroup generated by A. The theory of one-parameter
semigroups is described clearly and concisely in Kato [12, pages 479–495]. The
integral in the above expression is a Bochner integral. For more information about
the Bochner integral, consult Yosida [21, pages 132–135]. If rσ > 0 is the spectral
radius of A, then Yosida [21, Theorem 3, page 211] showed that

(sI − A)−1 =
1
s

[
I +

A
s

+

(A
s

)2
+ · · ·

]
for all s ∈ C with |s| > rσ. Now suppose that G and K are Banach spaces and that
B ∈ B(G,H) and C ∈ B(H,K) are bounded linear transformations. Let u : [0,∞) 7→ G
be an analytic function defined by

u(t) = u0 + u1t +
u2t2

2!
+ · · ·

for all t ∈ [0,∞), where {u j} ⊂ G and ‖u j‖ ≤ a j+1 for some a ∈ R with a > 0. The
Laplace transform of u will be

U(s) =
1
s

[
u0 +

u1

s
+

u2

s2 + · · ·

]
for |s| > a. We will consider an infinite-dimensional linear control system

x ′ = Ax + Bu,

y = Cx,

where u = u(t) is the input, x = x(t) is the state and y = y(t) is the output. We assume
that the system is initially at rest with x(0) = 0. If the input to the system is assumed
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to be analytic (as described above), it follows from Kato [12, Theorem 1.27, pages
493–494] that the output from the system is determined by the formula

y(t) =

∫ t

0
CeA(t−τ)B · u(τ) dτ

or equivalently by the corresponding Laplace transform formula

Y(s) = C(sI − A)−1B · U(s).

The latter formula will be well defined in the region |s| > max[rσ, a] by the series
expansion

Y(s) =
1
s

[
CB +

CAB
s

+
CA2B

s2 + · · ·

]
· U(s).

Thus, the problem of input retrieval can be formulated as a power series inversion
problem with

U(s) = s ·
[
CB +

CAB
s

+
CA2B

s2 + · · ·

]−1
· Y(s).

If we write z = 1/s and define A0 = CB and A1 = CAB, then we can certainly find the
desired inverse operator if we can find an expression for R(z) = (A0 + A1z)−1 in some
region 0 < |z| < r. We are particularly interested in the case where A0 = CB is singular.

1.1.2. Singularly perturbed Markov processes. The resolvent operator is used to
calculate mean first passage times in the theory of singularly perturbed Markov
processes. We refer to [3, pages 262–267] for two particular examples. For an
extended discussion of perturbed Markov processes, see [3, Ch. 6, pages 151–208
and Ch. 7, pages 209–244]. See also [5].

1.1.3. The generalized Sylvester equation. Let F, G, H and K be Banach spaces,
let A0, A1 ∈ B(F,G) and B0, B1 ∈ B(H, K) and define linear pencils A(z) = A0 + A1z
and B(z) = B0 + B1z for all z ∈ C. Let ρ(A0,A1) = {z ∈ C | R(z) = A(z)−1 ∈ B(G,F)} and
ρ(B0,B1) = {z ∈ C | S (z) = B(z)−1 ∈ B(K,H)} denote the resolvent sets for A(z) and B(z)
respectively and let σ(A0,A1) = C \ ρ(A0,A1) and σ(B0, B1) = C \ ρ(B0, B1) denote the
corresponding spectral sets. If σ(A0, A1) ∩ σ(B0, B1) = ∅, then for all C ∈ B(F,K) the
generalized Sylvester equation

A1XB0 − A0XB1 = C

has a unique solution X ∈ B(G,H). More precisely, if Γ is a Cauchy contour with
σ(A0, A1) included in the interior domain of Γ and σ(B0, B1) included in the exterior
domain of Γ, then

X =
1

2πi

∫
Γ

R(z)CS (z) dz.

For a full treatment, readers are referred to Gohberg et al. [8, pages 54–56].
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1.2. Organization of the paper. The paper is organized as follows. In Section 2
we outline the necessary prerequisite material and discuss some of the basic ideas.
We review the relevant literature in Section 3. There is a vast literature on this topic
and hence we have restricted our review to those papers that are directly relevant to
our discussion. For each of these papers we have outlined the relevant contributions.
In Section 4 we present the new results. We show how the new results are related
to the fundamental equations in Section 5. We illustrate our results in Section 6
with a particular example based on a speculative model of decay and growth. We
discuss matters relating to numerical calculations in Section 7 and conclude with a
brief summary in Section 8.

2. Preliminaries

We wish to reconcile two seemingly unrelated methods that have been used to define
the resolvent operator R(z) = A(z)−1 = (A0 + A1z)−1 when the unperturbed operator
A(0) = A0 is singular. The first method is quite general but is essentially indirect
and uses a doubly-infinite system of fundamental equations to define the resolvent.
The results are valid in Banach space but the method is nonconstructive and there
is currently no general procedure to solve the fundamental equations. The second
method is less general but more direct and uses a sequence of unitary transformations
to progressively reduce the original problem to an equivalent problem on a smaller
space. If the process terminates after a finite number of steps, then the inversion can
be completed using a Neumann expansion. The method is restricted to Hilbert space
but is constructive and is amenable to numerical calculation provided the procedure
terminates after a finite number of steps.

The main difficulty with the fundamental equations in their most general form
is that the left and right systems are each doubly-infinite. If the systems have a
unique solution, it is known that there exist corresponding key projection operators
that separate each system into two singly-infinite subsystems. Each subsystem can
then be solved recursively. Thus, the problem of calculating the resolvent reduces to
one of finding the key projection operators.

In this paper we restrict our attention to Hilbert spaces. Our aim is to use the
progressive reduction procedure and the associated orthogonal projections to find a
formula for the key nonorthogonal projections that separate the fundamental equations
into singly-infinite systems. We are particularly interested in the case where the
reduction continues ad infinitum.

2.1. Prerequisite theory. The proposed reduction procedure relies on one problem-
specific result and two general results.

Let H and K be Hilbert spaces with A0, A1 ∈ B(H,K) and A−1
0 ({0}) , {0}. Suppose

that there is some r > 0 such that R(z) = A(z)−1 is analytic for all z ∈ U 0,r = {z ∈ C |
0 < |z| < r}. Let H1 = A−1

0 ({0}) be the null space of A0 and define K1 = A1(H1) ⊆ K to
be the image of H1 under A1. In order to show that H � H1 × H⊥1 and K � K1 × K⊥1 ,
we must prove that H1 and K1 are closed subspaces. Since H1 is the null space of A0,
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it must be closed. To show that K1 is closed, the following lemma is crucial. The proof
can be found in [11] or in [3, page 271].

Lemma 2.1. Suppose that H1 = A−1
0 ({0}) , {0}. Define K1 = A1(H1) ⊆ K. If R(z0) =

A(z0)−1 ∈ B(K, H) is well defined for some z0 ∈ C with z0 , 0, then A1 is bounded
below on H1 and K1 is a closed subspace. �

The Banach inverse theorem [15, pages 149–150] justifies the existence of a
bounded linear inverse operator. The theorem is used repeatedly during the reduction
procedure.

Theorem 2.2 (Banach inverse theorem). Let X and Y be Banach spaces and suppose
that A ∈ B(X, Y) is a bounded linear operator. If A(X) = Y and if A−1({0}) = {0},
then there exists ε > 0 such that ‖Ax‖ > ε‖x‖ for all x ∈ X and the inverse operator
A−1 ∈ B(Y, X) is well defined. �

Zorn’s lemma [21, pages 2–3] guarantees the existence of a maximal element in
a partially ordered set. The lemma is used to justify the existence of a maximal
orthogonal projection. In this regard we need firstly to define a partial ordering on
the set of all projections. If X is a Banach space and E1, E2 ∈ B(X) are projections,
then we say that E1 � E2 if E1E2 = E2E1 = E1. See [6, pages 481–482] for more
discussion.

Lemma 2.3 (Zorn’s lemma). Let P be a nonempty partially ordered set with the
property that every linearly ordered subset of P has an upper bound in P. Then P
contains at least one maximal element.

2.2. The fundamental equations. We follow the presentation in [1]. Let H, K be
complex Banach spaces and let A0, A1 ∈ B(H,K) be bounded linear operators, where
A0 is singular. Note that A0 is nonsingular if and only if A0(H) = K and A−1

0 ({0}) = {0}.
Define a linear operator pencil A : C→ B(H, K) by the formula A(z) = A0 + A1z and
suppose that the resolvent R : Us,r → B(K, H) defined by R(z) = A(z)−1 is analytic
for z ∈ Us,r = {z ∈ C | s < |z| < r}, where s, r ∈ R and satisfy 0 ≤ s < r ≤ ∞. Hence,
the resolvent can be represented on the annular region Us,r by a Laurent series
R(z) =

∑
j∈Z R jz j, where R j ∈ B(K,H) for all j ∈ Z. Furthermore, for each δ, ε with

s < s + ε < r − δ < r, there are constants cδ, dε such that

‖R j‖ ≤ cδ/(r − δ) j and ‖R− j‖ ≤ dε(s + ε) j for j ∈ N. (2.1)

By equating coefficients for each power of z in the identities R(z)A(z) = I ∈ B(H)
and A(z)R(z) = I ∈ B(K), we can see that {R j} j∈Z must satisfy the left fundamental
equations

R j−1A1 + R jA0 =

{
I if j = 0,
0 if j , 0 (2.2)

and the right fundamental equations

A1R j−1 + A0R j =

{
I if j = 0,
0 if j , 0. (2.3)
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Conversely, if {R j} j∈Z satisfies the bounds given in (2.1) and solves the fundamental
equations (2.2) and (2.3), then R(z) =

∑
j∈Z R jz j is well defined for z ∈ Us,r and satisfies

the identities R(z)A(z) = I and A(z)R(z) = I.

2.3. The reduced resolvent. We follow the presentation in [11]. Let H, K be
complex Hilbert spaces and let A0, A1 ∈ B(H, K) with A0(H) = K but A−1

0 ({0}) , {0}.
Define A : C→B(H,K) by the formula A(z) = A0 + A1z and suppose that there is some
r > 0 such that R(z) = A(z)−1 ∈ B(K,H) is analytic for z ∈ U 0,r. Thus, R(z0) = A(z0)−1 ∈

B(K,H) is well defined for some z0 , 0. Since H1 = A−1
0 ({0}) ⊆ H is closed, it follows

that H is isomorphic to H1 × H⊥1 , where H⊥1 denotes the orthogonal complement of
H1 ⊆ H. We write H � H1 × H⊥1 . We assume that A0 , 0, which means that H1 , H
and hence that H⊥1 , {0}. Let P1 ∈ B(H) denote the natural orthogonal projection onto
the subspace H1 ⊆ H and define U1 ∈ B(H,H1 × H⊥1 ) by the formula

U1 =

[
P1

I − P1

]
⇐⇒ U1x =

[
P1x

(I − P1)x

]
=

[
x1
x⊥1

]
for each x ∈ H. Now P∗1 = P1 and U∗1 = [P1, I − P1] ∈ B(H1 × H⊥1 ,H). The mapping
U1 defines a unitary equivalence between H and H1 × H⊥1 .

By Lemma 2.1, we know that K1 = A1(H1) ⊆ K is also closed and so K � K1 × K⊥1 .
We may assume that K⊥1 , {0}, as the following argument shows. Choose x⊥1 ∈ H⊥1
with x⊥1 , 0 and suppose that y1 = A(z0)x⊥1 ∈ K1. We know that y1 , 0 because A(z0)
is bounded below. Since A1(H1) = K1, we can find x1 ∈ H1 such that A1(x1) = y1/z0.
Thus, A(z0)x1 = y1. We must have x1 , 0 because y1 , 0. However, this implies that
A(z0)x1 = A(z0)x⊥1 with x1 , x⊥1 . Since A(z0) is 1–1, this is a contradiction. Therefore,
A(z0)x⊥1 = y1 + y⊥1 for some y⊥1 ∈ K⊥1 with y⊥1 , 0. Thus, K⊥1 , {0}.

Let Q1 ∈ B(K) denote the natural orthogonal projection onto the subspace K1 ⊆ K
and define V1 ∈ B(K,K1 × K⊥1 ) by the formula

V1 =

[
Q1

I − Q1

]
⇐⇒ V1y =

[
Q1y

(I − Q1)y

]
=

[
y1
y⊥1

]
for each y ∈ K. Thus, Q∗1 = Q1 and V∗1 = [Q1, I − Q1] ∈ B(K1 × K⊥1 ,K). The mapping
V1 defines a unitary equivalence between K and K1 × K⊥1 . Now we use the unitary
transformations U1,V1 to write the operator Ai ∈ B(H,K) in the operator matrix form
defined by Ai

(1) = V1AiU∗1 ∈ B(H1 × H⊥1 ,K1 × K⊥1 ) for each i = 0, 1. Thus,

A0
(1) =

[
Q1A0P1 Q1A0(I − P1)

(I − Q1)A0P1 (I − Q1)A0(I − P1)

]
=

[
0 A0,(1,2)

(1)

0 A0,(2,2)
(1)

]
,

where we have used the fact that A0P1(H) = A0(H1) = 0 and

A1
(1) =

[
Q1A1P1 Q1A1(I − P1)

(I − Q1)A1P1 (I − Q1)A1(I − P1)

]
=

[
A1,(1,1) A1,(1,2)

(1)

0 A1,(2,2)
(1)

]
,

where we note that (I − Q1)A1P1(H) = (I − Q1)(K1) = 0. Now A(1)(z) = V1A(z)U∗1 ∈
B(H1 × H⊥1 ,K1 × K⊥1 ) can be written in the equivalent operator matrix form as

A(1)(z) =

[
A1,(1,1)z A(1,2)

(1)(z)
0 A(2,2)

(1)(z)

]
,
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where we note the simplified form A(1,1)
(1)(z) = A1,(1,1)z for the block on the leading

diagonal in the (1, 1) position. Since A1 is bounded below on H1, we deduce
that [A1,(1,1)]−1 ∈ B(K1, H1) is well defined. From A0(H) = K, it follows that
A0,(1,2)

(1)(H⊥1 ) = K1 and A0,(2,2)
(1)(H⊥1 ) = K⊥1 .

If [A0,(2,2)
(1)]−1({0}) = {0}, then A0,(2,2)

(1) is a 1–1 mapping of H⊥1 onto K⊥1 and so,
by Theorem 2.2, we deduce that A0,(2,2)

(1) is bounded below. Hence, [A0,(2,2)
(1)]−1 ∈

B(K⊥1 , H⊥1 ) is well defined. Since R(z) is analytic for z ∈ U 0,r, it follows that
[A(2,2)

(1)(z)]−1 is also analytic on U 0,r. Thus, we can use the Neumann expansion to
represent A(2,2)

(1)(z)−1 ∈ B(K,H) on the region |z| < r. If [A0,(2,2)
(1)]−1({0}) , {0}, then

the reduced problem to calculate the resolvent R(2,2)
(1)(z) = [A(2,2)

(1)(z)]−1 is precisely
the same problem as the original resolvent problem but on a smaller space. Thus, we
could repeat the process on the reduced resolvent.

3. Related work

In studying the invertibility of time-invariant linear control systems, Sain and
Massey [16] used Laplace transforms to show that the desired system inversion could
be formulated as a matrix power series inversion problem in the form

X(s)[C(sI − A)−1B + D] =
1
sp I. (3.1)

By assuming a Laurent series expansion in the form

X(s) =
1
sp [X0 + X1s + X2s2 + · · · ]

and equating coefficients for the various powers of s in (3.1), they obtained a system
of matrix fundamental equations. Their analysis of the system included a rank test
on an augmented system matrix that provided necessary and sufficient conditions for
existence of a unique solution but did not include a suggested calculation procedure.

More generally, studies relating to the spectral theory of bounded linear operators
[12, 21] had posed similar problems relating to representation of the resolvent operator
by a Laurent series. For the most part these problems were adequately solved using a
standard Neumann expansion

R(λ) = (λI − A)−1 =
1
λ

[
I +

A
λ

+
A2

λ2 + · · ·

]
for λ ∈ U r,∞ = {λ ∈ C | r < |λ| <∞}, where r is the spectral radius of A.

3.1. Inversion of matrix pencils. There is a substantial literature on the inversion of
matrix pencils. We will not attempt a comprehensive review of the more recent work
but rather refer readers to [4, 7, 20] and references listed therein. For our purposes,
a more fruitful approach is to review the papers [9, 13, 14, 16, 17] that are directly
related to our work. Throughout this section we suppose that A0, A1 ∈ C

n×n, where
A0 is singular. We write A(z) = A0 + A1z ∈ Cn×n and R(z) = A(z)−1 ∈ Cn×n for all z ∈ C
where the inverse exists.
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3.1.1. Generalized Jordan chains. Langenhop [13, 14] used generalized Jordan
chains of subspaces to find necessary and sufficient conditions for the existence of
an analytic resolvent R(z) when z ∈ U 0,r for some r > 0. In [13], Langenhop defined
N0,−1 = {0} ⊆ Cn and R0,−1 = Cn and then recursively defined subspaces

R1,k = {y = A1x | x ∈ N0,k} = A1(N0,k) ⊆ Cn,

N0,k+1 = {x ∈ Cn | A0x ∈ R1,k} = A−1
0 (R1,k) ⊆ Cn

and
N1,k = {x ∈ Cn | A1x ∈ R0,k} = A−1

1 (R0,k) ⊆ Cn,

R0,k+1 = {y = A0x | x ∈ N1,k} = A0(N1,k) ⊆ Cn

for each k ∈ N − 2. Langenhop showed that {0} = N0,0 ⊆ N0,k−1 ⊆ N0,k and Cn ⊇

N1,k−1 ⊇ N1,k ⊇ N1 = A−1
1 ({0}) = {x ∈ Cn | A1x = 0} for each k ∈ N. In particular, he

proved that if R(z) is well defined for some z , 0, then

N1 ∩ N0,k−1 = {0} for all k ∈ N. (3.2)

Conversely, if (3.2) is true, he showed it was then possible to construct matrices
R−1,R0 ∈ C

n×n such that for some r > 0 the resolvent is given by

R(z) =

∞∑
j=−m

R jz j (3.3)

for all z ∈ U 0,r, where m ≤ n and where R−k = (−1)k−1(R−1A0)k−1R−1 for 1 ≤ k ≤ m and
R` = (−1)`(R0A1)`R0 for ` ∈ N − 1. Thus, Langenhop showed that (3.2) is necessary
and sufficient for the existence of R(z) in some regionU 0,r.

Although the fundamental equations are not highlighted in [13], Langenhop made
the connection more explicit in [14] by showing that R(z) is analytic on some deleted
neighbourhood of the origin z ∈ U 0,r if and only if there exist R−1,R0 ∈ C

n×n such that

R0A0 + R−1A1 = I and A0R0 + A1R−1 = I. (3.4)

Thus, (3.2) is equivalent to (3.4) for A0, A1 ∈ C
n×n. Nevertheless, we note that (3.4)

may have more than one solution {R−1,R0} and the series (3.3) generated by a particular
solution may not converge on U 0,r. Consider the following example taken from [1,
Example 3].

Example 3.1. Define A0, A1 ∈ C
3×3 by setting

A0 =

1 1 1
1 2 1
2 1 2

 and A1 =

1 0 0
0 1 0
1 0 1

 .
The resolvent R(z) is singular at z1 = 0, z2 = −1 and z3 = −3 and hence can be
represented in the form

R(z) =
B
z

+
C

z + 1
+

D
z + 3

,
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where B,C,D ∈ C3×3. Thus, we expect to find three different Laurent series centred at
z = 0 for the three annular regions U 0,1, U 1,3 and U 3,∞. The Laurent series on each
annular region is generated by a different pair {R−1,R0}. Thus, for instance, there is a
solution

R−1 =


1 − 1

3 − 1
3

0 − 1
2 − 1

2

−1 − 1
6

5
6

 and R0 =


0 1

9
1
9

0 1
6

1
6

0 1
18

1
18

 .
The associated Laurent series R(z) =

∑
k∈N(−1)k−1(R−1A0)k−1R−1/zk +

∑
j∈N(−1) j

(R0A1) jR0z j converges for z ∈ U1,3. See [1, Example 3] for further details. �

3.1.2. The fundamental matrix equations. Howlett [9] used the fundamental
equations described in [16] to solve the problem of input retrieval in finite-dimensional
linear systems. Two methods were proposed. In each case an expression was found
for the inverse transfer function. The first method used a general procedure for the
inversion of matrix power series to express the solution as a Laurent series. The second
method used elementary row and column operations on a modified Rosenbrock system
matrix to find a closed form for the solution. For a linear pencil, Howlett showed that
R(z) ∈ Cn×n has a simple pole at z = 0 and is well defined on some U 0,r if and only if
there exist nonsingular matrices M and N such that

A0 � MA0N =

[
Ip 0
0 0

]
and A1 � MA1N =

[
A1,11 A1,12
A1,21 Iq

]
,

where p + q = n. For a linear pencil with a higher-order pole, a similar decomposition
was applied to an augmented coefficient matrix to find the Laurent series. A rank test
proposed by Sain and Massey [16] was used to determine whether the inversion was
possible and to find the order of the pole. Howlett also showed that the coefficients
of the resolvent have a characteristic geometric form and satisfy a finite recurrence
relationship. The method can be implemented numerically using Gaussian elimination
to calculate the coefficients of the resolvent.

3.1.3. The reduced resolvent. Suppose that R(z) ∈ Cn×n is analytic on some region
U 0,r. Schweitzer and Stewart [17] used the resolvent equation

R(w) − R(z) = (z − w)R(w)A1R(z)

to provide an alternative derivation of (3.3) which avoids overt use of the technical
machinery in [13]. They also described a two-stage computational algorithm based
on a decomposition proposed by Van Dooren [19]. The first stage used a progressive
sequence of unitary transformations to find an equivalent problem with a simplified
structure where the transformed matrix A0

(1) = VA0U is strictly block upper triangular
and has a zero block diagonal, and where the transformed matrix A1

(1) = VA1U is block
upper triangular and has nonsingular blocks on the leading diagonal except possibly
in the final position. The second stage used multiplication on the left and right by
nonsingular elementary matrices to further simplify the final block structure.
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3.2. Inversion of operator pencils. The ideas underlying the inversion of matrix
pencils have since been extended to operator pencils on infinite-dimensional spaces,
but the original arguments involving the ranks of various matrices or the values of
certain determinants can no longer be used. In addition, it is necessary to prove that
the subspaces used to decompose the operators are all closed. There are three relevant
techniques that have been suggested. The mainstream research on spectral theory for
operator pencils on Banach space used complex function theory with the principal
results established by Stummel [18]. Subsequently, Howlett et al. [11] showed that
the progressive decomposition proposed by Schweitzer and Stewart [17] could also
be used for operators on Hilbert space provided the process terminated after a finite
number of steps. More recently, Albrecht et al. [1] used the fundamental equations to
obtain a more general but also more explicit form of the original matrix result obtained
by Langenhop in [14].

3.2.1. Spectral theory for operator pencils. We outline relevant results from the
paper by Stummel [18]. Let H and K be complex Banach spaces and suppose that
A0,A1 ∈ B(H,K). Define A(z) = A0 + A1z ∈ B(K,H) for all z ∈ C. Stummel considered
the spectral set σ = {z ∈ C | R(z) = A(z)−1 < B(H, K)} for A(z) and used line integrals
to define complementary projections that isolate separate components of the spectrum.
In the case where R(z) ∈ B(K,H) is analytic on an annular region U s,r, the spectral
set has two disjoint components—an interior compact subset σ1 ⊆ {z ∈ C | |z| ≤ s}
and an exterior closed subset σ2 ⊆ {z ∈ C | |z| ≥ r}. Following Stummel, we define
R−1 ∈ B(K,H) by the contour integral formula

R−1 =
1

2πi

∫
Γ

R(ζ) dζ,

where Γ = {ζ = ρeiθ | θ ∈ [0, 2π)} and s < ρ < r. Stummel defined corresponding
projections P = R−1A1 ∈ B(H) and Q = A1R−1 ∈ B(K) to establish the formal
separation of σ1 and σ2. The method proposed by Stummel is described clearly by
Gohberg et al. [8, pages 49–54]. The earlier underlying concept of spectral separation
for a bounded linear operator is elegantly presented in the classic book by Kato
[12, pages 178–179].

3.2.2. The fundamental equations for operator pencils. Let H and K be complex
Banach spaces and suppose that A0, A1 ∈ B(H,K). Define A(z) = A0 + A1z ∈ B(K,H)
for all z ∈ C and let R(z) = A(z)−1 denote the resolvent. Albrecht et al. [1] showed that
R(z) is analytic on an annular region U s,r if and only if there exists an appropriate
solution to the fundamental equations. More specifically, they established the
following results. We refer readers to the original article [1] for proofs of these results.
See also [2, 10] for some preliminary work.

Theorem 3.2. The coefficients {R j} j∈Z ∈ B(K, H) satisfy (2.1), (2.2) and (2.3) if
and only if the following are all satisfied: (i) P = R−1A1 ∈ B(H) and I − P =

R0A0 ∈ B(H) are projections on H; and Q = A1R−1 ∈ B(K) and I − Q = A0R0 ∈
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B(K) are corresponding projections on K; (ii) Ai = QAiP + (I − Q)Ai(I − P) for
i = 0, 1; (iii) R−k = PR−kQ for k ∈ N and R` = (I − P)R`(I − Q) for ` ∈ N − 1;
(iv) R−k = (−1)k−1(R−1A0)k−1R−1 and R` = (−1)`(R0A1)`R0 for k, ` ∈ N; and (v)
limk→∞ ‖(R−1A0)k‖1/k ≤ s and lim`→∞ ‖(R0A1)`‖1/` ≤ 1/r. �

Corollary 3.3. Let s, r ∈ R with 0 ≤ s < r ≤ ∞. The resolvent R :Us,r → B(K,H) is
analytic if and only if there exist R−1, R0 ∈ B(K,H) such that (i) R−1A1 + R0A0 = I
and A1R−1 + A0R0 = I; (ii) R−1AiR0 = 0 and R0AiR−1 = 0 for each i = 0, 1; and
(iii) limk→∞ ‖(R−1A0)k‖1/k ≤ s and lim`→∞ ‖(R0A1)`‖1/` ≤ 1/r. If these conditions are
satisfied, then R−1,R0 are uniquely defined and the resolvent can be written in the form

R(z) = Rσ(z) + Rρ(z)

for all z ∈ Us,r, where Rσ(z) = PR(z)Q given by

Rσ(z) = (Iz + R−1A0)−1R−1 =

∞∑
k=1

(−1)k−1(R−1A0)k−1R−1/zk (3.5)

for |z| > s is the singular part and Rρ(z) = (I − P)R(z)(I − Q) given by

Rρ(z) = (I + R0A1z)−1R0 =

∞∑
`=0

(−1)`(R0A1)`R0z` (3.6)

for |z| < r is the regular part. The operators P = R−1A1 ∈ B(H) and Q = A1R−1 ∈

B(K) are the corresponding key projections that separate the singular and regular
parts of the resolvent. If we define linear operators Rλ = λ−1R(−λ−1)A0 ∈ B(H) and
Sλ = λ−1A0R(−λ−1) ∈ B(K), then Rλ,Sλ satisfy the resolvent equations Rλ − Rµ =

(µ − λ)RλRµ and Sλ − Sµ = (µ − λ)SλSµ for λ, µ ∈ U r−1,s−1 . �

Corollary 3.3 is a more general form of the result established by Langenhop in [14].
At the same time it is more precise because conditions (ii) and (iii) ensure that the
solution is unique. This leads us to the following definition of a basic solution to the
fundamental equations.

Definition 3.4. If {R−1, R0} ⊆ B(K,H) satisfy (i)–(iii) in Corollary 3.3, then we say
that {R−1,R0} is the basic solution to (2.2) and (2.3) onUs,r. �

3.2.3. Global structure of the resolvent. Suppose that R(z) has isolated singularities
at z = zs for each s = 1, 2, . . . ,m for some m ∈ N but is analytic elsewhere. Write
A(z) = As,0 + As,1(z − zs), where As,0 = A0 + A1zs and As,1 = A1. Let {Rs,−1, Rs, 0}

denote the basic solution to the fundamental equations on zs + U 0, rs , where rs =

mint,s |zt − zs|. Let Ps = Rs,−1A1 and Qs = A1Rs,−1 be the corresponding projections
and write R(z) = Rs,σ(z) + Rs,ρ(z), where

Rs,σ(z) = PsR(z)Qs (z , zs)

is singular at z = zs and where

Rs,ρ(z) = (I − Ps)R(z)(I − Qs) (z , z1, . . . , zs−1, zs+1, . . . , zm)
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is regular at z = zs. Albrecht et al. [1] used the fundamental equations to show that
PsPt = 0 and QsQt = 0 for s , t and hence defined corresponding complementary
projections P∞ =

∏m
s=1(I − Ps) = I −

∑m
s=1 Ps ∈ B(H) and Q∞ =

∏m
s=1(I − Qs) = I −∑m

s=1 Qs ∈ B(K). By writing

H = M1 ⊕ · · · ⊕ Mm ⊕ M∞ and K = N1 ⊕ · · · ⊕ Nm ⊕ N∞,

where Ms = Ps(H), Ns = Qs(K), M∞ = P∞(H) = (I −
∑m

s=1 Ps)(H) and N∞ = Q∞(K) =

(I −
∑m

s=1 Qs)(K), they established the full spectral decomposition

R(z) =

m∑
s=1

Rs,σ(z) + R∞(z), (3.7)

where each term Rs,σ(z) = PsR(z)Qs ∈ B(Ns, Ms) is analytic for z , zs and the
remainder R∞(z) = P∞R(z)Q∞ ∈ B(N∞,M∞) is entire.

3.2.4. Separation of the fundamental equations. The key projections P = R−1A1 ∈

B(H) and Q = A1R−1 ∈ B(K) can be used to rewrite each doubly-infinite system of
fundamental equations as two separate singly-infinite systems—one for the singular
part of the resolvent and the other for the regular part. Define corresponding partitions
of H � P(H) × (I − P)(H) = P(H) × Pc(H) = M × Mc and K � Q(K) × (I − Q)(K) =

Q(K) × Qc(K) = N × Nc. Theorem 3.2 shows that

Ai �

[
Q
Qc

]
Ai[P Pc] =

[
QAiP QAiPc

QcAiP QcAiPc

]
=

[
Ai 0
0 Ac

i

]
with

R−k �

[
P
Pc

]
R−k[Q Qc] =

[
PR−kQ PR−kQc

PcR−kQ PcR−kQc

]
=

[
R−k 0

0 0

]
and

R` �

[
P
Pc

]
R`[Q Qc] =

[
PR`Q PR`Qc

PcR`Q PcR`Qc

]
=

[
0 0
0 Rc

`

]
,

where Ai ∈ B(M, N), Ac
i ∈ B(Mc, Nc) for each i = 0, 1, R−k ∈ B(N, M) for k ∈ N and

Rc
` ∈ B(Nc, Mc) for ` ∈ N − 1. If we restrict our attention to M and note that Pm = m

for all m ∈ M, then the left fundamental equations for the singular part of the resolvent
can be rewritten as

R−1A1 = I,
R−k−1A1 + R−kA0 = 0 for k ∈ N, (3.8)

where I ∈ B(M) denotes the identity operator on M. If we restrict our attention to Mc

and note that Pcmc = mc for all mc ∈ Mc, then the left fundamental equations for the
regular part of the resolvent become

Rc
0A

c
0 = Ic,

Rc
`−1A

c
1 + Rc

`A
c
0 = 0 for ` ∈ N, (3.9)
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where Ic ∈ B(Mc) denotes the identity operator on Mc. The systems (3.8) and (3.9)
are completely separate. If we restrict our attention to N and note that Qn = n for all
n ∈ N, then the right fundamental equations for the singular part of the resolvent are

A1R−1 = J,
A1R−k−1 + A0R−k = 0 for k ∈ N, (3.10)

where J ∈ B(N) denotes the identity operator on N and, if we restrict our attention to
Nc and note that Qcnc = nc for all nc ∈ Nc, then the right fundamental equations for
the regular part of the resolvent are reduced to

Ac
0R

c
0 = Jc,

Ac
1R

c
`−1 + Ac

0R
c
` = 0 for ` ∈ N, (3.11)

where Jc ∈ B(Nc) denotes the identity operator on Nc. The systems (3.10) and (3.11)
are completely separate. In infinite-dimensional space the analysis depends on both
the left and right sets of fundamental equations. It is not sufficient to use only one of
the two sets. Indeed, we need both R−1A1 = I and A1R−1 = J in order to deduce that
R−1 = A−1

1 ∈ B(N, M) is the uniquely defined inverse of A1. Now we can see that the
systems (3.8) and (3.10) have the unique solution

R−k = (−1)k−1(A−1
1 A0)k−1

A
−1
1

for k ∈ N. A similar argument using Rc
0A

c
0 = Ic and Ac

0R
c
0 = Jc shows that Rc

0 =

[Ac
0]−1 ∈ B(Nc, Mc) is the uniquely defined inverse of Ac

0. Thus, the systems (3.9)
and (3.11) have the unique solution

R
c
` = (−1)`([Ac

0]−1
A

c
1)`[Ac

0]−1

for ` ∈ N − 1. Note that the existence of A−1
1 means that M is isomorphic to N and

the existence of [Ac
0]−1 means that Mc is isomorphic to Nc. Thus, H = M × Mc and

K = N × Nc are isomorphic. Nevertheless, there are situations where we may wish to
regard these isomorphic spaces as different. See [1, 11] and [3, pages 282–285] for
some specific instances.

3.2.5. The reduced resolvent for an operator pencil. Howlett et al. [11] used the
unitary operators U∗1 = [P1, I − P1] and V∗1 = [Q1, I − Q1] described in Section 2.3 to
show that

A(1)(z) = V1A(z)U∗1 =

[
A1,(1,1)z A(1,2)

(1)(z)
0 A(2,2)

(1)(z)

]
(3.12)

and hence deduce that if R(z) ∈ B(K,H) is well defined for z ∈ U 0,r for some r > 0,
then

R(z) = P1[A1,(1,1)]−1Q1/z
− P1[A1,(1,1)]−1A(1,2)

(1)(z)R(2,2)
(1)(z)(I − Q1)/z

+ (I − P1)R(2,2)
(1)(z)(I − Q1)
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for all z ∈ U 0,r, where R(2,2)
(1)(z) = [A(2,2)

(1)(z)]−1. For each z , 0, it is clear from (3.12)
that R(z) exists if and only if [A1,(1,1)]−1 and R(2,2)

(1)(z) both exist.
If [A0,(2,2)

(1)]−1 exists, then the Neumann expansion can be used to find a Maclaurin
series for R(2,2)

(1)(z) when z ∈ U 0,r and hence find a corresponding Laurent series for
R(z). In this case R(z) has a pole of order 1 at z = 0. If [A0,(2,2)

(1)]−1 does not exist, then
the reduction procedure is applied to the pencil A(2,2)

(1)(z). If the process terminates
after n steps, then R(z) has a pole of order n at z = 0. In this paper we are interested in
what happens when the reduction continues ad infinitum.

The assumption that R(z) is analytic for z ∈ U 0,r is nontrivial, as the following
example shows.

Example 3.5. Let H = K = `2 and let A0 ∈ B(H, K), A1 ∈ B(H, K) and A(z) = A0 +

A1z ∈ B(H,K) be defined by the infinite matrices

A0 =



0 ε 0 0 · · ·

0 0 ε 0 · · ·

0 0 0 ε · · ·

0 0 0 0 · · ·
...

...
...

...
. . .


= εJ and A1 =



1 0 0 0 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·

0 0 0 1 · · ·
...

...
...

...
. . .


= I,

where ε ∈ (0, 1) is some known real number. Now for z , 0 a formal reduction
[A(z) | I ]→ [I | R(z) ] using elementary row operations gives

R(z) =



1/z −ε/z2 ε2/z3 −ε3/z4 · · ·

0 1/z −ε/z2 ε2/z3 · · ·

0 0 1/z −ε/z2 · · ·

0 0 0 1/z · · ·
...

...
...

...
. . .


=

∑
j∈N

(−1)n−1(εJ)n−1/zn.

It is relatively straightforward to argue that R(z)A(z)e j = A(z)R(z)e j = e j for all z , 0
and each j ∈ N, where {e j} j∈N ∈ `

2 is the usual orthonormal basis for `2. Although this
might suggest at first glance that R(z) = A(z)−1 is well defined for z , 0, this is not so.
Indeed, we have Jkek+1 = e1 for each k ∈ N. Thus, ‖Jk‖ ≥ 1 for all k ∈ N and so the
series expression above for R(z) does not converge in the operator norm for |z| < ε. �

See [1, Section 3.2] for an example where R(z) has an isolated essential singularity
at z = 0. An infinite-dimensional problem where R(z) has a first-order pole can be
found in [3, pages 264–266].

4. The new results

We stated earlier that our aim was to reconcile two different methods that have been
used to define the generalized resolvent of a linear operator pencil that is singular
at the origin. Let H and K be Hilbert spaces and suppose that A0, A1 ∈ B(H, K),
where A−1

0 ({0}) , {0}. Let A(z) = A0 + A1z ∈ B(H, K) be a linear pencil and let
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R(z) = A(z)−1 ∈ B(K,H) denote the resolvent. The resolvent R(z) is analytic on the
region U s,r where 0 ≤ s < r ≤ ∞ if and only if there exists a corresponding solution
to the fundamental equations. We will show that the method of progressive reduction
using a sequence of unitary transformations will find the resolvent if and only if it is
analytic on a deleted neighbourhood of the originU 0,r for some 0 < r ≤ ∞. Thus, we
can only truly reconcile the two methods on a deleted neighbourhood of the origin.

However, it may be possible to reconcile the two methods indirectly. It is often the
case that the resolvent has only a finite number of isolated singularities. In this case
we have already noted (3.7) that for each s = 1, . . . ,m the resolvent can be expressed
in the form

R(z) = Rs,σ(z) +
∑
t,s

Rt,σ(z) + R∞(z),

where R(z) is analytic for all z ∈ zs +U 0,rs and

Rs,σ(z) =
∑
k∈N

Rs,−k/(z − zs)k

is the singular part of the expansion at z = zs. Consequently, we will be able to use the
progressive reduction to calculate Rs,σ(z) for z ∈ zs +U 0,rs . Since Rs,σ(z) is analytic
for all z , zs, it follows that this expansion will actually converge for z ∈ zs +U 0,∞.
The expansion for Rs,σ(z) can now be converted into a Maclaurin series in nonnegative
powers of z for z ∈ U 0,|zs | or into a Laurent series in negative powers of z for z ∈ U |zs |,∞.
Thus, we can ultimately obtain a Laurent series representation for R(z) on each annular
regionU |zs |,|zt | where R(z) is analytic.

4.1. The first new result. To explain the first new result, we need to explain the
notation. Suppose that A0(H) = K and A−1

0 ({0}) , {0}. Suppose too that R(z) is
analytic on U 0,r for some r > 0. In Section 2.3, we showed that in this case we can
write H � H1 × H⊥1 and K � K1 × K⊥1 and A(z) ∈ B(H, K) can be represented in the
equivalent form A(1)(z) ∈ B(H1 × H⊥1 ,K1 × K⊥1 ), where

A(1)(z) =

[
A1,(1,1)z A(1,2)

(1)(z)
0 A(2,2)

(1)(z)

]
for all z ∈ U 0,r. Clearly, R(1)(z) = [A(1)(z)]−1 exists on U 0,r if and only if [A1,(1,1)]−1

exists and R(2,2)
(1)(z) = [A(2,2)

(1)(z)]−1 exists onU 0,r.
If [A0,(2,2)

(1)]−1({0}) = {0}, then we can calculate the inverse operator A(2,2)
(1)(z)−1 =

(A0,(2,2)
(1) + A1,(2,2)

(1)z)−1 as a Maclaurin series by using a Neumann expansion and the
process terminates. Thus, we suppose that [A0,(2,2)

(1)]−1({0}) , {0}. Since we already
observed in Section 2.3 that A0(H) = K implies that A0,(2,2)

(1)(H⊥1 ) = K⊥1 , the problem
to calculate the reduced resolvent R(2,2)

(1)(z) ∈ B(K⊥1 ,H
⊥
1 ) has precisely the same form

as the original problem to calculate the resolvent R(1)(z) ∈ B(K,H). Hence, the process
can be repeated on the reduced problem.

Since the reduced problem has the same form as the original, we can also see that
the inversion can be completed using a Neumann expansion if the process terminates
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after a finite number of steps. Thus, we restrict our attention to the case where the
process continues ad infinitum.

After m ∈ N applications we have the orthogonal decompositions H = H1 × · · · ×

Hm × H⊥m , where Hn = [A0,(n+1,n+1)
(n)]−1({0}) ⊆ H⊥n−1 with H⊥n−1 = Hn × H⊥n for all n ≤ m

and K = K1 × · · · × Km × K⊥m , where Kn = A1,(n+1,n+1)
(n)(Hn) ⊆ Kn−1 with Kn−1 = Kn ×

K⊥n for all n ≤ m. Now A(z) ∈ B(H, K) can be represented in the equivalent form
A(m)(z) ∈ B(H1 × · · · × Hm × H⊥m ,K1 × · · · × Km × K⊥m), where

A(m)(z) �



A1,(1,1)z A(1,2)(z) · · · A(1,m)(z) A(1,m+1)
(m)(z)

0 A1,(2,2)z · · · A(2,m)(z) A(2,m+1)
(m)(z)

...
...

. . .
...

...
0 0 · · · A1,(m,m)z A(m,m+1)

(m)(z)
0 0 · · · 0 A(m+1,m+1)

(m)(z)


,

where [A1,(n,n)]−1 is well defined for n ≤ m and A0,(m+1,m+1)
(m)(H⊥m) = K⊥m . We also have

A0,(m+1,m+1)
−1({0}) , {0}.

We assume that the reduction continues ad infinitum and define increasing
sequences of orthogonal projections {S m}m∈N ∈ B(H) and {Tm}m∈N ∈ B(K) by setting
S m = P1 + · · · + Pm ∈ B(H) and Tm = Q1 + · · · + Qm ∈ B(K), where Pn ∈ B(H) and
Qn ∈ B(K) are the natural orthogonal projections onto the subspaces Hn ⊆ H and
Kn ⊆ K respectively for all n ∈ N. We write H = S n(H) × (I − S n)(H) = Mn × M⊥n
and K = Tn(K) × (I − Tn)(K) = Nn × N⊥n for each n ∈ N. Note that Mn � H1 × · · · × Hn

and Nn � K1 × · · · × Kn. Thus, the operator Ai ∈ B(H, K) can be represented in the
equivalent formAi

(n) ∈ B(Mn × M⊥n ,Nn × N⊥n ), where

Ai
(n) =

[
TnAiS n TnAi(I − S n)

(I − Tn)AiS n (I − Tn)Ai(I − S n)

]
=

[
Ai,(1,1)

(n) Ai,(1,2)
(n)

0 Ai,(2,2)
(n)

]
for each i = 0, 1 and each n ∈ N. Thus,A(n)(z) ∈ B(Mn × M⊥n ,Nn × N⊥n ) is given by

A(n)(z) =A0
(n) +A1

(n)z =

[
A(1,1)

(n)(z) A(1,2)
(n)(z)

0 A(2,2)
(n)(z)

]
for each n ∈ N. Moreover, the blocks A(n)

(1,1)(z) and A(n)
(2,2)(z) are always invertible for

z ∈ U 0,r. Our first new result can now be stated as follows.

Theorem 4.1. Suppose that A0(H) = K and A−1
0 ({0}) , {0} and suppose further that

[A0,(m+1,m+1)
(m)]−1({0}) , {0} for all m ∈ N. Suppose too that R(z) is analytic on

U 0,r for some r > 0. For the sequences of orthogonal projections {S n}n∈N ⊆ B(H)
and {Tn}n∈N ⊆ B(K), there exist maximal orthogonal projections S ∈ B(H) and T ∈
B(K) with S n � S and Tn � T for all n ∈ N. If S , I and T , I, then we have
corresponding orthogonal decompositions H � S (H) × (I − S )(H) = M ×M⊥ and K �
T (K) × (I − T )(K) = N × N⊥. If we define A1,(1,1) = T A1S ∈ B(M, N) and A0,(2,2) =

(I − T )A0(I − S ) ∈ B(M⊥,N⊥), then the inverse mappings [A1,(1,1)]−1 ∈ B(N, M) and
[A0,(2,2)]−1 ∈ B(N⊥,M⊥) are each well defined. �
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Proof. Since S n � S m � I ∈ B(H) and Tn � Tm � I ∈ B(K) for all m, n ∈ N with
m > n, it follows from Zorn’s lemma that we can find maximal orthogonal projections
S ∈ B(H) and T ∈ B(K) for the respective partially ordered sequences {S n} and {Tn}.
There are two cases to consider. If the sequences {S n(H)} ⊆ H and {Tn(K)} ⊆ K do
not exhaust the respective spaces, then S , I and T , I and there exist corresponding
nontrivial partitions H � S (H) × (I − S )(H) = M × M⊥ and K � T (K) × (I − T )(K) =

N × N⊥ for the spaces H and K. If the sequences {S n(H)} and {Tn(K)} do exhaust the
respective spaces, then S = I and T = I and there is no corresponding partition.

Case 1: If S , I and T , I, defineAi ∈ B(M × M⊥,N × N⊥) by

Ai =

[
T

I − T

]
Ai

[
S I − S

]
=

[
Ai,(1,1) Ai,(1,2)

0 Ai,(2,2)

]
for each i = 0, 1 andA(z) =A0 +A1z ∈ B(M × M⊥,N × N⊥) by

A(z) =

[
T

I − T

]
A(z)

[
S I − S

]
=

[
A(1,1)(z) A(1,2)(z)

0 A(2,2)(z)

]
,

where the individual blocks are defined by A(i, j)(z) = A0,(i, j) +A1,(i, j)z for all z ∈ C.
We have assumed that R(z) ∈ B(K,H) is analytic for z ∈ U 0,r and so

R(z) =

[
S

I − S

]
R(z)

[
T I − T

]
=

[
R(1,1)(z) R(1,2)(z)
R(2,1)(z) R(2,2)(z)

]
is also analytic for z ∈ U 0,r. The equations R(z)A(z) = I andA(z)R(z) = I for z ∈ U 0,r
have a unique solution given by

R(2,2)(z) = [A(2,2)(z)]−1, R(2,1)(z) = 0, R(1,1)(z) = [A(1,1)(z)]−1

and
R(1,2)(z) = (−1)[A(1,1)(z)]−1A(1,2)(z)[A(2,2)(z)]−1

for all z ∈ U 0,r. In particular, we note that [A(1,1)(z)]−1 ∈ B(N, M) is well defined. We
have M = S (H) � H1 × H2 × · · · and N = T (K) � K1 × K2 × · · · and so the operator
A(1,1)(z) ∈ B(M,N) can be represented in the form

A(1,1)(z) �


A1,(1,1)z A(1,2)(z) A(1,3)(z) · · ·

0 A1,(2,2)z A(2,3)(z) · · ·

0 0 A1,(3,3)z · · ·
...

...
...

. . .

 .
Since R(1,1)(z) = [A(1,1)(z)]−1 ∈ B(N, M) is well defined for z ∈ U 0,r, it has an
analogous representation

R(1,1)(z) �


R(1,1)(z) R(1,2)(z) R(1,3)(z) · · ·

0 R(2,2)(z) R(2,3)(z) · · ·

0 0 R(3,3)(z) · · ·
...

...
...

. . .


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onU 0,r. If we equate corresponding blocks in the equations

R(1,1)(z)A(1,1)(z) = I and A(1,1)(z)R(1,1)(z) = I,

we obtain a doubly-infinite but naturally ordered set of equations. In the ( j, j) position,

R( j, j)(z)A1,( j, j)z = I and A1,( j, j)zR( j, j)(z) = I

for each j ∈ N. It follows that [A1,( j, j)]−1 ∈ B(K j,H j) exists and that

R( j, j)(z) =
[A1,( j, j)]−1

z
(4.1)

for each j ∈ N. In the ( j, j + 1) position a similar argument shows that

R( j, j+1)(z) = (−1)
[A1,( j, j)]−1A( j, j+1)(z)[A1,( j+1, j+1)]−1

z2 (4.2)

for each j ∈ N. We can continue this process to progressively solve for all blocks
in the operator matrix R(1,1)(z) for all z ∈ U 0,r. It is important to observe that each
block R( j, j+n)(z) contains only terms in 1/zk where k ∈ {1, 2, . . . , n}. Because R(1,1)(z) is
analytic for z ∈ U 0,r, it is now clear that there must be a convergent Laurent expansion
in the form

R(1,1)(z) =
R−1,(1,1)

z
+
R−2,(1,1)

z2 + · · · , (4.3)

where R−k,(1,1) ∈ B(N, M) for all k ∈ N and ‖R−k,(1,1)‖
1/k → 0 as k→∞. Hence, the

Laurent series actually converges for all z ∈ U 0,∞. By using some tedious algebra to
compare the solution (4.3) with our solution computed above in (4.1) and (4.2), it can
be shown that

R−k,(1,1) = (−1)k−1[A1,(1,1)]−1(A0,(1,1)[A1,(1,1)]−1)k−1

for all k ∈ N. This means that ‖[A1,(1,1)]−1(A0,(1,1)[A1,(1,1)]−1)k−1‖1/k → 0 as k→∞.
Thus, we can now justify the formal Neumann expansion

(A0,(1,1) +A1,(1,1)z)−1 =

∞∑
k=1

(−1)k−1[A1,(1,1)]−1(A0,(1,1)[A1,(1,1)]−1)k−1/zk.

The maximality of S means that [A0,(2,2)]−1({0}) = {0}. Since A0(H) = K, it follows
that A0,(2,2)(M⊥) = N⊥ and so A0,(2,2) is a 1–1 mapping of M⊥ onto N⊥. Thus, by
the Banach inverse theorem, [A0,(2,2)]−1 ∈ B(N⊥, M⊥) is also a well-defined bounded
linear mapping.

Case 2: If S = I and T = I, then we have H � H1 × H2 × · · · and K � K1 × K2 × · · ·

and similar arguments can be used to show that

A(z) �


A1,(1,1)z A(1,2)(z) A(1,3)(z) · · ·

0 A1,(2,2)z A(2,3)(z) · · ·

0 0 A1,(3,3)z · · ·
...

...
...

. . .

 ∈ B(H,K)

is invertible for z ∈ U 0,r and that [A1,(1,1)]−1 ∈ B(K,H) is well defined. �
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4.2. The second new result. Suppose that the conditions of Theorem 4.1 are
satisfied. Since

A(z) =

[
T

I − T

]
A(z)

[
S I − S

]
=

[
A(1,1)(z) A(1,2)(z)

0 A(2,2)(z)

]
and since A(z)−1 exists if and only if R(z) = A(z)−1 exists, it follows that the inverse
mapping R(z) =A(z)−1 ∈ B(N × N⊥,M × M⊥) is well defined with

R(z) =A(z)−1 =

[
[A(1,1)(z)]−1 −[A(1,1)(z)]−1A(1,2)(z)[A(2,2)(z)]−1

0 [A(2,2)(z)]−1

]
(4.4)

for all z ∈ U 0,r. We have A( j, j)(z) = A0,( j, j) + A1,( j, j)z for each j = 1, 2. From
Theorem 4.1, we know that [A1,(1,1)]−1 ∈ B(N, M) and [A0,(2,2)]−1 ∈ B(N⊥, M⊥) are
both well defined. Hence, we can use the relevant Neumann expansions to show that

[A(1,1)(z)]−1 = [A1,(1,1)]−1
∞∑

k=1

(−1)k−1(A0,(1,1)[A1,(1,1)]−1)k−1/zk (4.5)

for |z| > s1 = limk→∞ ‖(A0,(1,1)[A1,(1,1)]−1)k‖1/k and

[A(2,2)(z)]−1 = [A0,(2,2)]−1
∞∑
j=0

(−1) j(A1,(2,2)[A0,(2,2)]−1) jz j (4.6)

for |z| < r1 = 1/ lim j→∞ ‖(A1,(2,2)[A0,(2,2)]−1) j‖1/ j. We initially assumed that A(z)−1 ∈

B(K,H) is well defined for z ∈ U 0,r and so there must be a Laurent series expansion
for the singular part of the resolvent that converges for z ∈ U 0,∞. The Laurent series
(4.5) converges for z ∈ U s1,∞ for some finite s1 and so both expansions are valid for
z ∈ U s1,∞. Since the Laurent series representation is unique, it follows that the two
series must be identical. Hence, s1 = 0. A similar argument applied to the regular part
means that we must also have r1 = r.

The expansions (4.5) and (4.6) can be used to extract the crucial coefficients
R−1,R0 ∈ B(K,H) from (4.4). We can now state our second new result.

Theorem 4.2. Suppose that A0(H) = K and A−1
0 ({0}) , {0} and suppose further that

[A0,(m+1,m+1)
(m)]−1({0}) , {0} for all m ∈ N. Suppose too that R(z) is analytic on U 0,r

for some r > 0. If we substitute the series expansions (4.5) and (4.6) into (4.4) and
extract the coefficients of 1/z and the constant coefficients, then

R−1 � R−1 =

[
R−1,(1,1) R−1,(1,2)

0 0

]
,

where R−1,(1,1) = [A1,(1,1)]−1 and

R−1,(1,2)

= [A1,(1,1)]−1
{ ∞∑

j=0

(A0,(1,1)[A1,(1,1)]−1) j+1A1,(1,2)([A0,(2,2)]−1A1,(2,2)) j

−

∞∑
j=0

(A0,(1,1)[A1,(1,1)]−1) jA0,(1,2)([A0,(2,2)]−1A1,(2,2)) j
}
[A0,(2,2)]−1
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and

R0 � R0 =

[
0 R0,(1,2)
0 R0,(2,2)

]
,

where

R0,(1,2)

= [A1,(1,1)]−1
{ ∞∑

j=0

(A0,(1,1)[A1,(1,1)]−1) jA0,(1,2)([A0,(2,2)]−1A1,(2,2)) j+1

−

∞∑
j=0

(A0,(1,1)[A1,(1,1)]−1) jA1,(1,2)([A0,(2,2)]−1A1,(2,2)) j
}
[A0,(2,2)]−1

and R0,(2,2) = [A0,(2,2)]−1. The key projections P = R−1A1 ∈ B(H) and Q = A1R−1 ∈

B(K) are given by

P �

[
I P(1,2)
0 0

]
,

where

P(1,2) = R−1,(1,1)A1,(1,2) + R−1,(1,2)A1,(2,2)

= [A1,(1,1)]−1
{ ∞∑

j=0

(A0,(1,1)[A1,(1,1)]−1) jA1,(1,2)([A0,(2,2)]−1A1,(2,2)) j

−

∞∑
j=0

(A0,(1,1)[A1,(1,1)]−1) jA0,(1,2)([A0,(2,2)]−1A1,(2,2)) j+1
}

and

Q �

[
I Q(1,2)
0 0

]
,

where

Q(1,2) = A1,(1,1)R−1,(1,2)

=

{ ∞∑
j=0

(A0,(1,1)[A1,(1,1)]−1) j+1A1,(1,2)([A0,(2,2)]−1A1,(2,2)) j

−

∞∑
j=0

(A0,(1,1)[A1,(1,1)]−1) jA0,(1,2)([A0,(2,2)]−1A1,(2,2)) j
}
[A0,(2,2)]−1. �

Proof. It is easy to check that P2 = P and Q2 = Q and, although the details are
complicated, only elementary algebra is required to check that {R−1, R0} is a basic
solution to the fundamental equations (2.2) and (2.3). We remind the reader that the
requirements for a basic solution are given in Definition 3.4. Note that P(H) = M and
Q(K) = N but in general (I − P)(H) = Mc , M⊥ and (I − Q)(K) = Nc , N⊥. �
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4.3. The sequence of unitary transformations. We described the first stage of the
reduction process in Section 2.3 and observed that the original inversion problem could
be replaced by an equivalent inversion problem on a smaller space. We concluded that
if the unperturbed operator remains singular in the reduced pencil, then the process
could be repeated. Although this high-level argument is correct, we believe that when
the reduction continues ad infinitum the detailed inductive argument is also instructive.

The inductive hypothesis. Suppose that after stage m ∈ N we have the orthogonal
decompositions H � H1 × · · · × Hm × H⊥m = Fm and K � K1 × · · · × Km × K⊥m = Gm
and that for each j ≤ m the associated natural orthogonal projections are denoted by
P j ∈ B(H) mapping H onto H j and Q j ∈ B(K) mapping K onto K j. Let Um ∈ B(H,Fm)
and Vm ∈ B(K,Gm) be unitary transformations defined by

Um =


P1
...

Pm

I − S m

 and Vm =


Q1
...

Qm

I − Tm

 ,
where we have written S m = P1 + · · · + Pm and Tm = Q1 + · · · + Qm. We suppose that
A0,A1 ∈ B(H,K) are represented in the equivalent form A(m)

0 ,A(m)
1 ∈ B(Fm,Gm) defined

by A(m)
0 = VmA0U∗m and A(m)

1 = VmA1U∗m and given by

A(m)
0 =



0 A0,(1,2) A0,(1,3) · · · A0,(1,m) A0,(1,m+1)
(m)

0 0 A0,(2,3) · · · A0,(2,m) A0,(2,m+1)
(m)

...
...

...
. . .

...
...

0 0 0 · · · A0,(m−1,m) A0,(m−1,m+1)
(m)

0 0 0 · · · 0 A0,(m,m+1)
(m)

0 0 0 · · · 0 A0,(m+1,m+1)
(m)


and

A(m)
1 =



A1,(1,1) A1,(1,2) · · · A1,(1,m) A1,(1,m+1)
(m)

0 A1,(2,2) · · · A1,(2,m) A1,(2,m+1)
(m)

...
...

. . .
...

...
0 0 · · · A1,(m,m) A1,(m,m+1)

(m)

0 0 · · · 0 A1,(m+1,m+1)
(m)


,

where we have written Ai,(r,s)
(m) = Ai,(r,s) for blocks that remain unchanged by

subsequent transformations. Thus, A(m)(z) = VmA(z)U∗m ∈ B(Fm,Gm) is given by

A(m)(z) =



A1,(1,1)z A(1,2)(z) · · · A(1,m)(z) A(m)
(1,m+1)(z)

0 A1,(2,2)z · · · A(2,m)(z) A(m)
(2,m+1)(z)

...
...

. . .
...

...

0 0 · · · A1,(m,m)z A(m)
(m,m+1)(z)

0 0 · · · 0 A(m)
(m+1,m+1)(z)


.
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We suppose that [A1,( j, j)]−1 ∈ B(K j, H j) is well defined for each j ≤ m and that
A0,(m+1,m+1)

(m)(H⊥m) = K⊥m and [A0,(m+1,m+1)
(m)]−1({0}) , {0}.

The induction. It follows that Hm+1 = [A0,(m+1,m+1)
(m)]−1({0}) , {0} is a nontrivial

closed subspace of H⊥m . Thus, we may write H⊥m � Hm+1 × H⊥m+1. Now from
our original hypothesis that R(z) = A(z)−1 is analytic for z ∈ U 0,r we know that
[A(m+1,m+1)

(m)(z)]−1 must be well defined for z ∈ U 0,r and so by Lemma 2.1 we
deduce that A1,(m+1,m+1)

(m) is bounded below on Hm+1. Hence, we also know that
Km+1 = A1,(m+1,m+1)

(m)(Hm+1) is closed and so we can write K⊥m � Km+1 × K⊥m+1.
Let Pm+1 ∈ B(H) denote the natural orthogonal projection onto the subspace Hm+1 ⊆

H and let Qm+1 ∈ B(K) denote the natural orthogonal projection onto the subspace
Km+1 ⊆ K. Note that P jPm+1 = Pm+1P j = 0 and Q jQm+1 = Qm+1Q j = 0 for all j ≤ m.
If we write Fm+1 = H1 × · · · × Hm+1 × H⊥m+1 and Gm+1 = K1 × · · · × Km+1 × K⊥m+1, then
we have unitary operators Um+1 ∈ B(H, Fm+1) and Vm ∈ B(K,Gm+1) defined by

Um+1 =


P1
...

Pm+1
I − S m+1

 and Vm+1 =


Q1
...

Qm+1
I − Tm+1

 ,
where we have written S m+1 = P1 + · · · + Pm+1 and Tm+1 = Q1 + · · · + Qm+1. The
operators Ai,( j,m+1)

(m) ∈ B(H j,K⊥m) can now be represented in the form[
Ai,( j,m+1) Ai,( j,m+2)

(m+1)
]
∈ B(H j,Km+1 × K⊥m+1)

for each i = 0, 1 and j = 1, . . . ,m. Since Hm+1 is the null space of the operator
A0,(m+1,m+1)

(m) ∈ B(H⊥m ,K
⊥
m), we can represent the operator in the equivalent form[

0 A0,(m+1,m+2)
(m+1)

0 A0,(m+2,m+2)
(m+1)

]
∈ B(Hm+1 × H⊥m+1,Km+1 × K⊥m+1).

Because Km+1 = A1,(m+1,m+1)
(m)(Hm+1), the operator A1,(m+1,m+1)

(m) ∈ B(H⊥m ,K
⊥
m) can be

represented in the equivalent form[
A1,(m+1,m+1) A1,(m+1,m+2)

(m+1)

0 A1,(m+2,m+2)
(m+1)

]
∈ B(Hm+1 × H⊥m+1,Km+1 × K⊥m+1).

Therefore, A(m+1,m+1)
(m)(z) ∈ B(H⊥m ,K

⊥
m) can be represented as[

A1,(m+1,m+1)z A(m+1,m+2)
(m+1)(z)

0 A(m+2,m+2)
(m+1)(z)

]
∈ B(Hm+1 × H⊥m+1,Km+1 × K⊥m+1).

The operator [A(m+1,m+1)
(m)(z)]−1 ∈ B(K⊥m , H⊥m) is analytic for z ∈ U 0,r. Hence, we

deduce that [A1,(m+1,m+1)]−1 ∈ B(Hm+1, Km+1) is well defined and that [A(m+2,m+2)
(m+1)

(z)]−1 ∈ B(H⊥m+1, K⊥m+1) is analytic for z ∈ U 0,r. Thus, we have established that
A(m+1)

0 , A(m+1)
1 ∈ B(Fm+1,Gm+1) have the desired structural properties.

The conclusion. Since these properties are true for n = 1, they must be true for all
n ∈ N.
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4.4. Generalization of the first new result. In general, if A0(H) , K the recursive
elimination is applied in exactly the same way until the null space of the unperturbed
operator has been reduced to the zero element. This may or may not happen after a
finite number of steps. If the elimination continues ad infinitum, then an application
of Zorn’s lemma similar to the one described in Theorem 4.1 will be required.
Either way the problem of inverting the original pencil A(z) = A0 + A1z ∈ B(H, K)
where A0 is neither onto nor 1–1 will be reduced to the inversion of a similar pencil
A(2,2)(z) = A0,(2,2) +A1,(2,2)z ∈ B(M⊥, N⊥) on smaller spaces M⊥ ⊆ H and N⊥ ⊆ K
where the unperturbed operator A0,(2,2) is 1–1 but is not onto. Now in this case
the adjoint operator A∗0,(2,2) ∈ B(N⊥, M⊥) is onto with A∗0,(2,2)(N

⊥) = M⊥ but is not
1–1. Since R(2,2)(z) =A(2,2)(z)−1 = [A∗(2,2)(z)−1]∗, we apply the inversion process to the
adjoint operatorA∗(2,2)(z) to findA∗(2,2)(z)−1 and then take the adjoint.

5. Solving the fundamental equations

In Section 3.2.4, we showed that if the key projections P ∈ B(H) and Q ∈ B(K)
are known, then we can write H � P(H) × (I − P)(H) = M × Mc and K � Q(K)×
(I − Q)(K) = N × Nc. We also defined operators Ai = QAiP ∈ B(M, N) and Ac

i =

QcAiPc = (I − Q)Ai(I − P) ∈ B(Mc, Nc) for each i = 0, 1 in order to show that the
solution to the fundamental equations can be written in the form

R−k = (−1)k−1(A−1
1 A0)k−1

A
−1
1 ,

where R−k = PR−kQ � R−k for k ∈ N and

R
c
j = (−1) j([Ac

0]−1
A

c
1) j(Ac

0)−1,

where Rc
j = PcR jQc � R j for j ∈ N − 1. In Section 4.2, we used a sequence of unitary

transformations to find general formulæ (4.4), (4.5) and (4.6) for the resolvent and
hence found corresponding series expansions for the key projections P ∈ B(H) and
Q ∈ B(K). We will now revisit these expansions to discuss numerical calculation
of the basic solution. We assume throughout this section that R(z) ∈ B(K, H) is
analytic for z ∈ U 0,r for some r > 0 and hence that limk→∞ ‖(A−1

1 A0)k‖1/k = 0 and
lim j→∞ ‖([Ac

0]−1Ac
1) j‖1/ j = 1/r.

5.1. The singular part of the resolvent. The singular part of the resolvent is
formally represented as a series of negative powers. We define

Rσ(z) = (A0 + A1z)−1 =
∑
k∈N

R−kz−k

for all z , 0, where R−k = (−1)k−1[A−1
1 A0]k−1A−1

1 for all k ∈ N.
In the case where the decomposition continues ad infinitum, we know that M �

H1 × H2 × · · · and N � K1 × K2 × · · · and so we can represent these operators as
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infinitely extending operator matrices

A0 �A0,(1,1) �



0 A0,(1,2) A0,(1,3) A0,(1,4) · · ·

0 0 A0,(2,3) A0,(2,4) · · ·

0 0 0 A0,(3,4) · · ·

0 0 0 0 · · ·
...

...
...

...
. . .


and

A1 �A1,(1,1) �



A1,(1,1) A1,(1,2) A1,(1,3) A1,(1,4) · · ·

0 A1,(2,2) A1,(2,3) A1,(2,4) · · ·

0 0 A1,(3,3) A1,(3,4) · · ·

0 0 0 A1,(4,4) · · ·
...

...
...

...
. . .


.

The inverse operator A−1
1 ∈ B(N,M) is well defined and we already showed in the proof

of Theorem 4.1 that the operator [A1,( j, j)]−1 ∈ B(K j,H j) is well defined for each j ∈ N.
BecauseA1,(1,1) is block upper triangular, the inverse operator can also be represented
as a block upper triangular operator matrix in the form

A
−1
1 = [A1,(1,1)]−1 �



R1,(1,1) R1,(1,2) R1,(1,3) R1,(1,4) · · ·

0 R1,(2,2) R1,(2,3) R1,(2,4) · · ·

0 0 R1,(3,3) R1,(3,4) · · ·

0 0 0 R1,(4,4) · · ·
...

...
...

...
. . .


,

where R1,(i, j) ∈ B(K j,Hi) for each i, j ∈ N and R1,( j, j) � [A1,( j, j)]−1 for each j ∈ N. It
follows that

A
−1
1 A0A

−1
1 �



0 S 0,(1,2) S 0,(1,3) S 0,(1,4) · · ·

0 0 S 0,(2,3) S 0,(2,4) · · ·

0 0 0 S 0,(3,4) · · ·

0 0 0 0 · · ·
...

...
...

...
. . .


and

(A−1
1 A0)2

A
−1
1 �



0 0 T0,(1,3) T0,(1,4) · · ·

0 0 0 T0,(2,4) · · ·

0 0 0 0 · · ·

0 0 0 0 · · ·
...

...
...

...
. . .


and so on ad infinitum. Since limk→∞ ‖(A−1

1 A0)k‖1/k = 0, we already know that the
series for Rσ(z) converges in the regionU 0,∞. However, if we write n j = Q jn ∈ K j for
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each j ∈ N and all n ∈ N, then we can also see that (A−1
1 A0)k−1A−1

1 n j = 0 when k > j.
Hence, R−kn j = 0 when k > j. It follows that

R(z)n j =
∑
k∈N

(R−kn j)z−k =

j∑
k=1

(R−kn j)z−k

is always well defined irrespective of any esoteric arguments about convergence of the
series in the operator topology. Thus, in numerical calculations, we may choose to
approximate n ≈

∑m
j=1 n j, where n j ∈ K j for some sufficiently large m ∈ N, in which

case we can calculate

R(z)
m∑

j=1

n j =

m∑
j=1

R(z)n j =

m∑
j=1

j∑
k=1

(R−kn j)z−k

using only finite operator matrices and finite sums. If the decomposition terminates
after m steps or if we simply restrict our attention to the projected mappingsA(m)

0 ,A(m)
1 ∈

B(H1 × · · · × Hm,K1 × · · · × Km), then we can represent the operators as finite operator
matrices

A
(m)
0 �A(m)

0,(1,1) �



0 A0,(1,2) A0,(1,3) · · · A0,(1,m−1) A0,(1,m)
0 0 A0,(2,3) · · · A0,(2,m−1) A0,(2,m)
0 0 0 · · · A0,(3,m−1) A0,(3,m)
...

...
...

. . .
...

...
0 0 0 · · · 0 A0,(m−1,m)
0 0 0 · · · 0 0


and

A
(m)
1 �A(m)

0,(1,1) �



A1,(1,1) A1,(1,2) A1,(1,3) · · · A1,(1,m)
0 A1,(2,2) A1,(2,3) · · · A1,(2,m)
0 0 A1,(3,3) · · · A1,(3,m)
...

...
...

. . .
...

0 0 0 · · · A1,(m,m)


.

It follows that ([U(m)
1 ]−1U

(m)
0 )k−1[U(m)

1 ]−1 = 0 for k > m. This means that if the
decomposition terminates after m steps, then the resolvent has a pole at z = 0 of order
at most m. If the decomposition continues ad infinitum, then it means that we could
choose to approximate the resolvent by a projected resolvent with a finite-order pole
at z = 0.

5.2. The regular part of the resolvent. The regular part of the resolvent is formally
represented by a series of nonnegative powers. We define

Rρ(z) = (Ac
0 + Ac

1z)−1 =
∑

j∈N−1

R
c
jz

j
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for |z| < r, where Rc
j = (−1) j([Ac

0]−1Ac
1) j(Ac

0)−1 for all j ∈ N − 1. We know that
Mc = (I − P)(H) � (I − P)(M × M⊥) and so the general element of Mc ⊆ M × M⊥ can
be written in the form

(I − P)x �
[
0 −P(1,2)
0 I

] [
m

m⊥

]
=

[
−P(1,2)m⊥

m⊥

]
.

Since Ac
0 � (I − Q)A0(I − P), we can write

A
c
0 �

[
0 −Q(1,2)A0,(2,2)
0 A0,(2,2)

]
.

We have Nc = (I − Q)(K) � (I − Q)(N × N⊥) and so the general element of Nc ⊆

N × N⊥ can be written as

(I − Q)y �
[
0 −Q(1,2)
0 I

] [
n

n⊥

]
=

[
−Q(1,2)n⊥

n⊥

]
.

To show that Ac
0 is invertible, we need to show that the equation[

0 −Q(1,2)A0,(2,2)
0 A0,(2,2)

] [
−P(1,2)m⊥

m⊥

]
=

[
−Q(1,2)n⊥

n⊥

]
or the equivalent equation[

−Q(1,2)A0,(2,2)m⊥
A0,(2,2)m⊥

]
=

[
−Q(1,2)n⊥

n⊥

]
has a unique solution for all n⊥ ∈ N⊥. Since this equation has a unique solution
if and only if A0,(2,2)m⊥ = n⊥ has a unique solution, and since we have already
seen that [A0,(2,2)]−1 ∈ B(N⊥, M⊥) is well defined, the desired result is true. Hence,
[Ac

0]−1 ∈ B(Nc,Mc) is a well-defined bounded linear operator.

6. A particular example

Suppose that {λn}n∈N ∈ R
N is a strictly decreasing sequence of real numbers with

1 ≥ λ1/n
n ↓ 0 as n ↑ ∞ and let λ =

∑
n∈N λn. Solve the system of differential equations

ḟn(t) − λn fn+1(t) − λng(t) = 0

with fn(0) = 0 for all n ∈ N and

ġ(t) + λg(t) = 0

with g(0) = 1 on the interval t ∈ [0,∞).
The system can be regarded as a speculative model of growth and decay. The mass

g of master material G decays at a rate proportional to its mass. As the master material
decays it is converted using additional unspecified ingredients into a collection of
mixed materials {Fn}n∈N, where the mass fn of material Fn for each n ∈ N grows at
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a rate proportional to the total of the masses fn+1 and g of the materials Fn+1 and G,
respectively.

We begin by taking a Laplace transform of the system. For s ∈ C with real part
<(s) > 0, define

F(s) =


F1(s)
F2(s)
...

 ,
where Fn(s) =

∫
[0,∞) fn(t)e−st dt for all n ∈ N and G(s) =

∫
[0,∞) g(t)e−st dt. Now we can

write the Laplace transform system in augmented operator matrix form as[
sI − L −λ

0∗ s + λ

] [
F(s)
G(s)

]
=

[
0
1

]
, (6.1)

where we have written

L =


0 λ1 0 · · ·

0 0 λ2 · · ·

0 0 0 · · ·
...

...
...

. . .

 , λ =


λ1
λ2
λ3
...

 and 0 =


0
0
0
...

 .
The space `2 × C becomes a Hilbert space if we define

〈(x, ξ), (y, η)〉 =
∑
j∈N

x jy j + ξη

for each (x, ξ), (y, η) ∈ `2 × C. Define A0, A1 ∈ B(`2 × C) by

A0 =

[
−L −λ
0∗ λ

]
and A1 =

[
I 0

0∗ 1

]
and write

A(z) = A0 + A1z =

[
zI − L −λ

0∗ z + λ

]
∈ B(`2 × C) (6.2)

for all z ∈ C. To solve (6.1), we need to calculate the resolvent R(z) = A(z)−1. It is clear
that A−1

0 ({0}) , {0} and that the proposed recursive projection procedure continues ad
infinitum. Nevertheless, the projections do not exhaust the entire space. For each
(x, ξ) ∈ `2 × C and each n ∈ N, we have S n(x, ξ) = Tn(x, ξ) =

∑n
j=1 x je j. It follows

that the maximal orthogonal projections are given by S (x, ξ) = T (x, ξ) = x for each
(x, ξ) ∈ `2 × C. Therefore, the orthogonal partition defined by the maximal projections
coincides with the natural partition of the space `2 × C. It follows from Theorem 4.2
that the basic solution R−1,R0 ∈ B(`2 × C) takes the form

R−1 =

[
I α

0∗ 0

]
and R0 =

[
0 β
0∗ 1/λ

]
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on some region U0,r, where α, β ∈ B(C, `2) are defined by α(ξ) = ξα and β(ξ) = ξβ
for all ξ ∈ C. By substituting in the fundamental equations R−1A1 + R0A0 = I and
A1R−1 + A0R0 = I, we have α = (λI + L)−1λ and β = (−1)(λI + L)−1λ/λ. Therefore,

R−1 =

[
I (λI + L)−1λ
0∗ 0

]
and R0 =

[
0 −(λI + L)−1λ/λ
0∗ 1/λ

]
.

Hence, we can calculate the key projections P = R−1A1 and Q = A1R−1 and use the
general formulæ (3.5) and (3.6) to find the Laurent series representation for the
resolvent R(z). Although we can find R(z) by using these formal structures, it is
quite straightforward in this particular example—because the maximal orthogonal
decomposition for the space `2 × C coincides with the natural decomposition—to
simply apply elementary block row operations to A(z) in (6.2). This gives

R(z) =

[
(zI − L)−1 (z + λ)−1(zI − L)−1λ

0∗ (z + λ)−1

]
∈ B(`2 × C) (6.3)

for all z , 0,−λ, where we have used the Laurent series expansion

(zI − L)−1 = (1/z)[I + (L/z) + (L/z)2 + · · · ] (6.4)

to define the inverse operator (zI − L)−1. In this regard, we note that the individual
elements of Lk are given by

Lk
i j =

{
λnλn+1 · · · λn+k−1 when (i, j) = (n, n + k) for each n ∈ N,

0 otherwise

for all (i, j) ∈ N2 and k ∈ N. It follows that ‖Lk‖1/k = (λ1λ2 · · ·λk)1/k ≤ λ1/k
k ↓ 0 as k ↑ ∞.

Hence, the Laurent series (6.4) converges for all z , 0. From (6.3), we also deduce that
the solution to the Laplace transform system (6.1) is[

F(s)
G(s)

]
=

[
(sI − L)−1 (s + λ)−1(sI − L)−1λ

0∗ (s + λ)−1

] [
0
1

]
=

[
(s + λ)−1(sI − L)−1λ

(s + λ)−1

]
for all s with<(s) > 0. An elementary inversion gives g(t) = e−λt for all t ∈ [0,∞). For
the remaining inversions,

e∗nLkλ = λnλn+1 · · · λn+k

for each n, k ∈ N and so

Fn(s) =
1

s + λ

[
λn

s
+
λnλn+1

s2 +
λnλn+1λn+2

s3 + · · ·

]
,

from which it follows that

fn(t) = e−λt
∫

[0,t]
eλτ

[
λn + λnλn+1τ +

λnλn+1λn+2τ
2

2!
+ · · ·

]
dτ
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for all t ∈ [0,∞) and all n ∈ N. Note that the series under the integral sign is uniformly
convergent on [0, t] for all t ∈ [0,∞). If we wish to extract a particular material Fn

from the mixture at any given time, the mass of extractable material is given by

gn(t) = fn(t) − λn

∫ t

0
fn+1(τ) dτ

for all n ∈ N. Note that g +
∑

n∈N gn = 1.

Remark 6.1. Although the Laplace transform inversion only requires the Laurent
series for R(z) on some regionU0,r, in this particular example we note that

(z + λ)−1 =

{
(1/λ)[1 − (z/λ) + (z/λ)2 − · · · ] for 0 ≤ |z| < λ,
(1/z)[1 − (λ/z) + (λ/z)2 − · · · ] for λ < |z| <∞. (6.5)

Now we can use (6.3), (6.4) and the alternative expansions in (6.5) to write down the
full series for R(z). By extracting the relevant coefficients, we can see that the basic
solution to the fundamental equations is given by

R−1 =

[
I (λI + L)−1λ
0∗ 0

]
and R0 =

[
0 −(λI + L)−1λ/λ
0∗ 1/λ

]
for the region 0 < |z| < λ and by

R−1 =

[
I 0
0∗ 1

]
= I and R0 =

[
0 0
0∗ 0

]
= 0

for λ < |z| <∞. In each case the coefficients of the Laurent series are given in terms of
{R−1,R0} by the general formulæ (3.5) and (3.6). �

7. Numerical calculations

More work is needed to develop effective numerical algorithms for computation
of the resolvent operator. The main challenge is to calculate the maximal projection
operators. For the moment we simply wish to highlight two important points.

7.1. Calculation of projection operators for the unitary transformations.
The proposed unitary transformations rely on calculation of associated projection
operators. At each stage we have Hilbert spaces H and K and an operator A0 ∈ B(H,K)
such that A0(H) = K and M = A0

−1({0}) , {0}. Since A0 is a 1–1 mapping of M⊥ onto
K = A0(H), it follows that A0

∗ is a 1–1 mapping of K onto M⊥. Thus, A0A0
∗ ∈ B(K)

is invertible. The natural orthogonal projection PM ∈ B(H) which maps H onto M is
given by

PM = I − A0
∗(A0A0

∗)−1A0.

The operator A0A0
∗ is a bounded self-adjoint operator. There are several standard

algorithms that can be used for numerical calculation of (A0A0
∗)−1.

At each stage we also have (A1PM) ∈ B(M,K) with (A1PM)(M) = N. It follows that
(A1PM)∗ ∈ B(K,M) with (A1PM)∗(K) = M. Since (A1PM)∗ is a 1–1 mapping of N onto
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M and (A1PM) is a 1–1 mapping of M onto N, we can argue that (A1PM)∗(A1PM) ∈
B(M) is invertible. Therefore, the natural orthogonal projection QN ∈ B(K) which
maps K onto N can be defined by the formula

QN = (A1PM)[(A1PM)∗(A1PM)]−1(A1PM)∗.

The operator (A1PM)∗(A1PM) is also a bounded self-adjoint operator and so, once
again, we note that standard algorithms can be used for numerical calculation of
[(A1PM)∗(A1PM)]−1. If we regard (A1PM)∗(A1PM) ∈ B(H), then the inverse operator
in the definition of QN is the Moore–Penrose inverse [(A1PM)∗(A1PM)]†.

7.2. Calculation of the maximal orthogonal projections. If the decomposition
terminates after m steps, then calculation of the maximal projections S = S m ∈ B(H)
and T = Tm ∈ B(K) is simply the standard projection calculation described above.
Thus, we need only consider the case where the decomposition continues ad infinitum.
Let x ∈ H and y ∈ K. Define m = S x ∈ S (H) � H1 × H2 × · · · and n = Ty ∈ T (K) �
K1 × K2 × · · · and write m =

∑
j∈Nm j and n =

∑
j∈N n j, where m j ∈ H j and n j ∈ K j for

each j ∈ N. Now we have S nx =
∑n

j=1 m j and Tny =
∑n

j=1 n j and so

‖S x − S nx‖2 =

∞∑
j=n+1

‖m j‖
2 → 0 and ‖Ty − Tny‖2 =

∞∑
j=n+1

‖n j‖
2 → 0

as n→∞. Therefore, S nx→ S x for all x ∈ H and Tny→ Ty for all y ∈ K. Thus, we can
see that {S n}n∈N converges weakly to S and {Tn}n∈N converges weakly to T . This means
that for each given x ∈ H and y ∈ K, we can calculate m = S x and n = Ty as accurately
as we please. However, if mn+1 ∈ Hn+1, then (S − S n)mn+1 = mn+1 ⇒ ‖S − S n‖ ≥ 1 for
all n ∈ N and, if nn+1 ∈ Kn+1, then (T − Tn)nn+1 = nn+1 ⇒ ‖T − Tn‖ ≥ 1 for all n ∈ N.
Thus, {S n}n∈N does not converge strongly to S and {Tn}n∈N does not converge strongly
to T .

8. Conclusions

We have proposed a sequence of unitary transformations that allow us to define
maximal orthogonal projections and thereby find general expressions for the Laurent
series coefficients of the resolvent and for the key (nonorthogonal) projection operators
that separate the original doubly-infinite sets of left and right fundamental equations
into two singly-infinite sets. The separated sets can then be solved recursively.
Although we can calculate the action of the maximal orthogonal projections on each
fixed element as accurately as we please, the question of valid operator approximations
to these projections remains open. An important component of future research will be
the development of efficient numerical computation routines.
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