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THE NON-EXISTENCE OF FINITE PROJECTIVE 
PLANES OF ORDER 10 

C. W. H. LAM, L. THIEL AND S. SWIERCZ 

1. Introduction. A finite projective plane of order n, with n > 0, is a col­
lection of n2 + n + 1 lines and n2 + n + 1 points such that 

1. every line contains n + 1 points, 
2. every point is on n + 1 lines, 
3. any two distinct lines intersect at exactly one point, and 
4. any two distinct points lie on exactly one line. 
It is known that a plane of order n exists if n is a prime power. The first value 

of n which is not a prime power is 6. Tarry [18] proved in 1900 that a pair of 
orthogonal latin squares of order 6 does not exist, which by Bose's 1938 result 
[3] implies that a projective plane of order 6 does not exist. The celebrated 
Bruck-Ryser theorem [4] provided another explanation of the non-existence of 
the plane of order 6. The next open value is n — 10. This note reports the result 
of a computer search for 19-point configurations, which, when taken together 
with previous results, implies that a plane of order 10 does not exist. This is the 
first example which shows the necessary condition of the Bruck-Ryser theorem 
is not sufficient. 

In Section 2, we give the basic definitions and a summary of the previous 
work that has a direct implication on this non-existence result. In Section 3, we 
present some further details of the latest computer search, together with some 
of its raw data. In Section 4, we speculate on the possibility of the existence of 
an undiscovered plane of order 10 that is missed by all the computer searches. 

2. Definitions and summary of previous work. One way to represent a 
projective plane is to use an incidence matrix A of size n2 + n + 1 by n2 + n + 1. 
The columns represent the points and the rows represent the lines. The entry Ay 
is 1 if point j is on line /; otherwise, it is 0. In terms of an incidence matrix, 
the property of being a projective plane is translated into: 

1. A has constant row sum n + 1, 
2. A has constant column sum n+\, 
3. the inner product of any two distinct rows of A is 1, and 
4. the inner product of any two distinct columns of A is 1. 
In 1970, several researchers [1,15] started studying the binary error-correcting 

code associated with a projective plane of order 10. Let A be the incidence matrix 
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of such a plane. Let S be the vector space generated by the rows of A over F2. 
A vector in S is a called a codeword. The weight of a codeword is the number 
of l's in the codeword. Let H>/ be the number of codewords of weight /. We 
define the weight enumerator of S to be 

111 

Each codeword of weight / corresponds to a configuration with / points; please 
see [8] for more detail. We shall use the terms codeword of weight i and i-point 
configuration interchangeably. 

In [1], it was noted that the weight enumerator of S is uniquely determined 
once wi2, W15, and w\6 are known. In [15], Mac Williams, Sloane, and Thompson 
showed, using a computer, that w\$ = 0. In [5], Bruen and Fisher pointed out 
that W15 = 0 follows from an earlier computing result by Denniston [7]. In 1983, 
we completed a computer search which showed that a codeword of weight 12 
cannot be completed to a plane [10]; and so, w\2 — 0. 

Carter [6] in 1974 showed that there are six starting 16-point configurations. 
He completed a computer search for four of the cases and part of the fifth. 
In 1985, we completed the remaining cases [12]. None of the cases can be 
completed to a plane; hence, w\^ = 0. 

Since W12, W15, and w\$ are all known, one can compute the weight enumera­
tor, for example, by using the formula in [16]. In particular, if a projective plane 
of order 10 exists, then it must contain 24,675 codewords of weight 19. Hence, 
the question of the existence of this projective plane can be settled by searching 
for 19-point configurations. 

Let v be a set of 19 points which form a codeword of weight 19. In [8], Hall 
showed that there are 6 heavy lines each containing 5 points of v, 37 triple lines 
each containing 3 points of v, and 68 single lines each containing 1 point of v. 

There are 66 different incidence structures of the 6 heavy lines with the 19 
points of v. These are our starting cases. In [11], 21 of these cases are eliminated 
by theoretical arguments. The remaining 45 cases are eliminated by the latest 
computer search. 

3. Methodology and results. In this section, we describe briefly what the 
computer programs do and present some of the results. Most of the computing 
techniques for this search have been covered in [14, 17] and we shall not repeat 
them. 

Each starting case of a 19-point configuration is a 6 by 19 submatrix of the 
incidence matrix. Next, we find all the possible incidence of these 19 points on 
the triple lines. These incidence on the heavy and triple lines form a 43 by 19 
submatrix, which is called an A2. Two A2's are isomorphic if one can be changed 
into another by independent row and column permutations. Isomorphism testing 
is performed to keep only the non-isomorphic A2's. 
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Next, we complete each A2 to a 111 by 19 submatrix. By using row permu­
tations, there is only one 111 by 19 submatrix for each A2. We then work on 
the remaining portion of the incidence matrix. 

Before we continue the discussion, let us introduce a few new terms. The 19 
points (columns) that form the weight 19 codeword are called the inside points 
(columns). The remaining points (columns) are the outside points (columns). 
Each heavy line contains six outside points. The incidence of these 6 points 
with all the lines forms a block. 

For each A2, we choose one of the heavy lines to define our first block (Bl). 
After constructing a B1, we choose another heavy line and construct a block 2 
(B2). Here, things become complicated. If these two heavy lines intersect at an 
outside point, then block 2 contains only 5 new columns; otherwise, it contains 
6. For efficiency purposes, it is much better to choose a pair of heavy lines with 
an outside intersection. After #2, we choose a third heavy line and construct 
block 3 (#3). B3 may define either 4, 5 or 6 new columns. 

Similarly, we extend the incidence matrix to blocks 4 and 5. In general, we 
choose the blocks to concentrate the outside intersections in the first few blocks. 

Of course, there may not be any outside intersections. In fact, there are eight 
starting cases with no outside intersections, and they are the difficult cases which 
were handled by the CRAY Supercomputer. 

Table 1 lists the cases with outside intersections. These cases are easy enough 
to be handled by a collection of five VAX computers at Concordia. The cases 
were searched in the order of increasing difficulty. In order to reduce the amount 
of time required by the last few difficult cases, we used an extra partial isomor­
phism testing. Let v be a codeword of weight 19 and let s and t be two heavy 
lines with an outside intersection. Then the new codeword v+5 + fis again of 
weight 19 and its incidence pattern with a new set of 6 heavy lines must be one 
of the 66 starting cases. If this new pattern corresponds to one which is already 
done, there is no need to investigate this pattern any further. This method helped 
to reduce the search for the following cases: 7, 9, 15, 17, 24, 33, 48, and 55. 
Even with this reduction, the total computing time used at Concordia was the 
equivalent of 800 days of CPU time on a VAX-11/780. 

Table 2 lists the cases with no outside intersections, which were run on a 
CRAY-1A and took an estimated 2,000 hours of computing. In both tables, we 
also list the number of non-isomorphic A2's as well as the counts of the number 
of times the computer programs successfully completed the incidence matrix to 
the end of a block. Most of the work was done in extending a completed B2 
to a 53. We estimated that the program investigated 2 x 1014 cases to find the 
£3's. 

After trying out all the cases, we have not found any completion to a full 
incidence matrix. In fact, we have no found any matrix which completes to 
block 5. Hence, we have to conclude sadly that a plane of order 10 does not 
exist. 
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TABLE 1 

Results for cases with outside intersections 

case A2 Bl B2 B3 B4 

3 2,501 49,041 185,786 50,865,248 26 

7 13,211 178,152 301,680 102,426,490 51 

9 87,807 514,241 1,180,342 372,135,063 187 
11 7,397 22,526 446,365 188,555,861 3,335 

12 10,966 310,393 610,626 220,590,263 96 

13 11,961 281,320 595,027 207,555,111 143 

15 43,719 410,258 795,130 257,099,099 130 
16 5,958 24,516 377,523 153,970,087 2,862 

17 9,110 110,560 184,179 67,576,360 43 
18 3,406 112,821 225,932 76,343,970 33 
22 18,947 286,239 1,143,150 380,012,245 165 
23 8,033 19,273 448,324 167,234,836 4,073 

24 17,102 221,488 391,940 135,608,176 90 
25 21,180 397,053 1,185,339 394,649,869 167 

26 18,970 43,446 1,025,757 407,173,889 6,981 

27 1,759 628 66,842 10,784,064 7,527 

33 16,509 170,052 377,376 128,933,304 85 
34 673 3,331 48,697 6,506,350 5,007 

36 5,166 163,255 428,497 132,680,375 60 
37 3,215 10,941 190,913 75,742,622 1,282 

39 1,010 6,126 60,782 8,947,768 6,252 

41 10,102 237,526 648,403 204,246,401 92 
42 1,679 9,574 122,205 16,577,023 12,333 

43 4,855 20,110 359,588 91,645,137 1,779 

46 50 56 4,287 648,628 520 
47 912 5,203 80,481 18,595,465 364 
48 863 7,743 14,025 2,991,378 40 
50 1,064 17,050 84,511 28,227,676 18 
51 3,685 7,538 196,506 77,618,882 1,656 

53 182 182 70,074 10,792,612 9,505 

55 3,656 49,247 138,079 44,283,657 20 
56 1,554 5,215 57,551 7,350,159 5,425 

58 4,329 14,754 304,865 111,916,027 2,004 

60 90 70 6,609 965,031 741 
63 196 1,114 19,731 2,349,364 139 
65 787 15,514 40,894 7,374,077 151 
66 662 4,162 50,324 6,667,582 5,110 

Total 343,266 3,730,718 12,468,340 4,177,640,149 78,492 

4. Correctness speculations. Because of the use of a computer, one should 
not consider these results as a "proof", in the traditional sense, that a plane of 
order 10 does not exist. They are experimental results and there is always a 
possibility of mistakes. Despite all these reservations, we are going to present 
reasons that the probability of the existence of an undiscovered plane of order 
10 is very small. 
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TABLE 2 

Results for cases without outside intersections 

case A2 Bl B2 B3 B4 

1 20,129 4,221,458 6,791,584,644 3,168,411,676 365,554 
2 11,861 1,927,254 4,569,912,128 2,082,460,720 185,301 
5 5,219 1,227,914 1,703,821,550 1,714,000,011 45,195 
6 111,538 21,252,105 40,489,180,403 16,906,372,320 1,564,123 
8 110,879 20,485,157 39,075,289,979 18,210,863,021 1,659,180 
20 27,221 4,877,425 9,609,727,470 5,405,054,514 605,625 
21 9,410 1,350,785 3,275,119,750 1,832,805,184 168,613 
49 101 14,272 37,047,849 20,058,399 1,813 

Total 296,358 55,356,370 105,551,683,773 49,340,025,845 4,595,404 

There are two types of possible mistakes, programming errors and hardware 
errors. Let us first consider programming errors, which are by far the most com­
mon. We use two methods to try to avoid them. Whenever possible, we use two 
different programs and compare the results. The sixty-six starting configurations 
are generated by two different programs and are also checked by hand. We also 
have a simple but slow version of the program that attempts to extend an A2 to a 
complete plane. We run both programs for a few selected A2's and we compared 
the counts at the block boundaries. We find no discrepancy, which gives us faith 
in the programs. The second method we employ is to apply internal consistency 
checking when generating the A2's, which is described in more general terms 
in [13]. Basically, when performing isomorphism testing, one can predict the 
number of times that each A2 is generated by the program. By keeping track of 
the count, we can at least check that the program performs as expected. Even 
with these safeguards, the only definitive statement that we can make is that 
there is no hint of any errors in our programs. We hope that someone else will 
do an independent verification of the results. Towards this end, we have kept a 
careful log of all the searches. 

The second type of mistake is an undetected hardware error. The CRAY-1A 
is reported to have such errors at the rate of about one per one thousand hours 
of computing. A common error is the random changing of bits in a computer 
word, which may mean the loss of a branch of the search without us knowing 
about it. In fact, we did discover one such error. After a hardware failure, we 
reran the 1,000 A2's just before the malfunction. The counts for the last A2 
processed before the failure had changed, signalling an undetected hardware 
error. Yet, if an undiscovered plane of order 10 exists, then it contains 24,675 
codewords of weight 19. This means that the plane can be constructed as the 
extension of 24,675 A2's. If all the 24,675 A2's are isomorphic and an undetected 
hardware error happens to affect this A2, then our answer is wrong. Since there 
are about half a million A2's, the probability of a random undetected hardware 
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error affecting this special A2 is about one in half a million. Since the plane 
is known to have a trivial collineation group [2, 9, 19], it is more likely that 
there are at least two non-isomorphic A2's amongst the 24,675 cases. In this 
case, the probability that they are all affected by undetected hardware errors is 
infinitesimal. 
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