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A new spin on rotating convection
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Studying rotating convection under geo- and astrophysically relevant conditions has proven
to be extremely difficult. For the rotating Rayleigh–Bénard system, van Kan et al. (J. Fluid
Mech., vol. 1010, 2025, A42) have now been able to massively extend the parameter space
accessible by direct numerical simulations. Their progress relies on a rescaling of the
governing Boussinesq equations, which vastly improves numerical conditioning (Julien
et al., arXiv:2410.02702). This opens the door for investigating previously inaccessible
dynamical regimes and bridges the gap to the asymptotic branch of rapidly rotating
convection.
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1. Introduction
Turbulent rotating convection is ubiquitous in geo- and astrophysical objects, and often
directly controls observable features. A prime example is planetary magnetic fields, which
are generated by convective flows in electrically conducting regions deep inside the
planetary interior (Jones 2011). Coriolis forces are essential in this so-called dynamo
process, as they induce the spatial correlations needed for large-scale magnetic field
generation. Further examples include the alternating zonal wind patterns that shape the
surfaces of giant planets (Heimpel, Aurnou & Wicht 2005; Kaspi et al. 2023) and the
thermohaline ocean circulation on Earth, where deep and intermediate water masses
are formed by rotationally influenced open ocean convection (Marshall & Schott 1999).
Rotating convection also occurs in the subsurface oceans of icy moons, where it may
affect the properties of the crust (Soderlund et al. 2020), in planetary magma oceans,
where it controls crystallisation dynamics (Maas & Hansen 2019), and in stellar interiors
(Fan 2021).
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Figure 1. A sketch of the parameter space governing rotating convection. Natural systems are highly turbulent
(high Reynolds number ReH) and rotationally influenced (Rossby number RoH < 1, region below the green
line). Experiments (yellow shaded area), numerical dynamo models (grey area) and previous simulations of
non-magnetic convection (purple area) have failed to reach realistic conditions. As demonstrated in a new paper
by van Kan et al. (2025), a properly rescaled version of the Boussinesq equations for the rotating Rayleigh–
Bénard system (Julien et al. 2024) allows for DNS at previously impossible parameter values (cyan diamonds).
The red line marks the location where the thermal boundary layers are expected to lose rotational control.
Figure from van Kan et al. (2025).

Developing a thorough physical understanding of these systems has been plagued by the
fact that the relevant parameter regime is difficult to explore in both numerical simulations
and laboratory experiments. The problem is illustrated in figure 1. Natural systems tend
to be highly turbulent, yet they typically remain affected by Coriolis forces. Denoting
the depth of the convection zone by H , the typical flow speed by U and kinematic
viscosity by ν, the Reynolds number ReH = UH/ν is usually huge, while the flow field
still evolves on a time scale H/U that exceeds the rotation period Ω−1. Coriolis forces
thus remain important and the Rossby number RoH = U/2Ω H is small. Increasing ReH
while simultaneously keeping RoH small requires progressively smaller values of their
ratio Ek = RoH/ReH = ν/2Ω H2. This parameter, known as the Ekman number, compares
the rotation period with the time scale of viscous friction.

Geo- and astrophysical systems typically meet these conditions because of their
enormous spatial scale H . Laboratory experiments, even ‘big’ ones like the 4 m tall
TROCONVEX experiment at Eindhoven University (Cheng et al. 2018), have to increase
the rotation rate along with the flow amplitude to preserve the rotational influence.
Centrifugal forces inevitably become dynamically important at some point, which limits
the achievable Ekman numbers. Direct numerical simulations (DNS) on the other hand
suffer from the fact that the range of length and time scales involved quickly broadens
with decreasing Ek, which also limits the accessible parameter values.

New work by van Kan et al. represents a breakthrough in this context, as nicely
illustrated by the cyan diamonds in figure 1. The authors present numerical simulations
down to Ek = 10−15, matching the value estimated for the Earth’s core. This Ekman
number is more than six orders of magnitude smaller than the most extreme value reached
in previous studies (Song, Shishkina & Zhu 2024). The new results were obtained for
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the rotating Rayleigh–Bénard system, a plane, horizontal fluid layer heated from below,
cooled from above and rotating about a vertical axis. The configuration thus approximates
the conditions close to the poles of planets and stars.

2. The benefits of proper scaling
It is instructive to trace the route that has led to this remarkable progress. The rapidly
rotating regime is apparently so difficult to explore numerically because the range of
temporal and spatial scales involved quickly expands with decreasing Ekman number.
Convective instabilities are characterised by a tiny horizontal scale that is O(Ek−1/3) times
smaller than the system scale H (Chandrasekhar 1961), and the associated horizontal and
vertical diffusion times differ by a huge factor of Ek−2/3. Fast inertial waves introduce
even shorter time scales and increase the ratio of slow to fast time scales to O(Ek−1). For
an Earth-like value of Ek = 10−15, these scale differences are daunting.

Interestingly, the very same scale disparities that severely limit current DNS can be
exploited by asymptotic reduction techniques, an approach pioneered by Keith Julien
and co-workers (Julien, Knobloch & Werne 1998; Sprague et al. 2006). Using scales
that reflect the expected properties of the solution, and introducing ε = Ek1/3 as a small
parameter, a closed system of reduced equations can be derived that is formally valid
in the asymptotic limit Ek, RoH → 0. Fast inertial modes are filtered out in this process.
Simulations using this asymptotic model have provided substantial insight into the physics
of rapidly rotating convection, covering flows ranging from weakly nonlinear to highly
turbulent (Sprague et al. 2006; Julien et al. 2012a,b; Rubio et al. 2014). A weakness
of such models is that all scales, down to the smallest ones, are implicitly assumed to
be geostrophically balanced to leading order – an unrealistic scenario for many natural
systems.

Van Kan et al. (2025) apply a rescaling similar to the one used in the asymptotic model
to the full Boussinesq equations and demonstrate that many of the attractive features
are preserved. In particular, as shown in a companion paper (Julien et al. 2024), the
rescaling drastically improves numerical conditioning, which eliminates spurious modes
that otherwise cause numerical instabilities at low Ek. In contrast to the asymptotic model,
fast inertial modes are retained and require an implicit treatment of the Coriolis force to
avoid an overly restrictive Courant–Friedrichs–Lewy condition. There is still the problem
that, for Ek � 1, the horizontally averaged temperature profile evolves on a much slower
time scale than the convective flow. A final trick, also borrowed from the asymptotic
model, provides a remedy. It can be shown that for wide domains, the time derivative
term in the mean temperature equation becomes subdominant in statistically stationary
states. Neglecting it vastly reduces the computational resources that need to be spent on
transients.

3. New insights
The new rescaling approach allows the authors to explore uncharted territory in parameter
space and to tackle questions that were open to speculation. In particular, it allows them
to bridge the gap between previous DNS and the asymptotic model. The new results agree
with existing DNS for moderate Ekman numbers, and match those obtained with the
asymptotic model for sufficiently small Ek. The transition to asymptotic behaviour can
thus be analysed in detail, which was impossible until now.

An exciting feature of turbulent, rotating convection, first observed in the reduced model
(Julien et al. 2012b; Rubio et al. 2014) and later reproduced in DNS (Favier, Silvers &
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Figure 2. Vertically averaged z component of vorticity ωz for (a) Ek = 10−15 and (b) Ek = 10−6. While a
symmetric pair of vortices is found at small Ek, cyclonic vorticity dominates at moderate Ek. (c) The skewness
of ωz as a function of Ekman number, which reveals how the asymmetry vanishes with decreasing Ek. The
Prandtl number is one in all cases, and the super-criticality is identical. For the exact definition of the quantities
shown and the control parameters used, we refer to the original paper by van Kan et al. (2025), from which all
images have been taken.

Proctor 2014; Guervilly, Hughes & Jones 2014; Stellmach et al. 2014), are inverse energy
cascades that result in the formation of large-scale barotropic vortices. However, while
the asymptotic model predicted a dipolar pair of equally strong cyclones and anticyclones,
DNS only produced strong cyclones, with the anticyclones remaining weaker and diffuse.
The simulations by van Kan et al. (2025) nicely show the transition from one regime to
the other, as illustrated in figure 2.

The new approach allows one to study how exactly asymptotic behaviour is lost
as finite-Ekman-number effects become influential. Loss of rotational control of the
thermal boundary layer while the bulk flow remains rotationally constrained is particularly
important in this context (Julien et al. 2012a). By definition, the asymptotic model is
unsuitable to investigate such states, but the rescaled DNS now finally shed light on this
issue.

4. Outlook
The results presented by van Kan et al. (2025) just scratch the surface of what we may
expect to learn from similar studies in upcoming years. Previous simulations of rotating
convective turbulence were limited to moderate Reynolds numbers because the Ekman
numbers necessary to maintain rotational control for larger values of ReH could not be
reached. This limitation has now been lifted, which opens the door for exciting future
research.

The Rayleigh–Bénard configuration represents the Drosophila of convective fluid
systems (Lohse 2024) and has a long tradition in spawning innovative new ideas and
concepts that are subsequently generalised to more complicated systems. It thus seems
natural to extend the recent rescaling ideas to models that include additional effects,
such as a rotation axis that is tilted with respect to gravity, Ekman pumping or magnetic
fields – in a similar manner to the asymptotic techniques that have already been applied
to these systems (Calkins et al. 2015; Julien et al. 2016; Plumley et al. 2016; Tro, Grooms
& Julien 2024). Finally, many models in geo- and astrophysics are designed to resemble
natural systems as closely as possible, and sphericity is key in this respect. It remains to
be seen what can be learned for these kinds of models.

Declaration of interests. The author reports no conflict of interest.
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