Check for
updates
Natural Language Processing (2025), 1-35

doi:10.1017/n1p.2025.10010 | CAMBRIDGE

UNIVERSITY PRESS

ARTICLE

How to quickly select good in-context examples in large
language models for data-to-text tasks?

Yulong Li! @, Jiaoyun Yang! @, Lili Jiang?, Shuo Liu! and Ning An!

!Hefei University of Technology, Hefei, China and ?Deparment of Computing Science, Umeé University, Umea, Sweden
Corresponding author: Jiaoyun Yang; Email: jiaoyun@hfut.edu.cn

(Received 11 August 2024; revised 28 June 2025; accepted 13 September 2025)

Abstract

In the realm of data-to-text generation tasks, the use of large language models (LLMs) has become common
practice, yielding fluent and coherent outputs. Existing literature highlights that the quality of in-context
examples significantly influences the empirical performance of these models, making the efficient selection
of high-quality examples crucial. We hypothesize that the quality of these examples is primarily deter-
mined by two properties: their similarity to the input data and their diversity from one another. Based
on this insight, we introduce a novel approach, Double Clustering-based In-Context Example Selection,
specifically designed for data-to-text generation tasks. Our method involves two distinct clustering stages.
The first stage aims to maximize the similarity between the in-context examples and the input data.
The second stage ensures diversity among the selected in-context examples. Additionally, we have devel-
oped a batched generation method to enhance the token usage efficiency of LLMs. Experimental results
demonstrate that, compared to traditional methods of selecting in-context learning samples, our approach
significantly improves both time efficiency and token utilization while maintaining accuracy.

Keywords: in-context learning; data-to-text; large language models; double clustering; batched generation

1. Introduction

Data-to-text generation, the process of converting structured data into readable human lan-
guage, is a rapidly growing research area with significant applications in domains such as
automated report generation and customer service (Gatt and Krahmer 2018). This complex trans-
formation involves translating various data sources such as record databases, spreadsheets, and
knowledge bases into natural language outputs (Gardent et al. 2017). For example, given two
triples (Aarhus_Airport, cityServed, "Aarhus, Denmark") and (Aarhus_Airport,
runwayLength, 2,777 m), a data-to-text system should produce a sentence such as “Aarhus
Airport, which serves the city of Aarhus in Denmark, has a runway that is 2,777 m long.”

The challenges in data-to-text generation include sophisticated context understanding, diverse
data structure identification, and complex sentence construction. Developing a data-to-text gen-
eration model often requires training or fine-tuning with a substantial amount of data. Moreover,
this process is further complicated by the need to train separate models for different input data
formats and output sentence styles. Large Language Models (LLMs) (Brown et al. 2020; Raffel
et al. 2020) offer a solution to these challenges by effectively understanding both natural language
and structured text, as well as generating coherent and fluent outputs (OpenAl 2023; Zhao et al.
2023c).

While some heuristic methods have been used to create prompts for data-to-text genera-
tion (Zhao et al. 2023c), these methods can be time-consuming and labor-intensive. Therefore,
© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and

reproduction, provided the original article is properly cited.

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://doi.org/10.1017/nlp.2025.10010
https://orcid.org/0009-0009-5941-8739
https://orcid.org/0000-0002-0233-590X
mailto:jiaoyun@hfut.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog?doi=10.1017/nlp.2025.10010&domain=pdf
https://www.cambridge.org/core

2 Yulong Li et al.

Put the table together
to form a sentence.

TestData. . . P .
Similarit =Y =5
@ ';:;ea; i @ TET) Mput @ CyspuR: —

(=N i == Computationally inefficient
, Qutput:
ﬁ P @ e O High Performance
T(n) = 0(MDn) "o g_
Input : E Output:

OLLM O

EES]

EIEIES to form a sentence.
Training Set ﬁ @ = ‘O Computatlonally efficient
Input : E Output: Low Performance

Put the table together

ok =1
Diversity @ |TEXT] !nput:@ Output:

-based T(n) = 0(n)
lnput:@ Output:

Selected Examples Prompt

Figure 1. Flowchart of different in-context learning methods for data-to-text. Different colored icons represent the semantic
representations of data/text. The similarity-based method chooses demonstrations that are more similar to the input data
and achieves better output results, but it has higher time complexity (M is the size of the training set, n is the size of the
test set, D is the size of the representation vector). In contrast, the diversity-based method has lower time complexity but
produces poorer output results.

automatic prompt generation is needed to guide LLMs in meeting specific text requirements.
In-Context Learning (ICL) (Brown et al. 2020; Dong et al. 2024) provides a simple yet effec-
tive approach by incorporating input-output demonstrations into the prompt, thereby enhancing
generative performance.

Recent studies have shown that the selection, format, and order of in-context examples in the
prompt can significantly affect the model’s output (Zhao et al. 2021; Min et al. 2022; Liu et al.
2022b). Figure 1 illustrates how different choices of in-context examples influence the generation
results of LLM.

Consequently, methods for prompt construction based on in-context example selection have
emerged. These methods can be broadly categorized into unsupervised methods (Lu et al. 2022; Su
et al. 2022; Liu et al. 2022b) and supervised methods (Rubin, Herzig, and Berant, 2022). Supervised
methods require fine-tuning the model for different tasks, which is not only costly but also imprac-
tical, especially when the model is accessed only via API calls. Unsupervised methods can be
further divided into similarity-based (Liu et al. 2022b) and diversity-based approaches (Zhang
et al. 2022).

Similarity-based methods aim to select training samples most similar to the test input for use
as in-context examples. This approach often yields favorable results in many cases. However, it
requires comparing the test input with all candidate samples in the training set. As a result, it
incurs high computational costs for large datasets.

In contrast, diversity-based methods aim to include as many diverse examples as possible to
cover a broader range of potential input distributions. These methods typically cluster samples
and select representative examples from each cluster, or design and apply heuristic strategies to
choose diverse examples. Compared to similarity-based methods, diversity-based methods use the
same set of in-context examples for different test inputs, which in turn improves computational
efficiency. However, since the examples in the prompt are not closely related to the test input, the
generated text may lack precision.

The generation results in data-to-text tasks can be significantly influenced by the structured
data and reference texts in the in-context examples. If the characteristics of the in-context
examples differ significantly from those of the test input, the generation results may degrade,
particularly in smaller models or for tasks requiring high precision. Improving the efficiency of

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 3

utilizing LLMs for data-to-text generation remains an important area of research, particularly for
large-scale datasets, where balancing efficiency with the accuracy and consistency of generated
results presents unique challenges. To address these challenges, we propose an efficient prompt
generation method through in-context example selection: Double Clustering-based in-Context
example Selection (DCCS), tailored for data-to-text tasks. The contributions of our research are
as follows:

a) We propose a two-step in-context example selection method based on double clustering.
In the preprocessing phase, we perform two clustering operations on the training dataset.
The first clustering process ensures data similarity among the in-context examples, while
the second clustering process ensures the diversity of the reference texts. In the inference
phase, we simplify the in-context example selection process to a cluster selection process
for efficiency.

b) We propose a batched generation method based on the DCCS approach, which groups
similar samples from the first clustering into batched prompts based on the batch size
and then utilizes a LLM for generation. This method effectively improves token utilization
while ensuring the accuracy of the generated results.

¢) We conducted experiments on four data-to-text datasets. The experimental results indicate
that prompts constructed using our in-context example selection method achieved high
accuracy across multiple LLMs. Additionally, our method significantly reduces the time
and tokens needed for prompt generation in LLMs.

The subsequent sections provide a comprehensive discourse on our proposed methodology,
the experimental setup, and the consequent findings. These sections elucidate the capacity of our
DCCS approach to advance data-to-text generation.

2. Related work

2.1 Data-to-text generation

Data-to-text generation focuses on converting structured data into coherent textual descrip-
tions. This task has garnered substantial attention due to its applications in sports commentary,
biographical text generation, and open-domain table summarization. Commonly used datasets
include WebNLG (Gardent et al. 2017) and DART (Nan et al. 2021), with additional studies
addressing related challenges (Wen et al. 2015; Lebret, Grangier, and Auli 2016; Wiseman, Shieber,
and Rush 2017). In addition to open-domain table summarization, converting tables into text and
learning embeddings of tables have been shown to benefit open-domain question answering and
information retrieval, for example, by enabling dense retrieval that embeds questions and tables
in a shared vector space (Deng, Zhang, and Balog 2019; Herzig et al. 2021).

Initial research on data-to-text generation predominantly involved template filling and rule-
based approaches (Hallett, Power, and Scott 2006; Turner et al. 2008). While effective for narrowly
defined, domain-specific tasks, these methods often struggled to produce diverse and natural
outputs, limiting their broader applicability. Subsequent work shifted toward fine-tuning mod-
els such as T5 (Raffel et al. 2020) and GPT-2 (Radford et al. 2019) on task-specific datasets (Li
and Liang 2021; Clive, Cao, and Rei 2022). For instance, LOFT (Zhao et al. 2023a) employs logic
forms as fact verifiers and content planners to enhance controllability, faithfulness, and diversity.
PLOG (Liu et al. 2022a) continuously pre-trains text generation models on a data-to-logic-form
generation task to improve output fidelity. Despite their success, these methods typically require
separate training for each new task. This approach is time-consuming, costly, and difficult to scale,
especially in rapidly evolving fields where task requirements frequently change.

More recent research leverages the inherent capabilities of LLMS, such as employing chain-
of-thought prompts (Zhao et al. 2023b), which guide LLMs through step-by-step reasoning to

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

4 Yulong Li et al.

enhance faithfulness and coherence in data-to-text tasks. However, such methods require complex
prompt engineering and substantial prior knowledge, limiting their efficiency.

To address these limitations, an emerging paradigm is In-Context Learning (ICL). ICL enables
LLMs to adapt to new tasks by including a few task-specific examples in the prompt, eliminat-
ing the need for fine-tuning. This approach offers a flexible and scalable solution for data-to-text
generation and serves as the basis for our investigation.

2.2 In-context learning

With LLMs widely deployed across various tasks, their ability to learn from a few examples in
the prompt has garnered substantial attention. ICL enhances the efficacy of these models without
extensive fine-tuning (Brown et al. 2020; Wei et al. 2022), enabling LLMs to perform diverse tasks,
such as web browsing and coding (Nakano et al. 2021; Chen et al. 2021). The OpenICL framework
provides a unified platform that simplifies ICL implementation (Wu et al. 2023b).

The effectiveness of ICL heavily relies on the selection and formatting of demonstrations (Zhao
et al. 2021; Min et al. 2022; Liu et al. 2022b), which has prompted the development of optimization
strategies. These strategies can be broadly categorized into supervised and unsupervised methods
(Dong et al. 2024). Supervised methods train a scorer to select in-context examples using supervi-
sion signals (Rubin et al. 2022; Li et al. 2023), leveraging feedback from language model inference
to adaptively identify suitable demonstrations. CEIL (Ye et al. 2023) and MoD (Wang et al. 2024)
model the selection of the exemplar set and train one or multiple retrievers to score the exemplar
set. While these methods often yield better performance, they are challenging to implement for
black-box LLMs accessed via token-level APIs and can be computationally expensive.

In contrast, unsupervised methods rely on heuristics such as similarity-based, diversity-based,
or entropy-based approaches (Lu et al. 2022; Liu et al. 2022b; Levy, Bogin, and Berant 2023)
for demonstration selection. A straightforward approach is to choose the nearest neighbors of
input instances based on their similarities, using metrics such as L2 distance or cosine similar-
ity computed from sentence embeddings (Liu et al. 2022b; Tanwar et al. 2023; Qin et al. 2024).
Beyond distance metrics, other unsupervised approaches include mutual information (Sorensen
et al. 2022) and perplexity (Gonen et al. 2023), which have shown promise for prompt selec-
tion without labeled data or task-specific LLMs. However, most of these methods are designed
for general question-answering tasks and do not consider, in data-to-text generation, the differ-
ing impacts that in-context examples’ structured data and reference text components have on the
model’s output quality.

In this work, we propose a novel unsupervised demonstration selection strategy that reduces
reliance on heuristics while improving efficiency and reducing token overhead. Our approach
retains the simplicity and broad applicability of unsupervised methods while achieving better
performance for data-to-text tasks.

3. Methodology

In this section, we present our Double Clustering-based in-Context Example Selection (DCCS)
methodology, aimed at rapidly selecting high-quality in-context examples to improve the effi-
ciency of data-to-text tasks. Building on DCCS, we further propose the DCCS-Batch method,
which enhances token utilization.

3.1 Definitions and problem formulation

Let the training set consist of M samples denoted by S= (Xiain> Yirain)> Where Xirain =
{x1,Xx2,...,Xm} contains the data portions of the samples, and Yirain = {y1,y2,- .., yMm} con-
tains the corresponding reference texts. Given a test input X, our goal is to produce an output

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 5

Yiest = M(C @ xtest), Wwhere ./ denotes a large language model (e.g., GPT-3.5) and C is composed
of an instruction I along with m in-context examples, denoted by s(x;, y;). Formally,

C={175(x1>}’1)>5(x2:}’2)a---:S(xm,)’m)}- (1)

context

Conventional unsupervised in-context example selectors usually optimize a single dimension -
either semantic similarity (e.g., KATE Liu et al. 2022b) or diversity (e.g., choosing cluster centroids
Zhang et al. 2022). In data-to-text generation, each approach exhibits a characteristic weakness.
Diversity-only schemes often return demonstrations that are too remote from the test instance,
yielding sub-optimal outputs. Similarity-only schemes, by contrast, require evaluating the similar-
ity between the test instance and every training sample, then taking the top-k neighbors; although
such exhaustive search can sometimes achieve the best generations, its inference-time complexity
is prohibitive when the training set is large. To overcome these issues, we compare the test instance
with only a small subset of the training data while still recovering near-optimal demonstrations.
Our key insights are as follows: (i) examples whose data fields are sufficiently similar to the test
instance are beneficial; (ii) the absolutely closest neighbors are unnecessary — near-enough exam-
ples suffice; and (iii) maximizing diversity in the text fields helps the model cover a wide range of
reference-level linguistic patterns.

3.2 Method overview

Our approach leverages both data-level similarity and text-level diversity to optimize the selection
process:

Data-Level Similarity: We cluster the training samples into K groups based on the semantic
representations of their data components, and Section 3.3.2 details how K is selected. Samples
within the same cluster are considered similar in terms of their data characteristics, while those
from different clusters are treated as dissimilar. For a test input, we compare its data represen-
tation only with the K cluster centers, thereby significantly reducing the computational cost of
similarity comparisons compared to evaluating all samples in the training set.

Text-Level Diversity: We argue that if two in-context examples are highly similar in their
textual content, including only one of them is sufficient to represent that semantic segment.
To ensure textual diversity, we perform a second clustering step within each relevant data clus-
ter; this time focusing on the text components of the samples. The center of each text cluster is
then selected as an in-context example, enabling broader coverage of possible expressions while
keeping the example quantity unchanged.

Conventional diversity-driven selectors — for example, Determinantal Point Process (DPP)
(Wu et al. 2023a) and centroid-based clustering (Zhang et al. 2022; Levy et al. 2023) - pursue
diversity alone and neglect semantic alignment, so demonstrations that are overly dissimilar to
the test instance can undermine data-to-text generation. DCCS mitigates this shortcoming with
a two-stage clustering scheme: the first stage filters out irrelevant samples by data similarity, and
the second stage enforces textual diversity within the retained subset. This dual focus simulta-
neously preserves relevance and expands linguistic coverage, yielding higher-quality outputs. The
proposed method also offers substantial efficiency gains. Instead of comparing a test instance with
all M training samples, DCCS consults only the K data-cluster centroids (K <« M) and supports
Batched Generation, whereby a single demonstration set is reused for every test input in the same
cluster. This sharply lowers prompt-construction time and token consumption - an important
benefit for LLM APIs billed per token. Unlike supervised selectors such as CEIL (Ye et al. 2023)
and MoD (Wang et al. 2024), DCCS requires no additional training and thus operates directly on
black-box APIs.

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

6 Yulong Li et al.

Category selection In-context example selection
o table embedding

°e

o o . Lo
. Ot = i

o ©

< text embedding
* table cluster center
€ text cluster center

4 encode select

prompt

[Belgium | language | Dutch_language J

[China | language | Standard_Chinese ‘]

L Standard Chinese Is the | of China. J

[Belgium | language | Dutch_language]

Figure 2. The schematic representation of DCCS. The training set is initially stratified into K primary clusters based on the
embeddings of the data. Each primary cluster subsequently undergoes sub-clustering into m categories based on the embed-
dings of the reference texts. The m centroid samples are selected as candidate in-context examples for each primary cluster.
During the inference phase, the test data x is encoded and assessed for similarity against the K cluster centers, and the
candidate in-context examples from the proximal category is selected.

3.3 Double clustering based in-context example selection

For data-to-text tasks, our intention is to ensure that the context in the prompt is as pertinent to
the data of x4 as possible, while also possessing maximum diversity in reference texts. Thus, we
stratify the in-context example selection task into two steps: (i) Cluster selection for input data,
(ii) In-context example selection for reference text. In the cluster selection step, we select a subset
of samples whose data content is similar to the given input semantics. In the in-context example
selection step, we select training samples with diverse descriptions from the subset to construct a
prompt.

This procedure is implemented through two separate clustering operations. The first clustering
operation divides the original training set into different categories. The second clustering opera-
tion identifies the most diverse in-context examples. We opted for the K-means algorithm for
both clustering operations due to its simplicity, swift convergence, and straightforward imple-
mentation (Yuan and Yang 2019). The DCCS method is visualized in Figure 2. We divided the
whole generation process into two phases: the preprocessing phase and the inference phase, as
shown in Algorithms 1 and 2.

The preprocessing phase involves clustering the training set into K primary clusters, each of
which is further subdivided into m secondary clusters through a subsequent round of clustering.
After the double clustering, the centroids of the first clusters are recorded for future comparison
with input samples, while the m samples proximate to the centroids of the m secondary clusters
are retained, forming the candidate in-context example sets.

The inference phase involves calculating the distances between the input samples and the cen-
troids of the K clusters. The candidate in-context example sets from the closest cluster are then
selected to generate the prompt.

3.3.1 Preprocessing phase

We utilize a smaller Pre-trained Language Model (PLM) to encode Xy, in the embedding space,
resulting X,,,, € RM*D | where M represents the number of sentences and D is the embedding
dimension. For this study, we employed RoBERTa-large model (Liu et al. 2019) as the PLM, using
the pooler output for sentence embedding, with D = 1024.

Xemp = encode(Xirain) (2)

By using the PLM, we obtain the encoded representation X,,,;,, which captures the semantic
information of training set.

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 7

Algorithm 1: Preprocess of DCCS

Input: Training set S = {(x;, y;) }*,; Encoder ENC;
Max clusters Kpyax; In-context examples per prompt m
Output: Data-cluster centers {yy}; Candidate In-context example sets {Cy }

1 Encode data part: X,,,, < ENC({x;})

2 for K =2 to Kjpax do

3 {p,EK)} +— KMeans(Xemp, K);

4 Compute silhouette score Silhouetteg;

5 end

6 K* + arg maxg Silhouettey // number of first clusters
7 {ur} < KMeans (X, K*)

8 for k=1 to K* do

9 Y e {(xi, i) [xi—= e}

10 Encode reference text part: T <— ENC({y | (x, y) € Y*})

11 {c’j‘ "L| < KMeans(T, m)

12 Cy < m nearest pairs to {clj} // cache In-context example sets
13 end

14 return {y;}, {Cr}

Algorithm 2: Inference of DCCS

Input: Test input x¢est; Encoder ENC; Candidate In-context example sets {Cy}
Output: Generated text Viest

1 Xemb < ENC(Xtest)

2 k* < argming d(Xemb, k) C <— Cyx

3 prompt < C @ Xtest

4 o5t < A(prompt)

5 return yiest

In the first clustering step, X, is partitioned into K categories, yielding K cluster cen-
ters. The selection of K is based on the comparison of silhouette coefficients (Kaufman and
Rousseeuw 2009), considering different numbers of clusters. We select the number of clusters
that corresponds to the maximum silhouette coefficient value as optimal. The clustering proce-
dure terminates once the relative decrease in inertia falls below 10~ or after 300 Lloyd iterations,
whichever occurs first.

W15 ..., g =arg min
sl K

Z mjin (dis(xi, 1)) (3)

Xi€Xemb

Here, dis() denotes the euclidean distance. Based on the clustering results of X4in, Yerain is also
partitioned into K categories.

Y5 = {yildis(yi, ix) < dis(yi, 1), j # k) (4)

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

8 Yulong Li et al.

Algorithm 3: Inference of DCCS-Batch

Input: Test set X;e5r = {x(1>., W >};Encoder ENC;
Candidate In-context example sets {Cy} ; Data-cluster centers {1 }; batch size limit n
Output: Generated texts {y")}V |

1 foreach x() € X,p5 do
e(zn)ﬁ) 4 ENC(x);
kKO arg ming d(x in)lb, ur);
%k(,).append(X)),
end

foreach ke {1,...,K} do
foreach batch B C BBy with |B| <ndo
C + Cy. prompt < C || concat(B);

{0} e ¢ ~# (prompt);

S5}

wn kW

e oo 9

10 end
11 end

12 return {y"}V,

The same PLM used in the previous step encodes Y in the embedding space.

Yk b = encode(Yk) (5)

In the second clustering step, we select m samples that can encompass all samples in each cat-
egory with minimal distance. Based on preliminary experiments, we observed that increasing the
number of in-context examples beyond ten rarely leads to additional performance improvements.
Accordingly, we conduct experiments under both 5-shot and 10-shot settings, with the 10-shot
results reported in the appendix.

y]f,...,yk =arg m1n
)’p oV

Z rnJln (dzs(yl Y])) (6)

Vi keyk

emb

For each category, the candidate in-context example set, denoted as Cy, is constructed. These in-
context example sets are indexed by cluster number and can, therefore, be accessed quickly using
the corresponding category index.

Cr = (I, s(2X, y8), sk, 150, sk, vk) (7)

3.3.2 Determining the number of clusters

To determine the number of clusters in the first clustering step, we use the Silhouette Coefficient
Rousseeuw (1987), a metric that evaluates the effectiveness of a clustering algorithm by combining
measures of cohesion and separation. This helps identify the optimal number of clusters (K) for
k-means clustering. The coefficient ranges from —1 to 1: values close to 1 suggest that a sample is
well matched to its own cluster and poorly matched to neighboring clusters; values near 0 indicate
proximity to the boundary between clusters; and negative values imply potential misclassification.

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 9

For each sample i, two quantities are computed: a(i), the mean distance between i and all other
points in the same cluster (measuring cohesion); and b(i), the mean distance between i and all
points in the nearest different cluster (measuring separation). The Silhouette Coefficient s(i) for
each sample is calculated as follows:

) b —alb
W= max{a(i), b(i)}

The average Silhouette Coefficient across all samples serves as an evaluation metric for selecting
the value of K that maximizes clustering quality. This method provides an objective and efficient
means of determining the appropriate number of clusters for k-means clustering.

3.3.3 Inference phase
When generating text for the input data x, we propose the following method:
Encoding. We utilize PLM to encode the information present in the input data x.

Xomp = encode(x) (8)

Selecting cluster. We compare the encoded representation x.,; with the clustering centers
obtained from the training set. This comparison allows us to determine the closest cluster to
which the input data belongs. The index k is selected as the cluster that minimizes the distance
between x,,,,;, and the cluster center 1. By assigning the input data to the appropriate cluster, we
can effectively categorize the test data into different clusters.

k=arg mkin (Xempb — Mk) 9)

Concatenating prompt. After identifying the domain-specific cluster Cy, we select it as the repre-
sentative set of in-context examples. To construct a prompt for text generation, we concatenate
Cy with the original input data x. This prompt serves as a comprehensive input to guide the
LLM in generating coherent and relevant text outputs. After obtaining these in-context exam-
ples, we concatenate them into a complete prompt following the format illustrated in Figure 4 and
Table 1.

Generating output. The constructed prompt, composed of the cluster examples Cy and the input
data x, is fed into LLM for text generation. The LLM utilizes the contextual information provided
by the prompt to generate the desired output y.

y=MCi @ x) (10)

3.4 DCCS-batch

Traditional KNN-based in-context learning example selection methods require a separate selec-
tion process for each test case, as the closest k samples in the training set vary for each test
sample. However, the DCCS method allows for the same context samples to be used for differ-
ent test samples if they are classified into the same cluster. This enables us to combine test samples
with identical in-context examples into a single prompt, allowing the LLM to perform text gen-
eration for multiple data points simultaneously. Figure 3 illustrates the differences between our
batched generation method and the traditional single-generation method. This batched gener-
ation method significantly improves the token utilization efficiency of LLMs. Figures 4 and 5,
respectively, present examples of prompts for the single-generation and batched-generation meth-
ods, with each prompt selecting k ICL examples. The batched generation method simultaneously
performs text generation tasks on # input data.

By using batched generation, we can reduce the average token usage per instance by
%(tokenim + m - token;.), where token;,s and token;. respectively represent the number of

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

10 Yulong Li et al.

Table 1. Instruction and data format in prompt text

Dataset Prompt text

E2E Put the highlighted table together to form a sentence
name : The Vaults | food : Japanese | price : cheap | family friendly:yes
WebNLG Put the highlighted triples together to form a sentence
Angola_International_Airport | 1st_runway_Number | 5
DART Put the highlighted triples together to form a sentence
Allan Shivers | ACTIVE_YEARS_START_DATE | 1947-01-21
ToTTo Put the highlighted table together to form a sentence

<page_title> Malcolm McDowell <section_title> Music video <table> <cell> 2009 <col_header> Year

Single Generation Batched Generation =
Efa_ (batch size = 5) IE
table 1 PR ICL example e ICL e:ample o
selection 4O, ch1 sclection _gr b, = [
- - = pRo
[ot — Suump— (B [oners |— Sumd a5
- ; — ae”
et Cluster °
classification
8 - S| e - S
ﬁ N table N 1 KL ex.ample @x N R KL ex?ample
® selection 4O, ah U5 selection aOw, ‘E
- . = " o " sl
FR -G 1 e — s~ s Gump - (B0 {
L) - .
o - T

Figure 3. Left: Single Generation, where text is generated for one structural data at a time. Right: Batched Generation,
with text being generated for 5 simultaneously.

Put the highlighted table/triples together to form a sentence:
Input :{ICL example data 1}
Output :{ICL example text 1}

Input :{ICL example data k}
Output :{ICL example text k}

Input :{input data}

Figure 4. Prompt for single generation.

tokens used for the instruction and a single in-context learning example within the prompt, # is
the batch size, and m is the number of in-context learning examples. We provide detailed proofs
in the subsequent sections.

3.5 Computational complexity analysis
Let M represent the number of samples in the training set, K denote the number of clusters in the
first clustering, and m be the number of subclusters in the second clustering.

Preprocessing phase: The typical complexity of K-means clustering during the first phase
of clustering is O(MKDI,), where I; is the number of iterations required for the algorithm to
converge. Similarly, for the second phase of clustering within each primary cluster, the average
complexity would be O(%mDIZ), where I, is the number of iterations for the second round

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 11

Put the highlighted table/triples together to form a sentence:
Demonstration:

Input 1 :{ICL example data 1}

Input k :{ICL example data k}
Output 1 :{ICL example text 1}

Output k :{ICL example text k}
Next, Generate the text corresponding to the following n tables, and the format is the same as Demonstration.

Input 1 :{input data 1}

Input n :{input data n}

Figure 5. Prompt for batched generation.

of clustering to converge. The total complexity of the clustering phase can be represented as
O(M(m + K)D(Iy + I)).

Inference phase: For each input sample, the algorithm compares it with K cluster centers to
select the nearest one. The time complexity for this step would be O(KD). Assume N be the
number of samples in testing set, the complexity of inference phase is O(KDN).

Considering K, I, I, and m as constants, and both M and N are significantly larger than K, I,
I, and m, the overall algorithmic complexity of the DCCS method is thus O((M + N)D).

Existing methods based on selecting similar samples (i.e., KATE Liu et al. 2022b and CEIL
Ye et al. 2023) are designed to compare distances with all N samples during each inference. The
complexity of these methods is O(MND).

In scenarios where N is considerably large, the DCCS method can significantly decrease the
time required for in-context example selection.

For DCCS-Batch, since DCCS-Batch and DCCS use the same ICL example selection method,
the time for generating prompts is also similar. We constructed K queues (K represents the num-
ber of clusters), and after determining which cluster a test data belongs to, we stored it in this
queue. When a queue is full (containing batch-size data), we combined them into a prompt (as
shown in Figure 5), and then cleared the queue. This results in an additional table storage and
retrieval process for DCCS batch compared to single-input DCCS, but the time required for
similarity comparison between samples is negligible.

3.6 Token utilization efficiency in batched generation

For data-to-text tasks, let’s assume m in-context learning samples are selected, # is the batch size.
The final input prompt text to the LLM typically consists of the instruction, context, and test input.
Assuming token;,s and token;. respectively represent the number of tokens used for the instruction
and a single in-context learning sample within the prompt. token; is the number of tokens used
for the input data. For a traditional single inference prompt, the prompt length (Lp) is given by
token;,s + m - token;. + token;.

The input token per sample is calculated as:

N
1
token, = N Z (tokenjys + m - token;. + token;) (11)

i=1

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

12 Yulong Li et al.

Table 2. Comparison of Retrieval Time Saved and Token Saved (%) between DCCS and KATE across datasets

DCCS vs KATE DCCS-Batch (5) vs KATE DCCS-Batch (10) vs KATE

Dataset Trainsize Timesaved (%) Tokensaved Time saved (%) Token saved (%) Time saved (%) Token saved (%)

E2E 4862 43.97 - 52.24 66.38 52.89 80.11
WebNLG 6940 53.61 - 61.88 67.57 62.13 76.41
DART 30,526 82.18 - 85.51 67.54 85.94 76.32
ToTTo 120,761 94.90 - 95.83 60.42 96.02 71.13

In contrast, for batched inference prompt,assumed batch size is # , the prompt length (Lp) is given
by tokeni,s + m - token;; + ntoken;. The input token per sample is calculated as:

N/n

tokeny, = N Z (tokenj,s + m - token;. + token;) (12)
i=1

n
tokeny, — token, =

-1
(tokeniys + m - token;;) (13)

Assuming the instruction part of the prompt remains unchanged, as the batch size and the number
of ICL samples increase, the token utilization efficiency of batched generation becomes higher.
Table 2 presents the percentage reduction in retrieval time and token usage achieved by our DCCS,
DCCS-Batch (batch size 5), and DCCS-Batch (batch size 10) methods in comparison to KATE,
evaluated across four datasets of varying sizes.

4. Experiments

In this section, we present experiments designed to assess the DCCS and DCCS-Batch methods
in terms of generation quality and efficiency.

4.1 Experimental setup

4.1.1 Datasets and environment

We conducted experiments on four widely used datasets for the data-to-text task: E2E (Novikova,
Dusek, and Rieser 2017; Dusek et al. 2020), WebNLG (Gardent et al. 2017), DART (Nan et al.
2021), and ToTTo (Parikh et al. 2020).

E2E contains 42 000 restaurant meaning representations with up to eight slot-value pairs (e.g.,
name, food, area). Inputs are short and domain-specific, and most references are single sentences,
making it a compact closed-domain benchmark.

WebNLG covers 15 DBpedia categories (e.g., Airport, University) and provides sets of 1-6
triples as input. Compared with E2E, it spans multiple domains and often requires multi-sentence
outputs to verbalize more varied predicates.

DART extends WebNLG to an open-domain setting by mining RDF-style triples from
Wikipedia tables and sentences. Its inputs are longer and noisier, so systems must generalize to
unseen predicates and cope with imperfect schemas.

ToTTo is a table-to-text dataset that highlights a subset of Wikipedia table cells to be verbalized.
Unlike the pure triple formats of WebNLG and DART, ToTTo inputs preserve table structure and
require the model to reason over cell context and aggregation.

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 13

The experimental environment incorporated the following hardware configurations:

o CPU: Intel Xeon Gold 6240 CPU (2.6 GHz, 72 cores);
« RAM: 512 GB DDR4;
o GPU: NVIDIA Tesla T4.

We used the GPT-3.5 API (gpt-3.5-turbo-0125) provided by OpenAI* and the GLM-3 API
(glm-3-turbo) provided by ZHIPU AI as LLM in our method. We set the temperature parameter
to 0 for GPT-3.5 and 0.01 for GLM-3, using the default configuration for other arguments. To min-
imize the influence of external factors on the in-context examples in the prompt, we adopted the
method used by (Li et al. 2024), which involves merely inserting a brief instruction at the begin-
ning of each prompt. For example, "Put the highlighted table/triples together to form a sentence.”
Detailed examples of such prompts can be seen in Table 1, Figure 4, and Figure 5. Considering the
cost implications of LLM API calls, we conducted experiments using the full test dataset for batch
generation methods. For single-generation methods with GPT-3.5 and GLM-3, we randomly
selected 100 test samples, ensuring the same samples were used across all methods. Additionally,
we conducted experiments with a smaller open-source model, LLaMA 3.1-8B,° which extends the
context length to 128K and supports our long-prompt experiments. We have made the complete
source code publicly available - including our DCCS implementation, all baseline methods, and
the exact experimental configurations.d

4.1.2 Baseline
To evaluate the performance of our DCCS and DCCS-Batch methods, we benchmarked them
against seven existing in-context example selection methodologies:

Random: For each test input, m samples are randomly selected from the training set to serve
as in-context examples.

KATE (Liu et al. 2022b): The Knn-Augmented in-conText Example selection (KATE) method
identifies the m training samples with the shortest distance to the test input in the embedding
space.

KEN: In contrast to KATE, the K-Furthest Neighbors (KFN) method selects the m training
samples that exhibit the longest distance to the test input in the embedding space.

DPP (Kulesza and Taskar 2011): The Determinantal Point Process (DPP) is designed for set
selection problems emphasizing diversity. Following Ye et al. (2023) we first retrieve the top-100
nearest neighbors of the test instance with a dense KNN retriever, and then apply the conditional
DPP MAP solver to pick m demonstrations that maximize a relevance-diversity objective.

BM25 (Karpukhin et al. 2020): BM25 is a widely used text retrieval method based on the term
frequency-inverse document frequency (TF-IDF) principle. It ranks training samples according
to their relevance to the test input, determined by a weighted TF-IDF scheme.

DPR (Karpukhin et al. 2020): The Dense Passage Retriever (DPR) employs a dense encoder
that transforms text into d-dimensional vectors in dense space. It builds an index of all training
passages for efficient retrieval. At runtime, a separate encoder converts the test input into a d-
dimensional vector, retrieving the top-m passages whose vectors are most similar to the test input
vector.

Random-Batch: This method randomly selects input samples to form a batch and chooses m
samples from the training set as in-context examples in a random manner.

2https://platform.openai.com/

Y https://open.bigmodel.cn/dev/api#glm-3-turbo
¢ https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

dhttps://github.com/gerontech-hfut/InC-learning/tree/icl_data2text

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://platform.openai.com/
https://open.bigmodel.cn/dev/api#\gdef \ignorespaces {#}\gdef no{no}\gdef yes{yes}glm-3-turbo
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://github.com/gerontech-hfut/InC-learning/tree/icl_data2text
https://www.cambridge.org/core

14 Yulong Li et al.

Table 3. Comparative results of data-to-text generation using GPT-3.5 on the E2E, DART, and WebNLG (100 test
samples) in a 5-shot setting. The best performance per metric is shown in bold and the second-best result is

underlined
E2E DART WebNLG

Method BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore
w/o example 36.11 41.72 63.56 30.66 44.44 65.93 40.03 53.09 68.78
Random 39.72 42.31 65.20 31.27 45.97 66.66 41.82 56.41 72.35
KATE 41.49 43.91 66.56 34.30 46.44 67.32 45.06 57.47 73.04
KFN 38.04 43.68 65.82 29.90 43.84 65.24 41.42 55.63 71.74
DPP 39.19 45.08 66.32 33.53 46.97 66.64 43.13 55.56 71.95
BM25 39.49 43.46 65.87 33.01 47.68 66.88 41.73 54.35 71.33
DPR 38.22 42.67 65.41 32.37 47.35 67.63 43.35 55.31 71.56
DCCS 43.03 45.72 67.56 33.76 47.60 68.34 46.67 57.21 72.61

4.1.3 Evaluation metrics

We evaluated the generated texts using four widely used automatic metrics: BLEU (Papineni et al.
2002), ROUGE-L (Lin 2004), and BERTScore (Zhang et al. 2019). For the ToT To dataset, we used
the official evaluation script® to calculate BLEU and PARENT (Dhingra et al. 2019). These met-
rics capture complementary aspects of generation quality, ranging from lexical overlap to deeper
semantic and factual accuracy.

BLEU quantifies the similarity between a generated output and one or more reference texts by
computing a geometric mean of modified n-gram precisions, adjusted with a brevity penalty (BP)
to discourage trivially short outputs.

ROUGE-L focuses on the longest sequence of tokens that appear in both texts in the same
order, though not necessarily contiguously. This metric effectively captures sentence-level fluency
and coherence, outperforming simple #-gram matching.

BERTScore employs contextualized embeddings (e.g., from BERT) to measure semantic simi-
larity. Each token in the generated text is matched to the most similar token in the reference text
based on cosine similarity.

PARENT is designed for data-to-text generation, incorporating both lexical overlap and align-
ment with source data. It assigns credit for n-grams in the generated text that appear in the
reference or can be inferred from the input data. By jointly considering textual similarity and
factual consistency, PARENT better captures the factual consistency of the generated output with
the provided information.

4.2 Automatic evaluation results

Tables 3 and 4 report the 5-shot single-generation results for GPT-3.5 across all automatic metrics.
Table 5 provides the corresponding scores for GLM-3, and Tables 6 and 7 list the results for Llama-
3.1-8B. Batched-generation results appear in Tables 8, 9, and 10. The analogous 10-shot tables are
included in Appendix A and B.

4.2.1 Single generation performance
As shown in Tables 3-6, and 7, both our proposed method and the KATE method significantly out-
perform the Random baseline. The corresponding significance tests are reported in Section 4.2.5.

Chttps://github.com/google-research/language/blob/master/language/totto/totto_eval.sh

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://github.com/google-research/language/blob/master/language/totto/totto_eval.sh
https://www.cambridge.org/core

Natural Language Processing 15

Table 4. Comparative results of data-to-text generation using GPT-3.5 on the ToTTo (100 test samples) in a
5-shot setting. The best performance per metric is shown in bold and the second-best result is underlined

Overall Overlap Subset Nonoverlap Subset
Method BLEU PARENT BLEU PARENT BLEU PARENT
w/o example 25.4 46.0 26.7 46.7 23.9 45.1
Random 26.2 50.1 28.8 50.7 23.9 49.5
KATE 37.5 58.5 42.6 62.0 31.1 54.2
KFN 23.2 44.5 22.5 42.3 23.9 47.3
DPP 27.1 50.2 28.1 49.2 26.0 51.6
BM25 33.8 53.3 41.3 57.1 25.4 48.5
DPR 34.6 55.5 413 59.5 27.0 50.5
DCCS 354 55.4 40.6 58.4 29.3 51.7

Table 5. Comparative results of data-to-text generation using GLM-3 on the E2E, DART, and WebNLG (100 test
samples) in a 5-shot setting. The best performance per metric is shown in bold and the second-best result is
underlined

E2E DART WebNLG

Method BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore

Random 52.82 50.78 68.56 47.08 57.83 7340 60.02 67.73 79.57
KATE 55.29 50.81 69.17 49.74 60.65 75.01 6136 69.00 79.61
KFN 53.60 49.96 68.32 46.63 56.80 7248 59.88 67.67 78.48
DPP 5414 50.38 69.03 47.64 57.50 7348 5841 67.87 78.77
BM25 53.64 50.87 69.15 46.93 57.53 73.74 60.08 69.17 79.20
DPR 5411 51.05 6846 49.23 59.48 7449 5760 66.07 72.67
DCCS 5441 52.10 70.15 49.74 60.23 7461 62.14 68.89 79.83

Table 6. Comparative results of data-to-text generation using Llama-3.1 on the E2E, DART, and WebNLG in a
5-shot setting. The best performance per metric is shown in bold and the second-best result is underlined

E2E DART WebNLG

Method BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore
w/oexample 44.45 46.55 63.16 3323 4872 6117 39.11 53.93 66.26
Random 4548 46.99 64.69 3526 49.61 6574 4475 56.61 68.47
KATE 49.17 49.04 6833 37.17 50.67 6625 46.67 57.64 7145
KFN 4299 4537 62.38 3430 48.94 64.15 36.44 51.24 62.12
DPP 4745 4852 6540 3636 50.20 65.87 4616 5747 71.35
BM25 4650 4839 64.56 3651 50.45 6592 46.87 58.03 69.66
DPR 4570 47.50 64.64 3421 47.85 60.39 4516 57.23 70.65
DCCS 54.67 53.73 69.02 37.42 51.05 67.72 48.00 58.23 71.55

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

16 Yulong Li et al.

Table 7. BLEU and PARENT on the ToTTo using Llama-3.1in a 5-shot setting. The best performance per metric
is shown in bold and the second-best result is underlined

Overall Overlap Subset Nonoverlap Subset
Method BLEU PARENT BLEU PARENT BLEU PARENT
w/o example 24.3 48.18 28.1 49.99 211 46.39
Random 27.7 48.35 322 50.29 23.9 46.45
KATE 40.2 55.69 49.5 60.31 32.0 51.14
KFN 27.3 46.39 313 48.19 23.8 44.62
DPP 28.2 47.05 34.2 49.11 23.2 45.02
BM25 34.8 53.73 44.3 58.13 26.8 49.40
DPR 31.4 49.48 38.1 52.74 25.7 46.27
DCCS 41.4 56.02 51.3 60.46 32.7 51.65

Table 8. BLEU for batched generation on the E2E, WebNLG, DART and ToTTo using GPT-3.5 in a 5-shot setting.
The best performance per dataset is shown in bold

Method Batch Size E2E DART WebNLG ToTTo
Random-Batch 5 46.4 235 26.0 22,5
10 42.4 235 15.3 17.0
Data-based Centroid 5 47.5 35.3 42.6 26.5
10 46.9 32.7 36.0 25.6
Text-based Centroid 5 50.7 35.9 40.9 25.2
10 48.2 35.6 38.0 25.0
DCCS-Batch 5 53.2 37.6 44.5 30.2
10 48.9 37.2 42.7 29.1

Table 9. BLEU for batched generation on the E2E, WebNLG, DART and ToTTo using GLM-3 in a 5-shot setting.
The best performance per dataset is shown in bold

Method Batch size E2E DART WebNLG ToTTo
Random-Batch 10 51.0 36.6 45.6 24.4
DCCS-Batch 10 53.5 37.9 47.6 28.9

This demonstrates that, compared to randomly selecting in-context examples, selecting seman-
tically similar examples tailored to each input instance more effectively enhances the generation

quality of LLMs.

Random underperforms DCCS on all datasets, yet it consistently outperforms the zero-shot
setting and occasionally matches the weaker similarity-based baselines. Uniform random sam-
pling of m demonstrations still provides representative lexical and syntactic patterns, giving it
helpful prior clues that it never gets in a zero-shot prompt. Because it requires neither simi-
larity scoring nor index lookup, Random incurs negligible computational overhead (Table 11).
Accordingly, when low-latency inference is essential and accurate retrieval is unavailable, Random

offers a fast, competitive baseline, albeit still inferior to semantically informed selection.

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 17

Table 10. BLEU scores for batched generation on the E2E, DART, WebNLG, and ToTTo using Llama-3.1in a
5-shot setting. The best performance per dataset is shown in bold

Method Batch size E2E DART WebNLG ToTTo
Random-Batch 5 42.0 34.1 42.6 26.3
10 38.7 33.6 42.1 27.3
Data-based Centroid 5 47.5 30.3 43.1 27.8
10 46.4 30.5 43.1 29.6
Text-based Centroid 5 46.7 34.4 43.0 22.7
10 47.5 34.7 41.3 28.8
DCCS-Batch 5 50.1 36.6 44.4 29.4
10 49.4 35.6 44.2 29.8

Table 11. Comparison of 5-shot prompt generation time (ms)

Method E2E WebNLG DART ToTTo
Random 0.01 0.02 0.02 0.02
KATE 42.55 52.10 137.01 479.65
KFN 44.15 52.19 140.10 445.90
DPP 56.91 70.63 433.60 725.35
DPR 29.01 33.74 105.82 376.15
BM25 28.06 19.81 119.14 1615.94
DCCS 23.84 24.17 2441 24.45
DCCS-batch 20.32 19.86 19.85 20.02

Our DCCS method consistently ranks first or second across most datasets and evaluation
metrics, underscoring its strong generalization ability and adaptability to various dataset struc-
tures and evaluation criteria. In the E2E dataset, DCCS achieved the highest BERTScore (67.56,
70.15, and 69.02 for GPT-3.5, GLM-3, and LLaMA-3.1, respectively) in the 5-shot setting. On
the WebNLG dataset, DCCS demonstrated robust adaptability to diverse and complex domains,
attaining the highest BLEU scores across all three models under the same setting.

Our method performs slightly less effectively than KATE on certain more complex datasets,
such as ToTTo in the GPT-3.5 experiments (Table 4) and DART in the GLM-3 experiments
(Table 5). We attribute this to two main factors. First, compared to other datasets, ToTTo con-
tains more complex textual separation tags in its training samples, which adversely affect the
performance of RoOBERTa as a semantic encoder — a limitation we plan to address in future work.
Second, the ToTTo test set contains a substantial number of instances that are nearly identical
to those in the training set. Leveraging a K-nearest neighbor strategy over the entire training set,
the KATE method can retrieve highly similar examples, resulting in higher BLEU and related
evaluation scores.

Although our method does not select the globally most similar samples due to its design, it
provides notable improvements in computational efficiency - particularly on large-scale datasets
such as ToTTo. Moreover, the two-stage clustering procedure in DCCS allows the same in-context
examples to be reused for similar test instances, thereby enabling efficient batched generation.
Subsequent experiments confirm that this design contributes to improvements in both generation
accuracy and efficiency.

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

18 Yulong Li et al.

Table 12. Comparative results of data-to-text generation using Llama-3.1 on the E2E, DART, and WebNLG
datasets in a 5-shot setting. The best performance per metric is shown in bold and the second-best result
is underlined

E2E DART WebNLG

Method k-shot BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore

Data-based 5 47.50 48.06 64.72 35.11 48.72 66.12 45.54 57.76 69.87

Centroid 10 48.02 48.74 65.35 36.37 50.99 66.76 45.75 57.66 71.38
Text-based 5 4022 4342 64.28 31.81 43.59 61.69 45.02 57.39 71.30
Centroid 10 46.14 46.88 66.56 3474 48.21 65.14 45.63 57.52 71.47
Nearest 5 4474 46.72 63.52 35.98 50.15 66.17 4590 57.42 71.16
Cluster 10 48.00 48.32 65.89 36.31 50.63 66.28 46.62 58.10 7177
DCCS 5 54.67 53.73 69.02 37.42 51.05 67.72 48.00 58.23 71.55

10 54.20 53.68 68.73 37.59 51.12 66.84 49.59 59.51 72.86

4.2.2 Comparison with SOTA models

We compare our DCCS against the SOTA on each benchmark dataset. The BLEU scores of these
state-of-the-art (SOTA) systems are directly cited from the original publications. For the WebNLG
dataset, the highest reported BLEU score is 67.32, achieved by the Controlled Prefixing approach
using a fine-tuned T5 model (Clive ef al. 2022). On the E2E dataset, ALoRA attains 70.6 BLEU
(Liu et al. 2024), while the UniD2T system sets the benchmark on ToTTo and DART with 49.9
and 54.96 BLEU, respectively (Li et al. 2024).

Fine-tuned models consistently outperform in-context learning (ICL) because they update
millions of task-specific parameters, effectively absorbing corpus-level lexical and syntactic
regularities. ICL, by design, keeps the backbone frozen and can only leverage a handful of demon-
strations, so a performance gap is expected. Despite this, we pursue ICL for three pragmatic
reasons: (i) zero training cost - new domains can be served without GPU-intensive fine-tuning;
(ii) data frugality — no large parallel corpus is required, which is crucial for low-resource tables;
and (iii) fast iteration - example sets can be swapped on-the-fly to meet downstream constraints
(e.g., privacy or domain drift) that would otherwise force a costly model retrain.

We also find that GPT-3.5 and GPT-4, although strong in instruction following, occasion-
ally inject polite or conversational fillers unrelated to the table, depressing automatic metrics. In
contrast, LLaMA 3.1-8B, when prompted with the same demonstrations, tends to generate more
concise, schema-aligned sentences and therefore yields higher BLEU under the ICL regime.

4.2.3 Ablation experiments

To evaluate the individual contributions of each component in our two-stage clustering frame-
work, we conduct ablation studies by comparing the proposed DCCS method with several
simplified variants.

Nearest Cluster (DCCS w/o second clustering): This variant employs only a single-stage clus-
tering process on the training set. For each test input, the nearest cluster is identified by computing
its similarity to all cluster centers. Rather than selecting the centroid, m in-context examples are
randomly sampled from within the nearest cluster. This design helps isolate the impact of the
second-stage refinement employed in our full method.

Diversity-based Clustering (Zhang et al. 2022): This baseline focuses solely on the diversity of
in-context examples, irrespective of their semantic proximity to the test input. In the context of
data-to-text generation, diversity is examined from two perspectives:

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 19

Table 13. BLEU and PARENT on the ToTTo using Llama-3.1 in a 5-shot setting. The best performance per
metric is shown in bold

Overall Overlap Subset Nonoverlap subset

Method k-shot BLEU PARENT BLEU PARENT BLEU PARENT
Data-based Centroid 5 28.0 49.12 31.0 50.59 25.2 47.67
10 27.0 45.57 329 49.31 22.0 41.89
Text-based Centroid 5 27.3 44.73 31.9 45.73 23.3 43.74
10 17.0 33.18 22.1 37.35 13.0 29.08
Nearest Cluster 5 26.5 47.53 29.8 49.13 23.6 45.96
10 27.3 47.47 31.8 49.44 23.6 45.53
DCCS 5 41.4 56.02 51.3 60.46 32.7 51.65
10 41.9 57.41 51.6 61.80 33.3 53.08

« Data-based Centroid (DCCS w/o second clustering): Structured data entries from the
training set are embedded and clustered into m groups using the K-Means algorithm. The
centroids of these clusters are then selected as in-context examples.

« Text-based Centroid (DCCS w/o first clustering): Similarly, the textual outputs asso-
ciated with the training samples are embedded and clustered into m groups, with each
cluster’s centroid used as an in-context example.

As shown in Tables 12 and 13, under the same low-time-complexity constraint, approaches that
consider only similarity (Nearest Cluster) or only diversity (Data-based Centroid and Text-based
Centroid) score lower than our DCCS method on every dataset. A similarity-only strategy fails to
ensure adequate semantic coverage of the example space, leading to many redundant in-context
demonstrations. In contrast, a diversity-only strategy selects demonstrations that are semantically
too distant from the test input, so the language model learns little beyond the desired output
format.

4.2.4 Batched-generation performance

Tables 8, 9, and 10 report BLEU scores for different batched generation strategies across the
E2E, DART, WebNLG, and ToTTo datasets, evaluated with GPT-3.5, GLM-3, and LLaMA-3.1.
The proposed DCCS-Batch method consistently outperforms baseline approaches, demonstrating
robust effectiveness in enhancing data-to-text generation quality.

For GPT-3.5, DCCS-Batch consistently surpasses other methods. On the E2E dataset, it
achieves a BLEU score of 53.2 with a batch size of 5 — substantially outperforming the Random-
Batch baseline (46.4). Similarly, it obtains scores of 44.5 on WebNLG and 30.7 on ToTTo,
highlighting its ability to maintain output accuracy while controlling prompt length. Across GLM-
3 and LLaMA-3.1, DCCS-Batch remains competitive, consistently outperforming both Text-based
and Data-based Centroid baselines under both 5-shot and 10-shot configurations. These findings
indicate that in batched generation scenarios, our method achieves more accurate outputs than
both random selection and diversity-only strategies.

Overall, DCCS-Batch achieves the highest BLEU scores in most evaluation settings. By effec-
tively balancing semantic similarity and textual diversity, it optimizes token efficiency while
preserving high-quality generation.

4.2.5 Statistical analysis
Table 14 shows that, in the 5-shot GPT-3.5 setting, our DCCS method significantly outperforms
the Random baseline (p < 0.05) on BLEU, ROUGE-L, and BERTScore across the E2E, DART, and

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

20 Yulong Li et al.

Table 14. Statistical comparison of the DCCS and Random methods on E2E, DART, and WebNLG datasets in
5-shot setting using GPT-3.5. Metrics include BLEU, ROUGE-L, and BERTScore. The t-test results (t-value and
p-value) indicate that DCCS significantly outperforms Random across most metrics (p < 0.05)

Dataset Metric t-value p-value
E2E BLEU 2.02 0.045
ROUGE-L 3.29 0.001
BERTScore 2.03 0.042
DART BLEU 6.89 <0.001
ROUGE-L 7.59 <0.001
BERTScore 2.80 0.005
WebNLG BLEU 221 0.027
ROUGE-L 2.68 0.007
BERTScore 2.94 0.004

WebNLG datasets. Even on the domain-specific and relatively homogeneous E2E corpus, DCCS
achieves notable improvements, demonstrating its ability to retrieve semantically complemen-
tary demonstrations within a narrow domain. For the more heterogeneous DART and WebNLG
datasets, DCCS yields the largest gains, often with p < 0.001, reflecting its effectiveness in selecting
demonstrations that balance relevance and diversity.

We further conducted a one-way repeated-measures ANOVA followed by Tukey’s HSD to
compare the four selection strategies - DCCS, KATE, BM25, and Random - on each dataset.
The main effect of method is significant for every dataset (minimum F3;6 =10.91, p < 0.001,
n? = 0.26). Tukey-HSD confirms that DCCS significantly outperforms Random on all datasets;
however, its advantage over KATE is not statistically significant. The complete Tukey matrices are
provided in Appendix Table CI.

4.2.6 Determine the number of clusters

We select the number of clusters for the first clustering in the DCCS method based on the number
that maximizes the average silhouette coefficient. The silhouette coefficient measures how similar
a sample is to its own cluster compared to other clusters, with higher values indicating more
cohesive clustering. Therefore, a higher average silhouette coefficient suggests better clustering
quality.

We computed the average silhouette coefficient for all training samples while varying the num-
ber of clusters from 5 to 20 for each dataset. Figure 6 presents the average silhouette coefficient
across training samples for the E2E, DART, WebNLG, and ToT To datasets.

Based on these comparisons, we selected the number of clusters with the highest silhouette
coefficient for the first clustering step. Specifically, we set the number of clusters to 19 for E2E, 6
for DART, 8 for WebNLG, and 11 for ToTTo.

4.2.7 The role of in-context examples’ similarity

We compare similarity-based example selection methods (e.g., KATE, BM25) with those empha-
sizing diversity (e.g., clustering by data or text) and observe that merely pursuing diversity does
not consistently improve performance in data-to-text generation. As shown in Table 3, prioritiz-
ing semantic similarity provides stronger guidance for mapping structured data into coherent and
faithful text. While diverse examples can theoretically broaden the model’s generalization, their
contribution is constrained if the examples are not closely aligned with the input data.

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

*3sN JO swJa} 310D abpruquie) ayy 03 123[qns ‘05:EE:ZL I8 S20Z 0 61 "9103/610"9bpLIgUIEdY MMM//:SA13Y WOy papeojumoq

o
2

0.13 1

0.12

0.11 1

0.10 1

0.09 4

0.08 1

Average Silhouette Coefficient

0.07 4

0.06 -

19, 0,13)

—_—
1)
—_—

12 14
Number of Clusters

012

0.11 1

0.10 1

0.09 1

Average Silhouette Coefficient

0.08 1

B, 0.13)

Figure 6. Average Silhouette Coefficient across varying cluster counts for the (a) E2E (top left), (b) DART (top right), (c) WebNLG (bottom left), (d) and ToTTo (bottom right) datasets. The
number of clusters with the highest coefficient is chosen for the first clustering.

10

12 14
Number of Clusters

(b)

Average Silhouette Coefficient

(d)

Average Silhouette Coefficient

0.22 1

0.20 4

0.18 1

0.16

0.14 4

0.12 1

0.10 1

0.08

6, 0.23)

12 14
Number of Clusters

0.14 4

0.13 4

0.12 1

0.11 1

0.10 1

0.09 1

0.08 4

0.07 4

110n14)

12 14
Number of Clusters

Buissasoud aSonSuvT [pangpN

https://www.cambridge.org/core

22 Yulong Li et al.

Nevertheless, our experiments also indicate that the highest possible similarity is not strictly
necessary. Moderate relaxation of similarity criteria can still maintain content fidelity and textual
quality while reducing computational costs. In particular, selecting a sufficiently similar yet not
overly redundant set of examples helps retain the benefits of semantic alignment without inflating
the inference load. This balance is demonstrated by our DCCS approach, which applies a two-
stage clustering: first, we narrow down candidate examples by cluster centroids to cut down on
exhaustive comparisons; second, we diversify the final selection of m in-context samples to cover a
broader semantic space. By ensuring that each chosen example is both relevant and not excessively
repetitive, we achieve robust generation performance with lower overhead.

4.2.8 Case study: the role of in-context examples’ diversity

Table 15 presents a test example from the WebNLG dataset (5-shot setting) with three groups
of in-context examples selected by Data-based Centroid, Nearest Cluster, and DCCS. Figure 7
visualizes the semantic distribution of these examples, where each text is encoded using RoOBERTa-
large and then reduced to two dimensions via PCA. Blue points represent examples selected by
the DCCS method, green points by Data-based Centroid, gold points by Nearest Cluster, and red
points indicate the reference text.

Compared to the Data-based Centroid method, our DCCS approach achieves a superior bal-
ance between diversity and relevance. Although the Data-based Centroid method selects cluster
centers to maximize semantic diversity (as evidenced by the wider green distribution in Figure 7),
this approach often positions cluster centers farther from the desired reference text (red points).
Such misalignment can result in prompts containing in-context examples that fail to adequately
capture the semantic content needed to guide the model toward generating outputs closely aligned
with the reference text.

In contrast, the Nearest Cluster method improves the likelihood of selecting in-context exam-
ples that are closer to the reference text (red points), owing to its focus on relevant clusters.
However, by randomly sampling in-context examples within a cluster, the method neglects seman-
tic diversity, frequently resulting in examples with overlapping semantic coverage. This overlap
diminishes the ability of the prompt to encompass a broad range of semantic contexts related to
the reference text.

By incorporating a second clustering step, DCCS addresses the limitations of both approaches.
It ensures relevance by focusing on clusters proximal to the test input while simultaneously
enhancing diversity within the selected cluster. This dual-layered approach allows DCCS to gen-
erate prompts that both represent a wide semantic space and maintain strong alignment with the
reference text, leading to improved generation quality.

4.3 Efficiency evaluation results

From the automated evaluation results, we observed significant improvements with our DCCS
method compared to random and diversity-based approaches. While the accuracy improvement
of our method over similarity-based methods such as KATE and BM25 was not as prominent
(achieving second-best results in some cases), DCCS demonstrated substantial efficiency gains.
These efficiency improvements are evident in two aspects: Time Efficiency and Cost Efficiency.

4.3.1 Time efficiency

Compared to existing methods that require comparisons with all samples in the training set, our
method necessitates comparison with only K clustering centers, K is significantly smaller than the
number of training set size. To demonstrate the efficiency improvement of our method in prompt
generation, we compared the average time required to construct the prompt for each input to the

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 23

Table 15. Atest sample with three groups of in-context examples selected by Data-based Centroid, Nearest Cluster, and DCCS
from the WebNLG dataset in 5-shot setting

Data

Text

Input data and

Tomato - family - Solanaceae

Tomatoes which are part of the

gold Amatriciana_sauce - ingredient - Tomato solanaceae family and solanales order
reference Tomato - order - Solanales are a key ingredient in Amatriciana
sauce
Data-based 103_Colmore_Row - architecturalStyle - 103 Colmore Row is located at Colmore
centroid Brutalist_architecture Row and designed by John Madin

103_Colmore_Row - location - Colmore_Row
103_Colmore_Row - architect - John_Madin
John_Madin - birthPlace - Birmingham

Alderney_Airport - runwayLength - 497.0

Alderney_Airport - 1st_runway_SurfaceType - Asphalt

Alderney_Airport - cityServed - Alderney

Alderney_Airport - elevationAboveTheSeaLevel_
(in_metres) - 88.0

Alderney_Airport - runwayName - “03/21”

Alan_Bean - was a crew member of - Apollo_12

Alan_Bean - nationality - United_States
Apollo_12 - operator - NASA

Alan_Bean - occupation - Test_pilot
Alan_Bean - birthPlace - Wheeler,_Texas
Alan_Bean - almaMater - “UTAustin, B.S. 1955”

Batchoy - country - Philippines
Batchoy - ingredient - Pork

A.C._Lumezzane - manager - Michele_Marcolini
Michele_Marcolini - club - A.C._Chievo_Verona
A.C._Lumezzane - ground - Italy

Italy - leader - Pietro_Grasso

Michele_Marcolini - club - Vicenza_Calcio

born in Birmingham. It has the
Brutalist architecture style

Alderney Airport serves the city of
Alderney and situated 88 meters
above sea level and its first runway is
surfaced with asphalt.03/21 is the
name of the airport’s runway and it is
497.0 m long

Alan Bean, an American was born in

Wheeler Texas and graduated from UT
Austin in 1955 with a BSc. He was a
test pilot and a crew member on
NASA’s Apollo 12

Batchoy is eaten in the Philippines and
one of the ingredients in it is pork

AC Lumezzane’s ground is in Italy and
their manager is Michele Marcolini
who plays for A.C. Chievo Verona and
is in the Vicenza Calcio Club. The
leader of Italy is Pietro Grasso

Generated text

Tomatoes, featuring Brutalist architecture and located at 103 Colmore Row, are widely recognized for

being an ingredient in Amatriciana sauce

Nearest
cluster

Binignit - region - Visayas

Binignit- main Ingredients - Sago
Binignit - country - Philippines
Binignit - ingredient - Coconut_milk

Binignit - mainingredients - Sweet_potato
Sweet_potato - division - Flowering_plant
Binignit - ingredient - Sago

Sweet_potato - order - Solanales
Indonesia - capital - Jakarta

Bakso - region - Indonesia

Bakso - country - Indonesia

Indonesia - leaderName - Joko_Widodo

A.lderney_.Airport—1st_runway_SurfaceTyp;e.—” -

Poaceae
Poaceae - order - Poales
Poaceae - order - Commelinids
Binignit - mainIngredients - Sweet_potato
Sweet_potato - division - Flowering_plant
Binignit - ingredient - Taro
Sweet_potato - order - Solanales

Binignit is a dish from the region of
Visayas, Phillippines. It includes
coconut milk and sago. The binignit
dish can be found in the Visayas
region, Philippines. Itincludes sago
and coconut milk

Binignit includes the ingredients of sago
and sweet potato, the latter of which
is part of the order Solanales and is a

flowering plant

Bakso is food found |n|ndone5|a, where
Joko Widodo is the leader, and
Jakarta is the capital

The surface of the 1st runway at

Alderney airport is poaceae which
belongs to the Poales and
Commelinids orders

Binignit’s main ingredients are sweet
potatoes which belongs to flowering
plants and the Solanales order. The
dish also contains Taro

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

24 Yulong Li et al.

Table 15. (Continued).

Data

Text

Generated text

DCCS

Tomatoes, belonging to the Solanaceae family and the Solanales order,are a key ingredient in

Binignit

Bandeja_paisa - ingredient - Lemon

Lemon - order - Sapindales

Lemon - family - Rutaceae

Bandeja_paisa - country -
Colombian_cuisine

Bandeja_paisa - region - Paisa_Region

Binignit - mainingredients - Sweet_potato
Sweet_potato - division - Flowering_plant
Binignit - ingredient - Sago

Sweet_potato - order - Solanales

Amatriciana_sauce - ingredient - Tomato

Tomato - order - Solanales

Antioquia_Department - country - Colombia

Avocado - order - Laurales
Bandeja_paisa - ingredient - Avocado
Avocado - family - Lauraceae
Bandeja_paisa - region -
Antioquia_Department

Tomato - family - Solanaceae
Amatriciana_sauce - ingredient - Tomato

The Colombian dish Bandeja paisa hails from
the Palsa region. A main ingredient is the
lemon which belongs to the Sapindales
order of fruits,in the Rutaceae family

Binignit includes the ingredients of sago and
sweet potato, the latter of which is part of
the order Solanales and is a flowering plant

Tomato is an ingredient of Amatriciana sauce
and is a member of the order Solanales

Avocado is a fruit of the Laurales order and

Lauraceae family. It is an ingredient found in
Bandeja paisa. That dish comes from
Antioquia Department region in Columbia

The tomato comes from the Solanaceae family
and is an ingredient in Amatriciana sauce

Generated text

Tomato comes from the Solanaceae family and is classified under the Solanales order. It is an

ingredient found in Amatriciana sauce

(a)

(b)

Figure 7. Semantic representation of in-context examples selected by different methods. (a) Blue points represent the
DCCS method, (b) Green points represent the Data-based Centroid method, (c) Orange points represent the Nearest Cluster
method, and Red points indicate reference text.

test across four datasets using different methods. We selected 5 in-context examples. The training
datasets consist of the following sample sizes: 4,862 samples for the E2E dataset, 6,940 samples for
the WebNLG dataset, 30,526 samples for the DART dataset, and 120,761 samples for the ToTTo
dataset. Due to the need for embedding structural data whenever test data is received and then
comparing these embeddings with those from the training set, a significant amount of time is
consumed. Therefore, we pre-generated and saved the embedding results of the training set to
optimize the process.

Table 11 shows that there is a positive correlation between the processing time of both KATE
and DPP methods and the size of the dataset. In contrast, our method exhibits considerably more
consistent and faster performance. The time cost is approximately 23.84, 24.17, 24.41, and 24.45

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 25

ms across different datasets. This consistency can be attributed to the fact that the largest time
expenditure in prompt generation lies in the comparison of distances between samples. These
experiments indicate that our DCCS method indeed manages to significantly reduce the time
required to construct prompts for each input while ensuring the effectiveness of the selected in-
context examples.

For frequency-based search method(e.g., BM25), although it does not incur the time cost of
embedding the text, its performance significantly lags behind vector-based representations when
dealing with large training datasets (such as the ToTTo dataset). This is because for each query
term, the BM25 algorithm needs to search through all documents and calculate its contribution,
which substantially increases the computation time as the size of the document collection grows.

DCCS-Batch requires slightly less time per sample compared to DCCS. This is because, even
though both methods involve the same number of distance computations for each test input,
DCCS must extract in-context examples from the training set for every individual test sample,
whereas DCCS-Batch only needs to perform this extraction once per batch.

4.3.2 Cost efficiency

We measure efficiency in terms of the average number of tokens per instance (TpI), encompass-
ing both input and output tokens. In principle, using larger batch sizes allows for higher token
utilization because the fixed overhead of prompt tokens is amortized across multiple test samples.
However, we observed in our experiments that excessively large batch sizes can cause the model
to lose focus on individual test samples. This problem, which we call Generation Failure, occurs
when the model fails to produce the correct number of sentences corresponding to the batch size
or otherwise deviates from the required output.

Figure 8 presents the generation failure rate and token utilization rate at different batch sizes
using the DCCS method. The results suggest that a batch size of 5-10 strikes a balance between low
generation failure and efficient token usage. For example, on the WebNLG dataset, using a batch
size of 5 reduced token usage to 32.43% of the single-generation baseline, while a batch size of 10
lowered it further to 23.59%. Under OpenAI’s GPT-3.5 pricing as of May 21, 2024 ($0.0005 per
1K input tokens and $0.0015 per 1K output tokens for gpt-3.5-turbo-0125), these token savings
translated into cost reductions of 60.85% and 68.84%, respectively.

4.4 Human evaluation results

In addition to automated evaluation, we conducted a human evaluation study on the E2E, DART,
and WebNLG datasets. Following widely used text generation criteria (van der Lee ef al. 2021; Fu
et al. 2023), we adopted three assessment dimensions — Fluency, Informativeness, and Relevance
- to evaluate the text generated by the LLMs. Below are the definitions of these dimensions (Fu
et al. 2023):

« Fluency: Is the generated text well-written and grammatically correct?

« Informativeness: How well does the generated text capture the key ideas of the source
data?

« Relevance: How closely is the generated text related to the source data?

We employed the Categorical Choice method to compare the DCCS method against KATE
and Random. Empirical studies have shown that, in human evaluation tasks for text generation,
asking participants to select the best or worst outcome is more reliable and consistent than using
Likert scale-based scoring (van der Lee et al. 2021). For Fluency, participants directly compared
the paired outputs for each test sample. For Informativeness and Relevance, participants were pro-
vided with the input data fed to the LLM before comparing the paired outputs for each test sample.

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

*3SN JO Sw.) 3402 abpliquie) ayy 03 323[qns ‘0SIEE:ZL 18 GZ0TZ 320 61 9103/6.10°36pLiquied Mmmm//:sd1y woJy papeojumoq

[N}
(o)}
(=]
1=
o
=]
E2E DART WebNLG ToTTo aQ
=
s 030 028 -
035 Sr
N
025
g o £ 030 g £ oz =
2 2 2 2
B oas m o Kl
& &8 & =
e = 0254 = 020 <
2 2 2 8 s
S 520 = =4 =
[P 0204 £ aas £
o w o w
g g g g
3015 B 0as 4 & o 010
= = %5 010 -
goe g o0 g 5
-3 4 & pos e 003
005 0,05 {
000 0.00 000 000
2.5 50 75 W00 125 150 175 200 2.5 50 75 W00 125 150 175 200 25 50 15 W00 125 150 175 200 2.5 50 15 Wwo 125 150 175 200
Batch size Batch size Batch size Batch size
00
=00 1 600
o
400
g 8 004 g g =0
1= c e c
2 o] 2 %0 8
£ 300 g £ £
g g% g g
300
w Wi w w
14 14 14 c
g g o 8 g
200
100 100 1 200
100
235 30 75 100 125 150 175 200 23 30 75 100 1235 150 175 200 25 50 75 00 125 150 175 200 235 30 75 woe 1235 150 175 200
Batch size Batch size Batch size Batch size

Figure 8. The change in Generation Failure Rate and the Average Number of Tokens per Instance (Tpl) with increasing batch size.

https://www.cambridge.org/core

Natural Language Processing 27

Table 16. Average human evaluation scores (in percentage) for DCCS-generated outputs compared to KATE
and Random across Fluency, Informativeness, and Relevance dimensions

Comparison Dataset Fluency (%) Informativeness (%) Relevance (%)
DCCS vs. Random E2E 54.0 73.3 70.7
DART 69.0 72.3 76.0
WebNLG 72.3 73.7 76.7
DCCS vs. KATE E2E 48.0 58.3 48.7
DART 52.0 54.3 51.0
WebNLG 51.0 57.7 57.0
100 E2E DART WebNLG
= pccs
801 [am honcom]

Percent %

20

m o in (e = CHs |

Hallucination Missing Fact Accurate Hallucination Mussm‘g Fact Accurate Hallucination Missing Fact Accurate

Figure 9. Human evaluation of factual consistency for GPT-3.5 outputs on the E2E, DART, and WebNLG datasets
(Hallucination |, Missing Fact |, Accurate 1).

All sentences were produced by GPT-3.5 using five in-context examples selected by the respec-
tive method. For each dataset, we created 200 sentence pairs, giving 600 comparisons overall. Six
graduate-level NLP researchers — none otherwise involved in the project — independently chose
the better sentence in every pair. Fleiss’ k across the six raters was 0.63, indicating substantial
agreement.

Table 16 reports, for each criterion, the percentage of comparisons in which the DCCS output
was preferred to the baseline (KATE or Random). DCCS is consistently favored over Random
across all datasets and criteria, confirming the value of principled example selection. Compared
with KATE, DCCS achieves higher preference rates on most metrics - particularly informativeness
and relevance on the more heterogeneous DART and WebNLG sets — even though KATE requires
substantially higher computation.

4.5 Factual consistency metrics

To complement the subjective criteria above, we also assessed factual consistency. Following Li
et al. (2024), each output was checked for two non-exclusive errors — Hallucination and Missing
Fact. A sentence is labeled Accurate only when neither error is present.

Six annotators, independent of the study, each labeled 100 sampled test instances per dataset.
Source triples or table rows were displayed alongside the three candidate sentences. Annotators
marked both error types, and Accurate was derived automatically as no Hallucination & no
Missing Fact.

Figure 9 shows the proportion of sentences exhibiting each error. DCCS produces the fewest
hallucinations and omissions across all datasets, yielding the highest share of accurate outputs.
These findings echo the human-preference results in Table 16: the dual-clustering strategy not
only enhances perceived informativeness and relevance but also markedly improves factual fidelity.

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

28 Yulong Li et al.

Table 17. Comparison of BLEU scores between fine-tuned state-of-the-art (SOTA) models and our DCCS-
based in-context learning (ICL) method using 5-shot prompts across different base models and datasets

Method Model Training strategy WebNLG DART E2E ToTTo
Controlled prefixing T5-large Fine-tuning 67.32 51.95 44.1 —
UniD2T T5-large Fine-tuning 60.41 54.96 — 49.9
ALoRA LlaMA-2 7B PEFT — — 70.6 -
DCCS GPT-4 ICL 46.89 36.91 52.1 31.9
DCCS GPT-3.5 ICL 45.40 36.65 50.9 29.2
DCCS llama-3.18B ICL 48.00 37.42 54.7 41.4

5. Limitations and future work

Although our proposed in-context example-selection method improves accuracy, prompt-
construction efficiency, and generation speed for data-to-text tasks, several limitations remain.

First, certain error types persist even under the DCCS framework. We still observe missing
facts, where salient input fields are omitted; hallucinations, where information unsupported by
the input is introduced; and output-format errors, which occur in batch generation, particularly
when the batch size exceeds ten. Our analysis indicates that these errors become more pronounced
when the training examples selected for a cluster differ structurally from the test instance (e.g., in
field count or entity type). While dual clustering improves relevance and diversity, it does not fully
guarantee factual completeness or consistency. Future work will explore incorporating chain-of-
thought prompting and LLM self-revision to mitigate these issues.

Second, anchoring and attribution remain practical concerns. In our current benchmarks
(WebNLG, E2E, DART, and ToTTo), each test instance contains fewer than ten triples or table
rows, allowing us to directly present the raw input data. However, when the method is applied
in larger-scale scenarios - such as enterprise reporting or knowledge-base verbalization - each
generated fact should be explicitly paired with its provenance. Providing verifiable provenance
enables readers to quickly validate each statement and correct any factual errors introduced by
the model.

6. Conclusion

In this paper, we presented a method to enhance data-to-text generation using LLMs by focusing
on the effective selection of in-context examples through our Double Clustering-based in-Context
example Selection (DCCS) method. This method emphasizes the importance of example similar-
ity and diversity, and, along with the proposed batched generation method, significantly improves
efficiency and performance in text generation tasks.

Our experimental findings on various datasets demonstrate the potential of our approach to
significantly improve LLM performance. This success opens avenues for further research into
more personalized text generation and the application of our methods across a broader spectrum
of tasks and models. By doing so, we aim to increase the utility and personalization of language
model outputs for diverse user needs.

Future work could explore further optimization of the clustering process, the application
of our method to other types of generation tasks, and the integration of additional contextual
information to further enhance the personalization and relevance of generated outputs.

Acknowledgements. This work was partially supported by the National Natural Science Foundation of China (No.
62072153), the Anhui Provincial Key Technologies R&D Program (No. 2022h11020015), and the 111 Center (No. B14025).

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 29

References

Brown T., Mann B., Ryder N., Subbiah M., Kaplan J. D., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A. et al.
(2020). Language models are few-shot learners. In Advances in Neural Information Processing Systems 33, pp. 1877-1901.

Chen M., Tworek J., Jun H., Yuan Q., Pinto H.P.d.O., Kaplan J., Edwards H., Burda Y., Joseph N., Brockman G. et al.
(2021). Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.

Clive J., Cao K. and Rei M. (2022). Control prefixes for parameter-efficient text generation. In Proceedings of the 2nd
Workshop on Natural Language Generation, Evaluation, and Metrics (GEM), pp. 363-382.

Deng L., Zhang S. and Balog K. (2019). Table2vec: Neural word and entity embeddings for table population and retrieval. In
Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.
ACM, pp. 1029-1032.

Dhingra B., Faruqui M., Parikh A., Chang M.-W., Das D. and Cohen W. (2019). Handling divergent reference texts when
evaluating table-to-text generation. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, Florence, Italy. Association for Computational Linguistics, pp. 4884-4895.

Dong Q., Li L., Dai D., Zheng C., Ma J., Li R., Xia H., Xu J., Wu Z., Chang B., Sun X, Li L. and Sui Z. (2024). A survey
on in-context learning. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
Miami, Florida, USA. Association for Computational Linguistics, pp. 1107-1128.

Dusek O., Novikova J. and Rieser V. (2020). Evaluating the state-of-the-art of end-to-end natural language generation: the
e2e nlg challenge. Computer Speech & Language 59, 123-156.

Fu]J., Ng S.-K., Jiang Z. and Liu P. (2023). Gptscore: Evaluate as you desire.

Gardent C., Shimorina A., Narayan S. and Perez-Beltrachini L. (2017). The webnlg challenge: Generating text from rdf
data. In Proceedings of the 10th International Conference on Natural Language Generation, pp. 124-133.

Gatt A. and Krahmer E. (2018). Survey of the state of the art in natural language generation: core tasks, applications and
evaluation. Journal of Artificial Intelligence Research 61, 65-170.

Gonen H., Iyer S., Blevins T., Smith N. and Zettlemoyer L. (2023). Demystifying prompts in language models via perplexity
estimation. In Bouamor H., Pino J. and Bali K. (eds), Findings of the Association for Computational Linguistics: EMNLP
2003, Singapore. Association for Computational Linguistics, pp. 10136-10148.

Hallett C., Power R. and Scott D. (2006). Summarisation and visualisation of e-health data repositories. In UK E-Science
All-Hands Meeting.

HerzigJ., Miiller T., Krichene S. and Eisenschlos J. (2021). Open domain question answering over tables via dense retrieval.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. Association for Computational Linguistics, pp. 512-519.

Karpukhin V., Oguz B., Min S., Lewis P., Wu L., Edunov S., Chen D. and Yih W.-t. (2020). Dense passage retrieval for
open-domain question answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics.

Kaufman L. and Rousseeuw P.J. (2009). Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons.

Kulesza A. and Taskar B. (2011). k-dpps: fixed-size determinantal point processes. In Proceedings of the 28th International

Conference on International Conference on Machine Learning, ICML’11, Madison, W1, USA. Omnipress, pp. 1193-1200.
Lebret R., Grangier D. and Auli M. (2016). Neural text generation from structured data with application to the biography

domain. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1203-1213.

Levy L., Bogin B. and Berant J. (2023). Diverse demonstrations improve in-context compositional generalization. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Toronto, Canada. Association for Computational Linguistics, pp. 1401-1422.

Li S, Li L., Geng R, Yang M., Li B., Yuan G., He W., Yuan S., Ma C., Huang F. et al. (2024). Unifying structured data as
graph for data-to-text pre-training. Transactions of the Association for Computational Linguistics 12, 210-228.

Li X, Lv K., Yan H,, Lin T., Zhu W,, Ni Y., Xie G., Wang X. and Qiu X. (2023). Unified demonstration retriever for
in-context learning. arXiv preprint arXiv:2305.04320.

Li X.L. and Liang P. (2021). Prefix-tuning: optimizing continuous prompts for generation. In Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 4582-4597.

Lin C.-Y. (2004). Rouge: a package for automatic evaluation of summaries. In Text Summarization Branches Out, pp. 74-81.

Liu A., Dong H., Okazaki N., Han S. and Zhang D. (2022a). PLOG: table-to-logic pretraining for logical table-to-text gener-
ation. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United
Arab Emirates. Association for Computational Linguistics, pp. 5531-5546.

Liu J., Shen D., Zhang Y., Dolan B., Carin L. and Chen W. (2022b). What makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration
for Deep Learning Architectures, Dublin, Ireland. Association for Computational Linguistics, pp. 100-114.

Liu Y., Ott M., Goyal N., Du J., Joshi M., Chen D., Levy O., Lewis M., Zettlemoyer L. and Stoyanov V. (2019). Roberta: a
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2305.04320
https://arxiv.org/abs/1907.11692
https://www.cambridge.org/core

30 Yulong Li et al.

Liu Z., Lyn J., Zhu W., Tian X. and Graham Y. (2024). ALoRA: allocating low-rank adaptation for fine-tuning large
language models. In Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), Mexico City, Mexico. Association
for Computational Linguistics, pp. 622-641.

Lu Y., Bartolo M., Moore A., Riedel S. and Stenetorp P. (2022). Fantastically ordered prompts and where to find
them: overcoming few-shot prompt order sensitivity. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland. Association for Computational Linguistics, pp.
8086-8098.

Min S., Lyu X., Holtzman A., Artetxe M., Lewis M., Hajishirzi H. and Zettlemoyer L. (2022). Rethinking the role of
demonstrations: what makes in-context learning work? arXiv preprint arXiv:2202.12837.

Nakano R., Hilton J., Balaji S., Wu J., Ouyang L., Kim C., Hesse C., Jain S., Kosaraju V., Saunders W. et al. (2021). Webgpt:
browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332.

Nan L., Radev D., Zhang R., Rau A, Sivaprasad A., Hsieh C., Tang X., Vyas A., Verma N., Krishna P., Liu Y., Irwanto
N., Pan J., Rahman F., Zaidi A., Mutuma M., Tarabar Y., Gupta A., Yu T., Tan Y.C,, Lin X.V., Xiong C., Socher R. and
Rajani N.F. (2021). DART: Open-domain structured data record to text generation. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Online.
Association for Computational Linguistics, pp. 432-447.

Novikova J., Dusek O. and Rieser V. (2017). The E2E dataset: new challenges for end-to-end generation. In Proceedings
of the 18th Annual SIGdial Meeting on Discourse and Dialogue, Saarbriicken, Germany. Association for Computational
Linguistics, pp. 201-206.

OpenAl (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774.

Papineni K., Roukos S., Ward T. and Zhu W.-J. (2002). Bleu: a method for automatic evaluation of machine translation. In
Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pp. 311-318.

Parikh A., Wang X., Gehrmann S., Faruqui M., Dhingra B., Yang D. and Das D. (2020). Totto: a controlled table-to-
text generation dataset. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1173-1186.

Qin C., Zhang A., Chen C., Dagar A. and Ye W. (2024). In-context learning with iterative demonstration selection. In Al-
Onaizan Y., Bansal M. and Chen Y.-N. (eds), Findings of the Association for Computational Linguistics: EMNLP, Miami,
Florida, USA. Association for Computational Linguistics, pp. 7441-7455.

Radford A., Wu J., Child R., Luan D., Amodei D., Sutskever I. et al. (2019). Language models are unsupervised multitask
learners. OpenAlI Blog 1(8), 9.

Raffel C., Shazeer N., Roberts A., Lee K., Narang S., Matena M., Zhou Y., Li W. and Liu P.]J. (2020). Exploring the limits
of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research 21(1), 5485-5551.
Rousseeuw P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of

Computational and Applied Mathematics 20, 53-65.

Rubin O., Herzig J. and Berant J. (2022). Learning to retrieve prompts for in-context learning. In Proceedings of the
2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Seattle, United States. Association for Computational Linguistics, pp. 2655-2671.

Sorensen T., Robinson J., Rytting C., Shaw A., Rogers K., Delorey A., Khalil M., Fulda N. and Wingate D. (2022). An
information-theoretic approach to prompt engineering without ground truth labels. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Dublin, Ireland. Association for
Computational Linguistics, pp. 819-862.

Su H., Kasai J., Wu C.H., Shi W., Wang T., Xin J., Zhang R., Ostendorf M., Zettlemoyer L., Smith N.A. et al. (2022).
Selective annotation makes language models better few-shot learners. arXiv preprint arXiv:2209.01975.

Tanwar E., Dutta S., Borthakur M. and Chakraborty T. (2023). Multilingual LLMs are better cross-lingual in-context learn-
ers with alignment. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), Toronto, Canada. Association for Computational Linguistics, pp. 6292-6307.

Turner R., Sripada S., Reiter E. and Davy I.P. (2008). Using spatial reference frames to generate grounded textual summaries
of georeferenced data. In Proceedings of the Fifth International Natural Language Generation Conference, pp. 16-24.

van der Lee C., Gatt A., van Miltenburg E. and Krahmer E. (2021). Human evaluation of automatically generated text:
current trends and best practice guidelines. Computer Speech and Language 67, 101151.

Wang S., Chen Z., Shi C., Shen C. and Li J. (2024). Mixture of demonstrations for in-context learning. In Globerson A.,
Mackey L., Belgrave D., Fan A., Paquet U., Tomczak J. and Zhang C. (eds), Advances in Neural Information Processing
Systems, vol. 37. Curran Associates, Inc., pp. 88091-88116.

Wei J., Wang X., Schuurmans D., Bosma M., ichter b., Xia F., Chi E., Le Q.V. and Zhou D. (2022). Chain-of-thought
prompting elicits reasoning in large language models. In Koyejo S., Mohamed S., Agarwal A., Belgrave D., Cho K. and
Oh A. (eds), Advances in Neural Information Processing Systems, vol. 35. Curran Associates, Inc., pp. 24824-24837.

Wen T.-H., Gasic M., Mrksi¢ N., Su P.-H., Vandyke D. and Young S. (2015). Semantically conditioned Istm-based natural
language generation for spoken dialogue systems. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pp. 1711-1721.

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2209.01975
https://www.cambridge.org/core

Natural Language Processing 31

Wiseman S., Shieber S. and Rush A. (2017). Challenges in data-to-document generation. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, pp.
2253-2263. Copenhagen, Denmark.

Wu Z., Wang Y., Ye J. and Kong L. (2023a). Self-adaptive in-context learning: an information compression perspec-
tive for in-context example selection and ordering. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Toronto, Canada. Association for Computational Linguistics, pp.
1423-1436.

Wu Z., Wang Y., Ye J., Wu Z., Feng J., Xu J. and Qiao Y. (2023b). OpenICL: an open-source framework for in-context
learning. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System
Demonstrations), Toronto, Canada. Association for Computational Linguistics, pp. 489-498.

Ye J., Wu Z., Feng J., Yu T. and Kong L. (2023). Compositional exemplars for in-context learning. In Proceedings of the
40th International Conference on Machine Learning, ICML’23. JMLR.org.

Yuan C. and Yang H. (2019). Research on k-value selection method of k-means clustering algorithm. J 2(2), 226-235.

Zhang T., Kishore V., Wu F., Weinberger K.Q. and Artzi Y. (2019). Bertscore: evaluating text generation with bert. arXiv
preprint arXiv:1904.09675.

Zhang Z., Zhang A., Li M. and Smola A. (2022). Automatic chain of thought prompting in large language models.

Zhao Y., Qi Z., Nan L., Flores L.J. and Radev D. (2023a). LoFT: enhancing faithfulness and diversity for table-to-text gen-
eration via logic form control. In Proceedings of the 17th Conference of the European Chapter of the Association for
Computational Linguistics, Dubrovnik, Croatia. Association for Computational Linguistics, pp. 554-561.

Zhao Y., Zhang H., Si S., Nan L., Tang X. and Cohan A. (2023b). Investigating table-to-text generation capabilities of
large language models in real-world information seeking scenarios. In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing: Industry Track, Singapore. Association for Computational Linguistics, pp. 160-
175.

ZhaoY., Zhang H., Si S., Nan L., Tang X. and Cohan A. (2023c). Large language models are effective table-to-text generators,
evaluators, and feedback providers. arXiv preprint arXiv:2305.14987.

Zhao Z., Wallace E., Feng S., Klein D. and Singh S. (2021). Calibrate before use: Improving few-shot performance of
language models. In International Conference on Machine Learning. PMLR, pp. 12697-12706.

Appendix A. Additional Single Generation Experiment Results

Table Al. Comparative results of data-to-text generation using GPT-3.5 on the E2E, DART, and WebNLG (100
test samples) in a 10-shot setting. The best performance per metric is shown in bold and the second-best
result is underlined

E2E DART WebNLG
Method BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore
w/oexample 36.11 41.72 63.56 30.66 44.44 6593 40.03 53.09 68.78
Random 39.09 4245 65.68 31.02 44.64 66.05 4455 56.88 72.87
KATE 4331 45.93 67.50 3450 46.56 67.38 4731 57.81 73.89
KFN 3765 41.65 6449 27.05 4355 65.08 4192 5579 72.42
DPP 4161 4551 65.27 3248 46.90 67.56 4457 57.77 73.32
BM25 41.84 4518 66.65 33.64 48.33 67.64 4264 5727 72.60
DPR 39.16 4253 6527 3111 45.16 67.06 4417 57.48 73.03
DCCS 43.62 4578 6698 33.66 47.58 67.57 4546 58.89 74.28

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2305.14987
https://www.cambridge.org/core

32 Yulong Li et al.

Table A2. Comparative results of data-to-text generation using GPT-3.5 on the ToTTo (100 test samples) in a
10-shot setting. The best performance per metric is shown in bold and the second-best result is underlined

Method

Overall

Overlap Subset

Nonoverlap Subset

w/o example
Random
KATE

KFN

DPP

BM25

DPR

DCCS

BLEU
26.2
273
38.2
24.6
28.2
335
32.8
35.2

PARENT

50.1
49.6
58.1
474
49.9
56.4
53.9
55.2

BLEU
28.8
283
42.8
24.9
296
39.5
39.0
39.0

PARENT

50.7
50.2
62.3
459
49.8
60.2
57.1
57.7

BLEU
23.9
26.2
32.7
242
26.5
27.1
25.8
30.8

PARENT
495
48.8
52.8
493
50.0
515
49.8
52.0

Table A3. Comparative results of data-to-text generation using GLM-3 setting on the E2E, DART, and WebNLG
(100 test samples) in a 10-shot setting. The best performance per metric is shown in bold and the second-best
result is underlined

E2E DART WebNLG
Method BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore
Random 5239 50.56 68.28 4568 57.19 73.22 56.49 66.46 78.22
KATE 5437 52.03 69.44 4791 5813 74.14 6252 70.71 81.10
KFN 5293 49.84 57.67 4655 57.48 72.69 60.87 69.12 79.35
DPP 53.02 50.51 69.11 4739 57.10 73.53 59.47 69.40 79.83
BM25 53.36 50.64 64.15 46.99 58.97 73.79 59.56 69.11 79.51
DPR 5499 50.60 68.90 47.84 57.95 74.33 60.17 67.96 79.42
DCCS 5515 51.43 69.81 49.49 59.29 75.22 63.99 71.17 81.70

Table A4. Comparative results of data-to-text generation using Llama-3.1 on the E2E, DART, and WebNLG in a
10-shot setting. The best performance per metric is shown in bold and the second-best result is underlined

E2E

DART

WebNLG

Method BLEU
Random 45.92

KATE 51.28
KFN 44.02
DPP 48.81
BM25 48.45
DPR 48.09

DCCS 54.20

ROUGE-L BERTScore

47.29
49.76
46.60
49.26
48.71
48.53
53.68

64.32
68.75
63.79
66.22
67.52
65.99
68.73

BLEU
35.65
37.78
34.72
37.53
37.53
35.70
37.59

ROUGE-L BERTScore

50.05
51.21
49.11
51.04
50.86
49.84
5112

66.24
67.24
64.59
66.83
66.49
65.62
66.84

BLEU
46.18
29.17
38.27
48.13
49.01
48.40
49.59

ROUGE-L BERTScore

57.89
59.74
52.51
58.92
59.50
58.74
59.51

71.24
73.01
63.87
71.13
71.61
71.56
72.86

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 33

Table A5. BLEU and PARENT on ToTTo using Llama-3.1 in a 10-shot setting. The best performance per metric
is shown in bold and the second-best result is underlined

Method Overall Overlap subset Nonoverlap subset
BLEU PARENT BLEU PARENT BLEU PARENT
w/o example 243 48.18 28.1 49.99 21.1 46.39
Random 28.7 49.05 33.1 51.15 25.0 46.98
KATE 42.0 57.09 52.0 61.94 33.2 52.32
KFN 279 46.46 31.9 48.59 24.5 44.36
DPP 30.8 48.21 42.3 55.37 21.8 41.15
BM25 40.5 55.89 50.0 60.15 32.1 51.71
DPR 26.6 44.93 34.6 51.74 19.6 38.23
DCCS 41.9 57.41 51.6 61.80 33.3 53.08

Appendix B. Additional Batched Generation Experiment Results

Table B1. BLEU for batched generation on the E2E, WebNLG, DART and ToTTo using GPT-3.5 in a 10-shot
setting. The best performance per dataset is shown in bold

Method Batch size E2E DART WebNLG ToTTo
Random-batch 5 43.3 29.9 28.3 16.5
10 33.8 31.6 25.7 19.2
Data-based centroid 5 46.7 36.4 43.9 26.7
10 45.0 36.3 443 24.0
Text-based centroid 5 50.0 35.7 44.0 24.8
10 48.0 34.3 44.8 251
DCCS-batch 5 50.2 37.0 45.4 30.7
10 48.5 36.9 45.3 27.1

Table B2. BLEU for batched generation on the E2E, WebNLG, DART and ToTTo using GLM-3 in a 10-shot setting

Method Batch size E2E DART WebNLG ToTTo
Random-batch 10 50.9 37.3 45.1 24.8
DCCS-batch 10 53.1 38.3 51.3 29.1

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

34 Yulong Li et al.

Table B3. BLEU for batched generation on the E2E, DART, WebNLG and ToTTo using Llama-3.1 in a 10-shot
setting. The best performance per dataset is shown in bold

Method Batch Size E2E DART WebNLG ToTTo
Random-batch 5 43.7 34.4 42.9 25.8
10 44.2 34.5 42.8 26.8
Data-based centroid 5 47.8 351 43.7 25.5
10 46.5 355 43.4 28.7
Text-based centroid 5 47.7 349 43.4 26.3
10 46.7 353 43.4 28.7
DCCS-batch 5 51.2 35.7 45.5 29.6
10 49.1 36.8 46.5 30.3
Appendix C. Additional Statistical Analysis Result
Table C1. Tukey-HSD pairwise comparisons on BLEU (A = G2-G1). Bold p < 0.05
E2E DART
Group 1 Group 2 A p Group 1 Group 2 A p
DCCS KATE —0.030 0.015 DCCS KATE +0.001 0.778
DCCS BM25 —0.058 0.002 DCCS BM25 —0.006 0.201
DCCS Random —0.083 0.001 DCCS Random —0.022 0.042
KATE BM25 —0.028 0.018 KATE BM25 —0.007 0.178
KATE Random —0.053 0.003 KATE Random —0.023 0.039
BM25 Random —0.025 0.022 BM25 Random —0.016 0.074
WebNLG ToTTo
Group 1 Group 2 A p Group 1 Group 2 A p
DCCS KATE —0.004 0.223 DCCS KATE —0.001 0.905
DCCS BM25 —0.007 0.153 DCCS BM25 —0.020 0.048
DCCS Random —0.035 0.006 DCCS Random —0.133 0.000
KATE BM25 —0.003 0.314 KATE BM25 —0.019 0.052
KATE Random —0.031 0.011 KATE Random —0.132 0.000
BM25 Random —0.028 0.018 BM25 Random —0.113 0.000

Appendix D. Choice of the Secondary-Cluster Size

Following prior work on in-context example selection Liu et al. (2022b), we restrict the number
of secondary clusters — and thus the number of in-context examples - to m € {5, 10} throughout
the paper. Figure D1 illustrates how BLEU varies with the number of in-context examples on the
three datasets. All results were obtained with LLaMA-3.1-8B, using 100 randomly sampled test
instances from each dataset. Preliminary runs showed that using fewer than five examples reduced
performance, whereas increasing m beyond ten yielded no consistent BLEU gain while incurring
noticeably higher prompt cost and latency. We therefore adopt m =5 as the default setting and
m =10 as a high-accuracy variant.

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

Natural Language Processing 35

BLEU Scores for E2E Dataset BLEU Scores for DART Dataset

0s2 naz s .

051 0.41

050 0.40

049 0.39
® ©
§ g

0.48]
s £ 038
:

AT 037

e 036

045

035
044 2
= .
3 » = 2 = = = o 5 10 15 0 25 30 35 40

In-Context Example Number
AR In-Context Example Number

BLEU Scores for WEBNLG Dataset

BLEU Score

5 10 15 20 25 30 35 40
In-Context Example Number

Figure D1. BLEU scores on the E2E, DART, and WebNLG as a function of the number of in-context examples (m).

Cite this article: Li Y, Yang J, Jiang L, Liu S and An N. How to quickly select good in-context examples in large language
models for data-to-text tasks?. Natural Language Processing https://doi.org/10.1017/nlp.2025.10010

Downloaded from https://www.cambridge.org/core. 19 Oct 2025 at 12:33:50, subject to the Cambridge Core terms of use.

https://doi.org/10.1017/nlp.2025.10010
https://www.cambridge.org/core

	
	Introduction
	Related work
	Data-to-text generation
	In-context learning
	Methodology
	Definitions and problem formulation
	Method overview
	Double clustering based in-context example selection
	Preprocessing phase
	Determining the number of clusters
	Inference phase
	DCCS-batch
	Computational complexity analysis
	Token utilization efficiency in batched generation
	Experiments
	Experimental setup
	Datasets and environment
	Baseline
	Evaluation metrics
	Automatic evaluation results
	Single generation performance
	Comparison with SOTA models
	Ablation experiments
	Batched-generation performance
	Statistical analysis
	Determine the number of clusters
	The role of in-context examples'' similarity
	Case study: the role of in-context examples'' diversity

	Efficiency evaluation results
	Time efficiency
	Cost efficiency
	Human evaluation results
	Factual consistency metrics
	Limitations and future work
	Conclusion
	
	
	
	

