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Abstract

The uncertainty of glacier change projections is largely influenced by glacier models. In this
study, we focus on temperature-index mass-balance (MB) models and their calibration. Using
the Open Global Glacier Model (OGGM), we examine the influence of different surface-type
dependent degree-day factors, temporal climate resolutions (daily, monthly) and downscaling
options (temperature lapse rates, temperature and precipitation corrections) for 88 glaciers
with in-situ observations. Our findings indicate that higher spatial and temporal resolution obser-
vations enhance MB gradient representation due to an improved calibration. The addition of sur-
face-type distinction in the model also improves MB gradients, but the lack of independent
observations limits our ability to demonstrate the added value of increased model complexity.
Some model choices have systematic effects, for example weaker temperature lapse rates result
in smaller projected glaciers. However, we often find counter balancing effects, such as the sen-
sitivity to different degree-day factors for snow, firn and ice, which depends on how the glacier
accumulation area ratio changes in the future. Similarly, using daily versus monthly climate data
can affect glaciers differently depending on the shifting balance between melt and solid precipi-
tation thresholds. Our study highlights the importance of considering minor model design dif-
ferences to predict future glacier volumes and runoff accurately.

1. Introduction

Current glacier retreat is unprecedented considering the last 2000 years (IPCC, 2023). Global
glacier mass loss is projected to continue into the 21st century in response to climate change
and is linearly related to temperature change (Edwards and others, 2021; Rounce and others,
2023). Glaciers have been and will continue to be a major source of sea level rise in the 21st

century (e.g. Frederikse and others, 2020; Edwards and others, 2021; IPCC, 2023). Glaciers are
also important regulators of water availability in many regions of the world (Kaser and others,
2010; Huss and Hock, 2018) and glacial runoff can potentially buffer droughts (Pritchard,
2019) even in regions where runoff declines over the 21st century (Ultee and others, 2022).
Improving glacier evolution models is thus critical to better understand how glaciers will
respond to climate change and enhance the accuracy of predictions regarding associated
impacts.

The Glacier Model Intercomparison Project Phase 2 (GlacierMIP2, Marzeion and others,
2020) partitioned various sources of uncertainty and found that the primary source of uncer-
tainties of our projections in the first half of the century comes from differences in the glacier
models. However, the study could not disentangle the choices in model design nor the specific
processes responsible for these discrepancies. Our study focuses on a central component of
glacier evolution models (Zekollari and others, 2022): the mass-balance (MB) model and its
calibration.

Most large-scale glacier models (9 out of 11 models in GlacierMIP2) require only tempera-
ture and precipitation climate data. Accumulation is estimated by snowfall (i.e. precipitation
below a certain temperature threshold) and ablation by temperature-index models (e.g.
Hock, 2003), where melt is computed by multiplying a calibrated degree-day factor by the
sum of temperatures above a chosen threshold. This simple but reliable approach is still preva-
lent due to significant uncertainties in the local climate forcings and a lack of temporally and
spatially-resolved MB observations that would be necessary to calibrate the free parameters in
more complex MB models.

The temperature-index models (in the following referring to the ablation and accumulation
part of the MB model) used in the literature vary based on their temporal resolution, climate
downscaling approaches, representation of surface conditions and the processes that are expli-
citly modelled. While some temperature-index models of large-scale studies use monthly cli-
mate data (Marzeion and Hofer, 2012; Maussion and others, 2019; Rounce and others, 2020b),
others also include the daily temperature standard deviation (Anderson and Mackintosh, 2012;
Huss and Hock, 2015; Zekollari and others, 2019). Recent General Circulation Models
(GCMs) (e.g. ISIMIP3b, Lange, 2019) provide daily data, opening opportunities to evaluate
the impact of temporal resolution of forcing data on glacier projections. Some models use dif-
ferent degree-day factors for different surface types (e.g. snow, firn, ice and debris cover; Radić
and others, 2014; Huss and Hock, 2015; Zekollari and others, 2019; Rounce and others, 2020a,
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2020b; Compagno and others, 2022), while others do not
(Marzeion and Hofer, 2012; Maussion and others, 2019).
Distinguishing surface types is more realistic, as the degree-day
factor of snow is generally smaller than that of ice to account
for the difference in albedo (e.g. Braithwaite, 2008); however,
this distinction introduces more unknown parameters.
Additionally, using two or three surface types may not realistically
represent the continuous evolution of albedo during summer melt
(Marshall and Miller, 2020). To our knowledge, no systematic
comparison of these temperature-index model variants has been
performed for data-scarce situations typical of large-scale studies
where hundreds or thousands of glaciers are considered at once.

In previous model intercomparisons, the calibration data also
varied considerably by model, ranging from using in-situ direct
glaciological observations from the WGMS (2020) for about 300
glaciers (e.g. Marzeion and Hofer, 2012; Maussion and others,
2019; Shannon and Others, 2019) to regional mean satellite geo-
detic MB estimates (e.g. Anderson and Mackintosh, 2012; Huss
and Hock, 2015; Sakai and Fujita, 2017). The different methods
used to extrapolate the calibrated parameters between glaciers
result in large uncertainties (e.g. Maussion and others, 2019).
Using glacier-specific, instead of regional, mean geodetic MB esti-
mates can capture sub-regional spatial variability and offers unpre-
cedented opportunities for model calibration (Zekollari and
others, 2019; Rounce and others, 2020b; Compagno and others,
2021; Rounce and others, 2023). The global geodetic glacier dataset
of Hugonnet and others (2021) provides a mean specific glacier
MB estimate between 2000 and 2019 for almost every glacier on
Earth (>200 000 glaciers). Although Hugonnet and others (2021)
also provide annual estimates, the uncertainties are too large to
be used. By changing only one model option (i.e. a temperature-
index model choice or calibration strategy) at a time within the
Open Global Glacier Model (OGGM) framework, we provide
insight into glacier model behaviour differences that cannot be
captured in large-scale glacier model intercomparisons.

Since glacier evolution models have multiple MB model para-
meters, the use of a single observation per glacier for calibration
causes the model to be overparameterised (Rounce and others,
2020b) and results in multiple combinations of MB model para-
meters providing similar agreement between the model and
observations (equifinality). This problem is usually ignored by
either fixing global parameters (Marzeion and Hofer, 2012;
Maussion and others, 2019) or by selecting parameter values
sequentially in order of their expected uncertainty (Huss and
Hock, 2015; Zekollari and others, 2019; Compagno and others,
2021). A first attempt to estimate the uncertainty arising from
equifinality was implemented in Rounce and others (2020a,
2020b) using an empirical Bayesian inverse model, which has
the advantage of taking both the equifinality and observational
uncertainties into account.

We aim to systematically assess the impact of specific model
design choices on both the calibration procedure and glacier
change projections. Specifically, we seek to determine the poten-
tial added value of more complex temperature-index model var-
iants over simpler and less parameterised approaches. Our
model options include the temperature-index model choices of
the temporal resolution of climate data (monthly or daily), near-
surface temperature lapse rates and surface-type dependent
degree-day factors, as well as the calibration strategies of up to
three free temperature-index model parameters. We focus on 88
glaciers with long-term observations of annual, seasonal and, in
some instances, elevation-dependent climatic mass balance from
the WGMS (2020). Our study concludes with insights into the
future potential of model calibration based on soon-to-be avail-
able data sources (e.g. Miles and others, 2021; Jakob and
Gourmelen, 2023).

2. Input Data and Methods

2.1. Model setup and input data

2.1.1. OGGM setup
We use the open-source numerical modelling framework OGGM
(Maussion and others, 2019), which has been applied in several
global and regional studies (e.g. Furian and others, 2022;
Gangadharan and others, 2022; Li and others, 2022; Yang and
others, 2022; Malles and others, 2023, for most recent examples)
and is well suited for our model intercomparison thanks to its
modular structure. Here, we focus on the changes made to
OGGM’s default configuration as of version 1.5.3. For this
study, OGGM uses glacier outlines from the Randolph Glacier
Inventory (RGIv6.0, Pfeffer and others, 2014) and a digital eleva-
tion model to derive elevation-band flowlines (as in Huss and
Farinotti, 2012; Zekollari and others, 2019; Werder and others,
2020). We favour elevation-band flowlines (e.g. as in Malles and
others, 2023) over multiple geometrical centerlines (also available
in OGGM, Maussion and others, 2019) as they are computation-
ally cheaper and simplify the calibration. Glacier dynamics are
represented by a 1D shallow-ice flowline model in OGGM assum-
ing a trapezoid bed shape. Ice thickness is estimated by applying a
mass-conservation approach (Farinotti and others, 2009, 2019;
Maussion and others, 2019) and assuming the glacier outline
and digital elevation model have the same date. For this study,
we calibrate the creep parameter A individually for each glacier
and for each temperature-index model and calibration option
(see Fig. S1) to match the ice volume estimates of Farinotti and
others (2019) for every glacier at the RGI year (for many glaciers,
close to 2000). More details about the OGGM are available on the
model documentation website (http://docs.oggm.org) and in
Maussion and others (2019).

2.1.2. General temperature-index model and parameter setup
All temperature-index model choices in this study are based on
the original temperature-index model of OGGM presented in
Maussion and others (2019), which itself builds upon
Marzeion and Hofer (2012). Its formulation is similar to the
majority of other large-scale models (references therein): The
(monthly or daily) mass balance Bi for an elevation z is esti-
mated as

Bi(z) = Psolid
i (z)− d f (snow/ice) ·max Ti(z)− tmelt, 0( ). (1)

Psolid
i (z) is the solid precipitation (kgm−2 month−1 or kgm−2 day−1),

Ti the air temperature (◦C) and tmelt the temperature threshold
above which melt is assumed to occur. We use tmelt = 0 ◦C for all
model choices in our study instead of the OGGM default of −1 ◦C,
which was only tuned for the reference monthly model. df is the
degree-day factor of a specific surface type (kg m−2 K−1 month−1

or kg m−2 K−1 day−1). The fraction of solid precipitation is esti-
mated from the monthly or daily mean temperature. Precipitation
is assumed to be entirely solid below 0 ◦C and all liquid above
2 ◦C. In between, the solid precipitation proportion changes
linearly.

Three free parameters characterise our temperature-index
model variants. In addition to the degree-day factor, df, which
can vary for different snow ages and ice, two parameters are com-
monly considered as part of the temperature-index model but
actually serve as local climate downscaling or bias correction
tools. Precipitation is adjusted using a fixed multiplicative scaling
precipitation factor (pf), and temperature is corrected by a tem-
perature bias (tb), both assumed to be constant in time. These
parameters are essential because the model would often fail to
reproduce the observed glacier MB without them. Note that
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these model parameters serve not only as downscaling parameters
but also account for local climate biases, incorporate missing MB
processes (such as debris cover and avalanches), and address inac-
curacies in MB observations (see Rounce and others, 2020b). To
downscale the temperature and precipitation data for each eleva-
tion band in our temperature-index model, we utilise a tempera-
ture lapse rate and downscale the data from the nearest gridpoint
(further details in Section 2.2). Unlike other models (Huss and
Hock, 2015; Rounce and others, 2020a), we do not apply any pre-
cipitation gradient due to the lack of observation data necessary to
calibrate and justify such an approach.

2.1.3. Climate data
The W5E5v2.0 climate dataset (Lange and others, 2021) is used
for the historical period of 1979–2019, while the five primary
GCMs from phase 3b of the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP3b, Lange, 2019, 2022) are
used for the future period of 2020–2100. The chosen GCMs
(GFDL-ESM4, UKESM1-0-LL, MPI-ESM1-2-HR, MRI-ESM2-0,
IPSL-CM6A-LR) are based on phase 6 of the Coupled Model
Intercomparison Project (CMIP6, Eyring and others, 2016).
Both W5E5 and ISIMIP3b GCMs are available at a daily reso-
lution and have a spatial resolution of 0.5◦ over the entire
globe. Generally, GCMs have to be bias-corrected to approxi-
mately coincide with the climate dataset used for model calibra-
tion. In this study, we did not apply an additional bias
correction as the statistically downscaled GCMs from ISIMIP3b
are already internally bias-adjusted to W5E5 over the period
1979–2014 (Lange, 2019). Additionally, the bias adjustment
from ISIMIP3b is more robust for extreme values than the
“delta”-method that is commonly used in OGGM and other mod-
els (e.g. Zekollari and others, 2019). For projections, we run the
five GCMs from ISIMIP3b but only show the median output of
the five glacier change simulations for the various model options,
as multi-GCM uncertainty is not a focus of this study. We run the
simulations for two Shared Socioeconomic Pathways (SSPs): the
low-emission scenario SSP1-2.6 and the very high-emission scen-
ario SSP5-8.5, which correspond to a global temperature increase
by 2100 compared to preindustrial times of 1.7◦C and 4.6◦C and a
global glacier area-weighted temperature increase of 3.1◦C and
8.0◦C, respectively.

2.1.4. Geodetic and in-situ mass balance observations
The main MB observations used for calibration are the globally
available geodetic estimates from Hugonnet and others (2021),
which serve as the primary reference for global studies (Rounce
and others, 2023). However, higher spatially and temporally
resolved in-situ direct glaciological observations exist from the
WGMS (2020) for around 300 glaciers. In the period of the
applied climatic dataset (1979–2019), estimates of interannual
MB variability of at least 10 years exist for 180 glaciers, and winter
MB observations of at least five years exist for 118 glaciers. There
are 95 glaciers with both sufficient winter MB and interannual
MB variability data. MB profile data (with at least five years
and five elevation bands) exist for 93 glaciers. These additional
observations will be used to calibrate a glacier-specific precipita-
tion factor and/or temperature bias alongside the degree-day
factor.

2.2. Temperature-index model choices

In total, we explore 18 combinations of temperature-index model
choices (Table 1) that we implemented into the OGGM frame-
work and are all available to OGGM users (see Code & Data avail-
ability section).

2.2.1. Temperature lapse rate choice
The temperature is adjusted to the flowline gridpoint altitude by a
lapse rate. We set the temperature lapse rate either to (i) a con-
stant value (−6.5 K km −1, reference model in OGGM) or (ii)
extract it from pressure levels in ERA5 so that it is variable spa-
tially and seasonally (i.e. we apply twelve constant monthly tem-
perature lapse rates as in Marzeion and Hofer, 2012; Huss and
Hock, 2015; Rounce and others, 2020a).

2.2.2. Temporal climate resolution choice
Air temperature and precipitation data are used to force the
model. We have three choices for the climate data based on the
temporal resolution and variability (Table 1): (i) monthly data,
(ii) pseudo-daily data, (iii) daily data. The monthly choice is the
simplest, while the advantage of the pseudo-daily and daily
choices is that melt can occur even if the monthly mean tempera-
ture is below 0◦C.

Variants of the pseudo-daily choice are currently used in
large-scale temperature index models (Huss and Hock, 2015;
Zekollari and others, 2019), while the daily choice is less used
(Anderson and Mackintosh, 2012) due to data availability. The
pseudo-daily choice assumes daily temperatures are normally
distributed over one month. We employ a quantile method to
sample the normal distribution consistently and estimate monthly
melt. To ensure comparability, we use the same method as in
previous studies (e.g. in Huss and Hock, 2015) by applying the
same daily temperature standard deviation computed from the
past climate (here: 2000–2019) to future climate (i.e. we apply
twelve constant daily standard deviations over the entire period).
Note that in a warming world, the pseudo-daily choice may over-
estimate daily temperature standard deviations as temperature
variances are expected to decrease (specifically in the Northern
Hemisphere winter, Screen, 2014; Tamarin-Brodsky and others,
2020).

The daily choice estimates solid precipitation from the daily
temperature, while the monthly and pseudo-daily choices derive
solid precipitation from the monthly mean temperature. Hence,
the monthly and pseudo-daily choices yield the same solid pre-
cipitation amount but differ in melt quantities, while the daily
choice results in varying melt and solid precipitation amounts
compared to the monthly choice.

2.2.3. Surface-type distinction choice
Over snow and firn surfaces, less melt occurs for the same tem-
perature compared to bare ice surfaces due to differences in
albedo (e.g. Braithwaite, 2008). We track snow age with a new
snow ageing bucket system (see Appendix A.1 for more detail)
to distinguish between snow, firn and ice at each elevation
band, thereby enabling the use of different degree-day factors
for these surface types. We assume a degree-day factor ratio of
0.5 between new snow and ice (as in Huss and Hock, 2015;
Zekollari and others, 2019) but acknowledge that this is arbitrary
(Rounce and others, 2020a). As the snow ages, we assume the
ratio of the older snow to the ice degree-day factor increases
every month, i.e., the assumed ratio of 0.5 is only applied for
new snow and transitions to 1 over six years (i.e. the snow
becomes ice).

The speed of how the degree-day factor transitions from
snow to ice surfaces is not well known. We therefore compare
three choices to determine the impact on model performance
and glacier projections: (i) no degree-day factor change, (ii) a
negative exponential increasing degree-day factor with snow age
where 63% of the changes occur in the first year or (iii) a linearly
increasing degree-day factor with snow age (Appendix, Fig. 8d).
An argument for using an exponential degree-day factor
transition with time is that Marshall and Miller (2020) found a
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linear relationship between degree-day factor and albedo, and
albedo can be parameterised to decay exponentially with time.

2.3. Temperature-index model calibration strategies

We developed five calibration strategies for glaciers with add-
itional in-situ data to calibrate the three free parameters
(Table 2). We set the allowed ranges of the degree-day factor to
0.33–33 kg m−2 K−1 day−1, precipitation factor to 0.1–10, and
temperature bias to −8–8 K. All five strategies calibrate the
temperature-index model to match the 20-year average glacier-
specific geodetic observation (2000–2019) from Hugonnet and
others (2021). Two strategies also use the mean winter MB
(C1, C2), and two use the interannual variability (standard
deviation) of annual MB (C1, C3). The precipitation factor varies
on a glacier-per-glacier level for all strategies except for C4, and
the temperature bias is non-zero only for C1. For C4, we use a
different precipitation factor for every temperature-index
model choice, which is set to be constant for all glaciers
(median precipitation factor from C3). For C5, the precipitation
factor depends on the glacier’s winter precipitation based
on a logarithmic relation found from C2 between winter precipi-
tation and glacier-specific precipitation factor (Fig. S2a). This
correction is arguably more reasonable than a constant precipita-
tion factor because locations with a high baseline precipitation
value are not corrected towards unrealistic amounts (Fig. S2b).
The precipitation factor in C5 can be different for every glacier
but is the same for every temperature-index model choice
(Fig. S3).

Lower calibration strategy numbers use more observational
data, thus reducing the number of glaciers that can be investigated
due to calibration data availability. In Section 3.2.1, we will show
that the precipitation factor influences interannual MB variability
and winter MB more than the temperature bias. Therefore, we
decided that C2 and C3 have a variable precipitation factor but
do not apply any temperature bias. C4 is similar to how the pre-
cipitation factor was calibrated in OGGM, and a variant of C5 is
the new way of calibrating the precipitation factor (OGGM v1.6).

Since we want to model the total MB to assess the impacts of
glacier change (e.g. seasonal runoff and sea level rise), all calibra-
tion and temperature-index model options are tuned to match the
total MB (i.e. average geodetic MB) and not the in-situ average
climatic MB (the two are sometimes inconsistent for numerous
reasons, e.g. Klug and others, 2018). The in-situ data is primarily
used for estimates of the interannual variability, altitude-
dependent MB profile and winter MB.

In total, 88 of 95 potential glaciers with available data could be
calibrated for all five calibration strategies and all temperature-
index model choices when using the applied parameter ranges.
All glaciers worldwide could be calibrated using C4 and C5.
Some of the failing glaciers can be recalibrated by varying the
temperature bias (not done in this study in order to enable a bet-
ter comparison). We will compare the different options on the 88
common-running glaciers, of which 84 come from the Northern
Hemisphere (28 from Central Europe and 19 from Scandinavia,
see Fig. S4). The MB profile data is only available for 53 out of
the 88 glaciers and has large uncertainties, so we only use it as
an independent validation measure.

3. Model performance and climate sensitivities

Here, we explore the influence of various model options, includ-
ing temperature-index model choices (Section 3.1, only using C5)
and calibration strategies (Section 3.2), on the temperature-index
model output. The glacier area is assumed constant at the RGI
date such that changes in glacier geometry and potential elevation
change feedbacks are not considered to better isolate the differ-
ences between options.

3.1. Temperature-index model choice differences

3.1.1. Temperature-index model choice influence on calibrated
parameter combinations
The calibrated parameter combinations exhibit considerable var-
iations between the temperature-index model and calibration
options. To better understand these intricate interactions, we pre-
sent the disparities in model parameters for the 88 glaciers where
all options could be calibrated (Fig. 1). Our emphasis lies on the
calibration strategy C5, with information for C1−4 provided in the
supplementary material (Section S1.1).

Table 1. Temperature-index model choices used in this study, summing to 18 combinations

Model choice Choice name Details

Temperature lapse rate constant reference, −6.5 K km−1

variable spatially & seasonally variable, but constant over years, derived from ERA5
Temporal climate
resolution

monthly reference, monthly temperature and precipitation
pseudo-daily superimposed daily temperatures from daily standard deviation (spatially & seasonally variable, but constant over

years), monthly precipitation
daily daily temperature & precipitation

Surface-type distinction no reference, mixed snow-ice degree-day factor (df) used
yes (neg. exp.) negative exponential increase of df, snow with snow age, df, ice applied after six years, df, fresh snow = df, ice ⋅ 0.5,

see Appendix, Fig. 8
yes (linear) linear increase of snow df with snow age, everything else same as in neg. exp.

The simplest combination denoted by italics (constant temperature lapse rate, monthly climate data and no surface-type distinction) is used as reference.

Table 2. Calibration strategies for glaciers with additional in-situ direct
glaciological measurements from the WGMS (2020)

Strategies &
glaciers with
data

Parameter value Target variable (for calibration)

df pf tb
Geodetic
mean

Winter MB
mean

Annual MB
std.

C1 n = 95 cal cal cal x x x (+10%)
C2 n = 118 cal cal 0 x x −
C3 n = 180 cal cal 0 x − x
C4 n = 247a cal constant,

median of C3
0 x − (indirect)

C5 n = 247a,b cal F(winter prcp.),
cal by C2

0 x (indirect) −

a could be applied on worldwide glaciers as it only uses the glacier-specific geodetic
estimate
b Section 3.1 only uses C5
“Cal” means this parameter is calibrated glacier-specifically, and “x” means this
observational target variable is used and matched. df stands for degree-day factor, pf for
precipitation factor, tb for temperature bias, prcp. for precipitation and std. for standard
deviation. For C4 and C5, some in-situ observational data are used for pre-calibration; they
are therefore marked as “indirect”. When comparing the options, we use only the 88 glaciers
that can be calibrated for all strategies and temperature-index model choices given the
assumed parameter ranges.
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The calibrated degree-day factor is smaller for the variable
lapse rate choice than the constant choice (valid for all calibration
and other temperature-index model change options, Fig. 1,
Fig. S3). The variable lapse rate is, in our case, for most glaciers
and months, less negative than the constant choice (median of
−5.6 K km−1 versus −6.5 K km−1). Therefore, the glacier is forced
with higher temperatures using the variable lapse rate choice as
the lapse rate is less negative, and the glaciers are usually higher
than the climate gridpoint altitudes, which explains the smaller
degree-day factors.

For the three temporal climate data resolution choices, the
degree-day factor is lowest for the pseudo-daily and daily data

and highest for monthly data (Fig. 1). We expect a smaller degree-
day factor for the pseudo-daily and daily data as melt can occur
for these choices even if monthly mean temperatures are slightly
below the melt temperature threshold.

For the choice without surface-type distinction, we find that
the “mixed” degree-day factor (i.e. for both snow and ice) is
lower than the one used for ice in models with surface-type dis-
tinction (Fig. 1). This is expected since the higher (ice) degree-day
factor is only applied for ice surfaces, and a lower degree-day fac-
tor (up to a factor of 0.5) is applied for snow or firn surfaces that
have a higher albedo (Section 2.2). Using a snow degree-day factor
that increases faster in the first year (via a neg. exp. increase),
results in a smaller ice degree-day factor than assuming a linear
increase (Appendix, Fig. 8).

3.1.2. Climate sensitivities of temperature-index model choices
Despite calibrating the temperature-index model choices to the
same observations, the temperature-index model choices display
variable sensitivities to climate anomalies. To isolate these differ-
ences, we analyse the direct drivers of temperature-index models
similar to Bolibar and others (2022); Vincent and Thibert (2023),
i.e., cumulative positive degree-days (CPDD) and solid precipita-
tion. We consider all 217 glaciers that can be calibrated under C5

for all temperature-index model choices, assuming a fixed area
over 20 years. We differentiate between temperature-induced
and annual precipitation-induced MB anomalies (Figs. 2a,e).
We represent their dependence on CPDD, solid winter and sum-
mer precipitation anomalies that are induced by these tempera-
ture changes (Figs. 2b–d) or annual precipitation changes (Figs.
2f–h).

Figure 1. Calibrated degree-day factor (df) for different temperature-index model
choices (Table 1) using C5 for 88 glaciers with median and interquartile range
(25%ile–75%ile). Model choices have the same precipitation factor of 2.8 (median).
The temperature bias is zero. Fig. S3 shows the same for all model parameters
and calibration strategies.

Figure 2. MB sensitivity of (a–d) temperature and (e–h) precipitation anomalies averaged over 2000–2019 on 217 glaciers. (a) Average specific annual MB
anomaly dependent on temperature bias (tb) for the ablation (melt), accumulation (solid precipitation) and their sum. (b) Translation of tb into a cumulative posi-
tive degree-day (CPDD) anomaly. (c, d) Relations of resulting solid winter and summer precipitation anomalies. (e, f, g, h) Equivalent plots for an annual precipi-
tation anomaly solely based on changing precipitation factor (pf). This figure is inspired by Bolibar and others (2022, their Fig. 3). We use C5 where pf of one glacier
is the same for all temperature-index models and apply constant temperature lapse rates. df stands for degree-day factor.
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When surface-type distinction is not considered, melt
increases linearly with CPDD, resulting in a nearly linear specific
MB decrease (Fig. 2b). However, when applying surface-type dis-
tinction, the MB sensitivity becomes nonlinear with increased
melt for larger CPDD anomalies because of increasing ice surface
area. With increasing temperatures (and CPDD), the solid pre-
cipitation decreases (Figs. 2a,b). Consequently, the specific MB
also strongly decreases, which is further enhanced with surface-
type distinction (Figs. 2c,d). Temperature-induced negative solid
winter or summer precipitation anomalies correlate in our experi-
ment with decreasing total solid precipitation and, thus, with
increasing melt. A negative temperature anomaly leads to a slight
increase in solid winter precipitation (Fig. 2c), since winter pre-
cipitation is primarily solid already. The specific MB increase of
temperature-induced solid winter precipitation is mainly attribu-
ted to reduced melt and increased solid summer precipitation.
Conversely, the relationship between specific MB change and
temperature-induced positive solid summer precipitation anomal-
ies behaves differently with a reversed curve shape (Fig. 2d). In
this case, MB sensitivities decrease as temperature-induced solid
summer precipitation increases. The reason is likely that the
solid summer precipitation contribution to MB increases faster
than other dominant factors, such as reduced melt and increased
solid winter precipitation.

Annual precipitation anomalies without temperature change
affect solid precipitation, and if the degree-day factor is surface-
type dependent, it also impacts melt but not CPDD (Figs. 2e,f).
Surface-type distinction creates a nonlinear relationship between
specific MB and precipitation-induced solid precipitation
(Figs. 2g,h). With decreasing solid precipitation, ice surfaces
increase and temperature-index model divergence grows.

Consequently, the solid precipitation anomaly drivers (tem-
perature or precipitation change) and their correlation with other
anomalies influence the relation to the specific MB. The relation is
much stronger, nonlinear and varies between the seasons for all
temperature-index model choices in case of a temperature-
induced solid precipitation anomaly (Figs. 2d,e) than in case of
a precipitation-induced anomaly (Figs. 2g,h) - the former likely
being more realistic in a future climate. The larger negative MB
for stronger negative solid precipitation anomalies remains con-
sistent with the inclusion of surface-type distinction in both
cases. The temporal climate resolution, for example, also influ-
ences the sensitivity, but to a much smaller extent.

3.1.3. Temperature-index model choice performance
We assess the potential added value associated with different
temperature-index model choices by comparing modelled MB
to independent validation data as well as the model performance
relative to the reference temperature-index model. Specifically, we
quantify how well the modelled and observed MB profiles agree,
measured by the mean MB gradient absolute bias below the
equilibrium line altitude (ELA) for 80 glaciers (Figs. 3, S6a) and
the mean absolute error to the average altitude-dependent MB
(Fig. S7a). We also assess the match of the annual MB variability
(independent dataset for C5, Table 1, Figs. S6b, S7b; 212 glaciers).

The modelled MB gradient below the ELA is larger when using
a constant instead of a variable (mostly less negative) temperature
lapse rate (Fig. S6a). The constant lapse rate choice aligns better
with observed MB gradients below the ELA when no surface-type
distinction is considered. However, it performs worse when
surface-type distinction is applied (Fig. 3a). Including surface-
type distinction increases the MB gradient (Fig. S6a) due to the
creation of elevation-dependent degree-day factors (specifically
in the “linear” case, Appendix, Fig. 8d). Therefore, using less
negative (variable) temperature lapse rates together with surface-
type dependent degree-day factors offset each other and result in a

similar gradient and, thus, performance compared to the refer-
ence temperature-index model (Fig. 3a). No clear trend is
observed in the MB gradient match below the ELA for different
temporal climate resolution choices (Figs. 3a, S6a). However,
when considering surface-type distinction and a less negative
(variable) lapse rate, the pseudo-daily or daily choice better
match the observed MB gradient below the ELA.

The temperature-index model performance based on the MB
profile mean absolute error ratios are similar to those from the
mean MB gradient absolute bias below the ELA (Fig. S7a). In con-
trast, the differences in how well the temperature-index model
choices match the observed interannual MB variability are smaller
(Figs. S6b, 7b). Nevertheless, the combinations that performed
worse for the MB profile match (i.e. monthly, constant, with
surface-type distinction) also performed worse in matching the
annual MB variability (Figs. 3a, S7b).

3.2. Parameter choice and calibration strategy differences

3.2.1. Influence of equifinality on the temperature-index model
output
Despite the simplicity of the temperature-index model, equifinal-
ity from model parameters strongly influences the MB variability,
seasonality and gradient. We show these effects in Fig. 4 for a typ-
ical case of a large-scale glacier modelling study, where only one
observation is available. Building upon Rounce and others
(2020a), we vary either the precipitation factor or temperature
bias while always matching the geodetic MB and analysing corre-
sponding changes in the modelled MB.

Increasing the precipitation factor leads to a linear increase in
the degree-day factor (Fig. 4a, Eq. (1)). More precipitation results
in more solid precipitation and a higher winter MB (Fig. 4e),
which is balanced by more melt to match the geodetic MB. The
larger precipitation and degree-day factors also lead to a roughly
linear increase in interannual MB variability (Fig. 4c), as the
multiplicative parameters amplify precipitation and temperature
anomalies; and cause more solid precipitation at the top and
more melt at the bottom of the glacier, thus, a larger MB gradient
(Fig. 4g).

Increasing the temperature bias while keeping the precipitation
factor constant leads to a logarithmic decay of the degree-day fac-
tor (Fig. 4b). This is due to lower temperatures reducing the like-
lihood of crossing the melt threshold and increasing the
likelihood of crossing the solid precipitation threshold (Eq. (1)).
Lower temperature biases (and higher degree-day factors) loga-
rithmically increase interannual MB variability (Fig. 4d).
However, the influence on total variance is smaller than for pre-
cipitation factors (Fig. 4c), as the degree-day factor only affects the
melt rates and the temperature bias has a limited impact on accu-
mulation rates. Winter MB decreases only slightly with increasing
temperature; an effect that becomes more substantial for larger
temperature biases (Fig. 4f). Therefore, varying the temperature
bias does little to improve the match with observed winter MB.
Lastly, a positive temperature bias (and lower degree-day factor)
decreases the MB gradient and leads to a more linear MB change
with altitude (Fig. 4h) by balancing the reduction in solid precipi-
tation at higher altitudes with less melt at lower altitudes.

3.2.2. Calibration strategy performance
Some calibration strategies use more data than others, enabling us
to assess whether the additional calibration data improves the
model performance (Figs. 3b, S6). We compare the MB profile
match (i.e. the only validation data for C1−5) of the calibration
strategies relative to C1 for all temperature-index model choices
together and the 53 glaciers that could be calibrated and had
observed MB profile data. Including more observational data for
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calibrating additional model parameters (pf & tb) on a glacier-per-
glacier level improves the match with the observed MB profile.
Calibrating the degree-day factor and precipitation factor using
the interannual MB variability (C3) results in slightly better
matched observed MB profiles compared to using mean winter
MB observations (C2). However, combining the interannual MB
variability and mean winter MB for calibration (C1) does not fur-
ther improve the performance beyond matching the interannual
MB variability alone (C3).

4. Volume and runoff projections

The comparison to MB profiles in Section 3.1.3 showed minor
differences in performance among temperature-index model

choices, and only a few glaciers had additional data to calibrate
all model parameters. Here, we evaluate how small changes in
the model design of the temperature-index model and its calibra-
tion strategy affect glacier projections through 2100. To highlight
differences we show results for a case study of Aletsch glacier,
where differences are either from temperature-index model
choices (only C5, Fig. 5a) or calibration strategies (only reference
model, Fig. 5b).

Additionally, from the 85 glaciers with in-situ observations,
around 14% of their volume is projected to remain in 2060, rela-
tive to 2020, under the SSP1-2.6 scenario and 4% under SSP5-8.5,
respectively. To avoid distortions caused by glaciers that com-
pletely disappear by 2100 regardless of temperature-index
model choice or calibration strategy, we focus on a subset of non-

Figure 3. Performance comparison from independent observa-
tions. Difference in mean MB gradient absolute bias below the
equilibrium line altitude (ELA) shown for various (a)
temperature-index (TI-) models and (b) calibration strategies.
Note that the comparisons in (a) are only from C5 and for 80 gla-
ciers, while in (b), distributions represent tendencies from all 18
TI-model choices and 53 glaciers. Distributions are represented
by the 5%ile , 25%ile , 50%ile (median), 75%ile and the 95%ile . A
distribution shift to the right means, for each measure, that
this option matches the validation measure worse than the ref-
erence model or C1. df stands for degree-day factor. Additional
performance measures are in Figs. S7, S8.
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vanishing glaciers for the subsequent comparisons (i.e. 45 out of
85 glaciers for SSP1-2.6 in Fig. 6, 15 glaciers for SSP5-8.5 in
Fig. S13) and primarily discuss results for SSP1-2.6. Given the
variety of temperature-index model choices and calibration strat-
egies, the comparison of a given model choice (e.g. the variable
versus constant lapse rate choice) is performed on all other
temperature-index model combinations (e.g. the three climate
resolution and three surface-type distinction choices) and all
five calibration strategies together. Similarly, the comparison of
a calibration strategy is estimated from all 18 temperature-index

model choices. The inclusion of all combinations provides a
more robust assessment of how a given option affects glacier pro-
jections regardless of other options. Differences are thus reported
by dividing the individual glacier volumes for various
temperature-index model choices against the reference model
choice (e.g. constant lapse rate) or the glacier volume for the vari-
ous calibration strategies against C1. We repeat the same compari-
son for fixed-gauge glacier runoff projections (here the sum of
melt and liquid precipitation components from the current and
former glacierised areas, Figs. S16–S22), but also include the

Figure 4. Influence of downscaling model parameters for the
Hintereisferner glacier on the calibrated (a, b) degree-day factor
(df) to match the geodetic observations and on the resulting
(c, d) interannual MB variability, (e, f) average winter MB and
(g, h) mean elevation-dependent MB profiles (using the refer-
ence model option). Left plots (a, c, e, g) show varying precipi-
tation factors (pf) with temperature bias (tb) set to zero, while
right plots (b, d, f, h) show varying tb with pf set to two.
Colourbar in (c–h) based on (a, b). std stands for standard devi-
ation, mae for mean absolute error. Each df, pf and tb combin-
ation matches the geodetic mean MB, and the combinations
that best match in-situ observations are indicated. Figs. S9–
S11 show the same for other glaciers.
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vanishing glaciers since the runoff accounts for the non-glaciated
areas as the glaciers retreat.

4.1. How do glacier projections from temperature-index model
choices differ?

For Aletsch glacier, the temperature-index model choices result in
differences in volume of up to 25% in 2100, relative to 2020,

under SSP1-2.6 (Fig. 5a) and in glacier runoff of up to 40% (on
one year, Fig. S16a). For glacier runoff, we found that the
temperature-index model choices systematically influence projec-
tions on the considered glaciers (Fig. S22b–f). Using variable (less
negative) lapse rates, daily climate resolution and no surface-type
distinction often resulted in larger annual runoff. The impact of
model choice on volume projections increases over time for
SSP1-2.6 (Figs. 6b–f) as nonlinear feedbacks become more

Figure 5. Aletsch glacier volume projections (2000–2100) for two SSP scenarios. We show the median, interquartile range (25%ile–75%ile, IQR) and total range
resulting from (a) temperature-index (TI-) model choices using C5 and (b) calibration strategies using the reference model. For this glacier, in (b), the calibrated
parameters and thus projections for C1, C2 and C5 are very similar. df stands for degree-day factor, pf for precipitation factor and tb for temperature bias. We use the
median volume from five GCMs. Fig. S12 shows the same for Hintereisferner glacier.

Figure 6. (a) Individual glacier volume changes in 2040 and 2100 for 45 glaciers that could be calibrated on all options and still exist in 2100 under the SSP1-2.6
scenario. Individual glacier volume ratios for (b–f) temperature-index model choice and (g) calibration strategy. Distributions represented by the 5%ile, 25%ile ,
50%ile (median), 75%ile and the 95%ile . A rightward (leftward) distribution shift indicates larger (smaller) glacier volume compared to the reference option. (a)
Volume changes are estimated from all 45 glaciers, 3 ⋅ 3 ⋅ 2 temperature-index model and 5 calibration options, volume ratios respectively by (b) 45 ⋅ (3 ⋅ 3) ⋅ 5,
(c–f) 45 ⋅ (3 ⋅ 2) ⋅ 5 and (g) 45 ⋅ (3 ⋅ 3 ⋅ 2) glaciers and options. We use the median volume from five GCMs. See Fig. S13 for SSP5-8.5.
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significant than the climate change signal, and the model choice
influence on volume projections is analysed in the following.

4.1.1. Temperature lapse rate choice
The temperature lapse rate choice has the most systematic influ-
ence on volume projections with the variable (less negative)
lapse rate having a median volume that is 19% (4–38%, represent-
ing 25th to 75th percentiles) smaller in 2100 under SSP1-2.6 com-
pared to the constant choice (Fig. 6b, similar for SSP5-8.5 in
Fig. S13b). As the glaciers retreat to higher elevations, the smaller
calibrated degree-day factors (Fig. 1) do not compensate for the
increasing impact of the less negative lapse rate resulting in
more volume loss.

4.1.2. Temporal climate resolution choice
Using pseudo-daily or daily instead of monthly temperature data
does not have a systematic effect on volume differences; however,
the spread in projected volume differences is smaller when com-
paring the pseudo-daily versus monthly volume ratios (Figs. 6d,f).
In the pseudo-daily choice, only the melt component differs from
the monthly choice (if using the same precipitation factor), so
melt increases if the influence of the monthly melt threshold is
larger than the influence from the smaller calibrated degree-day
factor applied in the pseudo-daily choice (Fig. 2) or vice-versa.

The melt component of the daily choice is likely influenced by
an additional aspect, the changing daily temperature standard
deviation with increasing temperatures. The possible reason is
that GCMs predict decreasing standard deviations over time,
which decrease the melt threshold influence and thus increase
the influence of the likewise smaller calibrated degree-day factor
(see Fig. S14 for details). Another difference in the daily choice
is the daily liquid or solid precipitation. In a warmer climate,
under the same precipitation, both winter accumulation and sum-
mer ablation might decrease for the daily temperature-index
model due to decreased solid winter precipitation and a decreased
melt threshold influence (also visible in the MB climate sensitivity
analysis of Fig. 2a). In essence, projected differences between daily
and monthly choices depend on how the balance shifts between
the calibrated parameter differences and the influence of thresh-
olds for melt and solid precipitation.

4.1.3. Surface-type distinction choice
Using a surface-type dependent degree-day factor instead of a
constant degree-day factor results in a minimally smaller pro-
jected glacier volume in 2040, while for many glaciers, it results
in a relatively larger glacier in 2100 under SSP1-2.6 (Figs. 6c,e).
However, under SSP5-8.5, applying surface-type distinction
results in a smaller glacier in 2040 and 2100 compared to no
surface-type distinction (Figs. S13c,e). Under SSP5-8.5 and the
first two decades of SSP1-2.6 after 2020, the differences from
the surface-type distinction is likely a result of the glaciers’
increased relative ice-covered ablation area having a more critical
role in future specific MB than during the calibration period.
Thus, the CPDD are greater than in the calibration period,
which results, as shown in the temperature sensitivity analysis
of Fig. 2c, in higher negative specific MB anomalies when includ-
ing surface-type distinction due to the higher ice degree-day fac-
tor (Fig. 1). However, in the last decades of SSP1-2.6, many
glaciers are projected to retreat enough to get into a
quasi-equilibrium state or even advance slightly because of local
cooling (e.g. Aletsch glacier in Fig. 5a). This effect cannot be
explained by the fixed-geometry temperature sensitivity experi-
ment (Fig. 2). Only when considering the glacier retreat the accu-
mulation area ratio increases so that the smaller snow degree-day
factor becomes more important than in the calibration period and
thus explains the larger glacier.

4.2. How do glacier projections from the calibration strategies
differ?

In the first three decades after 2020, the five calibration strategies
influence the Aletsch glacier volume projections more than the
temperature-index model choice (Fig. 5). For that glacier, a larger
precipitation factor or negative temperature bias led to faster
projected volume loss in the first three decades after 2020 but
less volume loss by the end of the century under SSP1-2.6
(Figs. 7a,b). As the glacier retreats, the increased solid precipita-
tion (precipitation- or temperature-induced) at higher altitudes
outweighs the larger degree-day factor.

For all non-vanishing analysed glaciers (Fig. 6g), the different
calibration strategies result in similar projected individual glacier
volumes in 2040, but their estimates diverge in 2100. With add-
itional glacier-specific data, such as using the average winter
MB or standard deviation of the annual MB to calibrate the
temperature-index model parameters (i.e. done in C1, C2, C3),
slightly more glacier volume is projected to be lost under
SSP1-2.6. This effect gets stronger under SSP5-8.5 for the 15
remaining glaciers (Fig. S13g). However, the calibration strategy’s
influence on the glacier projections depends strongly on the indi-
vidual glacier. This variability can be partly attributed to the equi-
finality (i.e. the influence of choosing a relatively larger
precipitation and degree-day factor, Fig. 7) and partly to the
fact that some glaciers are more in an ablation- or accumulation-
dominant situation.

We also assess whether one calibration strategy results in more
or less spread between the different temperature-index model
choices (Fig. S15). To compare this, we use the standard deviation
of the temperature-index model choice volume ratio distribution
of any variant versus the reference model. Generally, using
more data for calibration and allowing for glacier-specific model
parameters (i.e. C1) creates a more extensive spread between
temperature-index model choices with the standard deviation
being almost twice as large in C1 compared to C4 (strategy
where only the degree-day factor changes between glaciers).
Allowing the precipitation factor to vary on a glacier-per-glacier
scale (all strategies except C4), as well as the temperature bias
(only C1), might explain the greater temperature-index model
variability during non-calibrated periods.

We found a strong increase in annual glacier runoff for larger
precipitation factors, while the temperature bias choice had min-
imal non-systematic influence (exemplarily shown in Figs. 7c–f).
A larger precipitation factor directly increases liquid precipitation,
indirectly increases melt runoff components due to a larger cali-
brated degree-day factor and increases annual runoff variance
(Figs. 4a, S20). If different precipitation factors are used, glacier
runoff varies strongly between the calibration strategies and is
smallest for the strategy with the overall smallest precipitation fac-
tor (i.e. C4 in Fig. S22g for 85 examined glaciers). How and if total
runoff is influenced by the temperature bias depends on the run-
off components allocation and their temperature influence. For
Aletsch glacier, the runoff components offset each other through-
out the entire period (Figs. 7d,f).

5. Discussion

5.1. Model performance and climate sensitivity differences

Our study showed that different temperature-index model choices
and calibration strategies can result in considerable differences in
modelled interannual, seasonal and elevation-dependent MB,
even over the calibration period with fixed glacier geometry.
Here we discuss how our findings compare to other studies by
examining the temperature-index model parameter choice and
equifinality (Section 5.1.1), the sensitivity of different MB models
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(hereon using MB models when including non-temperature-index
models) to the climate (Section 5.1.2), whether more complex MB
models improve projections (Section 5.1.3) and the added value of
more observations (Section 5.1.4).

5.1.1. Temperature-index model parameter choice and
equifinality
The range of the degree-day factor of ice in this study (for model
choices with surface-type distinction) is within the range of other
regional temperature-index models (e.g. Huss and Hock, 2015;
Rounce and others, 2020b). Our average precipitation factor, con-
sidering all model and calibration options, is around three, which
is up to two times higher than in previous studies (e.g. in Huss
and Hock, 2015; Rounce and others, 2020b). The higher precipi-
tation factor is most likely due to differences in the climate data-
sets, investigated glaciers, precipitation gradients and calibration
strategies. For example, Huss and Hock (2015) and Zekollari and
others (2019) restrict the precipitation factor to a maximum
value of two and then change the degree-day factor or temperature
bias accordingly to match observations. The equifinality issue fur-
ther complicates comparisons, as higher degree-day factors can be
balanced by larger precipitation factors or lower temperature biases
(Fig. 4, also discussed in Rounce and others, 2020b).

5.1.2. MB model climate sensitivity differences
We compare our climate sensitivities (Fig. 2) to similar experi-
ments by Bolibar and others (2022, all 660 French Alpine glaciers;
in the following BO22) and Vincent and Thibert (2023, 2 Alpine
glaciers; in the following VT23). BO22 compare a deep-learning
MB model with daily temperature, precipitation, snowfall and gla-
cier topography as input to model annual MB to a linear LASSO
(a regularised multi-linear regression) model. Their deep-learning
model outperformed the LASSO model, particularly for extreme
MB, but their LASSO model behaves differently than a
temperature-index model, justifying further study.

Without surface-type dependent degree-day factor change, our
models respond to CPDD anomalies in a similar fashion as

BO22’s LASSO model. We found nonlinear MB responses to
CPDD anomalies when including surface-type distinction
(Fig. 2b), consistent with VT23. The BO22 deep-learning MB
model captured a similar but less pronounced nonlinearity. This
can be partly explained by increased ice surface fractions and,
thus, temperature sensitivities for large positive CPDD anomalies.
The lesser nonlinearity in BO22 suggests that counteracting pro-
cesses, such as reduced solar radiation impact, may affect MB sen-
sitivity to rising temperatures. Surface-type distinctions were not
explicitly modelled in BO22, and only CPDD anomalies during
the ablation season were considered.

We found driver-dependent specific MB sensitivities for win-
ter and summer solid precipitation anomalies. If induced by tem-
perature changes, solid winter or summer precipitation anomalies
create nonlinearities in MB sensitivity, either increasing or
decreasing, across all our temperature-index model choices
(Fig. 2), aligned with VT23. In contrast, BO22 directly incorpo-
rated solid precipitation anomalies as predictors in their models,
making them independent of temperature changes or respective
solid total precipitation anomalies. Our precipitation-induced
solid precipitation anomaly resembles the approach in BO22,
although in our case, solid winter and summer precipitation lin-
early correlate by the applied precipitation factor that modifies
annual precipitation. Similar to our temperature-index models
without surface-type distinction, the BO22 LASSO MB model
resulted in a linear relation between precipitation-induced solid
precipitation and MB. However, unlike all our temperature-index
model choices, the BO22 deep-learning MB model has a larger
MB sensitivity for small solid precipitation anomalies and a smal-
ler MB sensitivity for strong positive and negative anomalies, spe-
cifically for solid summer precipitation anomalies.

Comparing the studies is complex. Although BO22 applied
solid precipitation anomalies independent of other variables,
their deep learning MB model was trained using data where posi-
tive solid summer precipitation anomalies were associated with
negative temperature anomalies in the historical climate, for
example. The decreasing MB sensitivity for positive solid summer

Figure 7. Influence of equifinality on (a, b) volume and
(c, d) runoff projections for the Aletsch glacier under
SSP1-2.6. The colours indicate the precipitation factor
(pf) or temperature bias (tb) as presented in (e, f),
which shows the relation between pf or tb and average
annual runoff. For each pf or tb, a degree-day factor
was calibrated to match the same average geodetic
MB. On the left, (a, c, e), tb is set to zero and pf is varied
while on the right, (b, d, f), pf is set to 2 and tb is varied.
Projections are median estimates from five GCMs using
the reference model. The four runoff components are
in Fig. S20. Fig. S21 shows the same for
Hintereisferner glacier.
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precipitation anomalies in BO22 was also observed in all our
temperature-index model choices if applying a temperature-
induced solid summer precipitation anomaly. However, the
opposing nonlinear sensitivities for negative anomalies still
require an explanation. BO22 argue that their deep-learning MB
model may capture decreasing ice degree-day factors for increas-
ing temperatures (Braithwaite, 1995; Huss and others, 2009),
which can be attributed to changing relationships between melt
and temperature driven by longwave radiation and turbulent
fluxes, despite unchanged shortwave radiation fluxes (Gabbi and
others, 2014; Ismail and others, 2023).

Finally, the rest of our study demonstrates that the results of
such idealised sensitivity experiments, where the effects of equi-
finality and the feedbacks with changing glacier geometries are
ignored, should be interpreted with caution.

5.1.3. MB model performance comparisons
Our goal was to determine the best temperature-index model
choice for a calibration strategy where only geodetic glacier obser-
vations are used (C5). While different temperature-index model
combinations can perform similarly as different effects balance
one another, using daily data, variable (less negative) lapse rates
and a varying neg. exp. degree-day factor is arguably the most
realistic physically and matches the MB profile best (Fig. 3a).
Furthermore, this combination resulted in the third-highest
amount of non-failing glaciers during calibration (235 of 247,
Fig. S5b). To our knowledge, no other study compared the differ-
ences in performance between our temperature-index model
choices. However, some studies have compared the performance
of temperature-index models to enhanced models incorporating
a separate shortwave radiation term. These enhanced models
have shown improved performance by reducing the sensitivity
to temperature changes (Gabbi and others, 2014), although
another study found no difference in performance over short
time periods (Réveillet and others, 2017). In a regional-scale
study, Huss and Hock (2015) did not observe any added value
in model performance when using a simplified energy-balance
model by Oerlemans (2001). The scarcity of calibration data
makes it challenging to assess the added value of model complex-
ity at large scales. More complex models often require more
glacier-specific parameters, and fixing these parameters globally
may overshadow uncertainties originating from equifinality.

5.1.4. Added value of more observations for the calibration
We found a slightly improved temperature-index model perform-
ance for calibration strategies using in-situ observational data,
specifically when using the interannual MB variability to calibrate
the precipitation factor for every glacier (Figs. 3b, S8). Other stud-
ies comparing the added value of more observations at smaller
scales are discussed in the supplementary material (Section
S4.1). In the future, new remote sensing data and methods esti-
mating the MB gradient or even seasonal and interannual MB
may improve model performance and reduce equifinality uncer-
tainties at regional to global scales. Interferometric swath altim-
etry applied on CryoSat-2 produces glacier thinning estimates at
monthly temporal resolution (Jakob and others, 2021), yet at
coarse spatial resolution (100 × 100 km bins) and decadal esti-
mates at a higher resolution of 500 m (Jakob and Gourmelen,
2023). By combining glacier thinning with surface velocity obser-
vations and ice thickness estimates, altitudinally-resolved specific
mass balances can be derived (Miles and others, 2021). Those are
however still uncertain, specifically over the accumulation area
when the necessary remote sensing products are less accurate
(e.g. ice velocity). Additionally, these new techniques and datasets
are not yet globally available and require a density assumption to
convert elevation to mass change, introducing further

uncertainties (Huss, 2013). A potential solution to address this
is to apply a firn densification model. Hence, glacier models com-
bined with remote sensing could even help detect forcing biases
(e.g. Guidicelli and others, 2023). Using higher-resolved dynam-
ically downscaled climate data could also constrain local down-
scaling parameter ranges (e.g. Karger and others, 2017). It is
however unlikely that large-scale studies will benefit from drastic-
ally improved forcing data in the near future.

Without this additional data, we favour calibration strategy C5

over C4 for OGGM users. Using glacier-specific precipitation fac-
tors depending on the glaciers’ average winter precipitation (C5)
instead of the same precipitation factor for every glacier (C4)
results in a less wide distribution, i.e., unrealistically large precipi-
tation values are avoided. In C5, we use the logarithmic relation
between winter precipitation and calibrated precipitation factor
of C2, where winter MB (i.e. very precipitation-factor dependent)
is matched. Thus another reason to use C5 is that the precipitation
factor dependence on the winter precipitation could make physic-
ally more sense and is independent of the temperature-index
model choice.

5.2. Volume and runoff projection differences

We project that Aletsch glacier, the largest glacier in the European
Alps, will lose 50–83% of its volume under SSP1-2.6, and . 95%
under SSP5-8.5, relative to 2020, for the different temperature-
index model and calibration options of this study (Fig. 5).
Aletsch glacier projections with a full-stokes glacier model
(Jouvet and Huss, 2019) and two dynamical large-scale glacier
model studies (Zekollari and others, 2019; Rounce and others,
2023) under approximately the same climate scenarios lie at the
lower part of our loss ranges. The reasons for these differences
are difficult to disentangle. Below, we compare our glacier projec-
tion differences to previous studies in regard to the MB model
choice (Section 5.2.1), the equifinality and calibration strategy
(Section 5.2.2), and generally to the findings of GlacierMIP2
and Rounce and others (2023) (Section 5.2.3).

5.2.1. MB model influence on glacier projections
In a warming climate, less negative temperature lapse rates result
in more projected glacier loss and larger runoff (Figs. 6, S22).
How different our lapse rates are from other large-scale glacier
studies is unknown. It also needs to be clarified how well the
ERA5-derived free-atmosphere temperature lapse rates used
here and in these studies are related to the true near-surface tem-
perature lapse rates. Some studies suggest that near glacier-surface
lapse rates are weaker during the ablation season compared to
free-atmosphere estimates (e.g. Gardner and others, 2009;
Hodgkins and others, 2013). Our ERA5-derived estimates are,
however, stronger (more negative) in the ablation compared to
the accumulation season (not shown).

Interestingly, the temporal climate resolution choice has no
systematic influence on regional glacier change projections
(Fig. 6). Using pseudo-daily climate with no future changes in
the daily temperature standard deviation, i.e., as applied in
Huss and Hock (2015) and Zekollari and others (2019), results
only in minor projection differences compared to the monthly
choice. The influence of using daily instead of monthly data
depends on how the balance shifts between calibrated parameter
differences and the impact of thresholds for melt and solid pre-
cipitation. We found larger runoff with daily data, which is rele-
vant because this choice is beneficial when coupling glacier
models with hydrological models to get daily runoff.

The volume response of temperature-index models with and
without surface-type distinction (Figs. 6, S13) depends on the
future glacier state, while runoff is smallest without surface-type
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distinction (Figs. S22c, e). If the future accumulation area ratio is
smaller than during the calibration period, temperature-index
models with surface-type distinction cause more mass loss
(more melt over ice), and vice versa. Other studies did not analyse
the influence of small temperature-index model changes as we did
in our study, especially not on runoff. When comparing their
temperature-index model to a simplified energy-balance model,
Huss and Hock (2015) found that the energy-balance model
reduced glacier loss projections by about 20%, which is similar
to the projection differences resulting from our temperature
lapse rate choices.

5.2.2. Calibration strategy and equifinality influence on glacier
projections
We found slightly more glacier volume loss when calibrating gla-
ciers with additional in-situ observations (Fig. 6), but differences
varied for individual glaciers due to, e.g. the temperature-index
model parameter choice (exemplarily shown in Figs. 7a,b) or
the accumulation-area ratio relative to the calibration period.
These differences highlight the influence of equifinality on glacier
volume projections, as all options matched the geodetic observa-
tion. Huss and Hock (2015) found that equifinality influenced
glacier projections of selected regions by +18% compared to
their reference calibration strategy (assessed by 16 fixed parameter
combinations). Compagno and others (2021) analysed the influ-
ence of small precipitation factor range shifts (±0.6) in their three-
step calibration and found glacier projection differences of ≤4%.
Larger precipitation factor ranges and a different order in their
three-step calibration could result in more significant differences.
Rounce and others (2020b) found that glacier volume projections
can be greatly affected by equifinality at the glacier scale, but
regionally, the GCM choice is more important. However, this
influence may depend on how uncertainties are aggregated
between glaciers (independent or correlated).

In accordance with Rounce and others (2020b), we noted that
glacier runoff projections are more influenced by the choice of
temperature-index model parameters than volume projections.
Larger precipitation factors led to increased annual glacier runoff,
while the temperature bias had no systematic influence (Fig. 7,
Fig. S22g C4). These findings do not contradict studies suggesting
that interannual precipitation influences glacier runoff less than
temperature changes (e.g. Pramanik and others, 2018; Banerjee
and others, 2022), as we vary the precipitation factor or temperature
bias before the calibration, which also changes the degree-day factor
and, thus, the melt on glacier runoff components (Figs. S20a,b).

5.2.3. Comparison to GlacierMIP2 and Rounce and others (2023)
The sources of projection differences between studies and within
GlacierMIP2 (Marzeion and others, 2020) are difficult to disen-
tangle as not only the MB model or the calibration strategy but
also, e.g. the climate data, its bias correction and the initial state
can be different between glacier models.

GlacierMIP2 compared projections of different large-scale gla-
cier models in a coordinated effort. The study also estimated each
model’s sensitivity of the mean specific mass balance to tempera-
ture changes using an inverse approach which we repeated with
our temperature-index model variants. We found weaker tem-
perature sensitivity without surface-type distinction compared
to the linear changing choice (on average 34% weaker) or when
using daily instead of monthly data (18% weaker). To a similar
magnitude, from the four near-global models using temperature-
index models in GlacierMIP2 (their Fig. 8b), those without
surface-type distinction (Marzeion and Hofer, 2012; Maussion
and others, 2019) had a weaker temperature sensitivity than
those with surface-type distinction (Radić and others, 2014;
Huss and Hock, 2015). However, besides the MB model choices

analysed in our study, the applied local-scale climate, dependent
on, e.g., the chosen climate datasets, precipitation factors or gra-
dients, also influences the temperature sensitivity differences. In
GlacierMIP2, one of the two energy-balance models had the
weakest temperature sensitivity and the two energy-balance mod-
els generally projected the least negative mass balances. The rea-
son may be a temperature-oversensitivity of temperature-index
models due to relatively small future changes in downwelling
long- and short-wave radiation despite increasing temperatures
(Shannon and Others, 2019).

The model used to create projections for Rounce and others
(2023) is most similar to OGGM as it uses the glacier dynamics
module of OGGM, but the MB module of the Python Glacier
Evolution Model (PyGEM). They project in 2100 around 16%
lower relative glacier volume than our median projections under
SSP1-2.6 (for all model options, three common GCMs, and 41
non-vanishing glaciers). The differences are reduced on median
to 2–15% lower relative glacier volumes (calibration-strategy
dependent) when comparing only to our temperature-index
model that resembles most to their model (i.e. variable lapse
rates, neg. exp. degree-day factor change and pseudo-daily climate).
Specifically, applying the same temperature lapse rate choice
reduced the volume projection differences. Their runoff projections
are generally smaller, hinting at smaller precipitation factors.

5.3. Limitations

Due to the lack of robust, high temporally and spatially resolved
observational data, we only analysed 88 glaciers, of which most
come from the northern mid-latitudes (28 from Central Europe
and 19 from Scandinavia). Around half of these glaciers will van-
ish by 2100 for at least one of the options, even under SSP1-2.6.
The examined sample may thus not represent the response of glo-
bal glacier change. In addition, some glaciers could not be cali-
brated with the proposed calibration strategies and model
parameter ranges, hinting at missing model physics, poorly down-
scaled local climate or observational errors. We only used in-situ
and 20-year average geodetic MB observations and neglected their
own uncertainties. The uncertainties from observations and equi-
finality could be incorporated using Bayesian inference (Rounce
and others, 2020b), but it remains challenging to aggregate and
disentangle these uncertainties from individual to regional scales.
Per design, we also did not assess the influence of uncertainties
from GCMs, initial state and bias correction and just focussed
on the temperature-index model choice and calibration strategy.

Since small changes in the temperature-index model had such
a large influence, we did not implement further MB models,
which could be the next step. However, even simple choices,
such as how the degree-day factor gradually changes with ageing
snow, still need to be determined. We propose two approxima-
tions and favour the negative exponential degree-day factor
change choice over the linear choice. We could also have applied
simpler surface-type distinction methods with a step-wise change
between snow, firn and ice (e.g. Huss and Hock, 2015; Rounce
and others, 2020a). We chose the monthly ageing snow ageing
bucket system (see Section A.1), as it has the potential to estimate
firn densification and may allow calibration on more reliable ele-
vation changes. We did not explicitly include refreezing, as
large-scale observations, e.g. englacial temperature, are missing,
nor did we include debris cover.

We vary three model parameters and keep them constant over
time, although, e.g. the snow degree-day factor was found to vary
specifically under clear-sky conditions (e.g. depending on altitude
and solar inclination, Ismail and others, 2023). The influence of
using daily or monthly climate data could equally depend on
the chosen solid precipitation and melt thresholds which we
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fixed globally. For example, Matthews and Hodgkins (2016)
found that tuning the melt threshold increased their skill and
resulted in a stationary degree-day factor over a 34-year study per-
iod on an Icelandic glacier for a snow/firn-covered location.
Moreover, we found that the temperature lapse rate choice
strongly influenced the MB, but we assumed constant lapse
rates over the years. Neglecting potential future enhanced warm-
ing rates with elevation (Pepin and others, 2015; Palazzi and
others, 2019) could underestimate glacier mass loss.

Glacier hypsometry changes were not considered in the cli-
mate sensitivity analysis (Sections 3.1.2, 5.1.2), which created dif-
ferences to our dynamical projections where glaciers adapt to the
changing climate. The calibration over 20 years neglects ice
dynamics and assumes constant glacier area, leading to potential
mass change overestimates, particularly for glaciers with higher
mass flux rates (Mukherjee and others, 2022).

6. Conclusions

Our findings reveal that model design options, often assumed to
be small (e.g. variations of temperature-index model and calibra-
tion options), can influence MB model performance as well as vol-
ume and runoff projections. By systematically changing one model
option at a time within the OGGM framework, we provide insight
into glacier model behaviour differences that are impossible to
unveil from large-scale glacier model intercomparison projects.

Due to equifinality, even the simplest temperature-index
model responded differently to different combinations of para-
meters. For example, we found increasing interannual MB vari-
ability, winter MB and MB elevation gradients for increasing
precipitation factors and decreasing temperature biases. To assess
the added value of a given process and, simultaneously, of better-
resolved MB observations, we focussed on 88 glaciers with avail-
able in-situ observations. While specifically using the interannual
MB variability to calibrate otherwise fixed parameters led to better
MB model performance, the added value of additional MB com-
plexity is challenging to demonstrate. Nevertheless, the most
physically realistic temperature-index model choice (i.e. including
surface-type distinction with a negative exponential degree-day
factor change, variable lapse rates and daily data) performed bet-
ter than others. Matching approximately the observed MB gradi-
ent is essential due to its direct influence on the ice flux and ice
dynamics (e.g. Maussion and others, 2019). In the absence of add-
itional calibration data, selecting the precipitation factor based on
a glacier’s winter precipitation may be more physically meaning-
ful than using a globally fixed value, although we did not find
improved model performance for this calibration strategy.

We find strong nonlinearities and counter balancing effects of
the model choice, which depend on the differences between the
future glacier state and climate compared to the calibration per-
iod. These patterns were consistent across various calibration
and other temperature-index model options; thus, the projection
differences between temperature-index models were also a result
of their design differences and did not solely stem from equifinal-
ity. In a warmer climate, less negative temperature lapse rates
result in systematically smaller glaciers by 2100. Using monthly-
changing snow-age dependent degree-day factors produced
more or less glacier loss depending on whether the glacier accu-
mulation area ratio is smaller or larger compared to the calibra-
tion period, respectively. More calibration data generally
resulted in smaller projected glacier volumes, but the influence
varied at the individual glacier scale, highlighting uncertainties
related to equifinality.

Comparisons between options were difficult, as we projected
that half of the examined glaciers with in-situ data will lose
50% of their volume by 2039, relative to 2020, independent of

the climate scenario. As we showed that additional observations
have the potential to reduce projection uncertainties, it is neces-
sary to search for more climate-resilient glaciers to continue long-
term in-situ observations. While the models and calibration strat-
egies used in previous model intercomparisons (e.g. GlacierMIP2)
differed much more than our model options, we found that even
small changes can substantially influence individual glacier pro-
jections. That influence can increase over time and become
even more important when considering critical variables such
as glacier runoff.
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A. Appendix

A.1 Snow ageing bucket system

We differentiate between snow, various firn age stages and ice by applying a
monthly ageing update. At initialisation, we assume to have ice everywhere.
Then, for each month, solid precipitation that has not melted in that same
month goes inside the snow bucket. When melting occurs, the youngest bucket,
the snow bucket, is emptied first. If this is or gets empty, the next older bucket is

emptied and so on. The ageing update of the remaining snow occurs at the end of
each month. The snow amount (in kgm−2) that did not melt over that month is
transferred to the next older bucket, which is the one-month-old bucket. The
same is repeated for all other buckets. If snow has fallen six years ago and has
not melted, i.e., it was transferred each month to the next older bucket, it will
be finally converted to ice. There is no ice bucket, as OGGM does the MB cali-
bration before the ice thickness inversion (at this stage, OGGM does not know
how much ice lies below the surface). Thus, the mass is just removed from the
buckets, and the gridpoint is treated as ice if all buckets are empty. We use six
years of spinup to initialise the buckets. Note that we neglect ice dynamics in
this approach. The monthly ageing update choice with monthly buckets is
much more computationally expensive than a yearly ageing update (implemented
but not used). However, the monthly ageing update choice is more realistic as the
degree-day factor (i.e. depending on the surface type) varies strongly between the
seasons. With this bucket system, we do now have the possibility to track for each
month how much snow or firn amount (in kgm−2) there is for each bucket and
each height-gridpoint along the flowline, i.e., we can track the snow age in the
vertical column in a monthly resolution.

Using a monthly resolution, we can visualise the yearly cycle of surface-type
distinction for a single exemplary year (here the Hintereisferner glacier, Appendix
Fig. 8). At the end of October, at the upper part of the glacier, relatively fresh snow
is above the older firn layers and the actual glacier ice. In the lower part, very little
fresh snow or even no snow is above the glacier (Appendix Fig. 8a). After the win-
ter, here in May, the fresh snow is distributed equally over the glacier. However, at
the lowest part, winter snow starts to melt away (Appendix Fig. 8b). In August,
only ice is left on the entire lower part of the glacier, and at the upper part, winter
snow and even some of the firn layers are melting away (Appendix Fig. 8c). Thus,
this method is a new way to distinguish between snow, firn and ice surfaces which
can be used to apply surface-type dependent degree-day factors or for potential
future other applications (e.g. estimating snow densities). In the neg. exp. case,
the degree-day factor is larger for snow that is a few months old up to a few
years old firn, due to the faster initial change (Appendix, Fig. 8d). This faster
change is offset by a lower degree-day factor for ice and very fresh snow.

Figure 8. Snow age tracking with snow buckets depicted for the Hintereisferner glacier for end of (a) October 2008, (b) May 2009 and (c) August 2009. The approxi-
mate area-weighted mean altitude of that glacier is shown. Snow is considered ice after 72 months without melting. In (a, b, c), the amount of ice is not shown. In
(d), the calibrated evolution of the snow to ice df is illustrated for different assumptions of degree-day factor (df) change with snow age. In (e), the resulting average
altitudinal-dependent MB over 2000–2019 is shown for the different choices together with the observations. In (f, g), only the melt MB profile is shown for October
2008 and May 2009. With surface-type distinction, (f) more melt occurs in summer and (g) less in winter compared to no surface-type distinction due to the applied
snow-to-ice gradient of df (specifically at lower altitudes). We show here calibration strategy C5 with resulting precipitation factor (pf) of 3.45 for the temperature-
index model with variable temperature lapse rates and daily climate data.
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