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DISTRIBUTION OF GALOIS GROUPS OF MAXIMAL
UNRAMIFIED 2-EXTENSIONS OVER IMAGINARY

QUADRATIC FIELDS

SOSUKE SASAKI

Abstract. Let k be an imaginary quadratic field with Cl2(k)' V4. It is known

that the length of the Hilbert 2-class field tower is at least 2. Gerth (On 2-

class field towers for quadratic number fields with 2-class group of type (2, 2),

Glasgow Math. J. 40(1) (1998), 63–69) calculated the density of k where the

length of the tower is 1; that is, the maximal unramified 2-extension is a V4-

extension. In this paper, we shall extend this result for generalized quaternion,

dihedral, and semidihedral extensions of small degrees.

§1. Introduction

Let k be an imaginary quadratic field. We denote by Cl2(k) the Sylow

2-subgroup of the class group of k, and by G2(k) the Galois group of the

maximal unramified 2-extension of k.

Consider the 2-class field tower

k = k0 ⊆ k1 ⊆ k2 ⊆ k3 ⊆ · · ·

where ki+1 is the Hilbert 2-class field of ki. It is easily seen that, for i < j,

kj/ki is Galois and Gal(kj/ki+1) is the derived subgroup of Gal(kj/ki).

We shall consider the case of Cl2(k)'Gal(k1/k)' V4, the Klein four

group. It is well-known [4, 17] in the group theory that all the finite

2-groups whose abelianization is isomorphic to V4 are:

(i) V4 itself;

(ii) Q2n (n> 3), the (generalized) quaternion group of order 2n;

(iii) D2n (n> 3), the dihedral group of order 2n;

(iv) SD2n (n> 4), the semidihedral group of order 2n.

Moreover, the derived subgroups of these groups are cyclic. Hence, we find

that Gal(k2/k) is isomorphic to one of these groups and Gal(k2/k1) is cyclic.
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In addition, it is known that a group with cyclic abelianization is itself cyclic,

so that k2 = k3 = · · · . This means G2(k) = Gal(k2/k), and it is isomorphic

to V4, Q2n , D2n , or SD2n .

We want to know the distribution of k with G2(k) isomorphic to each

group.

Definition. Let A, B be subsets of N. Here 0 /∈ N. If the limit

lim
x→∞

# {m ∈A |m6 x}
# {m ∈B |m6 x}

exists, we call it the relative density of A with respect to B, and denote it

by δ(A/B).

Let

A(G) = {m ∈ N : square-free |G2(Q(
√
−m))'G}

and we consider the densities δ(A(G)/B) for G= V4, Q2n , D2n , and SD2n

with appropriate set B. Here we take

B(V4) = {m ∈ N : square-free | Cl2(Q(
√
−m))' V4} .

The density of k such that the 2-class field tower terminates at k1 is

known by Gerth [6]:

Theorem 1. (Gerth)

δ(A(V4)/B(V4)) = 1
7 .

In Section 3, we shall extend this theorem for Q2n , D2n , and SD2n .

For this purpose, we need to extend the Chebotarev density theorem for

products of prime numbers. Accordingly, we shall produce a “multivariable”

version of the Chebotarev density theorem as our main theorem. We shall

prove this theorem by assuming the generalized Riemann hypothesis and

using the effective version of the Chebotarev density theorem.

We shall use following notations:

(i) Cl2(k) is the Sylow 2-subgroup of the class group of k, and Cl+2 (k) is

that of the narrow class group of k;

(ii) h2(k) and h+2 (k) are the orders of Cl2(k) and Cl+2 (k), respectively;

(iii) dk is the discriminant of k;

(iv) (·/·) is the Kronecker symbol, (·/·)4 is the quartic residue symbol, and

(·, ·/·) is the Hilbert symbol.
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§2. Conditions for G2(k)'G

At first we have to know when G2(k)'Q2n , D2n , or SD2n . Moreover, the

conditions should be able to be written by splitting of primes in a number

field because we use the Chebotarev density theorem. The conditions are

known by several authors and gathered (together with other groups) in

the table in [1]. In this section, we outline the conditions and prove them

partially.

The 2-rank of the narrow class group of a quadratic field is obtained by

the genus theory:

Proposition 1. Let F be a quadratic field and let t be the number of

distinct prime divisors of dF . Then the 2-rank dimF2 Cl+2 (F ) of Cl+2 (F )

equals to t− 1.

The 4-rank can also be calculated by using the Rédei–Reichardt crite-

rion [14]:

Proposition 2. Let F be a quadratic field and l1, . . . , lt be all the

distinct prime divisors of dF . We define the Rédei matrix:

RF =

([
li, dF
lj

])
16i6t

16j6t−1

where [li, dF /lj ] ∈ F2 is defined as(
li, dF
lj

)
= (−1)[li,dF /lj ].

Then the 4-rank dimF2(Cl+2 (F )2/ Cl+2 (F )4) of Cl+2 (F ) equals to t− 1−
rankRF .

From Propositions 1 and 2, one can show

Proposition 3. Let k be an imaginary quadratic field with odd discrim-

inant. Then, Cl2(k)' V4 if and only if k = Q(
√
−pqr) for some distinct

primes p, q, r such that:

(i) p≡ q ≡ r ≡−1 (4) and (p/q) = (q/r) = (r/p); or

(ii) −p≡ q ≡ r ≡ 1 (4) and at least two of (p/q), (p/r), (q/r) equal to −1.
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The following conditions are shown by several authors, see [1]:

Proposition 4.

(1) Let k = Q(
√
−pqr) where p, q, and r are distinct primes with p≡ q ≡

r ≡−1 (4). Then G2(k) is abelian.

(2) Let k = Q(
√
−pqr) where p, q, and r are distinct primes with −p≡ q ≡

r ≡ 1 (4). Then:

(a) G2(k)'Q8 if and only if(
p

q

)
=

(
p

r

)
=

(
q

r

)
=−1.

(b) G2(k)'Q2n (n> 4) if and only if(
p

q

)
=

(
p

r

)
=−1,

(
q

r

)
= 1, Nεqr =−1, 2n = 4h2(qr).

(c) G2(k)'D2n (n> 3) if and only if(
p

q

)
=

(
p

r

)
=−1,

(
q

r

)
= 1, Nεqr = 1, 2n = 4h2(qr).

(d) G2(k)' SD2n (n> 4) if and only if, by swapping q and r if

necessary,(
p

q

)
= 1,

(
p

r

)
=

(
q

r

)
=−1, 2n = 4h2(−pq).

Here N is the absolute norm and h2(m) = h2(Q(
√
m)) for m ∈ Z.

This proposition is shown by Kisilevsky [8] except for the conditions 2n =

4h2(qr) and 2n = 4h2(−pq) in (2b), (2c), and (2d). We give a proof of the

conditions 2n = 4h2(qr) and 2n = 4h2(−pq) in (2b), (2c), and (2d) because

no proof is given in [1].

Let k = Q(
√
−pqr) where p, q, r are distinct primes with −p≡ q ≡

r ≡ 1 (4), and assume h2(k) = 4. Then the Hilbert 2-class field k1 is

Q(
√
−p,√q,

√
r). Let K be the maximal real subfield of k1, that is, K =

Q(
√
q,
√
r).

Lemma 1.

h2(k
1) = 1

2h2(K)h2(−pq)h2(−pr),

where h2(m) = h2(Q(
√
m)) for m ∈ Z.
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Proof. From the relative class number formula [18, Chapter 4], one has

h(k1)/h(K) = wQ
∏

χ:odd

(
− 1

2fχ

fχ∑
a=1

χ(a)a

)

where the product runs over the odd Dirichlet characters of k1 and

(i) h is the class number;

(ii) w is the number of the roots of unity in k1;

(iii) Q= [U : µUK ], where U and UK are the unit groups of k1 and K,

respectively, and µ is the group of the roots of unity in k1;

(iv) fχ is the conductor of χ.

Note that one can easily show

{the odd Dirichlet characters of k1}

=

{(
−p
·

)
,

(
−pq
·

)
,

(
−pr
·

)
,

(
−pqr
·

)}
.

Similarly we have

h(m) = wm

(
− 1

2|dm|

|dm|∑
a=1

(
m

a

)
a

)
for m=−p,−pq,−pr,−pqr, where h(m) = h(Q(

√
m)), wm = wQ(

√
m), and

dm = dQ(
√
m). Putting these formulas together we obtain

h(k1)/h(K) = wQ
h(−p)h(−pq)h(−pr)h(k)

wpwpqwprwk
.

Now h(−p) is odd by Proposition 1 and h2(k) = 4. Also we know that the

2-parts of w, wp, wpq, wpr, and wk are 2 since k1/Q is unramified at 2.

Hence it suffices to show Q= 1. By [18, Theorem 4.12], Q= 1 if and only

if ε/ε ∈ µ2 for any ε ∈ U , where ε means the conjugate of ε over K. Suppose

ε/ε /∈ µ2 for some ε ∈ U . It can be easily shown that w = 2 or 6. Hence,

ε/ε=−1 or (1±
√
−3)/2. We let

α=

ε
√
−p if ε/ε=−1,

ε

(
3∓
√
−3

2

)
if ε/ε=

1±
√
−3

2
(p= 3).
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We can check α= α so that α ∈K. Hence,

α2 =Nk1/K(α) = pNk1/K(ε).

Since Nk1/K(ε) ∈ UK , this implies that p ramifies in K/Q, which is absurd.

Lemma 2. The Hilbert 2-class fields of K and of Q(
√
qr) coincide.

Proof. Let K1 and Q(
√
qr)1 be the Hilbert 2-class fields of K and

Q(
√
qr), respectively. It can be shown that K1/Q(

√
qr) is Galois and

K1 ⊇Q(
√
qr)1. Since K/Q(

√
qr) is unramified, so is K1/Q(

√
qr). Hence

Q(
√
qr)1 is the maximal abelian subextension of K1/Q(

√
qr), and the

abelianization of Gal(K1/Q(
√
qr)) is Cl2(Q(

√
qr)). On the other hand,

Cl+2 (Q(
√
qr)) is cyclic by Proposition 1; therefore Cl2(Q(

√
qr)) is also cyclic.

Hence, Gal(K1/Q(
√
qr)) is cyclic and K1 = Q(

√
qr)1.

Proof of Proposition 4. Now we determine n. We know that

2n = #G2(k) = [k2 : k] = h2(k)h2(k
1) = 4h2(k

1).

From Lemma 2 we have h2(qr) = 2h2(K). Hence from Lemma 1,

h2(k
1) = 1

4h2(qr)h2(−pq)h2(−pr).

(2b), (2c)

Since (p/q) = (p/r) =−1, we get h2(−pq) = h2(−pr) = 2 from Proposi-

tion 1 (see Proposition 5 below). Hence 2n = 4h2(k
1) = 4h2(qr).

(2d)

Similarly, we get h2(−pr) = 2. Since (q/r) =−1, we get h+2 (qr) = 2 from

Proposition 1. Since h2(qr) = 2h2(K) is even, we have h2(qr) = 2. Hence

2n = 4h2(k
1) = 4h2(−pq).

Also the following conditions are known, see [19]:

Proposition 5. Let p, q, and r be distinct primes with −p≡ q ≡ r ≡
1 (4). Then:

(1) h2(qr) = 2 and Nεqr =−1 if and only if (q/r) =−1;

(2) h2(qr) = 2 and Nεqr = 1 if and only if (q/r) = 1 and (q/r)4(r/q)4 =−1;

(3) h2(qr) = 4 and Nεqr =−1 if and only if (q/r) = 1 and (q/r)4 =

(r/q)4 =−1;

(4) h2(−pq) = 2 if and only if (p/q) =−1;

(5) h2(−pq) = 4 if and only if (p/q) = 1 and (−p/q)4 =−1.
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§3. Densities for Q8, Q16, D8, and SD16

We want to find the densities of quadratic fields which have maximal

unramified 2-extensions with Galois groups isomorphic to Q2n , D2n , or

SD2n . In other words, we want to calculate the densities, δ(A(G)/B(V4)) for

G=Q2n , D2n , SD2n . For this purpose, we produce a multivariable version

of the Chebotarev density theorem.

For an integer n> 0, we let

Pn = {p1 · · · pn | p1, . . . , pn : distinct primes};

Pn(x) = {m ∈ Pn |m6 x}.

At first we calculate δ(A(G)/P3). Note that in our definition of δ(A/B), we

do not assume A⊆B. It is known [7, Theorem 437] that for n> 1

(1) #Pn(x)∼ x(log log x)n−1

(n− 1)! log x
.

Suppose that Fa and Ca are given for each square-free positive integer a,

where Fa is a number field which is Galois over Q, and Ca is a conjugacy

class in Ga = Gal(Fa/Q). For a prime number p, we let ϕa(p) = 1 when p

does not ramify in Fa and (
Fa/Q
p

)
= Ca,

and ϕa(p) = 0 otherwise. We denote for n> 0,

Sn =

{
p1 · · · pn ∈ Pn

∣∣∣∣∣ p1 < · · ·< pn,
n∏
k=1

ϕp1···pk−1
(pk) = 1

}
;

Sn(x) = {m ∈ Sn |m6 x} .

Note that the empty product means 1 and P0 = S0 = {1}.
Now we state our main theorem:

Theorem 2. Let n be a positive integer. Assume that:

(i) the Generalized Riemann Hypothesis (GRH) holds for the Dedekind zeta

function of Fa for all a ∈ S0 ∪ · · · ∪ Sn−1;

(ii) there are positive constants c0 and ε depending only on n, such that for

1 6 k 6 n− 1 and a= p1 · · · pk ∈ Sk (p1 < · · ·< pk),

log|dFa |6
c0
√
pk

(log pk)1+ε
and [Fa : Q] 6

c0
√
pk

(log pk)2+ε
;
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(iii) for 1 6 k 6 n, there is a rational number δk such that for any a ∈ Sk−1,

#Ca
#Ga

= δk.

Then

δ(Sn/Pn) = δ1 · · · δn.

The proof of this theorem is given in the next section.

Now we shall calculate δ(A(G)/B(V4)) by using the theorem. Here we

only calculate δ(A(D8)/B(V4)). From Propositions 4 and 5, we know that

Q(
√
−m) has odd discriminant and m ∈A(D8), if and only if, m= pqr such

that p, q, and r are distinct primes with −p≡ q ≡ r ≡ 1 (4) and(
p

q

)
=

(
p

r

)
=−1,

(
q

r

)
= 1,

(
q

r

)
4

(
r

q

)
4

=−1.

Let

A1 = {pqr ∈A(D8) ∩ P3 | p < q < r, −p≡ q ≡ r ≡ 1 (4)};

A2 = {pqr ∈A(D8) ∩ P3 | q < p < r, −p≡ q ≡ r ≡ 1 (4)};

A3 = {pqr ∈A(D8) ∩ P3 | q < r < p, −p≡ q ≡ r ≡ 1 (4)};

A4 = {m ∈A(D8) |m 6≡ −1 (4)} .

Then clearly these are disjoint, and we know

A1 ∪A2 ∪A3 ∪A4 =A(D8)

from Propositions 1 and 4. Note that if m ∈A4 then Q(
√
−m) has

even discriminant; therefore from Proposition 1, we can easily show that

m ∈ P2 or m/2 ∈ P2. But we know δ(P2/P3) = 0 from (1), which yields

δ(A4/P3) = 0. Hence,

δ(A(D8)/P3) = δ(A1/P3) + δ(A2/P3) + δ(A3/P3).

Now we see δ(A1/P3). We put:

(i) F1 = Q(
√
−1), C1 = {j}, δ1 = 1

2 where 〈j〉 corresponds to Q;

(ii) Fp = Q(
√
−1,
√
p), Cp = {σ}, δ2 = 1

4 for primes p≡−1 (4), where 〈σ〉
corresponds to Q(

√
−1);
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(iii) Fpq = Q(
√
−1,
√
p,
√
q,
√
εq), Cpq = {τ}, δ3 = 1

16 for primes p < q, −p≡
q ≡ 1 (4), where εq is the fundamental unit of Q(

√
q), and 〈τ〉 corre-

sponds to Q(
√
−1,
√
q,
√
pεq).

Assume that GRH holds for these fields. Fa and Ca are unused for the other

integers a, so we may let them be anything.

Then we show S3 =A1. As is well-known that

ϕ1(p) = 1 ⇐⇒ p≡ 3 (4) (∀p : prime);

ϕp(q) = 1 ⇐⇒ q ≡ 1 (4) and (p/q) =−1 (∀p, q : primes, p≡ 3 (4)).

Now we consider Fpq. Assume p < q and −p≡ q ≡ 1 (4). By Scholz’s

reciprocity law [12, Proposition 5.8], if q ≡ r ≡ 1 (4) and (q/r) = 1,(
q

r

)
4

(
r

q

)
4

=

(
εq
r

)
.

We know that

(p/r) =−1 ⇐⇒ r is inert in Q(
√
p)/Q;

(q/r) = +1 ⇐⇒ r splits in Q(
√
q)/Q;

(εq/r) =−1 ⇐⇒ the primes above r are inert in Q(
√
q,
√
εq)/Q(

√
q).

Fpq includes these fields. It is straightforward to show that −(p/r) = (q/r) =

−(εq/r) = 1 if and only if the decomposition group of any prime ideal of Fpq
above r is Q(

√
−1,
√
q,
√
pεq). Hence, we have

ϕpq(r) = 1 ⇐⇒ r ≡ 1 (4) and − (p/r) = (q/r) =−(q/r)4(r/q)4 = 1.

(∀p, q, r : primes, p < q,−p≡ q ≡ 1 (4))

Therefore, for any primes p < q < r we get

ϕ1(p)ϕp(q)ϕpq(r) = 1 ⇐⇒ −p≡ q ≡ r ≡ 1 (4) and pqr ∈A(D8).

This means S3 =A1 by definition.

Finally, we estimate the discriminant of Fa. Clearly |dF1 |= 4. Now

Q(
√
−1) and Q(

√
−p) are linearly disjoint over Q, and their discriminants

are coprime. This yields [11, Chapter III, Proposition 17]

dFp = d2Q(
√
−1)d

2
Q(
√
−p) = 16p2.
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For Fpq, we first let L= Q(
√
−1,
√
−p,√q) and we deduce as above

dL = d4Q(
√
−1)d

4
Q(
√
−p)d

4
Q(
√
q) = 28p4q4.

Then we use the formula:

dFpqZ =NL/Q(dFpq/L) · d[Fpq :L]L Z

where dFpq/L is the relative discriminant. Also we use the fact that dFpq/L
divides the discriminant of the minimal polynomial of

√
εq over L in OL,

the ring of integers in L. Hence, we have

dFpq/L | 4εqOL = 4OL;

∴ NL/Q(dFpq/L) | 48Z;

∴ dFpq | 48 · (28p4q4)2 = 232p8q8.

In any cases, Fa satisfies the discriminant condition of Theorem 2. For the

facts about discriminants used above, see [3, Section III.2].

At this time we can apply Theorem 2, which yields

δ(A1/P3) = δ(S3/P3) = δ1δ2δ3 = 1
128 .

Similarly as above, we can also deduce δ(A2/P3) = 1/128 by using

F1 = Q(
√
−1), Fq = Q(

√
−1,
√
q), Fqp = Q(

√
−1,
√
p,
√
q,
√
εq),

and δ(A3/P3) = 1/128 by using

F1 = Q(
√
−1), Fq = Q(

√
−1,
√
q,
√
εq), Fqr = Q(

√
−1,
√
q,
√
r).

Therefore, we have

δ(A(D8)/P3) = 3
128 .

It is known in [6] that δ(B(V4)/P3) = 7/32; hence, we conclude

δ(A(D8)/B(V4)) = 3
28 .

Also we can calculate densities for Q8, Q16, and SD16 in the same way.

One can easily find the appropriate Fa and Ca by using the following fact:

If q, r are odd primes with r ≡ 1 (4) and (q/r) = 1 then

(q/r)4 =−1 ⇐⇒ the primes above q are inert in Q(ζr)4/Q(
√
r);

(q/r)4 =−1 ⇐⇒ the primes above r are inert in Q( 4
√
q)/Q(

√
q),

where Q(ζr)4 is the quartic subfield of the rth cyclotomic field.
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Table 1.
Densities.

A A(V4) A(Q8) A(Q16) A(D8) A(SD16)
⋃
n>4

A(SD2n)

δ(A/B(V4))
1
7

3
14

3
56

3
28

3
14

3
7

(GRH) (GRH) (GRH)

Theorem 3. The results in Table 1 hold.

Note that if the condition for m ∈A(G) can be written by using only

quadratic residue symbols, we do not need GRH since we can use the same

way as Gerth.

§4. Proof of Theorem 2

The following argument is basically from Gerth [5]. However, we cannot

use the same way to estimate error terms because the quartic residue symbol

(p/·)4 cannot be considered as Dirichlet characters. Hence, we shall use the

effective Chebotarev density theorem.

In what follows, we use the following notations:

(i)
∑

a<p6b means a single summation on p only over primes.

(ii) For a multivariable function f , O(f) means a term whose absolute

value is always at most c|f | for some constant c depending only on n

and ε.

We shall use the following formulas [9, Section 27.1], [7, Chapter XXII]:

∑
p6y

1 =
y

log y
+O

(
y

(log y)2

)
;(2)

∑
p6y

1

p
= log log y +O(1);(3)

∑
p6y

log p

p
= log y +O(1).(4)
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We may assume n> 2. It suffices to show

#Sn(x) = δ1 · · · δn#Pn(x) + o(#Pn(x)).

As in [5], we write

#Sn(x) =
∑

1<p16x1/n

ϕ1(p1)
∑

p1<p26(x/p1)1/(n−1)

ϕp1(p2) · · ·

∑
pn−2<pn−16(x/(p1···pn−2))1/2

ϕp1···pn−2(pn−1)

×
∑

pn−1<pn6x/(p1···pn−1)

ϕp1···pn−1(pn).

Note that if p1, . . . , pk are in each interval, one has

x1/n 6

(
x

p1 · · · pk

)1/(n−k)
.

In particular,

(5)
1

log(x/p1 · · · pk)
=O

(
1

log x

)
.

An elementary calculation shows

#Sn(x) =
∑
p1

ϕ1(p1)
∑
p2

ϕp1(p2) · · ·
∑
pn

ϕp1···pn−1(pn)

=
∑
p1

δ1
∑
p2

δ2 · · ·
∑
pn

δn

+
∑
p1

(ϕ1(p1)− δ1)
∑
p2

δ2 · · ·
∑
pn

δn

+
∑
p1

ϕ1(p1)
∑
p2

(ϕp1(p2)− δ2) · · ·
∑
pn

δn

+ · · ·

+
∑
p1

ϕ1(p1)
∑
p2

ϕp1(p2) · · ·
∑
pn

(ϕp1···pn−1(pn)− δn).(6)

The first term in the right-hand side of (6) equals to δ1 · · · δn#Pn(x). So

we have to estimate the remaining terms.
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We need the following estimation:

Lemma 3. Let 1 6 k 6 n and a= p1 · · · pk−1 ∈ Pk−1 (p1 < · · ·< pk−1).

Then for y > pk−1, ∣∣∣∣∑
p6y

(ϕa(p)− δk)
∣∣∣∣=O

(
y

(log y)1+ε

)
.

Proof. From the definition of ϕa, we know∑
p6y

ϕa(p) = πCa(y, Fa/Q)

= #

{
p : prime

∣∣∣∣ p6 x, p does not ramify in Fa,

(
Fa/Q
p

)
= Ca

}
.

Also we note that π(y) =
∑

p6y 1 is the usual prime-counting function and

δk = #Ca/#Ga.
From the effective version of the Chebotarev density theorem [10, 15], we

have

πCa(y, Fa/Q) =
#Ca
#Ga

(Li(y) +O(
√
y([Fa : Q] log y + log|dFa |)));

π(y) = Li(y) +O(
√
y log y),

where

Li(y) =

∫ y

2

dt

log t
.

Note that GRH for the Dedekind zeta function of Fa implies the usual

Riemann hypothesis. Our claim follows from these equations and our

assumptions for |dFa | and [Fa : Q].

We consider the last term of (6). Since x/p1 · · · pn−1 > pn−1, we get∣∣∣∣∑
p1

ϕ1(p1)
∑
p2

ϕp1(p2) · · ·
∑
pn

(ϕp1···pn−1(pn)− δn)

∣∣∣∣
6
∑
p1

∑
p2

· · ·
∑
pn−1

∣∣∣∣ ∑
1<pn6x/(p1···pn−1)

(ϕp1···pn−1(pn)− δn)

−
∑

1<pn6pn−1

(ϕp1···pn−1(pn)− δn)

∣∣∣∣
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=
∑
p1

∑
p2

· · ·
∑
pn−1

O

(
x

p1 · · · pn−1(log (x/(p1 · · · pn−1)))1+ε

+
pn−1

(log pn−1)1+ε

)
=O

(
x

(log x)1+ε

) ∑
p16x

1

p1

∑
p26x

1

p2
· · ·

∑
pn−16x

1

pn−1

=O

(
x(log log x)n−1

(log x)1+ε

)
= o(#Pn(x))

from Lemmas 3 and (5).

Next we see the middle terms in the right-hand side of (6). We first claim

(7)
∑

pn−1<pn6x/(p1···pn−1)

1 =
x

p1 · · · pn−1 log x
+O

(
x log pn−1

p1 · · · pn−1(log x)2

)
.

In fact, from (2) we have∑
1<pn6(x/(p1···pn−1))

1 =
x

p1 · · · pn−1 log (x/(p1 · · · pn−1))

+O

(
x

p1 · · · pn−1(log (x/(p1 · · · pn−1)))2

)
=

x

p1 · · · pn−1 log x
+

x log(p1 · · · pn−1)
p1 · · · pn−1 log (x/(p1 · · · pn−1)) log x

+O

(
x

p1 · · · pn−1(log x)2

)
=

x

p1 · · · pn−1 log x
+O

(
x log pn−1

p1 · · · pn−1(log x)2

)
,

and from

O

(
pn−1

(log pn−1)2

)
=O

(
x/(p1 · · · pn−1)

(log (x/(p1 · · · pn−1)))2

)
=O

(
x

p1 · · · pn−1(log x)2

)
we have ∑

1<pn6pn−1

1 =O

(
pn−1

log pn−1

)
=O

(
x log pn−1

p1 · · · pn−1(log x)2

)
.
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Hence, (7) follows. Then we can ignore the error term of (7) since∑
p1

∑
p2

· · ·
∑
pn−1

O

(
x log pn−1

p1 · · · pn−1(log x)2

)

=O

(
x

(log x)2

) ∑
p16x

1

p1

∑
p26x

1

p2
· · ·

∑
pn−16x

log pn−1
pn−1

= O

(
x(log log x)n−2

log x

)
= o(#Pn(x))

from (3) and (4). Thus, we have to estimate∑
p1

ϕ1(p1) · · ·
∑
pk

(ϕp1···pk−1
(pk)− δk)

∑
pk+1

δk+1 · · ·

∑
pn−1

δn−1
δnx

p1 · · · pn−1 log x

=O

(
x

log x

)∑
p1

1

p1
· · ·
∑
pk1

1

pk−1∣∣∣∣∑
pk

ϕp1···pk−1
(pk)− δk
pk

∑
pk+1

1

pk+1
· · ·

∑
pn−1

1

pn−1

∣∣∣∣(8)

for 1 6 k 6 n− 1.We write

sk =
∑

pk<pk+16(x/(p1···pk))1/(n−k)

1

pk+1
· · ·

∑
pn−2<pn−16(x/(p1···pn−2))1/2

1

pn−1

for 1 6 k 6 n− 2 and sn−1 = 1. Then we prove

(9) sk =
(log log x− log log pk)

n−k−1

(n− k − 1)!
+O((log log x)n−k−2)

for 1 6 k 6 n− 1. If k = n− 1 it is obvious, and if k = n− 2 it follows from

(3) and (5). Suppose 2 6 k 6 n− 2. Put

f1(t) =
(log log x− log log t)n−k−1

(n− k − 1)!
.

Suppose now sk = f1(pk) +O((log log x)n−k−2). Let

y =

(
x

p1 · · · pk−1

)1/(n−k+1)
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then from (5),

log log y = log log x+O(1), f1(y) =O(1).

Let C1(t) =
∑

p6t 1/p. Then from (3)

C1(t) = log log t+O(1).

Next we quote Abel’s summation formula [7, Theorem 421]:

Proposition 6. Let {cm}m∈N be a sequence of numbers. Put

C(t) =
∑
m6t

cm.

Let f(t) be a function which is continuously differentiable for t> 1. Then∑
x<m6y

cmf(m) = C(y)f(y)− C(x)f(x)−
∫ y

x
C(t)f ′(t) dt.

Using this proposition we have

sk−1 =
∑

pk−1<pk6y

sk
pk

=
∑

pk−1<pk6y

1

pk
f1(pk) +O((log log x)n−k−2)

∑
pk−1<pk6y

1

pk

= C1(y)f1(y)− C1(pk−1)f1(pk−1)

−
∫ y

pk−1

C1(t)f
′
1(t) dt+O((log log x)n−k−1)

= (log log x+O(1))O(1)− (log log pk−1 +O(1))f1(pk−1)

+

∫ y

pk−1

(log log t+O(1))|f ′1(t)| dt+O((log log x)n−k−1)

= −f1(pk−1) log log pk−1 + (log log x+O(1))

∫ y

pk−1

|f ′1(t)| dt

−
∫ y

pk−1

(log log x− log log t)|f ′1(t)| dt+O((log log x)n−k−1)

= −f1(pk−1) log log pk−1 − (log log x+O(1))

∫ y

pk−1

f ′1(t) dt
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−
∫ y

pk−1

(log log x− log log t)n−k−1

(n− k − 2)! t log t
dt+O((log log x)n−k−1)

= −f1(pk−1) log log pk−1 − (log log x+O(1))[f1(t)]
y
pk−1

−
[
−(log log x− log log t)n−k

(n− k − 2)!(n− k)

]y
pk−1

+O((log log x)n−k−1)

= −f1(pk−1) log log pk−1 + f1(pk−1) log log x

− (log log x− log log pk−1)
n−k

(n− k − 2)!(n− k)
+O((log log x)n−k−1)

=
(log log x− log log pk−1)

n−k

(n− k − 2)!

(
1

n− k − 1
− 1

n− k

)
+O((log log x)n−k−1)

=
(log log x− log log pk−1)

n−k

(n− k)!
+O((log log x)n−k−1).

Hence we have proved (9) by induction.

Next we claim

(10) ∑
pk−1<pk6(x/(p1···pk−1))1/(n−k+1)

ϕp1···pk−1
(pk)− δk
pk

sk =O((log log x)n−k−1)

for 1 6 k 6 n− 1. In fact, let

y =

(
x

p1 · · · pk−1

)1/(n−k+1)

;

f2(t) =
(log log x− log log t)n−k−1

(n− k − 1)! t
;

C2(t) =
∑
p6t

(ϕp1···pk−1
(p)− δk).

Then from (9) we have

sk
pk

= f2(pk) +O

(
(log log x)n−k−2

pk

)
,

and from Lemma 3,

C2(t) =O

(
t

(log t)1+ε

)
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for t> pk−1. Similarly as before, by Proposition 6,∑
pk−1<pk6y

ϕp1···pk−1
(pk)− δk
pk

sk

=
∑

pk−1<pk6y

(ϕp1···pk−1
(pk)− δk)f2(pk) +O((log log x)n−k−2)

×
∑

pk−1<pk6y

1

pk
= C2(y)f2(y)− C2(pk−1)f2(pk−1)

−
∫ y

pk−1

C2(t)f
′
2(t) dt+O((log log x)n−k−1)

=O

(
y

(log y)1+ε

)
O

(
1

y

)
+O

(
pk−1

(log pk−1)1+ε

)
O

(
(log log x)n−k−1

pk−1

)
+

∫ y

pk−1

O

(
t

(log t)1+ε

)
|f ′2(t)| dt+O((log log x)n−k−1)

=

∫ y

pk−1

O

(
t

(log t)1+ε

)
O

(
(log log x)n−k−1

t2

)
dt+O((log log x)n−k−1)

=O((log log x)n−k−1)

∫ y

pk−1

1

t(log t)1+ε
dt+O((log log x)n−k−1)

=O((log log x)n−k−1)

[
− 1

(log t)ε

]y
pk−1

+O((log log x)n−k−1)

=O((log log x)n−k−1).

Thus (10) follows.

Therefore, (8) becomes

O

(
x

log x

)∑
p1

1

p1
· · ·

∑
pk−1

1

pk−1
O((log log x)n−k−1)

=O

(
x(log log x)n−2

log x

)
= o(#Pn(x)).

Hence we have completed the proof.

§5. Densities for the remaining groups

We cannot get the densities for the remaining groups because we do not

know any conditions for them in which Theorem 2 can be applied. We
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want to know about the conditions h2(−pq) = 2n, h2(qr) = 2n or Nεqr = 1

in detail.

Cohn and Lagarias [2] considered Cl2(Q(
√
dp)) as p varies where d 6≡ 2 (4)

is an integer. They conjectured that the splitting of primes in a number

field determines the structure of Cl2(Q(
√
dp)), and they also considered

numerically. Here we consider h2(dp) and h+2 (dp) where d is an odd prime

discriminant.

We suggest the following conjecture:

Conjecture 1.

(1) For a prime p≡−1 (4) and an integer n> 1, there are F
(n)
p and C(n)p

as in Section 3 such that for a prime q ≡ 1 (4) which does not ramify

in F
(n)
p , (

F
(n)
p /Q
q

)
= C(n)p ⇐⇒ h2(−pq) = 2n.

In addition, #C(n)p /[F
(n)
p : Q] = 1/2n. And the similar one holds for p≡

1 (4) and q ≡−1 (4).

(2) For a prime p≡ 1 (4) and integers m, n with 1 6m6 n6m+ 1, there

are F
(m,n)
p and C(m,n)p as in Section 3 such that for a prime q ≡ 1 (4)

which does not ramify in F
(m,n)
p ,

(
F

(m,n)
p /Q
q

)
= C(m,n)p ⇐⇒

{
h2(pq) = 2m,

h+2 (pq) = 2n.

In addition, #C(m,n)p /[F
(m,n)
p : Q] = 1/2m+n−1.

Note that h2(pq) = h+2 (pq) if and only if Nεpq =−1.

Stevenhagen [16] showed that the narrow 8-ranks of quadratic fields are

determined by number fields. Hence the cases n6 2 in both 1 and 2 of

Conjecture 1 are known to be true. Unfortunately however, Milovic [13]

gives some evidence against Conjecture 1 for n> 3.

We calculated the numbers of pq < 107 (p, q : primes) with −p≡ q ≡
1 (4), h2(−pq) = 2n; and also with p≡ q ≡ 1 (4) and h2(pq)h

+
2 (pq)/2 = 2n

for each n ∈ N (using SageMath 6.10); see Table 2. Note that both p and q

vary.
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Table 2.
Numbers of pq < 107 with h2(−pq) = 2n and with h2(pq)h+

2 (pq)/2 = 2n.

n Imaginary Real
1 390350 163903
2 194214 81354
3 96712 40265
4 48489 20217
5 24276 9872
6 12145 5071
7 5999 2463
8 3137 1251
9 1523 597

10 622 288
11 171 121
12 18 60
13 0 20
14 0 9
15 0 4

Total 777656 325495

Table 3.
Conjectured densities.

A A(Q2n)
⋃
n>3

A(Q2n) A(D2n)
⋃
n>3

A(D2n) A(SD2n)

δ(A/B(V4))
3

22n−5 · 7
2

7

3

22n−4 · 7
1

7

3

2n−3 · 7

This conjecture yields the densities for the remaining groups:

Theorem 4. Assume that Conjecture 1 holds. In addition, we assume

that each Fp in Conjecture 1 satisfies

log|dFp |=O

( √
p

(log p)1+ε

)
, [Fp : Q] =O

( √
p

(log p)2+ε

)
.

Moreover we assume GRH.

Then the results in Table 3 hold.

Proof. From our assumptions, we can apply Theorem 2. We omit the

details.
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Note that δ(·/B(V4)) is not countably additive in general. In this case,

however, we can calculate the densities of AQ =
⋃∞
n=3 A(Q2n) and AD =⋃∞

n=3 A(D2n). In fact, for N, x ∈ N

N∑
n=3

#A(Q2n)(x) = #
N⋃
n=3

A(Q2n)(x) 6 #AQ(x)

where A(x) = {m ∈A |m6 x } for A⊆ N. Hence,

N∑
n=3

δ(A(Q2n)/B(V4)) =
N∑
n=3

lim
x→∞

#A(Q2n)(x)

#B(V4)(x)
6 lim inf

x→∞

#AQ(x)

#B(V4)(x)

for N ∈ N. Hence,

2

7
=

∞∑
n=3

δ(A(Q2n)/B(V4)) 6 lim inf
x→∞

#AQ(x)

#B(V4)(x)
.

Similarly,
1

7
6 lim inf

x→∞

#AD(x)

#B(V4)(x)
.

On the other hand, since

δ(AQ ∪AD/B(V4)) = 1− δ(A(V4)/B(V4))− δ
(⋃
n>4

A(SD2n)/B(V4)

)
=

3

7
,

we have

lim sup
x→∞

#AQ(x)

#B(V4)(x)
= lim sup

x→∞

(
#(AQ(x) ∪AD(x))

#B(V4)(x)
− #AD(x)

#B(V4)(x)

)
= lim

x→∞

#(AQ(x) ∪AD(x))

#B(V4)(x)
− lim inf

x→∞

#AD(x)

#B(V4)(x)
6

2

7
.

Putting these together, we obtain that all these inequalities are equalities

and lim inf = lim sup. It is similar for AD.
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