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Works by O’Grady allow to associate with a two-dimensional Gushel–Mukai (GM)
variety, which is a K3 surface, a double Eisenbud–Popescu–Walter (EPW ) sextic. We
characterize the K3 surfaces whose associated double EPW sextic is smooth. As a
consequence, we are able to produce symplectic actions on some families of smooth
double EPW sextics which are hyper-Kähler manifolds.

We also provide bounds for the automorphism group of GM varieties in dimension
2 and higher.
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1. Introduction

Double Eisenbud–Popescu–Walter (EPW ) sextics are an important family of hyper-
Kähler manifolds, i.e. compact simply connected Kähler manifolds with a unique, up
to scalar, holomorphic two-form, which is everywhere non-degenerate. The linebase
example of hyper-Kähler manifolds are K3 surfaces; a classical example is double
covers of P2. Double EPW sextics are a generalization of it, as they come with a
structure of double covers of special sextic hypersurfaces in P5, the so-called EPW
sextics.

In §2, we present the main objects that come into play. The basis of the the-
ory of double EPW sextics has been developed by O’Grady in an influential
series of articles. Already from [16], an important connection is observed between
(double) EPW sextics and ordinary two-dimensional Gushel–Mukai (GM ) vari-
eties, complete intersections of a linear space and a quadric hypersurface inside a
Grassmannian. This link has been successively extended to higher-dimensional GM
varieties by Iliev and Manivel in [5] and then developed in detail by Debarre and
Kuznetsov, in a series of articles that lay the groundwork for an extensive study of
the beautiful and intricate interplay between the two families.

A natural question about this relation is: can we give conditions on a GM variety
to be associated with a double EPW sextic which is smooth? Indeed, whenever the
double cover is smooth, it is a hyper-Kähler manifold.
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2 P. Beri

In §3, we answer this question for two-dimensional GM varieties, which are
Brill–Noether general 〈10〉-polarized K3 surfaces. We provide an answer in terms
of geometry and in terms of period: the following result summarizes theorems 3.2
and 3.3.

Theorem 1.1. The double EPW sextic associated with a strongly smooth K3 sur-
face S = P6 ∩ G(2, V5) ∩ Q is smooth if and only if S contains neither lines nor
quintic elliptic pencils. Equivalently, a 〈10〉-polarized K3 surface is associated with
a double EPW sextic which is a hyper-Kähler manifold if and only if it does not lie
in six (explicitly described) divisors in the corresponding moduli space.

This result relies on the tools provided by Debarre and Kuznetsov which we
presented in §2 as well as on a careful description of the involution acting on the
moduli space of EPW sextics, described for the first time by O’Grady [17]. It is
interesting to note that smoothness was already known in the very general case,
but theorem 1.1 holds without any general assumption: eliminating the hypothesis
of very generality is usually a challenging problem and we believe that our result
is interesting in this spirit.

As an application of theorem 1.1, in §4, we produce symplectic actions for various
groups on families of double EPW sextics which are hyper-Kähler, from lattice-
theoretic considerations on automorphisms of K3 surfaces.

Section 5 is devoted to finding bounds for the automorphism group of GM vari-
eties and on actions of groups on EPW sextics. For example, in proposition 5.2,
we show that the automorphism group of S is a finite subgroup of PGL(2,C) and
can only be symplectic; we also provide some results for GM varieties in higher
dimension. Most of these results are obtained by studying the automorphism group
of Fano varieties containing a GM variety.

A previous version of this article contained some results about lifting automor-
phisms of EPW sextics to their double cover; in the meanwhile, a much stronger
result has been obtained by Kuznetsov in [29], see proposition 2.10. We used this
result to simplify the proof of proposition 4.2 and to prove the symplecticity of the
automorphism group of a strongly smooth K3 surface in P6, see proposition 5.2.

1.1. Notations

Let X be a topological space. A property holds for x ∈ X general if the condition
is satisfied by all the points inside an open subset of X. A property holds for x ∈ X
very general if the condition is satisfied by all the points in the complement of a
countable union of closed subspaces inside X.

Given a complex vector space V, the Grassmannian of k -dimensional vector sub-
spaces in V will be denoted by G(k, V ); every Grassmannian we consider will be

embedded in the projective space P(
∧k

V ) via the Plücker embedding. Non-zero

decomposable vectors in P(
∧k

V ) are elements that lie in G(k, V ).

Definition 1.2. Consider V5 ∼= C5. Following [5], for v ∈ V5−{0}, we call Pfaffian

quadric Pv the symmetric bilinear form x 7→ vol(v ∧ x ∧ x) on
∧2

V5.

The Grassmannian is the intersection of all the Pfaffian quadrics; since ker(Pv) =
v ∧ V5, every Pfaffian quadric Pv has rank 6.
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Double EPW sextics associated with Gushel–Mukai surfaces 3

An automorphism α on a hyper-Kähler manifold X is symplectic if it acts trivially
on a 2-form on X, non-symplectic otherwise. We always consider H2(X,Z) endowed
with the Beauville–Bogomolov (BB) form. A 〈2t〉-polarization is a polarization
whose square is 2t with respect to the BB form.

We write S[2] for the Hilbert square on a K3 surface S. For any H ∈ NS(S), we
denote by H 2 the induced class on S[2] and by δ ∈ NS(S[2]) the class of the divisor
such that 2δ parametrizes non-reduced subschemes.

2. EPW sextics and GM varieties

2.1. EPW sextics

O’Grady provided slightly different points of view on the construction of EPW
sextics, see for example [16, 19] and [18]; here we follow mainly [18], with a view
to [23], by Debarre and Kuznetsov.

Let V 6 be a six-dimensional vector space over C, on which we fix a volume form∧6
V6

∼−→ C, which in turns induces a symplectic form ω on
∧3

V6.
In [7, example 9.3], Eisenbud, Popescu, and Walter introduced the Lagrangian

subbundle F of OP(V6) ⊗
∧3

V6, whose fiber over [v] is Fv = v ∧
∧2

V6.
Given v ∈ V6−{0}, we can fix a decomposition V6 ∼= Cv⊕V5 for some hyperplane

V5 ⊂ V6, which induces
∧3

V6 ∼=
∧3

V5 ⊕ Fv. Every element of Fv can be written

in the form v ∧ η for some η ∈
∧2

V5 and this induces an isomorphism of vector
spaces

ρ : Fv
∼−→

2∧
V5 (1)

v ∧ η 7→ η. (2)

This observation will be useful later.
We call LG(

∧3
V6) ⊂ G(10,

∧3
V6) the symplectic Grassmannian, parametrizing

Lagrangian subspaces with respect to the symplectic form on
∧3

V6; since two

volume forms differ by a non-zero constant, LG(
∧3

V6) does not depend on the

choice of the volume form. From now on, A ∈ LG(
∧3

V6) will be a Lagrangian

subspace in
∧3

V6 such that P(A) ∩G(3, V6) = ∅.
For a fixed A, we consider the map of vector bundles λA : F → OP(V6) ⊗ A∨

such that (λA)[v](x) = ω(x,−)|A for every [v] ∈ P(V6). Since A is a Lagrangian
subspace, the map is injective on [v] ∈ P(V6) if and only if Fv∩A = 0. Since rk(F ) =
rk(OP(V6) ⊗A∨), we can consider the map det(λA) : det(F ) → det(OP(V6) ⊗A∨).

Definition 2.1. The determinantal variety YA = Z(det(λA)) is a sextic hypersur-
face (see [16, ( 1.8)]), called EPW sextic.

We also associate with A a stratification of P(V6): for k ≥ 0 we define

Y ≥k
A = {[v] ∈ P(V6)|dim(Fv ∩A) ≥ k}; (3)

Y k
A = {[v] ∈ P(V6)|dim(Fv ∩A) = k}.

The sets Y ≥k
A are degeneracy loci and are thus endowed with a natural structure

of scheme. For every k, the variety Y ≥k+1
A is a closed subvariety of Y ≥k

A and clearly

YA = Y ≥1
A .
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4 P. Beri

Proposition 2.2. If P(A) ∩ G(3, V6) = ∅, then YA is integral and normal and

Sing(YA) = Y ≥2
A . Moreover, Y ≥2

A is a normal integral surface whose singular locus

is Y 3
A, which in turn is finite; when smooth, the surface Y ≥2

A is of general type.

Finally Y ≥4
A = ∅.

Proof. Integrality and normality for YA follow from Sing(YA) = Y ≥2
A . For the rest,

see [18, corollary 2.5], [18, proposition 2.9], [19, claim 3.7], [22, theorem B.2 ], and
[3, proposition 1.10]. �

The situation can be much more complicated for EPW sextics associated with a
Lagrangian subspace A which contains a non-zero decomposable vector; however,
for our scope, we will not need to deal with them.

2.2. The dual EPW sextic

One interesting feature of EPW sextics is that they admit a dual counterpart. The
volume form on V 6 induces a volume form on V ∨

6 too, and thus a symplectic form

on
∧3

V ∨
6

∼= (
∧3

V6)
∨, hence for A ∈ LG(

∧3
V6) we also have

A⊥ = {φ ∈ (
3∧
V6)

∨|φ(a) = 0 for every a ∈ A} ∈ LG((
3∧
V6)

∨);

P(A) ∩G(3, V6) = ∅ if and only if P(A⊥) ∩G(3, V ∨
6 ) = ∅, see [18, Section 2.6].

Definition 2.3. We call dual EPW sextic the EPW sextic associated with A⊥.

When P(A)∩G(3, V6) = ∅, the hypersurfaces YA ⊂ P(V6) and YA⊥ ⊂ P(V ∨
6 ) are

projectively dual; this has been proved by O’Grady, see also [22, proposition B.3 ].
As showed in [18, Section 2.6], the EPW strata associated with A⊥ can also be

described as

Y ≥k

A⊥ = {[V5] ∈ P(V ∨
6 )|dim(

3∧
V5 ∩A) ≥ k}

Definition 2.4. We denote by

Σ = {A ∈ LG(
3∧
V6)|P(A) ∩G(3, V6) 6= ∅}

the set of Lagrangian subspaces A admitting a non-zero decomposable vector, by

∆ = {A ∈ LG(
3∧
V6)|Y ≥3

A 6= ∅}

the set of Lagrangian subspaces whose third stratum is not empty, and by

Π = {A ∈ LG(
3∧
V6)|Y ≥3

A⊥ 6= ∅}

the set of Lagrangian subspaces A ∈ LG(
∧3

V6) such that the third stratum
associated with the dual Lagrangian A⊥ is not empty.
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Following O’Grady, we write LG(
∧3

V6)
0 = LG(

∧3
V6)− (∆ ∪ Σ).

The subsets Σ, ∆,Π descend to distinct irreducible divisors in LG(
∧3

V6)//
PGL(6), see [18, proposition 3.1, Item 1] and [19, proposition 2.2]. We denote their
quotients in the same way.

Proposition 2.5. [22], proposition B.8 If A /∈ Σ, the automorphism group of YA

is {α ∈ PGL(V6) such that
(∧3

α
)
(A) = A}. In particular, every α ∈ Aut(YA)

fixes Y k
A for every k ≥ 0.

From now on we always identify PGL(V6) and PGL(V ∨
6 ) through the natural

isomorphism sending φ ∈ PGL(V6) to (φ−1)∨, which maps [V5] to [φ(V5)].

Corollary 2.6. If A /∈ Σ, then Aut(YA) = Aut(YA⊥).

2.3. Double EPW sextics

The importance of EPW sextics stems mostly from the fact that, in the general
case, they admit a ramified double cover which is a hyper-Kähler manifold, as was
proved by O’Grady in [16]. We also refer to [23, theorem 5.2, Item 1].

We denote by R = Coker(λA)|YA
the first Lagrangian cointersection sheaf ; it is

a reflexive sheaf, see [16, proposition 4.3, Item 1].

Theorem 2.7. (O’Grady) Consider A ∈ LG(
∧3

V6) such that P(A)∩G(3, V6) = ∅.
Then there is a unique double cover fA : XA → YA with branch locus Y ≥2

A such that

(fA)∗OXA
∼= OYA

⊕R(−3). (4)

The variety XA is integral and normal, and its singular locus is f−1
A (Y 3

A).

A double cover of YA can be constructed even when P(A)∩G(3, V6) 6= ∅, provided
that YA 6= P(V6). However, in this case, XA is never smooth.

Definition 2.8. We call double EPW sextic the double cover XA, and we denote
by ιA the associated covering involution.

Theorem 2.9 [19], theorem 4.25 Suppose that XA is smooth, i.e. A ∈ LG(
∧3

V6)
0
.

Then XA is a hyper-Kähler manifold equivalent by deformation to the Hilbert square
on a K3 surface. The involution ιA is non-symplectic.

The ample class DA = f∗AOYA
(1) ∈ NS(XA) is the only primitive polarization on

XA coming from YA, by Lefschetz hyperplane theorem. It has square 2 with respect
to the BB form; the general element, inside the moduli space M2 (see appendix A

for a definition) is isomorphic to (XA, DA) for some A ∈ LG(
∧3

V6)
0
.
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We denote by AutDA
(XA) ⊆ Aut(XA) the group of automorphisms fixing DA,

or equivalently commuting with ιA. There is a short exact sequence

1 → {id, ιA} → AutDA
(XA) → Aut(YA) → 1. (5)

Proposition 2.10. [29], proposition A.2 The sequence (5) splits, so
AutDA

(XA) ∼= Aut(YA) × {id, ιA}. When XA is smooth, under this isomorphism
Aut(YA) is the group of symplectic automorphisms fixing the polarization DA.

2.4. GM varieties

In this section, we introduce GM varieties and in the next one we explain how they
admit an associated EPW sextic.

We fix a five-dimensional complex vector space V 5. For the following definition
and results, we refer to [22, definition 2.1].

Definition 2.11. Consider a vector subspace W ⊆
∧2

V5 of dimension dimW ≥ 6
and a quadric hypersurface Q ⊂ P(W ). We call ordinary GM intersection the
scheme

Z = P(W ) ∩G(2, V5) ∩Q.

It is an ordinary GM variety if Z is integral and dim(Z) = dim(W )− 5.

When Z is a GM variety, it is a complete intersection inside G(2, V5) and has
degree 10 in P(W ).

If dim(Z) ≥ 3, Z is a Fano variety of index n − 2 (see for example [22, theorem
2.3]). If dim(Z) = 2, let H be the polarization given by OP(W )(1): the polarized
variety (Z,H ) is a Brill–Noether general K3 surface, see [30], also [4, theorem 10.3].
The converse holds under a technical condition, which is strongly smoothness.

Definition 2.12. Let Z = P(W ) ∩ G(2, V5) ∩ Q be an ordinary n-dimensional
GM variety. The Grassmannian hull of Z is the (n + 1)-dimensional intersection
MZ = P(W ) ∩ G(2, V5). We say that Z is strongly smooth if both Z and MZ are
dimensionally transverse and smooth.

Although GM curves exist, here we never deal with them, since they are never
strongly smooth or, equivalently, their associated double EPW sextics are never
smooth, as we will see later (theorem 2.17).

If Z is strongly smooth, its Grassmannian hull has Picard rank 1 by the Lefschetz
hyperplane theorem. For every Brill–Noether general K3 surface (S,H ), the pro-
jective model φ|H|(S) is a smooth ordinary GM variety of dimension 2, provided
that it is strongly smooth (see remark 2.19), whereas smoothness and strongly
smoothness are equivalent when n ≥ 3.

Definition 2.13. An isomorphism between Z = P(W ) ∩ G(2, V5) ∩ Q and Z ′ =
P(W ′)∩G(2, V ′

5)∩Q′ is a linear map φ : P(W ) → P(W ′) such that φ(Z) = Z ′. We
denote by Aut(Z,P(W )) the group of automorphisms of Z.
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By the Lefschetz hyperplane theorem, a smooth GM variety Z of dimension at
least 3 has Picard rank 1. So, in this case, Aut(Z,P(W )) is the whole automorphism
group of Z as an abstract variety.

Debarre and Kuznetsov provided an intrinsic characterization of normal GM
varieties in [22, theorem 2.3]; this leads to the definition of GM data, which are
a set of linear data which can be associated with any normal GM variety. These
collections of objects are very useful to handle.

Definition 2.14. Ordinary GM data (W,V6, V5, µ, q, ε) of dimension n consists of
(we set L = (V6/V5)

∨ for readability)

• a (n+ 5)-dimensional vector space W;
• a six-dimensional vector space V6;
• a hyperplane V5 of V6;
• an injective linear map µ : W ⊗ L ↪→

∧2
V5;

• a linear map q : V6 → S2W∨;
• a linear isomorphism ε :

∧5
V5 → L⊗2,

such that, for all v ∈ V5, w1, w2 ∈W ,

q(v)(w1, w2) = ε(v ∧ µ(w1) ∧ µ(w2)). (6)

Definition 2.15. An isomoprhism between two ordinary GM data sets
(W,V6, V5, µ, q, ε) and (W ′, V ′

6 , V
′
5 , µ

′, q′, ε′) is a triple of linear isomorphisms

φW : W → W ′, φV : V6 → V ′
6 , φL : L → L′ such that φV (V5) = V ′

5 , ε
′ ◦
∧5

φV =
φ⊗2
L ◦ ε, and the following diagrams commute

(7)
V6 Sym2 W∨

V ′
6 Sym2 (W ′)∨

φV

q

q′
Sym2 φ∨

W

W ⊗ L
∧2

V5

W ′ ⊗ L′ ∧2
V ′

5 .

μ

φW ⊗φL

∧2
(

φV |V5

)

μ′

Debarre and Kuznetsov showed in [22, Section 2.1] how to associate a set of
GM data (W,V6, V5, µ, q, ε) to a normal GM variety and to GM data a GM inter-
section which a priori may not be a normal variety; when it is the case, the two
constructions are mutually inverse and behave well with respect to the definition
of isomorphisms. To keep the exposition readable, we refer to their article for the
explicit correspondence.

Finally, we point out that another class of GM intersections, special GM
intersections, exist, see for example [22, Section 2.5].

2.5. A correspondence between data sets

Debarre and Kuznetsov defined another set of data. Every time we consider a six-
dimensional complex vector space V 6, we endow it with a volume form, which
induces a symplectic form on

∧3
V6.
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Definition 2.16. An ordinary Lagrangian datum is a collection (V6, V5, A), where

• V6 is a six-dimensional complex vector space,
• V5 ⊂ V6 is a hyperplane,
• A ∈ LG(

∧3
V6) is a Lagrangian subspace.

The ordinary Lagrangian data (V6, V5, A) and (V ′
6 , V

′
5 , A

′) are isomorphic if there

is a linear isomorphism φ : V6 → V ′
6 such that φ(V5) = V ′

5 and (
∧3

φ)(A) = A′.

The next result, by Debarre and Kuznetsov, sums up the results by O’Grady,
[16, Section 5 and Section 6], [19, Section 4], in dimension 2 and Iliev and Manivel,
[5, Section 2] in dimension 5 and [5, Section 4] in dimension 3, 4.

Theorem 2.17. For n ∈ {1, . . . , 5}, there is a bijection between the set of iso-
morphism classes of Lagrangian data sets (V6, V5, A), with

• P(A) ∩G(3, V6) = ∅
• [V5] ∈ Y 5−n

A⊥

and isomorphism classes of strongly smooth ordinary GM varieties of dimension n.
In particular, there are no strongly smooth ordinary GM curves.

Proof. See [22, theorem 3.6] and [22, theorem 3.16]. For n =1, recall that A⊥ admits
non-zero decomposable elements if and only if A does. Then we only need to observe
that Y ≥4

A⊥ = ∅ by proposition 2.2. �

It is interesting to note that the construction works for non-strongly smooth GM
varieties, but in that case A always admits non-zero decomposable elements.

Definition 2.18. Given some Lagrangian data (V6, V5, A), the associated ordinary
GM variety is the GM intersection Z obtained by theorem 2.17 from (V6, V5, A).
When not otherwise specified, we write Z = P(W ) ∩ G(2, V5) ∩ Q where Q is the
projective quadric associated with q(x) for any x ∈ V6 − V5.

Given a strongly smooth ordinary GM variety Z, we denote by A(Z) the
Lagrangian subspace associated with Z by theorem 2.17.

Remark 2.19. Strongly smooth special GM varieties of dimension 2 do not exist
by [22, remark 3.17] and proposition 2.2.

For any (V6, V5, A) and p ≥ 2, there is a short exact sequence

0 →
p∧
V5 →

p∧
V6

λp−−→
p−1∧

V5 ⊗ L∨ → 0. (8)

The following two remarks will be useful in the proof of theorem 3.2 in the frame
of the study of two-dimensional GM varieties: although the relation between the
latter and EPW sextics is already clear in [16] and [19], the use of GM data allows
a very precise study.
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Remark 2.20. Given some Lagrangian data (V6, V5, A), theorem 2.17 allows to

describe explicitly the associated ordinary GM variety Z ⊆ P(
∧2

V5). We fix

x ∈ V6 − V5, hence an isomorphism
∧3

V6 ∼=
∧3

V5 ⊕ Fx. Under this isomorphism
and (1), the sequence (8) for p=3 becomes

0 →
3∧
V5 →

3∧
V6 ∼=

3∧
V5 ⊕ Fx

λ3−−→
2∧
V5 → 0. (9)

For p=4, the sequence (8) can be rewritten as 0 →
∧4

V5 →
∧4

V6
λ4−−→

∧3
V5 → 0

as well. We will thus consider W as a subspace of
∧2

V5 and we identify
∧5

V5
with C through the volume form on V 6. Then W = λ3(A). As for the quadric
hypersurface, we call Q(x ) the projective quadric hypersurface associated with
q(x) ∈ Sym2W∨. We have Z = MZ ∩ Q(x). Consider w ∈ W : since W = λ3(A),

there is η ∈
∧3

V5 such that η + x ∧ w ∈ A. By definition of q : V6 → Sym2W∨

given in theorem 2.17, the element w = λ3(η + x ∧ w) lies in Q(x ) if and only if
η ∧ w = λ4(x ∧ η) ∧ w = 0.

Remark 2.21. Consider instead some ordinary GM intersection Z = P(W ) ∩
G(2, V5) ∩Q, with associated GM data (W,V6, V5, µ, q, ε). We consider again W ⊆∧2

V5 ⊗ L∨ and x ∈ V6 − V5 such that Q = Q(x). As above
∧3

V6 ∼=
∧3

V5 ⊕ Fx

and (9) holds. Also
∧3

V5 ∼= (
∧2

V5)
∨ via ε :

∧5
V5 → L⊗2 and A(Z ) is{

(η, w) ∈
3∧
V5 ⊕W |w ∈W, ε(η ∧ µ( ))|W = −(q(x)(w,−)⊗ [x])

as elements of W∨

}
.

Now we forget ε, we consider again W ⊆
∧2

V5 and
∧3

V5 as (
∧2

V5)
∨. We have

then a splitting sequence 0 → W⊥ → (
∧2

V5)
∨ → W∨ → 0. Putting all together,

we can rewrite A(Z) ⊂W⊥ ⊕W∨ ⊕ Fx as{
(ξ,−q(x)(w,−), x ∧ w) ∈W⊥ ⊕W∨ ⊕ Fx | ξ ∈W⊥, w ∈W

}
. (10)

From this description, under the identification
∧3

V5 ∼= (
∧2

V5)
∨, we have A(Z) ∩∧3

V5 =W⊥ by [22, proposition 3.13, Item a].
Consider the linear map x∧W →W∨ that sends x∧w to −q(x)(w,−): its graph

Γx ⊂W∨ ⊕W induces a decomposition A(Z) =W⊥ ⊕ Γx ⊂W⊥ ⊕W∨ ⊕ Fx.

3. K3 surfaces whose associated double EPW sextic is smooth

We denote by K10 the moduli space of 〈10〉-polarized K3 surfaces.

Definition 3.1. The divisor Dx,y ⊂ K10 is the locus of pairs (S, H) such that there

exists a primitive sublattice ZH +ZD ⊆ NS(S) whose Gram matrix is

[
10 x

x y

]
.
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10 P. Beri

In this section, we want to find precise conditions on a Brill–Noether general,
〈10〉-polarized, K3 surface such that the associated double EPW sextic XA(S) is a
hyper-Kähler manifold.

We answer this question in two ways, as a condition on curves on the embedded
K3 surface (theorem 3.2) and as a divisorial condition on K10 (theorem 3.3). In
particular, thanks to theorem 3.3, finding whether XA(S) is smooth becomes a
lattice-theoretic problem on NS(S).

Theorem 3.2. Let S = P(W ) ∩G(2, V5) ∩Q be a 〈10〉-polarized K3 surface. The
double cover XA(S) of the associated EPW sextic YA(S) is smooth if and only if S
is strongly smooth and contains neither lines nor quintic elliptic pencils.

We recall that (S,H) ∈ K10 is Brill–Noether general if and only if the projective
model of (S,H ) is a smooth ordinary GM variety of dimension 2.

From now on, we see a Brill–Noether general (S,H) ∈ K10 as a smooth ordinary
GM two-dimensional variety S = P(W ) ∩ G(2, V5) ∩ Q, with Grassmannian hull
MS = P(W ) ∩G(2, V5).

Theorem 3.3. Let (S,H) ∈ K10 be a 〈10〉-polarized K3 surface. If (S, H) is

Brill–Noether general, let A(S) ∈ LG(
∧3

V6) be the Lagrangian subspace associated
with (S,H). Then

(1) (S,H) is Brill–Noether general if and only if (S,H) /∈ Dh,0 for h ∈ {1, 2, 3};
(2) if (S, H) is Brill–Noether general, then (S,H) is strongly smooth if and only

if A(S) /∈ Σ, if and only if (S,H) /∈ D4,0.

Moreover, if (S, H) is strongly smooth, then A(S) ∈ LG(
∧3

V6)
0
if and only if

(S,H) /∈ Dx,y, with (x, y) ∈ {(1,−2), (5, 0)}. In particular

(3) Y 3
A(S) ∩ P(V5) = ∅ if and only if (S,H) /∈ D1,−2;

(4) Y 3
A(S) − P(V5) = ∅ if and only if (S,H) /∈ D5,0.

Grassmannian hulls MS of strongly smooth Brill–Noether general K3 surfaces
are isomorphic, see [13] or [19, proposition 5.2, Item 3)]. We need a characterization
of the lines inside MS. For v ∈ V5 − {0} and v ∈ V3 ⊂ V5 with V3 ∼= C3, we set
Lv,V3

= {v∧ t|t ∈ V3}. Every line in G(2, V5), hence in MS, is of the form P(Lv,V3
).

Lemma 3.4. Consider v ∈ V5 − {0}. There exists a three-dimensional vector space
V3 3 v such that the line P(Lv,V3

) ⊂ G(2, V5) is contained in MS if and only if
ker(Pv) ∩W has dimension exactly 2. In this case, Lv,V3

= ker(Pv) ∩W .

Proof. We fix a decomposition V5 = Cv⊕U ; we know that ker(Pv) = v ∧U , hence
Lv,V3

⊂ ker(Pv) for any V3 3 v. If ker(Pv)∩W has dimension 2, its projectivization
is a line on MS of the form P(Lv,V3

). Conversely, if P(Lv,V3
) ⊂ MS then Lv,V3

⊂
W ∩ ker(Pv), in particular dim(W ∩ ker(Pv)) ≥ 2. The dimension is exactly 2, or
MS would contain a plane, which is absurd since MS has Picard rank 1. �
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When a GM variety Z is strongly smooth, for v ∈ V5 − {0}, the kernel of the
Pfaffian quadric (Pv)|W is ker(Pv) ∩W and its corank is at least dim(W )− 6. For
x /∈ V6, the kernel of q(x ) is computed in [22, proposition 3.13, Item b].

Proof of theorem 3.2. The proof consists of three parts. We already know, from
§2.5, that strongly smoothness is a necessary condition to have XA(S) smooth. We
need to prove A(S) /∈ ∆, i.e. Y 3

A(S) = ∅.
S contains no line if and only if Y 3

A(S) ∩ P(V5) = ∅. Fix x ∈ V6 − V5, so that

S = MS ∩ Q(x), with Q(x ) the projective quadric associated with q(x ); as in

remark 2.20, we have
∧3

V6 ∼= (
∧2

V5)
∨⊕Fx and a linear map λ3 : (

∧2
V5)

∨⊕Fx →∧2
V5 sending (φ, x ∧ w) to w.

For v ∈ V5 − {0}, we fix a decomposition V5 = Cv⊕U . Since Fv = (v ∧
∧2

U)⊕
v ∧ U , we can write

λ3(A) =W λ3(Fv) = v ∧ U ker((Pv)|W ) = (v ∧ U) ∩W.

We have A ∩ (
∧2

V5)
∨ = W⊥ by remark 2.21; we can also write Fv ∩ (

∧2
V5)

∨ =

v ∧
∧2

U = ker(Pv)
⊥ and by (9),

dim(A ∩ Fv) = dim(λ3(A ∩ Fv)) + dim(A ∩ Fv ∩ (
2∧
V5)

∨). (11)

We have λ3(A ∩ Fv) ⊆ ker(Pv) ∩W . The dimension of ker(Pv) ∩W is at most 2,
see lemma 3.4, in particular:

(1) If dim(ker(Pv)∩W ) = 2, then ker(Pv) +W has dimension 9, hence there is
only one hyperplane containing both of them, so dim(W⊥ ∩ ker(Pv)

⊥) = 1;

(2) If dim(ker(Pv)∩W ) = 1, then ker(Pv)+W =
∧2

V5 andW
⊥∩ker(Pv)

⊥ = 0.

By (11), since A∩Fv∩(
∧2

V5)
∨ =W⊥∩ker(Pv)

⊥ in order to obtain dim(A∩Fv) =
3, we must consider all the v ∈ V5 for which (1) above holds. For such a v, we
have λ3(A ∩ Fv) = λ3(A) ∩ λ3(Fv), so that the RHS of (11) can be 3. The line
` = P(λ3(A ∩ Fv)) lies in MS, so we only need to prove ` ⊂ Q(x). By remark 2.20,

we know that q(x)(w,w) = 0 if and only if there exists η ∈
∧3

V5 such that
η+ x∧w ∈ A and η ∧w = 0. Consider any v ∧ u inside λ3(A∩Fv): by hypothesis,

there exists η ∈
∧3

V5 such that η + x ∧ v ∧ u ∈ A ∩ Fv. This means that η ∈ Fv,
so η ∧ v ∧ u = 0. In particular v ∧ u ∈ Q(x), hence the whole line P(λ3(A ∩ Fv)) is
contained in S.

On the other hand, if P(Lv,V3
) ⊂ S for some v ∈ V5, by lemma 3.4, we also have

Lv,V3
= ker(Pv)∩W ∼= C2, hence there is some non-zero η ∈W⊥∩ker(Pv)

⊥. Then
to prove [v] ∈ Y 3

A ∩ P(V5), we need λ3(A ∩ Fv) = λ3(A) ∩ λ3(Fv) =W ∩ ker(Pv).

Consider v∧u ∈W ∩ker(Pv). We use (10): under the decomposition (
∧2

V5)
∨ ∼=

W⊥ ⊕W∨, the element

α = (0,−q(x)(v ∧ u,−), x ∧ v ∧ u) ∈W⊥ ⊕W∨ ⊕ Fx

lies in A and λ3(α) = v∧u. To prove that α ∈ Fv, so that we have v∧u ∈ λ3(A∩Fv),
we show α ∧ η = 0 for every η ∈ Fv, then we can conclude, since Fv is Lagrangian.
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12 P. Beri

As α is zero on the first component, we are left to prove 0 = α∧η = −q(x)(v∧u, η)
for η ∈ Fv ∩W = Lv,V3

. By hypothesis P(Lv,V3
) ⊂ S ⊂ Q(x): this happens if and

only if q(x)|Lv,V3
×Lv,V3

= 0 and in particular q(x)(v ∧ u,−) = 0 on Lv,V3
.

If Y 3
A(S)−P(V5) 6= ∅, then S contains a quintic elliptic pencil. Consider [x] ∈ Y 3

A−
P(V5), so that S is the transverse intersection of MS and Q(x ): by [22, proposition
3.13, Item b], the corank of q(x ) is 3.

The quadric Q(x ) is a cone of P(ker(q(x))) = P(A ∩ Fx) over a smooth quadric
surface Q ⊂ P3; the latter has two families of lines on it and two lines inside Q
intersect if and only if they do not lie in the same family. Let {`t}t∈P1 be one of
the two families. The cone of P(ker(q(x))) over `t is a P4 which we denote by πt.
By transversality, the intersection MS ∩ πt = S ∩ πt is a degree-5 curve on S.

Consider now (πt ∩ S) and (πt′ ∩ S) for t 6= t′. We have πt ∩ πt′ = P(ker(q(x))),
as `t and `t′ are in the same family, so (πt ∩ S)∩ (πt′ ∩ S) = P(ker(q(x)))∩ S. But
the latter is empty, since P(ker(q(x))) = Sing(Q(x)) and S is smooth. So the pencil
{S ∩ πt}t∈P1 is elliptic.

If S contains a quintic elliptic pencil, then Y 3
A(S) − P(V5) 6= ∅. We call E ∈

NS(S) the class of the elliptic pencil: the sublattice ZH + ZE = K ⊂ NS(S) has

Gram matrix

(
10 5

5 0

)
. The orthogonal complement of H in K is generated by

κ = H − 2E; we denote by κ2 the corresponding class in NS(S[2]).
From now on, we consider notations and results from appendix A. Following that,

we call e, f two canonical generators of a copy of U ; moreover, e1, f1 will be the
canonical generators of a second copy of U, orthogonal to the first one. By Eichler
Criterion [33, proposition 3.3], there is an isometry ψ : H2(S[2],Z) → Λ such that
ψ(H2 − 2δ) = h = e + f and ψ(κ2) = g + 2` − 2e1 − 8f1; the involution j on the
moduli space exchanges g and ` in Λh, so that j(κ2) = g + 2` − 2e1 − 8f1 is an
algebraic class for XA(S), which lies in D⊥

A . It has square 10 and divisibility 2 in
H2(XA(S),Z), so DA lies in a flopping wall and is not ample, see [28, theorem 5.1,
Item b].

Hence Y 3
A(S) 6= ∅ and more precisely Y 3

A(S) − P(V5) 6= ∅, since points in Y 3
A(S) ∩

P(V5) correspond to lines in S, hence sublattices in NS(S) whose Gram matrix

is

(
10 1

1 −2

)
. It is then sufficent to observe that such a sublattice is neither an

overlattice nor a sublattice of HZ+ EZ. �

We can now prove the second version of the characterization.

Proof of theorem 3.3. For (1) see [9, lemma 2.8]. We do not need to ask (S,H) /∈
D5,2, as in [9], since this is a divisor inside the complement of K10 in its closure;
to see that, one checks that the orthogonal complement of H in ZH + ZD has
square −2 and concludes by [35, theorem 2.7]. For (2) see [9, lemma 2.7]. The
rest of the statement comes directly from theorem 3.2. Lines on S = P(W ) ∩

G2, V5)∩Q correspond to sublattices of NS(S) whose Gram matrix is

[
10 1

1 −2

]
,

To prove (3), it is then sufficient to show that this lattice admits no non-trivial
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overlattice. For (4), the proof is the same, with the lattice whose Gram matrix is[
10 5

5 0

]
. �

Finally, the description of lines in S can be made more precise.

Proposition 3.5. Let S = P(W )∩G(2, V5)∩Q be a strongly smooth K3 surface.
Let A(S) be the associated Lagrangian subspace. Then

|Y 3
A(S) ∩ P(V5)| = |{` ⊂ S|` line}|.

Proof. This is an easy consequence of the first part of the proof above. To show
the one-to-one correspondence, one observes that two lines P(Lv,V3

) and P(Lv′,V ′
3
)

intersect in at most one point if [v] 6= [v′]. �

4. Inducing automorphisms on double EPW sextics

We explain here how we can use our main result, and particularly theorem 3.3, to
deduce the existence of automorphisms on families of smooth double EPW sextics.
This was actually the first motivation for our study of strongly smoothGM surfaces,
since the automorphisms of S act on the associated EPW sextic.

Proposition 4.1. Debarre and Kuznetsov For Z a strongly smooth GM variety,
there is a natural inclusion of Aut(Z,P(W )) in Aut(YA(Z)) ∼= Aut(YA(Z)⊥) as the

stabilizer of [V5] ∈ YA(Z)⊥ .

Proof. See [22, proposition 3.21, Item c]: the result still holds if we replace
‘dimension ≥ 3’ in the statement with ‘X strongly smooth’. �

O’Grady showed that, for S = P(W ) ∩ G(2, V5) ∩ Q very general, the associ-
ated double EPW is smooth; however, the group Aut(S,P(W )) is trivial for S very
general! In addition, all those automorphisms turn out to be symplectic, see propo-
sitions 2.10 and 5.2, and families of K3 surfaces in K10 carrying symplectic actions
typically have big codimension.

So, to find automorphisms on some S that induce automorphisms on a smooth
double EPW sextic, the tricky part is to control the generality. By theorem 3.3,
we can easily deduce the existence of automorphisms on some smooth double
EPW sextic, appealing to the classification of automorphisms on K3 surfaces. Let
(V6, V5, A) be the Lagrangian data associated with S : by theorem 2.17, [V5] ∈ Y 3

A⊥ ,
hence A always lies in Π.

In the following statement, we denote by Dn the dihedral group of order 2n. In
the proof, we use some results from the next section; we decided to postpone them
to keep the exposition more cohesive.

Proposition 4.2. Let G be one of the following groups,

Z/nZ for n ∈ {2, 3, 4}, (Z/2Z)2, Dn for n ∈ {4, 5, 6}.
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There is a family of Lagrangian subspaces in Π− (Σ ∪∆) such that, for any A in
the family, the associated double EPW sextic XA is smooth and admits a symplectic
action of G which commutes with the covering involution.

For a general element of the family, AutDA
(XA) = ιA ×G.

Proof. A 〈10〉-polarized K3 surface (S,H ) admits a symplectic action of G which
fixes H if and only if its Néron-Severi group contains LG = ZH ⊕ΩG, where ΩG is
a negative-definite lattice associated with G, which turns out to be the coinvariant
lattice for the action of G in cohomology. This has been proved by Nikulin [31],
but see also [1, proposition 6.3].

We start by considering G = Z/nZ with n = 2, . . . 6, (Z/2Z)2 or D4 and we
want to prove that there is a family of K3 surfaces for which the very general
element S has NS(S) = LG. Then we will have G = Aut(S,P(W )) for G 6= Z/nZ
with n = 5, 6, and Aut(S,P(W )) = Dn otherwise: in the latter case, we appeal
to [2, propositions 8.1 and 9.1] and then proposition 5.2, in the former simply to
proposition 5.2.

By the surjectivity of the period map for marked K3 surfaces, proving the exis-
tence of the family amounts to showing that there is a primitive embedding LG

in ΛK3 = U⊕3 ⊕ E8(−1)⊕2. By [2, propositions 6.2 and 7.7], there is a family of
elliptic K3 surfaces whose Néron–Severi group is U ⊕ ΩG. Now, any embedding
of U in an even lattice M induces a splitting M = U ⊕ U⊥; in particular, in our
case, we have ΩG ⊂ U⊕2 ⊕ E8(−1)⊕2 ⊂ ΛK3. We fix a canonical basis {e, f} for
the distinguished copy of U and we consider the lattice Z(e + 5f) ⊕ ΩG, which is
a copy of LG and is primitive in ΛK3, since the two summands lies in two different
direct summands of the big lattice. This give us a maximal family of K3 surfaces
with a symplectic action of G.

For the very general element (S,H ) in the family, the 〈10〉-polarization has divis-
ibility 10 in the Néron–Severi group; in particular, (S,H ) is Brill–Noether general
and strongly smooth by theorem 3.3. Since these properties fail on a finite number of
divisors in the moduli space, this means that also the general element in the family
enjoys them (these families have positive dimension). For the same lattice-theoretic
reasons, (S,H ) will not lie in Dh,0 for h = 4, 5 nor D1,−2, so its associated double
EPW sextic is smooth and carries a symplectic action of G fixing the polarization
DA, by propositions 4.1 and 2.10.

Proposition 5.5 ensures that the group of automorphisms fixing DA on the asso-
ciated EPW sextic is isomorphic to Aut(S,P(W )) for a general (S,H ), since in that
case the projective model does not contain any line or conic. �

5. Bounds on automorphisms of GM varieties

5.1. Bounds for Brill–Noether general K3 surfaces

In the next two sections, we provide some bounds on the automorphism group of
GM varieties. Grassmannian hulls will play a fundamental role and the key point
is the following observation.

Lemma 5.1. Let Z be a strongly smooth GM variety with Grassmannian hull MZ.
Then Aut(Z,P(W )) ⊂ Aut(MZ).
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Proof. Since S spans P(W ), the restriction ρ : {α ∈ Aut(P(W ))|α(S) = S} →
Aut(S,P(W )) is an isomorphism of groups. By [22, corollary 2.11], any α ∈
Aut(S,P(W )) is induced by an automorphism (gW , gV , gL) of ordinary GM data,
where the isomorphism [gW ] ∈ PGL(W ⊗ L) = PGL(W ) is the restriction of[∧2

(
gV |V5

)]
to P(W ). Hence ρ factors as {α ∈ Aut(P(W ))|α(S) = S}

ρ1−→

Aut(MS)
ρ2−→ Aut(S,P(W )). Since ρ is injective, the same holds for ρ1. �

Let S = P(W ) ∩G(2, V5) ∩Q be a Brill–Noether general K3 surface. The auto-
morphism group Aut(S,P(W )) is the group of the automorphisms of the abstract
surface S fixing H ; this group is finite, see [6, chapter 5, proposition 3.3].

O’Grady [19] studied in detail the six-dimensional complete linear system
|H2 − 2δ|. This linear system is naturally isomorphic to the space of quadrics in
P(W ) containing S and the associated map admits a very explicit description ([19,
(4.2.5)]),

φ : S[2] 99K |H2 − 2δ|∨ ∼= P5 (12)

Z 7→ {Q ∈ |V6|such that 〈Z〉 ⊂ Q}. (13)

The map φ factors as a small contraction c : S[2] → XA(S)⊥ and f : XA(S)⊥ 99K P5.

The latter can be identified to the double cover fA(S)⊥ up to a finite number
of flops [19, theorem 4.15]; in particular, it is generically 2-to-1 and induces a
birational involution ι on S[2] which acts as minus the reflection with respect to the
class H2 − 2δ in cohomology [19, proposition 4.20]. The birational transformation
c induces an identification of AutD

A(S)⊥
(XA(S)⊥) with BirH2−2δ(S

[2]), the group

of birational endomorphisms fixing H2 − 2δ and (5) translates as

1 → {id, ι} → BirH2−2δ(S
[2])

λ−→ Aut(YA(S)⊥) → 1.

We denote by Gn the symmetric group on n objects and by An the alternating
group on n objects.

Proposition 5.2. If S is strongly smooth, Aut(S,P(W )) acts symplectically on S
and is isomorphic to one of the following groups:

Z/nZ for n = 1, 2, 3, 4, Dn for n = 2, . . . , 6

A4, G4, A5.
(14)

Proof. We prove simplecticity. We know that (5) splits, identifying the lifting of
Aut(YA(S)⊥), which we denote by S, with the group of automorphisms acting triv-

ially on H0,2(XA(S)⊥). Since c is an isomorphism in codimension one, S seen as

a subgroup of BirH2−2δ(S
[2]) acts symplectically on S[2]. Inside S there is G, the

lifting of Aut(S,P(W )) ⊂ Aut(YA(S)⊥). We denote by G′ ⊂ BirH2−2δ(S
[2]) the

group of natural automorphisms α[2] on S[2] induced by α ∈ Aut(S,P(W )): if we
can prove G = G′ we are done, since α[2] is symplectic if and only if α is.
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Fix some α ∈ Aut(S,P(W )) ⊂ Aut(YA(S)⊥). A straightforward computation,

using (12) and (7), gives φ ◦α[2] = α ◦φ, hence λ(G) = λ(G′). For α̃ ∈ G the lifting
of α, we have then α̃ = α[2] or α̃ = α[2] ◦ ι. Note that α[2] fixes the class H 2, while
ι only fixes H2− 2δ and its multiples [15, proposition 4.21 (b)], so the first equality
holds if and only if α̃ fixes H 2.

We turn to |H2|, as a linear system on XA(S)⊥ , via the small contraction c; it is

the pullback via the Hilbert–Chow contraction of H⊗2 on the symmetric product
S(2),

H0(S[2],H2) = H0(S(2),H⊗2) = Sym2W∨.

The action of the lifting α̃ of α to XA(S)⊥ is induced by the action of SL(V6) [25,

proof of proposition A.2]; thus, α̃ acts on the global sections of H 2 since it induces a
linear automorphism of W, see Eq. (7). So α̃∗H2 = H2, which provides us α̃ = α[2]

as desired.
To obtain the bound we observe that, by lemma 5.1, G is a finite subgroup of

Aut(MS) and the latter is isomorphic to PGL(2,C) [14, theorem 7.5], since the
strongly smoothness of S implies the condition of generality for MS in [14], cf. [22,
proposition 2.22]. So G is either cyclic, dihedral, A4, G4, or A5. For cyclic groups,
the order is at most 8 by [31, theorem 4.5] and actually when the order is n = 7, 8
the lattice Ω⊥

G (same notation as in proposition 4.2) does not contain an element of
square 10, as a computation modulo 2n shows, so we can rule them out. Moreover,
if G contains an order n = 5, 6 element, then Dn ⊂ G by [2, proposition 8.1].
Finally, n ≤ 6 for Dn by [10]. �

Remark 5.3. In proposition 4.2, we provide some families of K3 surfaces with
prescribed Aut(S,P(W )). According to proposition 5.2, the possible cases left are
Aut(S,P(W )) ∈ {D3,A4,G4,A5}.

When S contains no line, φ : S[2] 99K |H2 − 2δ| behaves particularly well. Let C
be the set of smooth conics inside S : by [19, claim 4.19], |H2−2δ| is base-point-free
and

Y 3
A(S)⊥ =

⋃
C∈C

φ(C(2)). (15)

When moreover S is strongly smooth, we are able to provide a bound for the
automorphism group of the associated EPW sextic YA(S), which is particularly
useful when there is no conic on S ; we used proposition 5.5 under this condition in
the proof of proposition 4.2, in the previous section.

Definition 5.4. We denote by AutC(S,P(W )) ≤ Aut(S,P(W )) the subgroup of
automorphisms acting trivially on C.

Clearly AutC(S,P(W )) appears in (14).

Proposition 5.5. Let S = P(W )∩G(2, V5)∩Q be a strongly smooth Brill–Noether
general K3 surface with N smooth conics on it. Suppose that S contains no line:
the automorphism group of YA(S) sits in an exact sequence
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1 → AutC(S,P(W )) → Aut(YA(S))
g−→ GN+1 (16)

where g sends α ∈ Aut(YA(S)) to its action on Y 3

A(S)⊥
, whose cardinality is N+ 1.

Proof. The morphism g in (16) is well-defined by corollary 2.6 and its kernel is the
subgroup of automorphisms of YA fixing pointwise Y 3

A⊥ . We are only left to prove

that AutC(S,P(W )) = ker(g), we actually prove a bit more. Indeed, by (15), the
fibres over Y 3

A(S)⊥
are given by PS and C(2) for C ∈ C; by the same computations of

proposition 5.2, the action of α on C induces a permutation on {PS , C
(2)
1 , . . . , C

(2)
N }

hence on Y 3
A(S)⊥

, which is the same as the one induced by α as an element of

Aut(YA(S)) (note that, since α acts on MS too by lemma 5.1, α[2] always fixes
PS). �

Remark 5.6. The morphism g in (16) is not necessarily surjective. Indeed, let
(S,H) ∈ K10 be a very general element of D2,−2 (see definition 3.1). Then S con-
tains exactly one smooth conic, say C. An involution of YA(S) exchanging the two
elements inside Y 3

A(S)⊥
would lift to a symplectic involution on XA(S) (which is

smooth for (S,H ) general, see theorem 3.3), but then XA(S) would have Picard

rank at least 9 by [12, corollary 5.2]. This is impossible since XA(S) and S
[2] have

the same Picard rank, cf. lemma A.4.
Furthermore, there exists (S′,H ′) ∈ D2,−2 such that (S[2],H2 − 2δ) and ((S′)[2],

H ′
2 − 2δ′) are birational as varieties with a big and nef line bundle or equivalently

A(S) = A(S′) and PS′ is sent to φ(C(2)) via the map associated with |H ′ − 2δ′|.
The argument above proves that (S,H ) and (S′,H ′) are not isomorphic.

5.2. Bounds in greater dimension

In §5.1, we dealt with two-dimensional GM varieties. Now we consider GM varieties
of dimension 3 and 4. By [22, proposition 3.21], their automorphism group is finite
and trivial in the general case.

Remark 5.7. By proposition 4.1, whenever the associated Lagrangian A(Z ) does
not lie in ∆∩Π, automorphisms of prime order of Z have order at most 11, because
the automorphism lifts to XA(Z) and XA(Z)⊥ , of which at least one is smooth, and

a symplectic automorphism of prime order on a deformation of a Hilbert scheme
of two points has order at most 11, see [11, corollary 2.13].

Proposition 5.8. Let Z be a smooth ordinary GM variety of dimension 3 and
G ⊂ Aut(Z). Then there exists a group H among

1, A4, G4, A5, Z/kZ or Dk for k ≥ 2 (17)

and r ≥ 1 such that G sits in an exact sequence 1 → Z/rZ → G→ H → 1.

Proof. The Grassmannian hull MZ is smooth since Z is three-dimensional and
Aut(Z,P(W )) = Aut(Z) since Z has Picard rank one. By [14, theorem 6.6], there
is a short exact sequence
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1 → C4 oC∗ → Aut(MZ)
π−→ PGL(2,C) → 1, (18)

thus G is an extension of H = π(G) by N = G ∩ (C4 oC∗). The group G is finite
by lemma 5.1, so H ⊂ PGL(2,C) has to appear in (17). As for N, it is finite inside
C4 oC∗, so it is isomorphic to a finite subgroup of C∗. �

Remark 5.9. In [29], Debarre and Mongardi produced an explicit example of
EPW sextic with automorphism group isomorphic to PSL(2,F11). This allows them
to find examples of smooth ordinary GM threefolds with automorphism group
isomorphic to Z/11Z, D6, Z/6Z, Z/3Z, D5, D2, Z/2Z.

The spin group Spin(n), for n ≥ 2, is the universal cover of the special orthogonal
group SO(n). It is possible to study finite subgroups of Spin(5) using this definition:
finite subgroups of SO(5) have been classified, see [21, corollary 2].

The quotient by {±1} in the result below comes from the fact that, for any
α ∈ PGL(V5) acting on the Grassmannian hull MZ, a representative in GL(V5) of

the form

(
T̄ 0
tb b

)
is chosen, such that det(T̄ ) = 1. A representative in this form

for α is unique, up to multiplication by −1. See [14, proposition 5.2] for details.

Proposition 5.10. Let Z be a smooth ordinary GM variety of dimension 4 and
G ⊂ Aut(Z). Then G is the quotient by {±1} of a group G̃ such that there is an
exact sequence

1 → Z/rZ → G̃→ H → 1

for some r ≥ 1 and H a finite subgroup inside Spin(5).

Proof. As in proposition 5.8, we just have to impose finiteness for a subgroup of
Aut(MZ). By [14, proposition 5.2], the group G is an extension of a subgroup
of (Sp(4,C)× C∗) /{±1} by some N ⊂ C4. Actually N = {1} as G is finite,
hence G is isomorphic to the quotient of a finite subgroup of Sp(4,C) × C∗. Any
finite subgroup of Sp(4,C) lies inside its maximal compact subgroup, which is the
compact symplectic group Sp(2). In turn, Sp(2) is isomorphic to Spin(5). �

Remark 5.11. In [29], Debarre and Mongardi produced smooth ordinary GM
fourfolds with automorphism group isomorphic to D6, Z/3Z, D5, Z/5Z, D2, Z/2Z.

Corollary 5.12. Consider A ∈ LG(
∧3

V6)−Σ and G ⊆ Aut(YA). Suppose that
G fixes a point [v] ∈ Y k

A or a point [V5] ∈ Y k
A⊥ for k ∈ {1, 2}.

(1) If k= 2, then G sits in an exact sequence 1 → Z/rZ → G → H → 1 for
some r ≥ 1 and H a group in (5.8).

(2) If k= 1, then G is the quotient by {±1} of a group G̃, where G̃ is an extension
of some finite subgroup of Spin(5) by a cyclic group Z/rZ.

Proof. We consider the case of G fixing [V5] ∈ Y k
A⊥ , the dual case follows by corol-

lary 2.6. We denote by Z the ordinary GM variety associated with the Lagrangian
data (V6, V5, A): by theorem 2.17, it is a strongly smooth GM variety of dimension
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5− k. By proposition 4.1, there is an inclusion G ⊂ Aut(Z,P(W )), then the result
follows from propositions 5.8 and 5.10. �

If the associated Lagrangian A(Z ) lies in ∆ or Σ we can be more precise.

Definition 5.13. A plane π ⊂ G(2, V5) is a σ-plane if it is of the form P(v∧V4) for
some four-dimensional vector space V4 ⊂ V5 and v ∈ V4−{0}. A τ -quadric surface
in G(2, V5) is a linear section of G(2, V4) for some four-dimensional V4 ⊂ V5.

Corollary 5.14. Let Z be a smooth ordinary GM variety of dimension 4 and
associated Lagrangian subspace A(Z). If one of the following holds:

• Z contains a σ-plane,
• Z contains a τ -quadric surface,

then there is an exact sequence 1 → N → Aut(Z) → Gn, where n = |Y 3
A(Z)|

(resp. n = |Y 3
A(Z)⊥

|) if Z contains a σ-plane (resp. a τ -quadric surface), and N is

one of the groups in the list at (14).

Proof. By [24, theorem 4.3, Item c] for σ-planes, [24, remark 5.29] and [27, Section
7.3] for τ -quadric surfaces, the associated Lagrangian subspace A(Z ) lies in ∆ or Π.
So there is a strongly smooth Brill–Noether general K3 surface whose associated
Lagrangian subspace is A(Z ). Then we use proposition 5.5. �

The coarse moduli space of smooth GM varieties of dimension 4 is constructed
in [26]. Inside it, the family of ordinary GM varieties containing a σ-plane (resp.
a τ -quadric surface) has codimension 2 (resp. 1), see [24, remark 5.29]; the general
members of both families are rational, see [27, propositions 7.1 and 7.4].
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Appendix A. An involution of the moduli space

We collect some results which are useful for the proof of theorem 3.2, but they are
different in flavour from the rest of the article; for details about the construction
in this section we refer to [28, Section 3.2].
We denote by Λ = U⊕3 ⊕ E8(−1)⊕2 ⊕ 〈−2〉 the abstract lattice isomorphic to

H2(X,Z) for X equivalent by deformation to the Hilbert square on a K3 surface.
We fix a copy of the hyperbolic plane U ⊂ Λ, with canonical basis {e, f}.
We take h = e+f and we call Λh ⊂ Λ the orthogonal complement of h. The group

of isometries of Λ fixing h acts on Λh as Õ(Λh) = {θ ∈ O(Λh) | θ̄ = idAΛh
}, cf. [34,

proposition 3.12, Item i]. We denote Q2 = {[x] ∈ P(Λh⊗C)|x2 = 0, (x, x̄) > 0} and
P2 = Q2/Õ(Λh).

Definition A.1. We denote by M2 the coarse moduli space of 〈2〉-polarized hyper-
Kähler manifolds equivalent by deformation to the Hilbert square on a K3 surface.

The moduli space M2 has dimension 20 and is irreducible; it comes with a period
map M2 → P2 which is an open embedding, see [8, theorem 1.10].

There is an open embedding LG(
∧3

V6)
0
//PGL(6) ↪→ M2, cf. [20, proposition

1.2.1], which induces a period map LG(
∧3

V6)
0
//PGL(6) → P2.

We call g = e− f the orthogonal complement of h in the fixed copy of U and `
a generator of the 〈−2〉-part of Λ: we have Λh = U⊕2 ⊕ E8(−1)⊕2 ⊕ Zg ⊕ Z`.

Definition A.2. We denote by j ∈ O(Λh) the isometry exchanging g and `. For
simplicity, we also call j the induced involution on P2.

The discriminant of Λh is isomorphic to Z/2Z × Z/2Z as a group. We identify
the class of g/2 as (1, 0) and the class of `/2 as (0, 1). Since j̄((1, 0)) = (0, 1), by
[32, corollary 1.5.2] the involution j does not extend to an isometry of Λ.
Since the period map is an open embedding, the involution j induces a birational

involution on M2.

Theorem A.3. [17], theorem 1.1 The involution induced on M2 by j is the
birational involution that sends (XA, DA) to (XA⊥ , DA⊥).

The period map (LG(
∧3

V6)−Σ) → P2 commutes with j and the involution on

(LG(
∧3

V6)−Σ)//PGL(6) sending [A] to [A⊥], see [16] and [19].
We consider now A ∈ Π − (∆ ∪ Σ) and we fix [V5] ∈ Y 3

A⊥ . Let S be the GM

variety associated with (V6, V5, A); we focus on it as the 〈10〉-polarized K3 surface
(S,H ), with H the polarization associated with the embedding in P(W ). The line
bundle H2 − 2δ is big and nef but not ample for a general choice of A.
The period map M2 → P2 extends to a surjective map M◦

2 → P2, where M◦
2 is

the moduli space of hyper-Kähler manifolds with a big and nef divisor whose square

is 2. Similarly, the period map on LG(
∧3

V6)
0
//PGL(6) extends to a period map
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(LG(
∧3

V6)−Σ)//PGL(6) → P2. The period point of [A] is the image of the period
point of (S[2],H2 − 2δ) via the involution j, cf. [19] (but beware, A is actually the
dual of the Lagrangian subspace that O’Grady called A in his article).
As an easy consequence, it is possible to compute the Néron–Severi of XA from

the one of S.

Lemma A.4. The involution j induces an isometry NS(S[2]) ∩ (H2 − 2δ)⊥ ∼=
NS(XA) ∩ D⊥

A , in particular the Néron–Severi groups of XA and S[2] have same
rank.
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