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This paper is concerned with stochastic Schrodinger delay lattice systems with both
locally Lipschitz drift and diffusion terms. Based on the uniform estimates and the
equicontinuity of the segment of the solution in probability, we show the tightness of
a family of probability distributions of the solution and its segment process, and
hence the existence of invariant measures on 12 x L2((—p, 0);1%) with p > 0. We also
establish a large deviation principle for the solutions with small noise by the weak
convergence method.
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1. Introduction

Stochastic lattice systems can be used to model many practical systems with dis-
crete character and random fluctuation. The long-time dynamics for stochastic
lattice systems with or without delays have been investigated extensively in the lit-
erature. For stochastic lattice systems without delays, we refer the reader to [2, 3,
9, 20] for pathwise random attractors and stability, [31, 32, 34, 36] for weak mean
random attractors and invariant measures. Since the current states of the practical
systems often depend on their past history, stochastic lattice systems with delays
have been investigated; see e.g., [12, 15, 16, 24] for invariant measures and weak
mean random attractors, and [23] for periodic measures. Recently, regime-switching
was taken account into stochastic lattice systems, and invariant measures of such
systems were studied in [13, 22].
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In this paper we consider the following stochastic Schrodinger delay lattice system
defined on the integer set Z:

dus, (t) + ifus, (¢) [Pus, (£)dt + Mg, (8)dt — i(us,_ (£) — 2us, () + us o (¢))dt
= [u(ug,(t — p))dt + gndt

+\E Z (hk,n + O'k,n(u;(t - P))) de(t)a t>0, (11)
keN

ur, (0) = up, ui(s) = &a(s), s € (=p,0),

where n € Z; € € (0, 1); XA and p are positive constants; g = (gn)nez and hy =
(hn)nez are deterministic complex-valued sequences for each k € N; f,, and oy,
are locally Lipschitz continuous functions for every k € N and n € Z, and {Wj }ren
are independent two-sided real-valued standard Wiener processes on a complete
filtered probability space (2, F, {Fi}i>0, P).

The first goal of this paper is to investigate the existence of invariant measures of
the stochastic Schrodinger delay lattice system (1.1) in 12 x L2((—p, 0);1?). To that
end, we need to establish the tightness of a family of distributions of the solution
and its segment process of (1.1) in % x L%((—p, 0);1%). Actually, such tightness
can be obtained by proving the uniform tail-estimates, the uniform estimates of
higher-order moments and the Holder continuity of the solution as in [15]. Note
that the derivation of uniform estimates of higher-order moments requires not only
sophisticated calculations, but also strong dissipativeness assumptions on the non-
linear terms. In order to relax the strong dissipativeness restrictions and prove the
existence of invariant measures under weaker conditions on the nonlinear terms, in
the present paper, we will employ the equicontinuity of the segment of the solution
in probability, instead of uniform estimates of higher-order moments, to establish
the tightness of distributions of the solution and its segment process. The idea of
equicontinuity in probability was used for proving the tightness of the segment of the
solution in [4, 37] for finite-dimensional stochastic ordinary differential equations
and in [14] for fractional stochastic partial differential equations. In the present
paper, we will use this method to deal with the infinite-dimensional lattice system
(1.1).

The second goal of the paper is to investigate the large deviation principle (LDP)
of the solutions of (1.1) on a finite interval [0, T'| with T > 0 by the weak convergence
method. The weak convergence method is based on the variational representation
of certain functionals of Brownian motion [5, 7, 8] as well as the equivalence of large
deviation principles and Laplace principles. Compared with the classical discretiza-
tion method as introduced in [19], the weak convergence method does not require
any exponential-type probability estimates which are usually difficult to derive for
infinite-dimensional models. The weak convergence method has been successfully
applied to establish the LDP for many infinite-dimensional stochastic systems, see
e.g. [6, 8,10, 11, 25, 28, 29, 35] for stochastic partial differential equations, and
[33] for stochastic reaction-diffusion lattice systems without delay. We refer the
reader to [19] and [18] for more details on the discretization method and the weak
convergence method for LDPs, respectively.

Note that the LDPs of finite-dimensional stochastic delay differential equations
have been studied by many authors, see e.g. [1, 21, 27] for constant delay and
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[26, 30] for general delay. However, to the best of our knowledge, there is no result
available regarding the LDPs of infinite-dimensional delay lattice systems. We will
close this gap and prove the LDP for the infinite-dimensional delay lattice system
(1.1) in the last section of the paper. Compared with the finite-dimensional stochas-
tic delay differential equations [21] the main difficulty to verify the conditions of
the weak convergence for system (1.1) lies in the fact that bounded subsets of ¢? are
not precompact. To deal with this issue, we adopt the idea of the finite-dimensional
projection and the uniform tail-ends estimates to establish the precompactness of
a family of solutions to the controlled system (4.5). The argument of the present
paper can be extended to the path-dependent lattice systems driven by superlinear
noise under certain conditions.

The paper is organized as follows. In Section 2, we discuss the assumptions on
the nonlinear terms and present our main results. In the last two sections, we prove
the existence of invariant measures and the LDP of (1.1), respectively.

For convenience, we will use L?(I; H) to denote the space of all square-integrable
functions from an interval I to a separable Hilbert space H equipped with norm
|- |2 (1;7)- We also use C(I; H) for the space of all continuous functions from I

to H equipped with supremum norm || - ||¢(r,m). As usual, we reserve I? for the
space of all complex-valued square-summable sequences with inner product (-, -)
and norm || - ||, respectively.

2. Assumptions and main results

In this section, we discuss the assumptions on the nonlinear terms in (1.1),
and present the main results of the paper. First, we define the linear operators
A, B, B*: 12 — [? by:

(Au)y = —Up—1 + 2Up — Uny1, (BU)p = Upt1 — Up, (B*U)p = tp_1 — Up,
for any n € Z and u = (uy)nez € [. Then we have
A= BB*=B*B, (B*u,v)=(u,Bv), Yu,vcl’
Throughout the paper we make the following assumptions.

(A1) For any bounded subset K of C, there exists a positive constant Lx such
that

‘fn(zl) - fn(ZQ)| < L)Clzl - 22|7
for any z1, z9 € K and n € Z.

(A2) For every k € N, n € Z and every bounded subset K of C, there exists a
positive constant Ly, ,, x such that for any z;, 22 € K,

|0k (21) = Ok (22)] < Lign k|21 — 22],

where Lic = (Lg i )ken, nez € 12
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(A3) For any n € Z, there exist positive constants «,, and Sy such that
|fn(2)] < Bolz| + o, V2zeC,
where [lof® := ", ., |an]* < 0.
(A4) For every k € N, n € Z, there exist positive constants dy, ,, and Jj such that
|ok,n(2)] < Ok + Brl2], ¥V z€C,

where [|6]]* := 37, oy 32 00, [1BI1% := Len [Brl* < 0.

(A5)

lgll* ==Y lgnl® <00, [IAI* =)D 1hral® < oo (2.1)

n€eZ kENNEZ

Consider operators f, oy : [> — [? defined by

f(’LL) = (fn(un))nelv Uk(u) = (Uk,n(un))n627 Vu= (un)nEZ € 12'
Then by assumptions (A1)—(A4), we have:

(i) f is well-defined, and
1F )1 < 285 [[ull® + 2[lall?, ¥ u el (2.2)

(ii) f is locally Lipschitz continuous; that is, for every R > 0, there exists a
positive constant L{z such that for all u, v € I with ||u|| V |[v|| < R

1f () = F@)IP < Lllu = vl (2:3)

(iii) oy is well-defined and

D o)l < 20812 [ull® +2[81°, ¥ u e . (2.4)
keN

(iv) oy is locally Lipschitz continuous; more precisely, for every R > 0, there exists
a positive constant L% such that for all u, v € [* with |lu V ||v|| < R,

> llow(w) = ox()|? < Lflu — vl (2.5)
keN

With the above notation, problem (1.1) can be rewritten as the following form
in [2:

dus () + i|us () Puf (t) dt + Auc(t) dt 4+ iAus(t) dt
f(ug(t P+ gdt+ /& 3, (hiFon(us(t = p)) dWi(®), >0, (26)

us(0) = u”, u*(s) = £(s), s ( p,O),

where u® = (u)))nez, [u®(£)|?u (t) = (Jus, (t)*us, (£)nez, 9 = (gn)nez, b = (hin)nez
and 5 = (5n)n€Z~
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From now on, we denote the segment of «® by uf which is defined by
ui(s) =u(t+s), Vse(—p,0).

Under conditions (A1)—(A5), for every u® € L?(Q, Fo;1?) and & € L*(, Fo; L?
((—p, 0);1%)), system (2.6) admits a unique solution u® (see [15, Theorem 2.2]) in
the sense that u®(t), t > —p, is an [2-valued stochastic process such that

e u°(t) for t > 0 is pathwise continuous and Fi-adapted.
o uf(0) = ul, uf = ¢ and u® € L2(;C([0, T);12)) for all T > 0.

e For ¢t > 0, P-almost surely,
t
ut(t) = u® +/ (—iAu®(s) — ilu® (s)|*u(s) — Au®(s) + f(us(s — p)) + g) ds
0

+ﬁ2/0 (i + o (U (5 — p))) dWi(s) in 12,

keN

Moreover, one can verify that for every T' > 0,

0
E [0 2o yny ] < Mo (E[nu‘)nﬂ + [ Bl ds + Tlgl? + T||h||2) ,
—p

(2.7)

where M, is a positive constant independent of u°, ¢ and 7.
Based on the well-posedness of solutions of (2.6), we will prove the existence of
invariant measures. For this purpose, we need an additional assumption as follows:

(H) V260 +2[18]]> < A

THEOREM 2.1. Suppose that (A1)-(A5) and (H) hold. Then (2.6) has an
invariant measure on 1> x L?((—p, 0);1?).

REMARK 2.2. Compared with [15, Theorem 4.1}, the conditions on the nonlinear
drift and the nonlinear diffusion terms are relaxed due to the fact that the uniform
estimates of higher-order moments of solutions are not required in this paper.

Given (u°, €) € 12 x L%((—p, 0);1?) and a positive constant T, we will prove the
LDP for the family of solutions {u®} of (2.6) on the finite time interval [0, T] as
¢ — 0, which is given below.

THEOREM 2.3. Suppose that (A1)-(A5) hold. Then the family of solutions {u®}
of system (2.6) on [0, T|, as € — 0, satisfies the large deviation principle on
C([0, T);1?) with the good rate function I : C([0, T];1?) — [0, oo] defined by (4.1).

REMARK 2.4. We point out that theorem 2.1 and theorem 2.3 still hold with minor
changes in the proofs if we replace the cubic term i|u,|?u, in (1.1) by a more
general nonlinear term £iF (|uy|)uy, where F : [0, co] — R is continuous, F'(0) = 0,
and there exist Ly > 0 and v > 0 such that

[F(|21])21 = F(|22])22] < Lr(J21]” + |22]")|21 — 22|, V 21,22 € C.
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3. Invariant measures

In this section, we prove the existence of invariant measures of (2.6). To that end, we
need to derive the uniform estimates of the solution as well as its segment process
in the next subsection.

3.1. Uniform estimates

In this subsection, we firstly establish the uniform estimates of the solution of
(2.6). Note that by (H), there exist constants a; > 0 and v > 0 such that

V2Bo(1 + €7P) — 2\ + ay + v + 4/ 8]|27” < 0. (3.1)

LEMMA 3.1. Suppose that (A1)-(A5) and (H) hold. Then for any (u, €) €
L2(Q;1%) x L2(Q; L2((—p, 0);12)), the solution u® of (2.6) satisfies that for allt > 0
and 0 < e <1,

0
Eflu (0] < M (1 BRI+ [ Bl ds) , (3.2)

—p
where M is a positive constant independent of u®, & and ¢.

Proof. Applying Ito’s formula to (2.6), we obtain for all t > 0 and 0 < & < 1,

d([[u*(®)I7) < = 2A[[u*(®)]* dt + 2Re (u" (1), f(u(t = p))) dt

+2Re (uf(t),g9) dt+e Y [|hi + ow(us(t = p))||* dt
keN

+2VERe S (u (1), by + o3 (u(t — p))) AW (1) (3.3)

keN

Let v > 0 be the positive constant satisfying (3.1). Then we get from (3.3) that

B OIF] < Bl + (= 23) [ Bl (s))ds
+2Re [ QB[ o). (s )] ds
+ 2Re /0 eV R [(u®(s),9)] ds

+EZ/Ot B [+ on(us(s — p)IP] ds. (3.4)

keN
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We now deal with the right-hand side of (3.4). For the third term on the right-hand
side of (3.4), by Young’s inequality and (2.2) we have

2Re / SR [(u(s), F(u (s — p)))] ds

<2 / B [[|uf (s)|[| £ (u (s — p))[I] ds

! vs € 2 1 ! Vs € _ 2
<¢§50/0 OE [|lu (S)”]d”mo/o SE I (u(s - p)2] ds
< V20, / E [[[uf(s)]?] ds + “i'}f”( 1)

& [[lu®(3)]”] ds

t+—
+V/2Bpe7 /

<V36(1+¢7) [ € [Jut(s)17] ds

0
+ \/iﬁoew’/ E [|I€(s)]1?] ds + \/i;;wevt. (3.5)
-P

Let c; > 0 be a constant satisfying (3.1). By Young’s inequality we get
s s 2 lgll®
2Re/ eV E[(u®(s),9)] ds < 041/ eVE [[lus(s)[]?] ds + ———e". (3.6)
0 0 ary

For the last term on the right-hand side of (3.4), by (2.4) we obtain

¢ Z/ B[ 7k + 0w (u(s — )] ds

ken0

<22/0 e”sE[HthQ]ds—i—QZ/o eV R[||ow(uf (s — p))||*] ds

keN keN

2||h|1? 4|62 K
<A ey AL s gy [ evmlfus(s - P) as
0

2||h|? 4/16]12 K
< H H e'yt =+ H H emf _~_4l|ﬂ”2e'yp/ C’YSEI:HUE(S)HQ:I ds
Y v 0

0
+ 4] 8|2 / E[[l€(s)]?] ds. (3.7)
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It follows from (3.4)—(3.7) that for all ¢ > 0,

e E|Ju (6)]]
t
SE[ul]2] + [7 = 2X + V200(1 + €7) + a1 + 4] 8|12 / P R[[uf (s)]?]ds
0

0 2
2
+ (35 + 4181 [ B [le?) ds+ Y
-P vBo
1 1 Pl
ary Y v

9

which along with (3.1) indicates that for all ¢ > 0,

0
E[l|u®(6)[1] < e " E[[|lu’]*] + (V260 +4||ﬂ||2)€7”(t7”)/ E[[¢(s)?] ds
—p
2 2 2 2|nl|* 482
R L N L G
vBo oy v gl
This implies (3.2), and thus completes the proof. O

Next we give the uniform estimates of the solution in probability.
LEMMA 3.2. Suppose that (A1)-(A5) and (H) hold. If (u% &)e L?(2;1%)x
LAQ; LY (—p, 0);1?)) satisfies that E[||u®]|?] v prE[Hf(s)HQ] ds < R for some R > 0,

then for any T > 0 and &' > 0, there exists a positive constant My = Ms(e', T, R),
independent of € € (0, 1), such that

P sup  flus(s)|[ <myp | =1—¢, Vt=0, m>=M,.
sEt,t+T)

Proof. For any t > p and m € N, let
7t =inf{s >t ||u°(s)| > m},

and we set 7!, = oo if {s =t : ||us(s)|| > m} = 0.
For any T' > 0, applying Itd’s formula to (2.6), we have

Efu((t +T) Ay, II?)

(t+T)ATE,
< Effu*®)]*] - QA/t E[||u(s)[|*] ds
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(t+T)
are [ TR (). £ - )]s
t
(t+T)NT,,
b2re [ T B[(w(s) )] ds
t

(t+T)AT,
beX [ Bl ouu (s - o) P ds, (38)
keN”?t

For the third term on the right-hand side of (3.8), by (2.2) we obtain

(t+T)NT,,
2Re / E[(u(s), f(u (s — p)))] ds
(t+T)AT, (t+T)AT,
<232 / E[[lu (s — p)||?] ds + 2[la|*T + / Eflluc (s) 2] ds
(3.9)

For the fourth term on the right-hand side of (3.8), by Young’s inequality we have

(t+T) ey (t+T)/\'rm
2Re / E[(u*(s),9)] ds < / Efllus ()| ds + 9> 7. (3.10)
t t

For the last term on the right-hand side of (3.8), by (2.4) we get

(t+THA
ez/ Ellhs + 0w (s = p)) ] ds

keN

(t+T)AT,,
< 2||h||2T+4\\5||2T+4||5H2/ E[|[u* (s — p)[|*] ds. (3.11)
t

From (3.8)—(3.11) and lemma 3.1, it follows that there exists a positive constant
Cr r depending only on R and 7" such that for all ¢ > p,

EflJu((t +T) A7) II7)

(t+T)AT),
<E[[lus (017 + (2 - 2A)/t E[[|uf(s)[|*] ds

t+T—p

+ (lgll” + 4[161> + 2[le® + 2||AlI*)T + (255 + 4||ﬂ||2)/t E[|[u®(s)]|*] ds
—p

0

< [14(2— 27+ 282 + 481P)T] My (1 FE[O)?) + /

—p

Efl¢(s)]?] ds>

+ (llgll* +4[16]* + 2[|e|? + 2||Al*)T
<Crp. (3.12)
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Recalling the definition of 7}, we obtain by (3.12) that for all ¢ > p,
m?*P({ry, <t+T}) <E[|lu®(r0) I Iire, <t47y]

S E[Ju((t +T) A1) < Crire

Then, we have

Cr.r
m2

P({r!, <t+T}) < (3.13)

By (3.13) we find that for every ¢ >0, T'>0 and R >0, there exists m; =
mq(e’, T, R) > 0 such that for m > my,

~

P({r}, <t+T}) < % Vit>p,
which implies that
5,
P({swicprnll@l>m}) <5, Vizp mzm.  (319)

On the other hand, making use of (2.7) and the Chebyshev inequality, we obtain
that there exists ma = ma(e’, R) > 0 such that

E [supoc.c, ()12 _
m2 =

) vm}m%

o | ™

P ({Sup0<s<p ”us(s)” > m}) <

N

which along with (3.14) implies that there exists My = Ma(¢’, T, R) > 0 such that

P ({sup.cpprir lu*(s)| > m}) <2 V>0, m> 0,
as desired. 0O

By lemma 3.2, we have the uniform estimates of the segment of the solution in
probability as follows.

REMARK 3.3. If T'= 2p in lemma 3.2, then we obtain

P ({ sup ug|le(—p0)52) < m}) >1—¢, Vt=p, m> M.

s€[t,t+p]

Moreover, if (u°, £) € L*(Q;1%) x L?(; C([—p, 0];1%)), from the proof of lemma
3.2, we can proceed to obtain that for any 7' > 0 and &’ > 0, there exists a positive
constant My = Ms(e’, T, R), independent of € € (0, 1), such that

P sup  uglle—p.op2) <M >1—¢, Vt=0, m> M,
sE[t,t+T]

when E[[|[u%?] v E[supse_p,o] 1€(s)]1?] < R for some R > 0.
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LEMMA 3.4. Suppose (A1)-(A5) and (H) hold. If (u® €)e L?(Q;1?) x
L2(; L2((—p, 0);1%)) satisfies that E[||u®]|*] v f E[|[£(s)|1?] ds < R for some R >
0, then for any &’ > 0 and 61 > 0, there exists n = 17(5 01, R) € (0, p), independent
of e € (0, 1), such that

P ({ sup luf(t1) — ui (t2)| = 61}> <é, Vit=op.

t1,t2€[—p,0],[t1—t2]|<n

Proof. For any &’ > 0, it follows from remark 3.3 that there exists ms = ms(e’, R) >
0 such that for any ¢ > p,

P({ sup ||uz|c<[p,o];lz><m3})>1—
t<s<t+p

For each r > p, define a stopping time 7, by

!

(O]

(3.15)

|

= lnf{s Zr: ||u§||C([—p,O];l2) > mS}v

and we set 7, = 00 if {s > 7 : |[ufllc((—p,01u2) > m3} = 0. By (3.15) we know that
P{r. <r+p} < <5 YVor>p. (3.16)

By (2.6) we have for any p < r < ¢,

o (0) = w0 < O +4) [ fue@las+ [P as+ [ (s = o) as

+glllt =l + Ve

Z/ (hi + o (us (s — p))) dWi(s)|],

keN

and hence for any r > p, 0 <n < p and p > 1, we get

sup Ju(t A7) —uf (r)[|*F
te[r,r+n]

AT, 2p
<BPTIA+4)% sup (/ Ilu5<5)||d3)

telr,r+n]

AT, ) 2p
+ 5771 sup (/ ||u5(5)||‘3d5)
te[r,r+n] r

tATy Zp
vt s ([T ollas) 45

telr,r+n)

+52p—15p[ > /:”th+ak<u5<s—p>>>dwk<s>H2p]- (3.17)

telr,r+n] keEN
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By (2.2), (2.4), the Holder inequality and the Burkholder-Davis—Gundy (BDG)
inequality, it follows from (3.17) that for any r > p, 0 < n < min{1, p},

E| sup |u(tAT) —uE(r)||2p
ter,r+n]

<5+ )PPy + 52 mgn® 4 5% (2 al|? + 265mE) 0
+ 57 gl1PPn?P 4+ 52Oy (41611 + 411811 P m3 + 2(1 k) *) Py
< ConP (1 +17) < 2Con?, (3.18)
where C), is the coefficient of the BDG inequality and Cj is a positive constant

independent of 1, r and ¢ € (0, 1). From (3.16) and (3.18), we can derive that for
any 61 > 0 and t > 2p,

P sup [lug (t1) — ug (t2)]| = 01
t1,t2€[—p,0],[t1 —t2|<n

SP({m—p <t} + IP’( {Ttp >t sup [luf (t1) — u§ (t2)]| = 61} )

t1,t2€[—p,0],[t1—t2|<n

=P({rt—p <t}) +P| {Tt—p =1, sup luf (¢t +t1) — us(t + t2)|| =61
t1€[—p,0],t2€[t1,(t1+n)A0]

e € € gl
<—+4+P(<m—p>t, max sup [uf(s) —uf(t — (k+1)nAp)|l = =

2 0<k<[ 2] s€lt—(k+1)nAp,t—kn] 3

&/ [p/n] 51
<o+ D Pl {m—p>t sup [uf (s) —us(t — (k+ Dn A p)l| =

2 i s€lt—(k-+1)nAp,t—kr] 3

o [p/n] 5
S5+ 20 Pl Te—(ktnmnp 2 6 sup lus(s) —u(t = (k+ LnAp)ll > —

2 =0 s€ft—(k+1)nAp,t—kn] 3

< [p/n] &
S5+ P sup lu(s ATe—(kt1ynnp) —us(t = (E+DnAp)ll = —

2 k—0 s€t—(k+1)nAp,t—kn) 3

e P 32P2ConP
< = Zl41) ——. 3.19
<5+ (1) =% 3.19)

Let

_ (= o ALA
M=\ 41+ p)Co3r P

Then by (3.19) we obtain that for any t > 2p,

P ({ sup luf(t1) — ui (t2)| = 51}> <€ (3.20)

t1,t2€[—p,0],[t1—t2]|<n
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On the other hand, since u® € L?(Q;C([0, 2p];1%)), we find that there exists a
constant 7y = 12(d1, ') > 0 such that for any p <t < 2p,

P sup Jug (t1) —ui(t2)]| = 01 5 | <€,
t1,t2€[—p,0],[t1—t2[<n2

which along with (3.20) yields that

t1,t2€[—p,0],[t1—t2|<n

P({ sup ||u§<t1>u§<t2>||>61}><s', Vi),

where 1 = 1m1 A 12, as desired. O

REMARK 3.5. If (u®, &) € L?(Q;12) x L*(Q; C([—p, 0];12)), from the proof of lemma
3.4, we can further obtain that for any & >0 and §; >0, there exists n =
n(e’, 01, R) € (0, p), independent of € € (0, 1), such that

P <{ sup [Jug (t1) — ui(t2)]| = 51}) <é, Vit>0,

t1,t2€[—p,0],|t1 —t2|<n
when E[[|u°]|?] v E[sup,e(—p,0 1€(5)]|?] < R for some R > 0.

LEMMA 3.6. Suppose that (A1)-(A5) and (H) hold. Then for every compact sub-
set E of L*(;1%) x L%(Q; L2((—p, 0);1%)) and €’ > 0, there exists a positive integer
Ny = Ni(¢', E) such that for all m > Ny, € € (0, 1) and t > 0, the solution u®(t)
of (2.6) with (u°, €) € E satisfies

> B[0P <<

In|>m

Proof. Hereafter, we denote by C' a generic positive constant independent of E, T'
and ¢’. Consider a smooth function 6 : R — [0, 1] satisfying

O(s) =0for |s|] <1; and 6(s) =1 for |s| > 2. (3.21)

Fixed m € N, denote by 6, = (0(n/m))nez and O,u = (0(n/m)u,)nez for u =
(tn)nez € 2. Then by (2.6) we have

d(Ous () + (i0m Aus (t) + 10, [u (£)]*u (t) + A0 us (1)) dt
=0 f(u(t—p))dt+ 0,,gdt

+VEY D (Omhi + Omon (uF (t — p))) AWy (2). (3.22)
keN
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Similar to (3.4), by (3.22) we get that for all t > 0

eV E[||0mu® (8)[1%] =E[l0mu’]*] + (v — 2)\)/0 ¢ E[[|0mu(s)]%] ds
—2Re/0 eV E [(02,u°(s),iAus(s))] ds
— 2Re/0/e'ysE [(02,u°(s), i[u(s)*u(s))] ds
+ 2Re /0 R [(Oti (5), O f (u (5 — p)))] ds
+ 2Re /t R [0y (5), Omg)] ds
+5Z/ 7SE ||9 hi 4 Opmor(us (s — p)|I?| ds.  (3.23)

keN
By the argument of (4.4)—(4.6) in [31], we have
—2Re/0 eE [(02,u°(s),iAu(s))] ds
= —2Re/0 e°E [(B(Ofnus(s)),iBus(s))] ds

¢ tews uf(s)[|?] ds
<o [ Bl s (3.24)

For the fifth term on the right-hand side of (3.23), by assumption (A3) we obtain
t
2Re [ B (O (5), 6 (475 — )] ds
0
¢ 1 t
<Vt [ B (10 ds + / B0 (1 (s~ )] ds

mo<1+evp>/o E [0 (5)]%] ds+ —t S ol

|n|>m

0
V2" / E [[18mé(s)]] ds. (3.25)

—p

By Young’s inequality we have
t ¢
2Re [ EPE((0,0°(5),00)] ds < / E°E (|80 (5)]7] ds
0 0
evt > lgnl* (3.26)

|n|>=m
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For the last term on the right-hand side of (3.23), by assumption (A4) we get

gz/ °E [0k + Omn(u (s — p))|°] ds

keN
<23 3 S 23 [ OB [iemontucts - I as
k€N\n|>m keN
0
6

<2 ¥ |hkn|2—+4z 3 |5kn|2—+4||6n2ew / E [[/6m€(s)]2] ds
keN|n|>m keN|n|>m -r

t
+4||5\|2evp/ O [||fmu(5)]7] ds. (3.27)

0

Tt follows from (3.23)—(3.27) that for all ¢ > 0,

E[|0mu (8)]*] < E[|0mu”]*]e™"

t
+ [ =20+ V281 + ) + 01 + 4||ﬁ||26’*”} / ¢COE [[|fmuc (s)|°] ds
0

+25 S hal? 4 2 3 |gn|2+i T Joul?

\n|>7n keN \n|>m keN \n|>m \n|2m
0

+ & [ et om )P as + (V35 + 45 [ B [ong)I?) as
0 -p
(3.28)

Since [|R||* V [|8]12 V [|e]|* V [|g||* < oo, we infer that there exists mg = my(e’) =0
such that for all m > my,

VY galPV Y JenP < (3.29)

|n|>m keN |n|>m kEN |n|>m In|>=m

For any ¢ >0, since E is compact in L?(Q;1?) x L?(€; L?((—p, 0);1?)), then
it has a finite open cover of balls with radius Ve’ /2, which is denoted by

{B((uj,gj), @/2)};:1. Since (u?, €9) € L2(0:12) x L2(Q; L2((—p, 0);12)) for

j=1,2,---,1, there exists ms = ms(e’, E) > my such that for all m > ms and

ji=1,2,---,1,
. 0 ) 6‘/
> (EMIQ] + [ pEHfﬂL(s)F] ds) <7

[n|>m

which implies for all m > ms and (u°, €) € E,

3 (E[|u2<s>|2] +f " Ellen(s)P) ds) <.

In|=m —r
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We therefore obtain that for all m > ms and (u°, £) € E,

/0 E [[10mé(s) / E [|6n(s)*] ds < &, (3.30)

-r P ln|=m

and

El6ma’’] < ) Ellupl] <€ (3.31)

[n|Zm

On the other hand, by lemma 3.1 we know that there exists mg = mg(e’, E) > ms
such that for all m > mg and ¢t > 0,

01

G [[aonmpeeias < &

e’Y(s ds <, (3.32)
0

where Cy > 0 is a constant depending only on E. Substituting (3.29)-(3.32) into
(3.28), we obtain for all m > mg and t > 0,

2’ 4¢’ g V2e!
E[)|0mus (t)]°] < 2¢' +7+*+

+ (V2B + 4]18]1*)e™*e’ < C</,
v ooy Boy

which implies that for all m > mg and t > 0,

Y Ellun @)’ <Ellfnu ()] < C¢

In|>2m
as desired. O
LEMMA 3.7. Suppose that (A1)-(A5) and (H) hold. Then for every compact

subset E of L*(Q;1%) x L2(; L2((—p, 0);12)), the solution u®(t) of (2.6) with
(u®, &) € E satisfies

limsup sup supE[ sup Z |u,i(8)|2]:0
m—oo (u0,£)eFE t>0 t<5<t+T\n\>m

Proof. Let 6 be the smooth cut-off function as given by (3.21). It follows from
lemma 3.6 that for every & > 0, there exists Ny = Ny (¢, E) > 0 such that for any
t>0and m > Ny,

E[[|0nuf (t)]]?] < €. (3.33)
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Applying It6’s formula to (3.22), we obtain for all t > 0, r € [t, t + T}, € € (0, 1)
and m > Ny,

a7 = O —2Re [ (1405(5).03,0°(5)) s
_ 2Re/tr (i (s) 2 (5), 02,05 (5)) ds — 27 /t 16,05 (5)|2 ds
+ 2Re /tT (Om f(u®(s — p)), Omus(s)) ds

+2Re/ O, 0 (5)) s+ 3" [ 0mbic + Omon(u(s — p))|ds

t keNv?

+2Re Y / O + O (U (5 — ), Ot (5)) AWi(s).  (3.34)
keNv?

For the second term on the right-hand side of (3.34), similar to (3.24), we have

—2Re/tT (iAus(s),0%u O/ [|uf(s)]|? ds. (3.35)

Then by (3.34)-(3.35) we get

t+T
B| s 10,0 0P| < Bl @+ 5 [ Bl ) Plas

t<r<t+T
t+T

t+T
+2/ E (10 f (u®(s = p)H10mu” (s)]]] d8+2/t E[|[6mglll|fmu(s)]]] ds

t+T
30 [ B+ Ot (s = p)IP) s
keN
+2E | sup / (Omhi + Omor(u®(s — p)), Omut(s)) dWi(s)|| . (3.36)
t<r<t+T | 5t

For the second term on the right-hand side of (3.36), by lemma 3.1 we know that
there exists No = Nao(e’, E) > Nj such that for m > Ns,

- / E[||us (s)|2] ds < T (3.37)
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For the third term on the right-hand side of (3.36), by (A3) and (3.33) we have
for m > No,

t+T
2/t E[[[6m f (u"(s = p))[[[6mu”(s) [l ds

t+T—p T
<232 / Ell0mu(5)|2)ds +2 3 Jan? T+ / E[[[6mu® (s)[?] ds
t=r In|=m t
0
<(262+1)T +2 Z |an|2T+25§/ E[[|0.m&(s)]|?] ds. (3.38)

Inl>m -p

For the fourth term on the right-hand side of (3.36), by (3.33) and Young’s
inequality we get for m > Na,

t+T
2/ E[[0mgll0mus(s)]ds < D 1gal®T +€'T. (3.39)
t

In|Zm

For the fifth term on the right-hand side of (3.36), by (A4) we have for m > Na,

t+T
S [ B0+ (s = I ds

keN
<2 Y NhenlPT+4 D0 > [kl T
[n|>m keN [n|=>m kEN

0
+4]18]1%'T + 41|81 / E[l|0mé(s)]|*)ds. (3.40)

—p

For the last term on the right-hand side of (3.36), by (A4) and the BDG inequality
we obtain for m > N,
0

120 S S ISP T + 20|82 + 201152 / E[6,6(s)|?] ds. (3.41)

[n|>m kEN P

8| sup 57 [ G O (5 = ). 0" (5) AA(S)

t<r<t+T

keN

1
<GE[ sup [[8nw ()7 +C Y Y Il T

2
tSr<t+T |n|=m keN
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Tt follows from (3.36)-(3.41) that

E { sup ||9mus(r)||2} 4T+ 2288 +1)'T
t<r<t+T

+4 > JanPT+2 > [gnlT +2¢'

[n|Zm [n|>=m
+20C+2) Y Y haPT+4C+2) 30 S 180T
|n|=m keN |n|=m keEN
0
4C+DFPT + [HC+ 2B +458) [ Ellone)PIds (342
—p
Similar to (3.29)—(3.30), we obtain that there exists N3 = N3(¢’, E) > N3 such that
for all m > N3,
D D MhnalPV R > 1eanlV 3 lgnl?V D Janl* <&
|n|=m kEN |n|>m keN |n|>m [n|=m
and

0
/ E[|0m&(s)]?] ds < &

—p
which along with (3.42) implies that for all ¢ > 0 and m > Ns,

IE[ sup  ||0mus(r)]|?| < Ore,

t<r<t+T

where C7 > 0 depends only on T but not on &', m or E. This completes this proof.
O

As an immediate consequence of lemma 3.7, we have the following result.

COROLLARY 38 Suppose (A1)-(A5) and (H) hold. If (u &)e L?(1%) x

LA LY(—p, 0);1?), then the solution u® of (2.6) satisfies that for every 6 > 0
and T > 0,

lim sup sup P sup Z [us (5)]? > 6o =0.

m—oo 20 set,t+T] [n|>m

Proof. By the Chebyshev inequality, we obtain that

1
P sup Y fup(s)P >0 p | < S E| sup > (o)’ |,
sE[t,t+T] In|>m 2 s€[t,t+T) In|>m
which together with lemma 3.7 completes the proof. O
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REMARK 3.9. If (u°, &) € L?(Q;1?) x L2(;C([—p, 0];1%)), from the proofs of
lemma 3.7 and corollary 3.8, we can further obtain that for every do > 0 and T > 0,

limsup sup P sup Z [us (s)]? > 6o =0.

m—oo t>=—p sEt,t+T) [n|>m
=

3.2. Existence of invariant measures

3.2.1. Transition semigroup. In this subsection, we first introduce the transition
semigroup of (2.6), and then show the Feller property and the Markov property of
the transition semigroup, which will play a crucial role in proving the existence of
invariant measures on 12 x L%((—p, 0);1?).

For any initial time to > 0 and initial data (u°, £) € L?(Q;1%) x L2(; L*((—p, 0);
1)), we know that (2.6) has a unique solution on [tg, 00), which is denoted by
us(t;tg, u®, £). The segment of u®(t;ty, u’, &) on (t — p, t) with t > ¢ is written as
Uf(to, UO’ g)a that is,

us (to, u®, €)(s) = us(t + s;to,u’,€), Vs € (—p,0).
Then we have u§(tg, u®, &) € L2(Q; L2((—p, 0);12)) for all t > t,.
If ¢ :12 x L%((—p, 0);12) — C is a bounded Borel function, then for 0 <r <t
and (u®, €) € 12 x L?((—p, 0);1?), we set

(pi,tgp) (’U,O, 5) =E |:<)0 (us (tv T, U/Oa §)7 ’U/i (Ta u07 5))} .
The family {p5.; }o<r<: is called the transition semigroup of (2.6), and pj , is written
as p§ for simplicity. In particular, for T' € B(I?> x L?((—p, 0);1?)), 0 <r <t and
(u®, €) € 12 x L*((—p, 0);1%), we set
po(r, (u,€):t,0) = (pf o Ir) (u”, ) = P ({w € Q= (u(t;7,u°, ), uf (r, 0, €)) € T'})

where I is the characteristic function of I'. Recall that a probability measure pu®
on [2 x L?((—p, 0);1?) is called an invariant measure of (2.6), if

/ () (a0, €) dysf = / P, ) duf, V20, (3.43)
12X L2((—p,0);12) 12X L2((—p,0);12)

for every bounded Borel function ¢ : 1% x L?((—p, 0);1?) — C.
Given (u™, "), (u°, &) € 12 x L?((—p, 0);1?), R > 0 and 7 > 0, define

TR =inf{t > ro : |[u(t;ro,u’,€)|| > R or |[u®(t;r,u™, &™)| > R}.
Next we show the continuity of (uf(tg;ro, u’, &), ug, (7o, u®, €)) with respect to

initial data in I2 x L?((—p, 0);1?), which is useful for proving the Feller property of
{pi,t}0<rét-
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LEMMA 3.10. Suppose that (A1)-(A5) and (H) hold. If (u", ") — (u?, &) in
12 x L?((—p, 0);12), then for every 0 < ro < to,

lim ]E[ l|u® (to A Th;ro,u™, &%) — u (to A Th;ro,u’,€) Hz

n—oo

t
—I—/ i Hue (tATg;ro,u”, ") —u® (t/\TE;ro,uo,f)H2 dt} =0. (3.44)
to—p

Proof. For simplicity, we write u®(t;ro, u™, £") as u™°(t) and u®(t;7g, u’, ) as
u®(t). By (2.6) and Itd’s formula, we get for all ro <t < to,

la™ (8 A TH) = u® (t A TF)|”

< w2

[ P o) - (o) P (5), w7 () = () s

0

+ 2

tATH
/ (f(u™=(s = p)) = f(u(s = p)),u™"(s) — u™(s)) ds

7o

tATR
o3 [ oo = )~ antar (s = ) s

keN

+2/e

ATy
S [ e )= (s p) " (5) - () AW ()

keN T

(3.45)

For the second term on the right-hand side of (3.45), we know that there exists
C1,r > 0 depending only on R such that

LATT:
2 / i (Ju™e(s)Pu™= (s) — [u®(s)|*us(s), u™*(s) — u(s)) ds
AT
< C’LR/ [lu"*(s) — uE(s)H2 ds. (3.46)

For the third term on the right-hand side of (3.45), by (2.3) we have

2

/ (@ (s — ) — f (W (s — )l (s) — u(s)) d

To

tATR
<(1+Cop) / " (5) — u(s)2ds + /

T0o —

0

1f(€7(5)) — [ (&(5)) [|”ds,
’ (3.47)
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where C5 p > 0 depends only on R. For the fourth term on the right-hand side of
(3.45), by (2.5) we get

EATE
ok (W™ (s — p)) — 0% (u(s — )| ds
< Cyp / " lum(s) — w ()2 ds + 3 / ok (€7(s)) — ok (€(s)) 12 s,

To keN

(3.48)

where C5 p > 0 depends only on R. It follows from (3.45)—(3.48) that

E { sup [lu™® (r ATE) — uf (r ATg)H?]
ro<r<t

9 0
< o — 0 + / 1 (€(s)) — £ (&(5)) | ds

Y / ok (6%(s)) — 0w (€(5)) |1 ds

keN

t
(Cunt Cont Cnt 1) [ B [ sup || (s ATE) — u (s ATE) ||2] ar
To

oS

(3.49)

+2v/¢E

sup

roSr<tATE

> /T (Jk (u™(s = p))

keN

—op (u(s—p)),u™"(s) — ug(s)) AWy (s)

By (2.5) and the BDG inequality, we obtain that there exists a constant Cy g > 0
depending only on R such that

2\/eE l sup

ro<Sr<tNTR

> / o (W (s = p) = o (W (s — ), u(5) — w(5)) dWi(s)

keN

|

1
< -E [ sup |[u™ (r ATE) —u® (r ATR) ||2}

2 ro<r<t

¢
—|—C'4,R/ E[ sup |lu™ (sATH) —u® (sATR) ||2] dr
0 ro<s<r

+C4RZ/ o (7(s)) — 0% (£(s)) ||* ds. (3.50)

keN
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By (3.49)—(3.50) we have for all ¢ € [rg, o],
E [ sup [[u™ (r ATR) — uf (r A Tg)n?]
ro<r<t

<2(Cig+Cor+Csr+Coir+1)

¢
/ E{ sup |lu (s ATR) —u5 (s ANTR) ||2] dr
0 ro<SKr
n 0|2 0 n 2
w2l = 2 [ - £ I s
-p

+2(Cyr+1) Z /

keN®" T

0

lo (€7(s)) — o (&(5))|* ds.
P
By Gronwall’s inequality and (3.51) we get
E [ sup |lu™e (E ATR) — u® (tA Tg)ﬂ

ro<t<to

< e2(C1,r+C2 r+C3 r+C4,r+1)(to—T0)
9 0
: (2 [Ju™ — | +2/ 1f(€"(s)) = [ (&(s)) 17 ds
—p

0
+2(Car+1) Z/ llow (67 (5)) — ow (&()) |I? d8>-

keN™ T

Since (u™, &) — (u°, &) in 12 x L2((—p, 0);1%), by (2.2), (2.4)

23

(3.51)

(3.52)

and the

Vitali convergence theorem, we infer that fi)p [ f(€7(s)) — f(&(s))]|>ds — 0 and

> keN ffp llox(€7(s)) — ok (£(s))]|? ds — 0. Thus by (3.52) we know that

]E{ sup  [[u™® (t ATE) — u’ (ng)nz] — 0.

ro<t<to

Since [[€" — & L2((—p,0)42) — 0, it follows from (3.53) that

to
. [/ Jume (¢ ATR) — u* (¢ A TR d + ™ (t0 ATR) — u (tg ATE)IIQ]
t

0—p

0 to
sE[ [ e -coPacs [ eaty) o @aTp a
—pP

To

T (t ATE) — o (fo A T;@H

ro<t<to

—0 as n— 0,
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as desired. N

By lemmas 3.2 and 3.10 and the arguments of [17, pp. 250-252], we can obtain
the following properties of {p ; o<r<t-

LEMMA 3.11. Suppose that (A1)-(A5) and (H) hold. Then we have:

(1) {p5. Yos<r<e is Feller; that is, if ¢ : 1% x L*((—p, 0);1%) — C is bounded and
continuous, then for any 0 < r < t, the function pt ¢ : 1* x L*((—p, 0);1%) —
C s also bounded and continuous.

(2) {pF+Yocr<t is homogeneous; that is, for all 0 < r < t,

po(r, (W, 6);t,-) = p°(0, (u°,€);t —1,-),  V (u%,€) € 12 x L2((—p,0);1°).
(3) For any 0 < s < r < t, the Chapman—Kolmogorov equation holds true:
po(s, (u’, €);1,T) =/ p° (s, (u®, €); 7, da)p® (r, 231, T),
12X L2((—p,0):12)

where (u%, €) € 12 x L?((—p, 0);12) and T € B(I? x L?((—p, 0);1?)).

3.2.2. Proof of theorem 2.1. Now we are in a position to present the proof of
theorem 2.1.

Proof. For simplicity, we now write u®(¢;0, 0, 0) as u®(t) and u$(0, 0, 0) as us. By
remark 3.3 we see that for given & > 0, there exists Ry = Ry(¢’) > 0 such that for
all £ > 0,

/

5 &
P ({luleq-ponm > Ba}) < - (3.54)

By remark 3.5, we know that for given ¢/ > 0 and m € N, there exists 7, o > 0
depending only on m and €’ such that for all ¢ > 0,

1 4
P sup ||U§(t1) - Ui(tg)” > 27'”7, < 47m7
t1,t2€[—p,0],[t1 —ta| <y, o

and thus
o0 o0 E &J
P sup lug (t1) = ui(t2)l] > o T S o
<'rr!1 {t17t2€[—f’70]7|t1—t2<77m,5/ ' z:: " 3
(3.55)

It follows from remark 3.9 that for given &’ > 0 and m € N, there exists an integer
N e > 0 depending only on m and &’ such that for all ¢ > 0,

1 g

P P> =] <—
sup Z |u’n (T)| om qm ’

STt >0

m,e!
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and hence we obtain for all ¢t > 0,

> 1 -
P su us, (1)) > — < — < - 3.56
791tmi%gif (P> 5 g;w/g (3.56)
Given ¢’ > 0, denote by
Zye ={6 € C([=p,05;1%) : [[€llo(-p.ojz) < Ri}, (3.57)
9 1
Zyer =48 € C([=p,0;17) : sup 1€Cty) = &)l < 5
ti,t2€[—p,0, |t —t2]<n,, o
for all m € N}, (3.58)

1
Zzo =R &€ C([—p,0;1%): sup Z 1€ () < om forallme N » |

TSl
(3.59)
and
Ze =21 o ()22 () Z3.cr- (3.60)
Tt follows from (3.54)—(3.56) that for all ¢ > 0,
P{u; € Zo}) >1—¢. (3.61)

By (3.57), (3.59)—(3.60), we know that the set {z(0):z € Z./} is precompact
in [?. Moreover, according to the Ascoli-Arzald theorem and (3.57)-(3.60),
one can show that Z. is a precompact subset of C([—p, 0];1?). Since the
embedding C([—p, 0];12) < L?((—p, 0);1%) is continuous, Z., is precompact in
L?((—p, 0);12). Thus we conclude that Z. = {(2(0), z) : z € Z./} is precompact
in 12 x L2((—p, 0);1?).

On the other hand, by (3.61) we obtain that for all ¢ > 0,

P({(w®)u) e Zo}) =P{u; € Z.}) > 1-¢,

which along with the precompactness of Z.. implies that the distributions of the
family {(u®(t), uf) : t > 0} are tight on 1% x L?((—p, 0);1?).
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We denote the distributions of the family {(u®(t), u§) : ¢ > 0} by {L§}i>0 for
simplicity. For given k£ € N, we set

1 k
W= /0 LE()dt. (3.62)

By (3.61), we know that for all k£ € N,

(o(Ze) > 1— €. (3.63)

Consequently, it follows from (3.62)—(3.63) that {u5}72, is tight, and hence there
exists a probability measure pu° on 12 x L?((—p, 0);1%) such that, up to a subse-
quence, uj, weakly converges to p° as k — 0o. Then by lemma 3.11, one can verify
that p° is an invariant measure of (2.6) by the argument of [12, Theorem 4.3]. O

4. The large deviation principle

In this section, we will investigate the LDP of the family {u®}.~¢ by the weak
convergence method. We first review the basic concepts of weak convergence theory
in the next subsection.

4.1. Preliminaries

In this subsection, we recall some definitions and results from the theory of large
deviations. Let & be a polish space, and {X¢} be a family of random variables
defined on the space (2, F, {Fi}i>0, P) and taking values in €.

DEFINITION 4.1. A function I : € — [0, 00] is called to be a rate function, if it is
lower semicontinuous on . A rate function I is called a good rate function, if for
each a € [0, 00), the level set {x € £ : I(x) < a} is a compact subset of £.

DEFINITION 4.2. Let I be a rate function on E. The family {X°} is said to satisfy
the LDP on £ with rate function I if the following two conditions hold:

(1) Large deviation upper bound. For each closed subset F' of &,

limsupelogP(X*® € F) < — inf I(x),
e—0 zeF

(2) Large deviation lower bound. For each open subset G of £,

o . S _ s _
llggfslogP(X €G) > mlIglg I(x)

DEFINITION 4.3. Let I be a rate function on €. The family { X ¢} is said to satisfy the

Laplace principle on € with rate function I if for all bounded continuous functions

h:&—R,

h(X®)
€

lim = log {exp (- ﬂ = — inf {h(z) + I(@)}.

Since £ is a polish space, the family {X¢} satisfies the large deviation principle
on & with a rate function I if and only if the family {X*} satisfies the Laplace
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principle on £ with the same rate function. In view of this equivalent result, we
will focus on the Laplace principle hereafter. In what follows, we introduce some
notations and a criteria for the Laplace principle, which is useful for proving the
Laplace principle for the family of solutions {u®} of (2.6) on t € [0, 7. Let

H = {u = (uy)52y : ijl lu; | < oo}.

For every k € N, let e = (§k7j);?';1 with 0, ; =1 for j = k and d5 ; = 0 otherwise.
Then {eg, k € N} is an orthonormal basis of H. Let W be the cylindrical Wiener
process on H (which does not take values in H), given by

W(t) - Z Wk(t)ekv te R+7
keN

where the series converges in L?(Q; C([0, T);U)) with U being a larger separable
Hilbert space such that the embedding H — U is Hilbert—Schmidt.
For each a > 0, define

Se = {v € L*([0,T); H) : /0 lv(s)]|3 ds < a} .

Then S, is a Polish space under the weak topology of L?([0, T|; H). Henceforth,
wherever we refer to .S, , we will consider it endowed with this topology. Let A denote
the class of H-valued F;-predictable processes v which satisfy fOT |lv]|3 ds < oo,
P-almost surely, and for each a € (0, c0), we define

A, ={ve A:v(w) € S,,P-almost surely}.

For each ¢ € (0, 1), let G°: C([0, T};U) — C([0, T;1?) be a measurable map.
The following lemma gives sufficient conditions for the Laplace principle to hold for
the family {G*(W)} as ¢ — 0.

LEMMA 4.4 [7], theorem 4.4. Suppose that there exists a measurable map G :
C([0, T);U) — C([0, T);1%) such that the following two conditions hold:

(H1) for each a € (0, 00), the set {G(fo v(s)ds):v € Sa} is a compact subset of
c([o, T1;1%),

(H2) if {v°} C A, for some a >0, and v¢ converges in distribution to v as
Sq-valued random wvariables, then G=(W +e=/2 [v°(t)dt) converges in
distribution to G( [, v(t)dt).

Then {G*(W)} satisfies the Laplace principle on C([0, T);1?) with rate function
I:C([0, T);1?) — [0, oc] defined by

I(z) = inf {;/0 lo()||%dt : 2 = G (/(J-v(t) dt) U E L2([0,T];H)} . (4.1)

where we use the usual convention inf(f)) = oco.
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4.2. The LDP for solution processes

This subsection is devoted to formulating the Laplace principle for the family of
solutions {u®} of system (2.6) on the finite time interval [0, T] as ¢ — 0, from which
we can establish the LDP for the family {u®}. We first specify the maps G° and G
in the context of system (2.6), and we then use lemma 4.4 to deduce an analogous
criterion of the Laplace principle for the family {u®}.

Given u € 12, define o(u) : H — [ by

o(u)(v) = Z(hk +op(u))vg, Vo= (v)ie, € H. (4.2)
keN

We find that o(u) is well-defined by (2.1) and (2.4). Moreover, the operator is
Hilbert-Schmidt and

1/2
lo()lLmzy < llo()ll, ez = (Z s + Uk(u)||2> < 00,

keN

where L(H;I[?) denotes the space of bounded linear operators from H to [? with
norm || - ||1(py2y, and Ly(H;1?) denotes the space of Hilbert-Schmidt operators
from H to [ with norm || - [ 1y(a,12)- In terms of (4.2), system (2.6) on the finite
time interval [0, 7] can be reformulated as

duf(t) = —iAus(t) dt — ius(t)[2us(t) dt — Au(t) dt + f(us(t — p))dt
Tgdt + eo(us(t — p)) AW (1), t € [0,T], (4.3)
ug(o) = uO, ua(s) = §(3)7 s € (_pv 0)7

Given (u?, &) € 12 x L*((—p, 0), [?), e € (0, 1) and T > 0, by the existence and
uniqueness of solutions of system (2.6), we infer that there exists a Borel measurable
map G° : C([0, T);U) — C([0, T];1?) such that u® = G*(W), P-almost surely.

Moreover, for any v € A, with a € (0, o), the Girsanov theorem shows that the
stochastic process

W(t) :=W(t)+e 1?2 /Otv(s) ds

is a cylindrical Wiener process with identity covariance operator under the
probability P% as given by

LT SRSV / Loy — Lt / o2 at
P &Py ; v 5¢ ; v(t) |5 .

Let u; = GE(W). Then u$ is the unique solution of (4.3) with W replaced by w,
which implies that w is the unique solution of the following controlled stochastic
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delay system:

dus (t) = —i Aus (t) dt — i|us () [Pus (t) dt — s (t) dt + f(us(t — p))dt
+gdt + o(uS(t — p))ve(t)dt + Veo (us(t — p))dW (), t € [0,T], (4.4)
ug(0) = u’, ug(s) =&(s), s € (=p,0).

To define the map G, we introduce a controlled deterministic delay system
associated with (4.3) as follows:

duy () = —iAu, (t) dt — i|u, () 2w, (t) dt — A, (t) dt + f(u,(t — p)) dt
+g(t)dt + o(u,(t — p))v(t)dt, t € [0,T], (4.5)
UU(O) = uO’ ’LLU(S) = 5(8), s € (_P,0)~

By a solution u, of (4.5), we mean u, is a map from [—p, T] to [? such that wu,(t)
is continuous for ¢t € [0, T, u,(0) = u° and u, = £ on (—p, 0).

For any v € L2([0, T}; H) and (u°, &) €1?> x L?((—p, 0);1?), we will prove the
existence and uniqueness of solutions of (4.5) in lemma 4.7 in Subsection 4.3. As
a consequence of lemma 4.7, we will see that the solution of (4.5) is continuous
in C([0, T); £) with respect to the control term v in L?([0, T]; H). Hence we can
define G : C([0, T];U) — C([0, T];1?) by

G(p) = {va if o= [;v(t)dt for some v e L*([0,T]; H);

0, otherwise, (4.6)

where u, is the unique solution of (4.5) corresponding to the control term wv.
By lemma 4.4, we deduce the following result.

COROLLARY 4.5. If G* and G defined in this subsection satisfy conditions (H1) and
(H2) presented in lemma 4.4, then the family {u®} satisfies the Laplace principle
on C([0, T;1?) with the rate function I given by (4.1).

In the following, we will prove theorem 2.3 by verifying that G and G defined
in this subsection satisfy the conditions (H1) and (H2) in lemma 4.4.

4.3. Proof of theorem 2.3

To prove theorem 2.3, we need the following priori estimates for the solutions of
(4.5).

LEMMA 4.6. Suppose that (A1)-(A5) hold and T >0. If (u° &) €l®x
L?((—p, 0);12), v € L3([0, T); H) and u, is a solution of system (4.5), then

0 2
ol ey < O (0P + [ @I ar 1) 41 rnmin)
—p

where Cp > 0 is a constant depending only on T.
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Proof. By (4.5) we obtain that for all ¢t € [0, T7,

%Iluv(f)l\2 <= 22|us (O] + 2Re (f (uo(t = p)), uu(t))

+2Re (g,uy(t)) +2Re (o(uy(t — p))v(t), uy(t)) . (4.7)
For the second term on the right-hand side of (4.7), by (2.2) we get
2Re (f(uy(t = p)),uo(t)) < [luo(@)* + [1f (uo(t = o))
< 263 luo(t = p)II* + 2[l ] + flua (). (4.8)
For the last term on the right-hand side of (4.7), by (2.4) we have
2Re (o(uy(t — p))o(t), ualt))
< lo(uo(t = P)IZ a2y + o)1 1w (t)

)
<D M+ 0w (= p) P+ [0 (8) 3l (1))

keN
< 2[[Al* + 41812 o (t = p)II? + 411611 + o ()11 lluw (). (4.9)

I

By (4.7)-(4.9) and Young’s inequality we obtain that for all ¢ € [0, T7,

d
e O < @+ o) llue ONF + (265 + 4181 lluw (t = p)II?
+llgll* + 2l + 4)l5]1* + 2(| ]l

which implies

t
o (I < [|u®]? +/0 (2 + ()7 + 265 + AlIBI) o ()] ds

0
+ (265 + 4||B||2)/ €)1 ds + ([lgll* + 2llee]|* + 4]|5]1* + 2[a]|*)T
-pP
(4.10)

By (4.10) we have for all ¢t € [0, T,

t
sup u, (r)]|* < ||u°||2+/ 2+ [lo(s)lI7 + 25 +4l1B1%) sup [lu(r)|* ds
re(0,t] 0 r€l0,s]

0
+ o+ [ e as
P

+ (lgll* + 2llal® + 48] + 2[|R]|*)T. (4.11)
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By Gronwall’s inequality, it follows from (4.11) that for all ¢ € [0, T,
I?

sup ||uy(r)
rel0,t]

0
< <uO|2 + (lgll* + 2l + 4ll811* + 2[|al*)T + (263 +4llﬁ||2)/ 5(5)||2d5)
-P

- oo @+v(9) 13 +280+4181%) ds

0
< (112 + gl + 2? + 41512 + 2T + 255 + 1P [ o)l as)
—p
- 2B+ BT 2 7y

which completes the proof. U

Based on above priori estimates of solutions, we next prove the well-posedness of
system (4.5).

LEMMA 4.7. Suppose that (A1)-(A5) hold. Then for every (u° &) €l? x
L3((=p, 0);1?) and v e L*([0, T]; H), system (4.5) has a unique solution
u, in C([0, T];1%). Moreover, if vy, vo € L*([0, T]; H) with |jv1|r2(o,1);60) V
v2llL2(o, ;) < R1 for some Ry >0 and [[u’]|* v pr €(s)||1?ds < Ry for some
Ry > 0, then the solutions u,, and u,, of (4.5) with initial data (u°, &) satisfy

[, = o, | Epo,7702) < Callvr = 02172079, 19 (4.12)
where Cy > 0 is a constant depending on Ri,Ro and T.

Proof. Note that system (4.5) on [0, p] is equivalent to the following system without
delay:

duy (1) = —iAuy () dt — iy (£)[Puy (£) dt — Ay (t) dt + f(E(E — p)) di
—gg dt + o(&(t — p))v(t) dt, t €0, pl, (4.13)
Uy (0) = u’.

Let F(t, u) = —iAu — ilu]?>u — M+ f(£(t — p)) + g + o(£(t — p))v(t). By (2.2) and
(2.4) we find that for every R > 0, there exists Cr > 0 depending only on R such
that for all t € [0, T] and u € I? with ||Jul| < R,

[E @ w)ll < Cr[(1+ [lo@ ) IEE = o)l + llull + [lo@)]a + 1], (4.14)
and for all ¢ € [0, T] and uy, us € 1* with |Juq|| V |Juz|| < R,
|F(t,u1) — F(tuz)| < Crllur — uzl. (4.15)

Hence, by (4.14)-(4.15) and lemma 4.6, system (4.13) has a unique solution u,
defined on [0, p]. Repeating this argument, one can extend the solution u, to the
whole interval [0, T7.

Next, we are going to prove (4.12). By lemma 4.6, for vy, vs €
LQ([O, T],H) with ||'U1||L2([O,T];H) V ||U2||L2([0,T];H) < R; for some R; >0 and
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[|u®]|? v f 1€(s)]|? ds < Ry for some Ry > 0, there exists K = K(Ry, Rz, T) >0
such that supte 0,77 ([, ()| + J|wa, (1)) < K. By (4.5) we get for all ¢ € [0, T7,

ltao, (£) = we, (8)]* < 2/ [0, (8) = oy (8) 1|2ty (5) 1ty (8) = ity (5[, ()] ds
0
+ 2/ [, (8) = v ($) 1 |f (wy (5 = ) = f(uny (s = p)) Il ds

+2/ 1o (uo (s = p))vr(s) = o (o, (s = p))va(s) [ty (5) = wu, (s)[|ds.  (4.16)

By (2.3) and Young’s inequality we have

2 [ (5) = a5y (5 = ) = (5 = ) ds
0
2 / et (5) — g (3)11t0s ()t (5) — ity (5) 0 (5)]] s
<(Ki+1) / lt0n (5) — 1ty (5) 2 s, (4.17)

where K7 > 0 depends on Ry, Ry and T. For the last term on the right-hand side
of (4.16), by (2.5) we get that there exists Ko = Ko(Ry, R, T') > 0 such that

2 [ o (s = a5 = s = (sl () — w9 s
<2 [l (5 = ) 01(5) ~ (s = P)0r (6 s () — w5 s
2 [ (a5 = )(01(6) = 02 () — s 5] s

< [ lontunnts )~ ontanats ~ DI s

0 ken

[ Il ()~ v
28 [ (s — ) 0a(5) ~ vl s
<8 [ T () =P s [ 1r 6 5) — w9 s

2K [ lo(uw,(s = p))(vi(s) = va(s))| ds. (4.18)

https://doi.org/10.1017/prm.2024.20 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.20

Invariant measures and large deviation principles for SSDLS 33

Since f [€(s)II> ds < Ry and supye g 7 [, (1)]| < K, we obtain that there exists
Ky = K3(R1, Ry, T) > 0 such that for all ¢ € [0, T7,

/0 lo(to, (s = p))(vr(s) —va(s))l| ds

<(Aﬂwmww—pnﬁﬂmmdﬁhq(AW““”‘”“)%“>

< Ksllvr — 2|l 20,77 1) (4.19)

1/2

It follows from (4.16)—(4.19) that

0, (£) = wo, (D)1 < /O (K1 + Kz + 1+ [oa(s)l[F) we, (5) — oy (s)]|* ds

+ 2KK3||’01 — 'UZHLZ([O,T];H)~
Then by Gronwall’s inequality we know that for all ¢ € [0, T7,

Ki+K T 2
[0, () = oy ()]|? < 2K Ksl[v1 — va| 2o, zyye™ T 2T L2 G000y

which completes the proof. [
The following lemma shows the continuity of an integral operator.

LEMMA 4.8. Suppose that (A1)-(A5) hold. For a fized ¢ € L>([0, T];1%) N
L?((—p, T);1?), define the operator T : L*([0, T]; H) — C([0, T];1?) b

T(v)(t) = /Ol o(p(s —p)v(s)ds, Ywve L*([0,T); H). (4.20)

Then T is continuous from the weak topology of L?([0, T); H) to the strong topology
of C([0, T; 1%).

Proof. Note that the operator ' : L([0, T]; H) — C([0, T];1?) is well-defined. In
fact, by (2.1) and (2.4) we get for every v € L%([0, T]; H),
T
| tets = peteplas
T
< [ lrtets = o) (o) s

- 1/2
< (/O IIU(w(s—p))lliz(H;zz)d«?) loll 2o, 7:1)

https://doi.org/10.1017/prm.2024.20 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.20

34 Z. Chen, X. Sun and B. Wang
0 1/2
< 20RIPT + 41811 lll anT +481PT +4[BI1” [ lle(s)]*ds
S Pl Lo ([0,T);12) ®

-p

vl L2 o,my: 1y < o0, (4.21)
which implies that I'(v) € C([0, T];1?) for all v € L%([0, T]; H). Moreover, by (4.21)
we get that I : L2([0, T); H) — C([0, T];1?) is bounded. On the other hand, from
(4.2) and (4.20) it is easy to see that I : L2([0, T; H) — C([0, T];1?) is linear. Since
the operator I' : L2([0, T|; H) — C([0, T];1?) is strongly continuous and linear, one
can deduce that T' is weakly continuous. Following the argument of [33, Lemma
4.3] with small modification and the Ascoli-Arzela theorem, one can further show

that I is continuous from the weak topology of L?([0, T]; H) to the strong topology
of C([0, T1;1?). O

Thanks to this lemma, we can proceed to prove the continuity of u,, in C([0, T);1?)
with respect to v € L2([0, T]; H) in the weak topology of L?([0, T]; H), which is
crucial to verify condition (H1) for the Laplace principle of {u®}.

LEMMA 4.9. Suppose that (A1)-(A5) hold. If v, — v weakly in L*([0, T); H),
then w,, — wu, strongly in C([0, T];1%), where u,, and wu, are solutions of (4.5)
corresponding to v, and v, respectively.

Proof. Since v,, — v weakly in L?([0, T]; H), there exists a constant N; > 0 such
that [|v||z2(o0, 7;m) < N1 and |[vp |20, 7)) < N1 for all n € N. Then by lemma
4.6 there exists a constant No = No(Ny, T, u°, ) > 0 such that

sup ([[uo, ()] V lus(@)]]) < N2, VneN.
te[0,T]

By (4.5) we have

%(uvn (t) - uv(t)) = _iA(uvn (t> — Uy (t)) - i(|uvn (t)‘zuvn (t) - Iuv(t)|2uv(t))

— At (8) — s (6)) + £, (¢ — ) — Fualt — p)
(£ = p)on(t) — ounlt - p))o(t), (4.22)
We set
0. | (s — ) (wn(s) — o(s)) ds.
Since v, — v weakly in L2([0, T7; H), by lemma 4.8 we obtain
©,(t) — 01in C([0,T];1%), as n — oco. (4.23)

Then by (4.22) and (4.23) one can show u,, — u, strongly in C([0, T];1?). The
details are similar to [33] and hence omitted here. O

We now prove the map G given by (4.6) fulfills condition (H1) in lemma 4.4.
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LEMMA 4.10. Suppose that (A1)-(A5) hold. Then for every a € (0, 00), the set

g, = {G (/0 u(t) dt) ‘ve Sa} (4.24)

is a compact subset in C([0, T];1?).

Proof. Let {u,,} be any sequence in =, and {v,} C S, C L*([0, T]; H). Since S,
is a polish space under the weak topology of L?([0, T]; H), there exist v € S, and
a subsequence {v,,} such that v,, — v weakly. Then, by lemma 4.9 we know that
— u, in C([0, T];1%), which implies that =, is compact in C([0, T); [?). O

Uy

ng

Next, we derive the uniform estimates for the solutions of (4.4).

LEMMA 4.11. Suppose that (A1)-(A5) hold, v e A, for some a € (0, 00) and
(u®, &) € 12 x L3((—p, 0);12) with ||u®]]* v fi)p €(s)||2ds < R for some R > 0. Let
us, be the unique solution of system (4.4) with v. Then there exists a constant Cy > 0
depending only on a, R and T such that

sup_lug(s)]|*| < Co. (4.25)

s€[0,T]

sup E
e€(0,1)

Proof. Applying 1t6’s formula to (4.4), we obtain that for all ¢ € [0, T7,

H%@W<WMF+%BAOﬂ%ﬂ%@—mn®+%eAhm%mds
+2meAK@@xawas—mw%@wh+eA|wmas—mngma®

+2V/Re /O (uE (s), o (u (5 — p)) AW (s)) (4.26)

By (2.4) and the Holder inequality we obtain

2R5A<@waWﬂs—mww»ds

t
<2 sup lug(s )II/0 llo (i (s = Pl o ez llo(s)]] i ds

0<s<t

1/2 t
<2 sup s ([ lotuits = ey as) ([ Il as)

1/2
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< - su U, 2—1—4(1/ o ds
s [ (s lo(us (s = )

1 t
Sqlw (AC )||2+8aT||h||2+16all5ll2T+16a||6||2/ 5 (s) | ds
0

0
+ 16a)5) / €(s)]? ds. (4.27)
—pP

It follows from (2.4), (4.8), (4.26)—(4.27) and Young’s inequality that for all ¢ €
[0, T] and € € (0, 1),

75 | sup i

0<s<t

t
< 1P + (268 + 41312 + 2+ 160l51%) | E [ sup ||uf,<r>ﬂ s
0

0<r<s
0
+(253+4Hﬁ||2+16a||6||2)/ 1€(s)|I* ds+2[|ee]|*T + 4]|6]*T
-p
+ 19/ T + 2||h||*T + 8aT||h||* + 16a||6]|> T

+2v/cE { sup

0<r<t

Re [ (u5(s).0(uils — ) dW(s»H . (1.28)

For the last term on the right-hand side of (4.28), by the Burkholder inequality we
have for all ¢ € [0, T] and € € (0, 1),

. 1/2
(/ |ui<s>|2||a<uz<sp)ll%Q(H;mds) ]

1
< [ s 1 617] +36 [ 1otits = e 0

0<s<t

2v/cE { sup

0<r<t

Re [ (uf(s).o(ug (s = p) W (s)

1
<-E [ sup ||uf}(5)||2] + 36 (2||h||2T+4||5|2T
4 |ogsst

Al [ sl s+ 15l [ 8 | s ] ds>. (4.29)

Then (4.25) follows from (4.28)—(4.29) and Gronwall’s inequality. O

We now prove G and G° satisfy condition (H2) in lemma 4.4.

LEMMA 4.12. Suppose that (A1)—-(A5) hold and {v¢} C A, for some a € (0, ).
If {v®} com;erges in distribution to v as Sa-valued random variables, then G5(W +
1/\/e [;ve(t)dt) converges to G( [, v(t)dt) in distribution.
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Proof. Notice that u, = G( [, v(t)dt) is the solution of (4.5) with the control v. Let
uSe = G5(W +1/y/e [;v°(t) dt). Then u. is the solution of the following system:

duse (t) = —iAus. (t) dt — ilus. (1) [Pus- (t) dt — /\uvg( Jdt + f(uS(t —p))de
+gdt + o (uGe (t — p))v* (£)dt + vEo (use (t — p)AW (1), t € [0,T],
us-(0) = ul, us-(s) = £(s), s € (—p,0).

(4.30)
In order to show that us. converges to u, in C([0, T] %) in distribution we first
establish the convergence of uf. — wye, where wu,- = fo ) is the solution of

the following system:

Aue (1) = —i Ay (t) At — i|uge (8)[Pupe (8) At — My (£) At + f(uye (t — p)) dt
+gdt + o (uwe (t — p))ve(¢) det, t € [0,T],
Uype (O) = u07 Uype (8) = 5(3)7 s € (—p, O)‘

(4.31)
Thus by (4.30)—(4.31) we have
d(ule (t) — e (£)) =—1A (uSe (t) — wpe (£)) dt — A (uSe (1) — uye (1)) dit
=i (Juge () Puge (t) = Juwe () Puqe (1)) dt
+ (f(uge(t = p)) — f(uve (t = p))) dt
+ (0 (uge (E = p))v°(t) — o(upe (t = p))v(2)) dt
+Veo(us-(t — p)) AW (¢). (4.32)

For a given constant M > 0, we define a stopping time 7¢ by
=inf{t > 0:||ul-(t)]| = M} AT,

and the infimum of the empty set is taken to be co. Applying Itd’s formula to (4.32)
yields that for all ¢ € [0, T7,

sup |Juge(r A7) — wpe (1 A 7'E)||2
o<r<t

tATE
< 2/0 [[luGe () Puge (5) = lwoe (8)Puye (5)|| [Jue (5) — upe (5)]] ds
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+ 2/0 T lo(uge (s = p))v™(s) = o (uve (s = p))v (s)l[[|uge (s) — uve ()] ds

rATE
208 sup | [ (0505) — e (5). 0 (05 = ) AW ()
o<r<t |Jo
tATE
e / oS- (s — P2, rrn) . (4.33)

For fixed (u®, &) € 1% x L?((—p, 0);1?) and {v°} C A,, by lemma 4.6 there exists a
positive constant C3 = C3(a, u°, &, T) such that for all ¢ € (0, 1), P-almost surely,

sup ||uye (t)]] < Cs. (4.34)
te[0,7]

For the first term on the right-hand side of (4.33), by (4.34) we get
tATE
2/0 [[uge ()| *u5e (5) = e (5)Prve ()| luge (5) — woe (s)]] ds
tATE
< 04/ S (5) — upe (5)]|* ds
0
¢
< 04/ sup |JuSe (r A7) — upe (1 A7) ds, (4.35)
0 0<r<s

where Cy > 0 depends on a, u°, &, T and M. For the second term on the right-hand
side of (4.33), by (2.3) we get

t
< (c5+1)/ sup Ul (1 A 79) — e (r A 752 ds, (4.36)
0

0<r<s

where Cs > 0 depends on a, u°, &, T and M. For the third term on the right-hand
side of (4.33), by (2.5) we obtain

2/ T lo(ue (s = p))v=(s) — o (uve (s = p))v(s)|[[uge (5) — woe(s)] ds
0

tATE
< / 0 () 2 oS- (5) — e () 2 s
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tATE
+ > low(use (s = p) = ok (e (s = p))[|* ds
0 kEN
t
</ (HUE(S)H%I—FC@) sup ||uf,s(r/\7'€)—uva(r/\TE)Hst, (4.37)
0 <r<s

where Cg depends on a, u°, &, T and M. For the last term on the right-hand side
of (4.33), by (2.4) we get

tATE
: / oS (s — P2, ey ds
tATE
<2 / (IRIP + 20812l (s — )12 + 2013]%) ds

0
<2€||h||2T+4€||5||2T+4€II6H2M2T+4€II6H2/ l€s)I* ds. (4.38)
-P

It follows from (4.33)—(4.38) that for all ¢ € [0, T7,

sup luge(r A7) — uye (1 A TE)H2
o<r<t

t
< / (Chs+Cs5+Cs+1+ ||v5(5)\|%,) sup ||use(r A7) — upe (r A 7'6)H2d5
0

<r<s

rATE
+2VE sup / (ufjs(s)—uvs(s),a(uf}s(s—p))dW(S))|
o<r<T |Jo
0
Jr25||hH2TJr4€||5H2T+4€\|5||2MQTJr4€||ﬂ||2/ 1€(s)[|* ds. (4.39)
—p

By (4.39) and Gronwall’s inequality, we obtain that for all ¢ € [0, T,

sup luge(r A7) — tgye (1 A 7'5)||2
o<r<t

< 2C7/e sup

o<rLT

/ T (W (5) = e (5), 0 (0 (5 — ) AW (s))

0
+207€Hh||2T+4C7€H5||2T+4C7€||ﬁ||2M2T+4076||ﬁ||2/ 1€(s)|1%ds,
-P
(4.40)
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where Cy = (CatCs+Cot)THa By Doob’s maximal inequality and (4.34), we now
estimate the first term on the right-hand side of (4.40),

rATE 2
4eE | sup / (U (5) — e (8), 0 (uSe (5 — ) AW (s))
o<r<T |Jo
TNATE
< 16:E / 45 (5) = e ()2l (5 (5 — I, o ds]

< 16e(M + C3)°E

TATE
/0 louse (s — P2, rrny ds

0
< 32e(M + C3)? <h||2 T+ 2|0l T + 21|8|°M> T + 2] 6])* / €(s)II? dS) :
-p
(4.41)
From (4.40)—(4.41), it follows that

lim sup |JuSe(r AT%) — upe(r A7)||2 =0 in probability. (4.42)
e—=00<rgT

Recalling the definition of 7¢, by the Chebyshev inequality and lemma 4.11 we

obtain
P <T)=P | sup [usc ()l > M) < ~E | sup Jus. (0)]?] < 2.
+€[0,T] M= e, M
Hence it follows that
(s 050~ w0 )
0<t<T
<P ( sup ||use(t) — upe (8)|| > n,7° = T)
0<t<T
P ( sup. [l (1) — wpe ()] > 1, 7% < T)
0<t<T
g £ £ 02
<P sup Jluge(EATT) —upe(EATT)|| > + (4.43)
0<tLT
which implies that
lim sup |[[uS(t) — uy:(t)||* =0 in probability. (4.44)

e=00<i<T

Since {v°} converges in distribution to v as S,-valued random variables, according
to Skorokhod’s representation theorem, there exist a probability space (2, F, P),
and S,-valued random variables {v°} and v with the same distribution as {v*} and

v, respectively, such that {v°} — ¥ P-almost surely in S,. By lemma 4.9 we infer
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that uze — uy P-almost surely in C([0, T];12). Then uge — uy in C([0, T);12) in
distribution, and hence

Uye — 1y, in C([0,T];1?) in distribution, (4.45)
which together with (4.44) implies the desired result. O

By lemma 4.10, lemma 4.12 and corollary 4.5, we see that the family {u®} satisfies
the LDP provided (A1)—(Ab5) hold. This completes the proof of theorem 2.3.
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