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ISOMETRIC RESULTS ON A MEASURE OF

NON-COMPACTNESS FOR OPERATORS ON BANACH SPACES

S.J. DILwoORTH

For each X 2 1 a class of Banach spaces ¢A is defined.

Isometric results are obtained on the equivalence between a measure
of non-compactness and the essential norm of a linear operator

defined on a ¢X space. Best values of XA for the classical
Banach spaces and for spaces with unconditional basis are investigated.

For the space ¢ of convergent sequences the non-existence of a

A-unconditional basis with A < 2 is deduced.

Recall that a Banach space E is said to be a m, space
(L £ A <®) if for every finite dimensional subspace G of E and for
each € > 0 there exist a finite-dimensional subspace H E.G and a
projection P from E onto H with ||P|| <A + € (see [6]). We need
the following dual notion.

DEFINITION 1. Suppose that 1 S A < ®» . A Banach space F will be

said to be a ¢A space if for every closed subspace M of finite

codimension in Z and for each € > 0 there exist a closed subspace

Received 7 February 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/87

$A2.00 + 0.QO.
27

https://doi.org/10.1017/50004972700013009 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700013009

28 S.J. Dilworth

N ¢ M of finite codimension and a projection P from £ onto N with

[1P1] =X + ¢

The following proposition is essentially known (see [4]), but we

indicate a short proof.

PROPOSITION 2. (a) If E* is a w, sepace then E 1is a 9740

A
space.

(b) If E isa ¢, space then E* i¢ a space.

T14x
Proof. (a) Let M be a closed subspace of finite codimension in

E and let ¢ > 0 be given. By a consequence of the principle of local

reflexivity (see [6]) there exists a finite dimensional subspace &

containing ML = {f ¢ E* : flx) = 0 for all gz ¢ M} and a weak*-

continuous projection P from E* onto H with ||P|| € A + €. Then

r - P*)IE is a projection whose range is a subspace of finite codimension

contained in M and ||I - P*|| <1+ A +¢€ . So E is a space.

¢l+)\
(b) This is a simple duality argument and will be omitted.

Let T : E~» F be a bounded operator between Banach spaces E and
F . The essential norm of T , denoted ||T||e , is defined by
HTHl, = inf{|IT + K|l : K : E > F is a compact operator} . Following [7]
we define a measure of non-compactness of T , denoted c(T) , by
e(T) = inf{[[Tlyll : codim (M) < =} . The familiar Kuratowski measure of
non-compactness, Y(T) , which is defined by ¥Y(T) = inf{r : the image of
the unit ball of FE is covered by finitely many balls in F of radius
r} , is related to c(T) by the inequalities Xe(I) < y(I) < 2¢(T)
(see [7]) .

PROPOSITION 3. Suppose that E is a ¢, space and that
T : E~>F 1ig a bounded operator. Then ||T[|e < xe(T) ; in particular,
*
Lzl < AllT#l, .
Proof. suppose that K : E - F is any compact operator and let

€ >0 be given. Then ¢(K) = 0 and so there exists a closed subspace L

of finite codimension such that IIXILII <g . Let M be any closed

subspace of finite codimension. Since F 1is a ¢A space there exists

a closed subspace N € L n M of finite codimension in EF and a
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projection P from E onto N with ||P|| < A + €. Then (T + K)P is
a compact perturbation of T and ||(T + K)P|| < (x+ e)(||T|M|| +e) .

Since € and M are arbitrary it follows that ||T||e < xe(l) . We
obviously have c(I'**) < ||T**||e < ||T*||e , while c(T**) 2 <(T)

follows easily from the definition of the measure of non-compactness

c¢(-) . Combining these inequalities gives ||T||e < AIIT*iIe

Remark 4. It is not known whether there exists a constant K such
that IlTlle <K IlT*Ile for all Banach spaces E and F and operators

T : F > F . The unpublished folklore result an(T) < 3an(T*), where

an(Tl denotes the nth approximation number of T , shows that

||T||e < 3|IT*||e provided E* has the approximation property, and so

the second statement in Proposition 3 is good only for A < 3 .
COROLLARY 5. Suppose that E is a classical Banach space and that

T : E+F i& a bounded operator. Then ||T| |e < 2¢(T) (and so

*
1711, < 2124 | ) -
Proof. E* is a T, -space, and so the result follows from

Propositions 2 and 3.

Remark 6. The constant 2 is best possible (see Corollary 10(a)
below). Results related to Proposition 3 are obtained in [7] under the
assumption that F has the compact approximation property but without
any assumption on E . In []] the Banach spaces for which Y(T) and

||T||e are equivalent semi-norms are characterized.

Now suppose that £ is a Banach space with a Schauder basis

v

(eg)g=1 - The basis constant y is defined by y = sup{||Pn|[ :n 2> 1},

where Pn is the natural projection from F onto [%é]2=1 (the closed

linear span of eyr €y . en). The basis is said to be shrinking if

||fl w !] +0 as n > o for every f ¢ E* . Further, the basis
[%é]k=n
is said to be )-unconditional if ||Z? + akek[| < A|[z: akek|| for all

n 2 1, for all scalars and for all choices of signs. It

(ak) k=1’
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follows from Proposition 2 that if F has a shrinking basis, with basis

constant u , then EF 1is a space. We have the following refinement

¢l+u

for spaces with a JA-unconditional shrinking basis.

PROPOSITION 7. Suppose that E has a \-unconditional shrinking
basis. Then E <8 a ¢, space.

Proof. For each =z = zc;_ akek in F we define |||x| || = supl |Zi
% akekl | , where the supremum is taken over all choices of signs. Since

Izl] < |1lx]|] s allx||l it is sufficient to prove the proposition for

the norm |||*|]| ., for which (ek);::l is a l-unconditional basis; so

we may assume that A = 1 . Suppose that ‘e >0 and that M is any

closed subspace of codimension one in FE . We prove the claim that there
exists a subspace N ¢ M of finite codimension in FE which is (1 + €)-
complemented in F and which possesses a (1 + €)-unconditional shrinking
basis. There exists f ¢ E* such that ||f|| =1 and M={x e E : f(a)

= Q} . We may choose X ¢ F and a positive integer ny such that

flx) =1, ||z|| <2, ana =z = 2221 % - Given n > 0 there exists

>

3
(o]

ny such that ||f] ® || sn . Then for any m = n, and for
e 1
[k:lk-‘"l

all scalars a’”l' ...,am . we have

m m m
@ -2 1] gelll < 111 aflll s @+ 2111 aelll
n n n
1 1 1
where fk =e - f(ek)x . Let P be the natural projection from E onto

[ek];:—n (which is a contraction because the basis is l-unconditional) ;
1

then P is an isomorphism from [fk:lz—n onto [ek]:_nl with
=n, =

- 1+2n
[lel| |fe l|| < y55 - Moreover,

Q= [PI [fk];::nl]_l oP

. 1+2
is a projection from E onto [fil;;n with [[@]] = =+<n
1

ion ° The claim
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now follows by taking n sufficiently small. The general result for a
closed subspace M of arbitrary finite codimension is obatined by applying
the claim finitely many times and by considering a subspace of codimension

one at each stage of the argument.

Remark 8. say that a Schauder basis (ek)z=l is A-bimonotone if
sup{IIPn||,[|1'—E% || : » 21} <A . Then the proof of Proposition 7
shows that E is a ¢A space if (ek);;1 is a A-bimonotone shrinking
basis of E .

ILet ¢ denote the space of convergent sequences & = (mkf;=1 with
the norm ||x|| = suplxk| , and let ey be the subspace of sequences which
tend to zero; let & (1 < p < «) denote the space of sequences for

which

<

© l/p
lall, = { Dleyl?]

COROLLARY 9. The Banach spaces e, and ip (1 <p <=) are

¢, spaces.
COROLLARY 10. (a) ¢ and ‘21 are ¢, spaces but are not ¢
spaces for any A < 2 .
(b) Let (ek)Z=1 be a X-unconditional basis for
e. Then X2 2 ; in particular, the Banach-Mazur distance from c¢ to

any space with a l-unconditional basis is at least 2.

Proof. (a) Let I : 2, = e, be the formal identity operator and let

J e, > ¢ be the natural inclusion. Let (ek):=l be the standard
basis of 21 and define K : 21 > ¢ by K(ek) =u(k 2 1), where u is
the sequence which has every term equal to one. Then ||JI - || =% ,
and so c¢(I) < % ; it now follows from Proposition 3 that ll is not a
¢A space for any A < 2 . Let M be any subspace of finite codimension

contained in co and let P be a projection on ¢ whose range is M .
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Then P(I - %K) is a compact perturbation of I, and so |[|P(jI - %K)]||21.
It follows that ||P|| 22, and so ¢ 1is not a ¢, space for any
A < 2 . The fact that ¢ and 21 are ¢2 spaces is a consequence of

Proposition 2.
(b) Any unconditional basis of Cq (and hence of ¢ ) is

equivalent to the standard basis (see for example [§, p.71]), and so must

be shrinking. The result now follows from (a)} and Proposition 7.

Remark 11. cC.v. Hutton ([5]) discussed the formal identity from 2,

to ¢, as an example of an operator I with the property that

*
an(,’Z’), # an(,T 1.

Remark 12. Banach ([2, p.242]) asked whether ¢ and e, were
almost isometric. Cambern proved in [3] that the Banach-Mazur distance
from ¢ to Cq is 3.

It is very easy to prove, in fact, that it is not possible to imbed
an infinite-dimensional ((X) space almost isometrically into e, + as

the following lemma shows.

LEMMA 13. [Let K be an infinite compact Hausdorff space and let
T : C(K) » ¢, be a Banach isomorphism onto a subspace of c, . Then

o
il et = 2.
Proof. We may assume that |[|T]] =1 ; 1let (ei)z=l denote the
functionals biorthogonal to the standard basis of ,co . Given € > 0O

there exists n_ such that ]e%T(l)| <€ forall k >n_, where

1 € C(K) is the constant one function. Select y € C(K) such that
[lyl[| =1 and ef(Ty) = 0 for 1< k <n_ . Then max(|le + yll,

[lx - yll) = 2 , whereas max(||Tx + Tyll , |ITx - Ty|l) <1 + ¢ , and
it follows that |177%[] 2 2 .
Remark 14. say that E has the distortion property (see [9]) if,

given € > 0 , a Banach space F will contain a (1 + €)-isomorphic copy

of F whenever E and F are isomorphic. It is well known that Cq

https://doi.org/10.1017/50004972700013009 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700013009

and 9”1
previous
(11 K.
£z} s.
{31 M.

Operators on Banach Spaces 33

share this property, but since ¢ and e, arxe isomorphic the

lemma shows - (taking C(XK) = e¢) that ¢ coes not.
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