
ANZIAMJ. 47(2005), 51-63

EXISTENCE OF SOLUTIONS AND OPTIMAL CONTROL
PROBLEMS FOR HYPERBOLIC HEMIVARIATIONAL

INEQUALITIES

JONG YEOUL PARK 3 ' and SUN HYE PARK1

(Received 23 November, 2004; revised 30 March, 2005)

Abstract

In this paper we prove the existence of solutions for hyperbolic hemivariational inequalities
and then investigate optimal control problems for some convex cost functionals.

1. Introduction

In this paper we shall study the following optimal control problem:

Minimise J{y, u, v)

subject to a hyperbolic hemivariational inequality of the form

y"(t) - oAy'(0 - BAy{t) + 3(0 = Bu{t) a.e. t e (0, T),
o onr, ( u )

yo, y'(0) = yu

E(x, 0 e <p(x, t, v(x, 0, y'(x, 0) a.e. (x, t) e Q,

where £2 is a bounded domain in K"(n > 1) with sufficiently smooth boundary
r = dn, Q = a x (0, T), y = dy/dt, y = d2y/dt\ Ay = J2"=i d

2y/dx% and a
and fi are positive real numbers. Here <p is a discontinuous and nonlinear multi-valued
mapping by filling in jumps of a locally bounded function b, u and v denote the control
variables, B is a bounded linear operator and the cost functional J (y, u, v) is given by

', u,v)= /
./o

J(y,u,v)= [g(y(t)) + h(u(t),v(t)))dt, (1.2)
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where g and h are convex functionals. From a physical point of view, y in (1.1)
represents displacement, y' velocity and y" acceleration. Recently, the theory of
variational inequalities, which is closely related to the convexity of the energy func-
tionals involved, has been considerably developed and optimal control problems for
such variational inequalities have been investigated by many authors [1, 2, 8, 19]. It
is well known that the existence of solutions for variational inequalities is based on
monotonicity arguments and the derivation of the necessary optimality conditions is
based on the subdifferentials of convex analysis [1]. On the other hand, following the
work of Duvaut and Lions [4], several new types of variational problems in an inequal-
ity form have been investigated. The background of these variational problems is in
physics, especially in solid mechanics, where nonconvex, nonmonotone and multi-
valued constitutive laws lead to hemivariational inequalities. We refer to [12] and [14]
to see some applications of hemivariational inequalities. The existence of solutions for
hemivariational inequalities has been proved by some authors [9, 10, 13, 16, 17, 18].
But there is not much literature dealing with optimal control problems for hemivaria-
tional inequalities and as far as we know there is no literature deriving the necessary
optimality conditions for the corresponding optimal control problems because these
are more complicated than those for variational inequalities due to the lack of convex-
ity of the energy functionals. Haslinger and Panagiotopoulos [6] proved the existence
of optimal controls for coercive hemivariational inequalities and Migorski and Ochal
[11] showed the existence of optimal control pairs for parabolic hemivariational in-
equalities. Panagiotopoulos [15] considered an application problem for hyperbolic
hemivariational inequalities with a multi-valued reaction-velocity law such as the last
inequality of (1.1). Motivated by his work, we attempt to prove the existence of so-
lutions for hyperbolic hemivariational inequalities of the form (1.1) and the existence
of optimal control pairs for the optimal control problem (P) (see Section 4 below).
The plan of this paper is as follows. In Section 2, assumptions and notation are
given. In Section 3, the existence of a solution to the problem (1.1) is proved using
the Faedo-Galerkin method and finally in Section 4 the existence of solutions to the
optimal control problem (P) is investigated.

2. Assumptions and notation

Throughout this paper we denote

(y,z)= [ y(x)z(x)dx and \\y\\2 = f \y(x)\2dx.

We denote by (•, •) the dual pairing between //o'(fi) and H~l(Q). Let U be a real
Hilbert space of variable u, L2(Q) a space of variable v, and ^ad x ^rf a nonempty
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subset of L2(0, T\ U) x L2(Q). We denote by || • ||* the norm of a Banach space X.
Now we assume the following conditions concerning (1.1)—(1.2).

HYPOTHESIS (Hyp.b). b : g x K 2 , £(;c, t, rj, £) -*• R is a locally bounded function
satisfying the following conditions:

(i) b is continuous in ?j uniformly with respect to £, that is, there exists e0 > 0 such
thatforall(x,/ , JJ, f) € £ x R2 and for all S > 0, there exists y = y(8,x, r, f?,£) > 0
such that |fc(jt, r,»;, f) - &(*, r, IJ', £01 < « if |»? - »?'l < y and |f - f'| < e0.

(ii) (x, 0 -> i( j : , r, r), %) is continuous on Q for all rj € 0& and a.e. | e R.
(iii) (x, r, ^) ->• t(jc, t, rj, %) is measurable in Q x D& for all ?j e D8.
(iv) |6( jc ,Mj,f) | <Mo(Jt.O + Mi(l + l»?l + l? l ) . fora l l (* ,Mj , f ) e Q x K2 with

a nonnegative function //.<> e ^ 2 ( 0 and a positive constant ^ .

The multi-valued function <p : Q x R2 —> 2R is obtained by filling in jumps of a
function b(x, t,t},-) : R -*> R by means of the functions ^ , b(, b, ~b : R ->• R as
follows:

b,{x, t, r),%) = essinffe(j:, t, r),s), £f(x, t, r),%) =esssupi(^, t, r),s),
l f l <

i (x , t, t), $) = lim LC*,',»?, ?), ^ . t, r), ?) = lim £€(x, r, JJ, f ) ,

^ ( J : , r, JJ, ^) = [b(x, t, r), I ) , K*, ?, f7, f )]•

REMARK 2.1. Let 7 : Q x K 2 - > R be a locally Lipschitz continuous function with
respect to the last variable obtained from b by integration, that is,

j(x,t,T),$) = / b(x,t,r},r)dT.
Jo

Then the following relation holds [6]:

<p(x,t,r},$) = dj (x,t, r),%),

where 3 denotes the generalised gradient of Clarke (see for example [1] for the
definition of and the relevant results for Clarke's generalised gradient).

We shall need a regularisation of b defined by

f°°
bm(x,t,ri,$) = m I b(x,t,ri,S -T)p(mx)di,

J-00

where p e Q>((-l,l)).P>Oaadf!_lp(r)dT = 1.
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REMARK 2.2. It is easy to show that bm(x, t, rj, £) is continuous in t for all m € N
and that b^,b(,b^,b, bm satisfy the same condition (Hyp.b) (iv) with possibly different
constants if b satisfies (Hyp.b) (iv). So, in the remainder of this paper, we denote
different constants by the same symbol as original constants.

HYPOTHESIS (Hyp.B). B : L2(0, T; U) - * L2(0, T; L2(Q)) is a bounded linear
operator.

HYPOTHESIS (Hyp.U). ^ad is a closed convex subset of L2(0, T; U) and Wad is a
compact subset of L2(Q).

HYPOTHESIS (Hyp.g). g : L2(Q) —> K is proper, convex and continuous. Moreover
there exists k{ > 0 and k2 e K such that g(y) > kt \\y\\ + k2, for all y e L2(Q).

HYPOTHESIS (Hyp.h). h : U x L2(Q) —> K is a proper, convex and lower semi-
continuous functional satisfying h{u, v) > ^( INly + ||u||2) + ^4, for all (u, v) e
U x L2(£2) and for some /t3 > 0 and fc4 e R.

For details on the definition of convexity and lower semicontinuity of functionals
and the relevant results, we refer the readers to [3, 5].

DEFINITION. Given (M, v) e L2(0, T; U) x L2(Q), y0 e H*(Q) and yx e L2(Q),
y is said to be a solution of (1.1) if y e L°°(0, T; //o'(f2)), y' e L°°(0, T; L2(fi)) n
L2(0, T; //o'(fi)), y" e L2(0, T\ H~\n)), there exists S € L2(0, 7; L2(Q)) and the
following identities hold:

I (y"(s), w)ds + a I (Vy'(^), Vw) ds + $ f (Vy(s), Vw) ds (2.1)
Jo Jo Jo

+ I (a(s),w)ds= I {Bu(s),w)ds, W 6 [0, T], Vu; e //O'(S2),
Jo Jo

S(;t, r) 6 <p(x, t, v(x, 0 , y'(^, 0) a.e. (x, t) e Q, (2.2)

y(O) = yo, y'(0) = y,. (2.3)

3. Existence results for hemivariational inequalities

In this section we are going to show the existence of solutions to the problem (1.1)
using the Faedo-Galerkin approximation.

THEOREM 3.1. Assume that (Hyp.b) and (Hyp.B) hold. Let(u, v) e L2(0, 7; U) x
L2(Q) and (y0, yO 6 //o'(£2) x L2(fi). Then the problem (I A) has a solution.
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PROOF. We represent by {Wj }; > 1 a basis in Ho
l (Q) which is orthogonal in L2 (Q). Let

Vm be the space generated by wu w2,..., wm. We may choose (yOm) and (yXm) in Vm

such that yOm -> y0 in H^(Sl) and yXm -+ >>, in L2(Q). Let ym(t) = £ J 1 , g
be the solution to the Cauchy problem:

a(Vy'm(t), Viu)

y«(0) = yOm, y'JO) = ylm.

), Vu>) + (bm(t, v(t), y'm(t)), w) (3.1)

(3.2)

By standard differential equation methods, we can prove the existence of a solution to
(3.1)-(3.2) on some interval [0, tm). This solution can then be extended to the closed
interval [0, T] using the a priori estimates below.

Step 1: A priori estimates. Replacing u> by y'm(t) in (3.1), we get

^lly;(OII2 +all V y ; ( 0 l l 2 + | ^ | | Vyn(/)||
2

= -(bm(t, v(t), y'm{t)), y'm(t)) + (Bu(t), y'Jt)). (3.3)

By (Hyp.b) (iv), there exists c\ > 0 such that

f
Jo

\\bm(s,v(s),y'm(s))\\2ds

= f [ \bm(x,s,v(x,s),y'm(x,s))\2dxds
Jo Jn

<C,+2A*
Jo

I f
Jo Jn

\y'm(x,s)\)2dxds

and hence

(bm(s,v(s),y'm(s)),y'm(s))ds

\\bm(s, v(s), y'm

< l- jc, + (2M? + 1) j f II>>;

1/2

\\y'm(s)\\2ds
)

1/2

By (3.3) and (3.5), we have

(3.4)

(3.5)
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| | 2+ ^ / \\Bu(s)\\2ds
1 Jo

[6]

\ j f \\y'm(s)tds

<C+C f \\y'
Jo

s)\\2ds. (3.6)

Here and in what follows we use C to denote a generic constant independent of m.
Gronwall's inequality implies that

+ ||Vym(OH2+ f | |Vy:W||2^<C.
Jo

From (3.4) and (3.7) we also get

\\bm(s,v(s),y'm(s))\\2ds<C.

(3.7)

(3.8)

So we can extend the solutions ym(t) to the whole interval [0, T]. Finally we will
obtain an estimate for y'^. From (3.1), we get for all w e Vm,

(3.9)

(3.10)

Step 2: Passage to the limit. From the a priori estimates (3.7), (3.8) and (3.10), we
have subsequences (in what follows we denote subsequences by the same symbols as
original sequences) such that

(3.11)

\ t), Vw) -

- (bm(t, v(t), y'm{t)), w) + (Bu(t),

So, by a density argument, we have from (3.7)-(3.9) that

(y"m) isboundedin L2(0, T;

weakly* in L°°(0, 7; //„'

weakly in L2(0, T; //„' (J2)) and

weakly* in L°°(0, 7;

weakly in L2(0, T; //

S weakly in L2(0, T; L2

Now we can take the limit m -* oo in (3.1). Therefore we obtain

r), Vu>) + /8(Vy(r), Vw) + (3(0 ,

= (Bu(t), w), (3.12)
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Step 3: y is a solution of (1.1). Let 0 e C1 ([0, T]) with <p{T) - 0. By replacing u
by 4>(t)Wj in (3.1) and integrating by parts the result over (0, T), we have

- f (y'm(t),4>'(t)wj)dt + a f (.Vy'm(t),<Ht)Vwj)dt+(ylm,<i>(O)iUj)
Jo Jo

+ P f (.Vym(t),4>(t)Vwj)dt+ f (bm(t,v(t),y'm(t)),<i>(t)Wj)dt
Jo Jo

= I (Bu(t),cP(t)wj)dt. (3.13)
Jo

Similarly from (3.12) we get

- f (y'(t),<t>'(t)Wj)dt + a I (Vy'(0,<£«Vi/;;)^+ (/(()), </)(0H>
Jo Jo

+ P [ (Vy(t),<Ht)Vwj)dt+ I (S(t),<p(t)wj)dt
Jo Jo

= I (Bu(t),<f>(t)wj)dt. (3.14)
Jo

Comparing (3.13) and (3.14) we infer that

\ i m ( y l m - y ' ( . 0 ) , W j ) = 0 , j = 1 , 2 , ....
m->oo

This implies that yim —>• y'(0) weakly in H~l(Sl). By the uniqueness of the limit,
/ ( 0 ) = yx. Analogously, taking <p e C2([0, T]) with (p(T) = <t>'(T) = 0, we can
obtain that y(0) = y0. Next we will show that a(x, t) e <p(x, t, v(x, t), y'(x, t)) a.e.
(^ ,0 € Q- By (3.11) and the Aubin-Lions compactness lemma [7], we get

y'm - • y' strongly in L2(0, T; L2(fi))

and hence

)£(*.0 -»• /(*• 0 ae- (*• 0 e 2-

Let (7 > 0. Using the theorems of Lusin and Egoroff, we can choose a subset co C Q
such that meas(a)) < ?j, >>' 6 L°°(Q \ co) and y^ —> y' uniformly on Q\co. Thus,
for each e > 0, there is an N > 2/e such that \y'm(x, t) - y'(x, t)\ < e/2, for all
(x, t) € Q\co and m > N. Then, if \y'm(x, t) — s\ < l/m, we have \y'(x, t) - s\ <e
for all m > N and (x, t) € Q \ co. Therefore we have

b^(x, t, v(x, t), y\x, 0) < bm(x, t, v(x, t), y'Jx,»))

<b((x,t, v(x,t),y'(x,t)),
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for all m > N and (x, t) e Q \ co. Let </> e L 2 ( 0 , 0 > 0. Then

^(JC, /, v(x, t), y'(x, t))4>{.x, t)dxdt
Q\a>

< f bm(x, t, v(x, t),y'm(x, t))<p(x, t)dxdt

< f bAx,t,v(.x,t),y'(x,t))(f>(x,t)dxdt. (3.15)

Letting m -*• oo in (3.15) and using (3.11), we obtain

/ b^ix, t, v(x, t), y'(x, t))4>(x, t)dx dt
JQ\a>

< I E(x,t)<p(x,t)dxdt
JQ\a>

< f
J Q

bt(x,t,v(x,t),y'(x,t))<Kx,t)dxdt. (3.16)
Q\a>

Letting e -> 0+in (3.16), we infer that a(x, t) e cp(x, t,v(x, t),y'(x, r))a.e. in Q\co,
and letting r) -> 0+ we get S(x, r) e <̂ >(J:, r, u(x, r), y'(x, t)) a.e. in Q. Therefore the
proof of Theorem 3.1 is complete. •

4. Existence of the solutions of the optimal control problem

We denote by S^{u, v) the set of all solutions of the problem (1.1) for a given
(M, V) e WadxyKd- Theorem 3.1 implies that y(u, v) ^ 0 for any (M, V) e ^ad^-^ad-
Let us consider the following optimal control problem (P):

Minimise [J(y, u, v) : (M, V) e <%ad x Wad, y e y(u, v)}. (P)

For our purpose we need the following proposition.

PROPOSITION 4.1. Fora given (w, v) € ̂ ad x Wad, the following estimate holds:

\\y' \\ L°-(O,T;L }
yeS'(u.v)

< c(y0, yi) + C(\\v\\\HQ) + ll«l|2L2(0,T;y)),

where C > 0 a/j<i c(yo, yi) w a positive constant depending on the initial data
and y\.
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PROOF. Let y e y(u, v), then y satisfies (2.1)—(2.3). Replacing w by y'(s) in
(2.1) and using Young's inequality, we get

o / \\Vy'(s)\\2ds

f \\Vy'(
Jo

<c(yo,yi) + ]- f \\Bu(s)\\2ds + ]- f \\E(s)\\2ds + I \\y\s)\\2ds. (4.1)
^ Jo *• Jo Jo

By the assumption on b (see (Hyp.b) (iv)) and Remark 2.2, we can easily show that

J \\Z(s)\\2ds<C+clJo(\\y'(s)\\2+\\v(s)\\2)ds\. (4.2)

By the Gronwall lemma, we get from (4.1)-(4.2) that

'(s)\\2ds

< c(y0, y,) + c\j (|Ws)||2 + ||B«(^||2) ds\ . (4.3)

Moreover, we have from (2.1) that for all w e //0' (£2) and t e [0, T]

f (y"(s), w) ds = -a f (V/(s), Viu) ds - p f (Vy(s), Vw) ds
Jo Jo Jo

- / ( S ( J ) , w)ds+ / (Bu(s),w)ds.
Jo Jo

By (4.2) and (4.3), we infer that

\j + \\Bu(s)\\2)ds j . (4.4)

Since B is a bounded linear operator, (4.3) and (4.4) complete the proof of Proposi-
tion 4.1. •

THEOREM 4.2. Assume that the conditions of Theorem 3.1, (Hyp.U), (Hyp.g) and
(Hyp.h) hold. Then the optimal control problem (P) has at least one solution.

PROOF. Let d = inf{7(;y, u, v) \ («, v) € ^ad x Wad, y e y{u, v)}. By the
assumptions on g and h, it is clear that d > - c o . Let (yn, un, vn) e y(un, vn) x
^ad x Wat be a minimising sequence, that is,

I (y'^is), w)ds + a f (Vy'n(s), Vw) ds
Jo Jo
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+ P f (Vyn(s),Vw)ds+ f (2n(s),w)ds
Jo Jo

= f (Bun(s), w) ds, W € [0, 7"], Vw e //„'(«), (4.5)
Jo

an(x, t) e <p(x, t, vn(x, t),y'n(x, t)) a.e. (x, t) e Q, (4.6)

yn(O) = y o , y'H(0) = yl (4.7)

and

d< J(yn, un,vn) <d+l/n, n = 1,2,3, . . . . (4.8)

From ((Hyp.h)), («„, vn) is bounded in %d x Wttd c L2(0, T; U) x L2(Q). Accord-
ingly a subsequence can be determined such that

un -> u* weakly in L2(0, T; U). (4.9)

By (Hyp.U), ^a(/ is weakly closed, and hence u* e <%ad. Also, since Wad is compact
in L2(Q) and (vn) is bounded in Wad, we infer that

un ->• u* strongly in L 2 ( 0 and u* e > ôrf. (4.10)

Therefore, by Proposition 4.1, we get

(yn) is bounded in L°°(0, T; //0' (fi)),

(yi) is bounded in L°°(0, T;L2(f2)) n L2(0, T; //o'(n)), (4.11)

(y;#) is bounded in L2(0, 7; H~x (£2)).

This together with the fact that/0' | | S B ( J ) | | 2 ^ < C+C/0'(||y;(j)||2+||u(,(j)||2)dj im-
plies that (Hn) is bounded in L2(0, T; L2(fi)). Therefore we get, along subsequences,
that

yn -* y* weakly* in L°°(0, T; H0
](Q)), (4.12)

yi -> >-*' weakly* in L°°(0, 7; L2(fi)) and weakly in L2(0, 7; //„' (£2)), (4.13)

y"n - • y*" weakly in L2(0, 7; « - ' ( « ) ) , (4.14)

Sn -> S* weakly in L2(0, 7; L2(S2)). (4.15)

Therefore, using (4.9)-(4.15) and letting m —> oo in (4.5), we conclude that

), w)ds + a [ (V>-*'(5), Vu<) ds + P f (Vy*(s), Vio) c?5

flw*(i), iu)rfs, V/ e [0, r ] , Viu e /
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To show that y* e S"(u*, v*), it is sufficient to show that

3*(JC, /) € <p(x, t, v'(x, t), y"(x, 0) a.e. (x, t) e Q.

Indeed, by (4.13), (4.14) and the Aubin-Lions compactness lemma, we get y'n —• y*'
strongly in L2(0, T; L2(Q)) and hence y'B{x, t) -+ y*'(x, t) a.e. (x, t) e Q. By the
theorems of Lusin and Egoroff, for a given rj > 0 we can choose a subset co C Q such
that meas(tu) < rj and y'n —> y*' uniformly on Q \ co. Thus, for each e > 0, there is
a positive integer Af such that \y'n(x, t) — y*'(x, t)\ < e/2, for all (x, t) e Q \ co and
n > N. On the other hand, (4.6) implies that

/ i ^ C * ' ' ' Vn(X> 0i y'n(X' 0)<P(x> t)dxdt
JQ\w

< / En(x,t)<t>(x,t)dxdt

* ! .
bt/2(x, t, vn(x, t), y'n{x, t))<Kx, t)dxdt, (4.16)

Q\<o

for any <j> e L2(Q) with 0 > 0.
Noting that, for n > N,

ktl2(x, t, vn(x, t), y'n(x, t)) = essinf b(x, t, vn(x, t), s)
l»-yil<*/2

> essinf b(x, t, vn(x, t), s)
\s-y"\<t

= bt(x,t,vH(x,t),y*'(x,t))

and

b~(/2(x, t, vn(x, t), y'n(x, 0) = ess sup b(x, t, vn(x, t), s)
\'-y'.\£f/2

< ess sup b(x, t, vn(x, t), s)
\s-y'\<e

= b((x,t, vn(x,t),y*'(x,t)),

we get from (4.16) that

(x, t, va(x, t), y*'(x, t))<f>(x, t) dx dt
JQ\W

< I En(x,t)4>(x,t)dxdt
JQ\w

b((x,t,vn(x,t),y"(x,t))4>(x,t)dxdt. (4.17)
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Letting n -» oo in (4.17) and using (4.10) and (Hyp.b) (i), we conclude that

/ b^(x, t, v*(x, t),y*'(x, t))4>(x, t)dxdt
jQ\a>

< / Z*(x,t)<p(x,t)dxdt
JQ\w

< I b((x,t,vt(x,t),yt'(x,t))<t>(x,t)dxdt. (4.18)
Q\<o

Letting e -> 0+ in (4.18), we infer that E*(x, t) e <p(x, t, v*(x, t), y"(x, t)) a.e. in
Q \ co, and letting rj -> 0+ we get S*(JC, f) 6 ^>(;t, r, U*(J:, t), y*'(x, t)) a.e. in Q.
Hence (y*, «*, u*) 6 ^ ( M * , U*) X ̂ arf x Wad is an admissible pair for problem (P).
Taking the limit n —*• oo in (4.8) and using the lower semicontinuity of J, we conclude
that

d < Jiy*, u*, v*) < lim J(yn, un.vn) < d.
n—•oo

Thus (y*, u*, v*) is a solution of the optimal control problem (P). •
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