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Abstract

In this paper we study the drift parameter estimation for reflected stochastic linear
differential equations of a large signal. We discuss the consistency and asymptotic
distributions of trajectory fitting estimator (TFE).
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1. Introduction

Let (�,F , P) be equipped with a right continuous and increasing family of σ -algebras
{Ft, t ≥ 0}, and let {Wt}t≥0 be a given standard Brownian motion defined on the probability
space (�,F , P). In this paper we consider a reflected stochastic linear differential equation of
a large signal, ⎧⎪⎨

⎪⎩
dXt = θ

ε
Xt dt + dWt + dLt,

Xt ≥ 0, 0 ≤ t ≤ T,

(1)

where the initial value X0 = x0 > 0, ε ∈ (0, 1], θ ∈R is unknown, and L = {Lt, t ≥ 0} is the
minimal increasing non-negative process which makes the reflected stochastic process (1) sat-
isfy Xt ≥ 0 for all t ≥ 0. The process L increases only when X hits the boundary zero, so that

∫ ∞

0
I{Xt>0} dLt = 0.

It can be easily proved (see e.g. [9] and [22]) that the process L has the following explicit
expression:

Lt = max

{
0, sup

u∈[0,t]

(
−x0 − θ

ε

∫ u

0
Xν dν − Wu

)}
. (2)
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742 X. ZHANG AND H. SHU

Usually in applications to financial engineering, queueing systems, storage models, etc., the
reflecting barrier is assumed to be zero. This is principally because of the physical restriction
of the state processes. For example, inventory levels, stock prices, and interest rates should take
non-negative values. We refer to [2], [3], [8], [9], [14], [17], [18], [19], [20], [21], and [22] for
more details on reflected stochastic differential equations (RSDEs) and their wide applications.

But in reality, the drift parameter in RSDEs is seldom known. Parametric inference is one
of the effective methods for solving this type of problem. In the case of statistical inference
for RSDEs driven by Brownian motion, a popular approach is the maximum likelihood esti-
mation method, based on the Girsanov density (see e.g. [23], [24], and [26]). For example,
Bo et al. [4] established the maximum likelihood estimator (MLE) for the stationary reflected
Ornstein–Uhlenbeck processes (OUPs) and studied the strong consistency and asymptotic nor-
mality of the MLE. Jiang and Yang [12] considered asymptotic properties of the MLE of the
parameter occurring in ergodic reflected Ornstein–Uhlenbeck processes (ROUPs) with a one-
sided barrier. Zang and Zhu [26] investigated the strong consistency and limiting distribution of
the MLE in both the stationary and non-stationary cases for reflected OUPs. It is well known
that the TFE was introduced by Kutoyants [15] as a numerically attractive alternative to the
well-investigated MLE. Recently, Zang and Zhang [25] used the trajectory fitting estimation
to investigate the asymptotic behaviour of the estimator for non-stationary reflected OUPs,
including strong consistency and asymptotic distribution. Further, they have shown that the
TFE for ergodic reflected OUPs is not strongly consistent.

On the other hand, trajectory fitting estimation for stochastic process without reflection have
drawn increasing attention (see e.g. [5], [6], [7], [15], and [16]). For instance, Abi-ayad and
Mourid [1] discussed the strong consistency and Gaussian limit distribution of the TFE for
non-recurrent diffusion processes. Jiang and Xie [11] studied the asymptotic behaviours for
the TFE in stationary OUPs with linear drift.

Motivated by the aforementioned works, in this paper we extend the work of Zang and
Zhang [25] and study the consistency and asymptotic distributions of the TFE for RSDE (1)
based on continuous observation of X = {Xt, 0 ≤ t ≤ T}. In order to obtain our estimators, we
divide RSDE (1) by ε1/2 and change the variable tε = tε−1. So tε ∈ [0, Tε] with Tε = Tε−1.
From the scaling properties of Brownian motion, we find that there exists another standard

Brownian motion {W̃t}t≥0 on the enlarged probability space such that W̃t
d= ε−1/2Wεt. Denote

Ytε = Xtεεε
−1/2. Then, for reflected stochastic process (1), we have⎧⎪⎨

⎪⎩
dYtε = θYtε dtε + dW̃tε + d̃Ltε ,

Ytε ≥ 0, 0 ≤ tε ≤ Tε,

Y0 = x0ε
−1/2,

(3)

where the realizations of L̃tε = ε−1/2Lεtε . It follows from (2) that

L̃tε = max

{
0, sup

s∈[0,tε]

(
−x0ε

−1/2 − θ

∫ s

0
Yu du − W̃s

)}
. (4)

Let

Atε =
∫ tε

0
Ys ds.

RSDE (3) can be written as

Ytε = Y0 + θAtε + W̃tε + L̃tε , 0 ≤ tε ≤ Tε.
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TFE for reflected stochastic linear differential equations of a large signal 743

The TFE of θ should minimize ∫ Tε

0
|Ytε − (Y0 + θAtε )|2 dtε.

It can easily be seen that the minimum is attained when θ is given by

θ̂ε =
∫ Tε

0 Atε (Ytε − Y0) dtε∫ Tε

0 A2
tε dtε

.

By simple calculations, we have

θ̂ε − θ =
∫ Tε

0 Atε W̃tε dtε∫ Tε

0 A2
tε dtε

+
∫ Tε

0 Atε L̃tε dtε∫ Tε

0 A2
tε dtε

. (5)

2. Consistency of the TFE ̂θε

In this section we discuss the consistency of the TFE θ̂ε in both the non-ergodic and ergodic
cases, respectively. We shall use the notation ‘→p’ to denote ‘convergence in probability’

and the notation ‘⇒’ to denote ‘convergence in distribution’. We write ‘
d=’ for equality in

distribution.
We introduce two important lemmas as follows.

Lemma 2.1. (Dietz and Kutoyants [6].) If ϕT is a probability measure defined on [0, ∞) such
that ϕT ([0, T]) = 1 and ϕT ([0, K]) → 0 as T → ∞ for each K > 0, then

lim
T→∞

∫ T

0
ftϕT (dt) = f∞

for every bounded and measure function f : [0, ∞) →R for which the limit f∞ := limt→∞ ft
exists.

Lemma 2.2. (Karatzas and Shreve [13].) Let z ≥ 0 be a given number and let y(·) = {y(t); 0 ≤
t < ∞} be a continuous function with y(0) = 0. There exists a unique continuous function k(·) =
{k(t); 0 ≤ t < ∞} such that

(i) x(t) := z + y(t) + k(t) ≥ 0, 0 ≤ t < ∞,

(ii) k(0) = 0, k(·) is non-decreasing,

(iii) k(·) is flat off {t ≥ 0; x(t) = 0}, that is,∫ ∞

0
I{x(s)>0} dk(s) = 0.

Then the function k(·) is given by

k(t) = max
[
0, max

0≤s≤t
{−(z + y(s))}

]
, 0 ≤ t < ∞.

https://doi.org/10.1017/jpr.2023.78 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.78


744 X. ZHANG AND H. SHU

Theorem 2.1.

(a) Under θ > 0, we have

lim
ε→0

(θ̂ε − θ ) = 0 a.s. (6)

(b) Under θ = 0, we have

θ̂ε − θ →p 0 as ε → 0. (7)

(c) Under θ < 0, we have

lim
ε→0

θ̂ε = 0 a.s., (8)

that is, the TFE θ̂ε is not strongly consistent.

Proof. (a) (i) If x0 > 0, it is easy to see that

e−θ tε Ytε = x0ε
−1/2 +

∫ tε

0
e−θs dW̃s +

∫ tε

0
e−θs d̃Ls. (9)

Because the process L̃ = {̃Ltε }tε≥0 increases only when Y = {Ytε }tε≥0 hits the boundary zero,∫ tε
0 e−θs d̃Ls is a continuous non-decreasing process for which

x0ε
−1/2 +

∫ tε

0
e−θs dW̃s +

∫ tε

0
e−θs d̃Ls ≥ 0,

and increases only when

x0ε
−1/2 +

∫ tε

0
e−θs dW̃s +

∫ tε

0
e−θs d̃Ls = 0.

It follows from Lemma 2.2 that∫ tε

0
e−θs d̃Ls = max

[
0, max

0≤s≤tε

{
−x0ε

−1/2 −
∫ s

0
e−θu dW̃u

}]
. (10)

For

Mt := −
∫ t

0
e−θs dW̃s,

by time change for a continuous martingale, there exists another standard Brownian motion

{Ŵt}t≥0 on the enlarged probability space such that Mt
d= Ŵ 1−e−2θ t

2θ

. It follows from (10) that

∫ tε

0
e−θs d̃Ls = max

[
0, −x0ε

−1/2 + max
0≤s≤ 1−e−2θ tε

2θ

Ŵs

]
. (11)

Then, under θ > 0 and x0 > 0, by the fact that Ŵs, s ∈ [0, 1/(2θ )] is almost surely finite, we
have

lim
ε→0

ε1/2
∫ tε

0
e−θs d̃Ls = 0 a.s. (12)
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In view of the definition of the quadratic variation of a continuous local martingale, we find
that

lim
ε→0

〈M, M〉tε = 1

2θ
a.s.

and

M̆tε := M2
tε − 〈M, M〉tε

is a continuous local martingale. Writing this as

M2
tε = M̆tε + 〈M, M〉tε ,

it follows from the convergence theorem of non-negative semi-martingales that

lim
ε→0

M2
tε < ∞ a.s.,

and hence

lim
ε→0

Mtε = −
∫ ∞

0
e−θs dW̃s a.s. (13)

Applying (9), (12), and (13), we obtain

lim
ε→0

ε1/2 e−θ tε Ytε = x0 a.s. (14)

Combining Lemma 2.1 with (14) yields

lim
ε→0

ε1/2 e−θTε ATε = lim
ε→0

∫ Tε

0

(
ε1/2 e−θ tε Ytε

) eθ tε∫ Tε

0 eθ tε dtε
dtε × e−θTε

∫ Tε

0
eθ tε dtε

= x0

θ
a.s. (15)

By (4) and the self-similarity property for the Brownian motion, we get

L̃tε ≤ max

{
0, sup

0≤s≤tε

(−x0ε
−1/2 − W̃s

)} d= t1/2
ε max

{
0, max

0≤u≤1

(−x0t−1/2 − W̆u
)}

, (16)

where {W̆u, u ≥ 0} is a fixed Wiener process on the enlarged probability space. Using (16) and
the fact that W̆u, u ∈ [0, 1] is almost surely finite, we see that

lim
ε→0

L̃tε

tε
= 0 a.s.

Obviously,

lim
ε→0

L̃tε

ε−1/2 eθ tε
= 0 a.s. (17)
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By the strong law of large numbers, we obtain

lim
ε→0

W̃tε

tε
= 0 a.s.

This implies that

lim
ε→0

W̃tε

ε−1/2 eθ tε
= 0 a.s. (18)

By (15), (17), (18), and Lemma 2.1, we have

lim
ε→0

(θ̂ε − θ ) = lim
ε→0

∫ Tε

0
Atε

ε−1/2 eθ tε

W̃tε
ε−1/2 eθ tε

ε−1 e2θ tε∫ Tε
0 ε−1 e2θ tε dtε

dtε∫ Tε

0

( Atε
ε−1/2 eθ tε

)2 ε−1 e2θ tε∫ Tε
0 ε−1 e2θ tε dtε

dtε

+ lim
ε→0

∫ Tε

0
Atε

ε−1/2 eθ tε

L̃tε
ε−1/2 eθ tε

ε−1 e2θ tε∫ Tε
0 ε−1 e2θ tε dtε

dtε∫ Tε

0

( Atε
ε−1/2 eθ tε

)2 ε−1 e2θ tε∫ Tε
0 ε−1 e2θ tε dtε

dtε

= 0 a.s. (19)

This completes the desired proof.
(ii) If x0 = 0, by Theorem 2.1 of Zang and Zhang [23], it follows that (6) holds. This

completes the proof of Theorem 2.1(a).
(b) Under θ = 0, we have YTε = x0ε

−1/2 + W̃Tε + L̃Tε . Then

∫ Tε

0
A2

tε dtε = T4
ε

∫ 1

0

(∫ t

0

(
x0√

T
+ W̃sTε√

Tε

+ L̃sTε√
Tε

)
ds

)2

dt

and ∫ Tε

0

(
W̃tε + L̃tε

)
Atε dtε = T3

ε

∫ 1

0

(
W̃sTε√

Tε

+ L̃sTε√
Tε

) ∫ s

0

(
x0√

T
+ W̃uTε√

Tε

+ L̃uTε√
Tε

)
du ds.

By the scaling properties of Brownian motion and Lemma 2.2, it follows that

{(
W̃ν, L̃ν

)
;ν ≥ 0

} d=
{

T1/2
ε

(
Ŵν/Tε , max

{
0, max

0≤s≤ν

(−x0T−1/2 − Ŵs/Tε

)})
;ν ≥ 0

}
=:

{
T1/2

ε

(
Ŵν/Tε , L̂ν/Tε

)
;ν ≥ 0

}
,

where {Ŵν, ν ≥ 0} is another standard Wiener process on the enlarged probability space. By
the continuous mapping theorem, we have

∫ Tε

0

(
W̃tε + L̃tε

)
Atε dtε∫ Tε

0 A2
tε dtε

d= 1

Tε

∫ 1
0

(
Ŵs + L̂s

) ∫ s
0

(
x0T−1/2 + Ŵu + L̂u

)
du ds∫ 1

0

(∫ t
0

(
x0T−1/2 + Ŵs + L̂s

)
ds

)2 dt

→p 0 as ε → 0, (20)
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where

L̂s = max
{

0, max
0≤u≤s

(−x0T−1/2 − Ŵu
)}

.

Combining (5) with (20) implies that (7) holds. This completes the desired proof.
(c) We consider the case θ < 0. We first introduce the reflected OUP

dȲtε = θ Ȳtε dtε + dW̃tε + dL̄tε , Ȳ0 = 0, 0 ≤ tε ≤ Tε. (21)

It is easy to see that

e−θ tε Ȳtε =
∫ tε

0
e−θs dW̃s +

∫ tε

0
e−θs dL̄s. (22)

Similarly to the discussion of (10), we see that∫ tε

0
e−θs dL̄s = max

[
0, max

0≤s≤tε

{
−

∫ s

0
e−θu dW̃u

}]
. (23)

By (9), (10), (22), and (23), we have

|YTε − ȲTε | = eθTε

∣∣∣∣max

[
0, max

0≤s≤Tε

{
−x0ε

−1/2 −
∫ s

0
e−θu dW̃u

}]

− max

[
0, max

0≤s≤Tε

{
−

∫ s

0
e−θu dW̃u

}]∣∣∣∣ + x0ε
−1/2 eθTε

≤ 2x0ε
−1/2 eθTε . (24)

For the linear system (21), according to the mean ergodic theorem (see Hu et al. [10]), we have

lim
ε→0

1

Tε

∫ Tε

0
Ȳs ds = 1√−πθ

a.s. (25)

Combining (24) with (25) yields

lim
ε→0

ATε

Tε

= lim
ε→0

1

Tε

∫ Tε

0
(Ys − Ȳs) ds + lim

ε→0

1

Tε

∫ Tε

0
Ȳs ds = 1√−πθ

a.s. (26)

It follows from Zang and Zhang [25] that

lim
ε→0

L̄Tε

Tε

=
√−θ

π
a.s.

Note that ∣∣̃LTε − L̄Tε

∣∣ =
∣∣∣∣max

{
0, sup

s∈[0,Tε]

(
−x0ε

−1/2 − θ

∫ s

0
Yu du − W̃s

)}

− max

{
0, sup

s∈[0,Tε]

(
−θ

∫ s

0
Ȳu du − W̃s

)}∣∣∣∣
≤ x0ε

−1/2 + |θ |
∫ Tε

0
2x0ε

−1/2 eθu du

≤ 3x0ε
−1/2.
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Then we have

lim
ε→0

L̃Tε

Tε

= lim
ε→0

L̃Tε − L̄Tε

Tε

+ lim
ε→0

L̄Tε

Tε

=
√−θ

π
a.s. (27)

By (26), (27), Lemma 2.1, and the strong law of large numbers, we have

lim
ε→0

∫ Tε

0 W̃tε Atε dtε∫ Tε

0 A2
tε dtε

= lim
ε→0

∫ Tε

0
W̃tε

tε

Atε
tε

t2ε∫ Tε
0 t2ε dtε

dtε∫ Tε

0

(Atε
tε

)2 t2ε∫ Tε
0 t2ε dtε

dtε
= 0 a.s. (28)

and

lim
ε→0

∫ Tε

0 L̃tε Atε dtε∫ Tε

0 A2
tε dtε

= lim
ε→0

∫ Tε

0
L̃tε
tε

Atε
tε

t2ε∫ Tε
0 t2ε dtε

dtε∫ Tε

0

(Atε
tε

)2 t2ε∫ Tε
0 t2ε dtε

dtε
= −θ a.s. (29)

By (5), (28), and (29), we can conclude that (8) holds. This completes the proof. �

3. Asymptotic distribution of the TFE ̂θε

In this section we investigate the asymptotic distribution of the TFE θ̂ε.

Theorem 3.1. Let {Ŵu, u ≥ 0} be another standard Wiener process on the enlarged probability
space.

(a) Assume θ > 0.

(i) If x0 > 0, then

(θ̂ε − θ ) eθTε ⇒ 2θ

x0
T1/2N as ε → 0, (30)

where N is a random variable with the standard normal distribution.

(ii) If x0 = 0, then

eθTε

√
Tε

(θ̂ε − θ ) ⇒ 2θN∣∣Ŵ1/(2θ) + L̂1/(2θ)
∣∣ as ε → 0, (31)

where

L̂1/(2θ) = max
[
0, max

0≤u≤1/(2θ)
(−Ŵu)

]
,

and N is a standard normal random variable which is independent of Ŵ1/(2θ) and
L̂1/(2θ).

(b) If θ = 0, then

ε−1θ̂ε ⇒ 1

T

∫ 1
0

(
Ŵs + L̂s

) ∫ s
0

(
x0T−1/2 + Ŵu + L̂u

)
du ds∫ 1

0

(∫ t
0

(
x0T−1/2 + Ŵs + L̂s

)
ds

)2 dt
as ε → 0, (32)

where
L̂s = max

{
0, max

0≤u≤s

(−x0T−1/2 − Ŵu
)}
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Proof. (a) (i) If x0 > 0, we have

eθTε (θ̂ε − θ )

= ε e−θTε
∫ Tε

0 Atε W̃tε dtε + ε e−θTε
∫ Tε

0 Atε L̃tε dtε

ε e−2θTε
∫ Tε

0 A2
tε dtε

= T1/2

ε e−2θTε
∫ Tε

0 A2
tε dtε

(
T−1/2

ε W̃Tε ε
1/2 e−θTε

∫ Tε

0
Atε dtε

+ ε1/2 e−θTε T−1/2
ε

∫ Tε

0
Atε

(
W̃Tε − W̃tε

)
dtε + ε1/2 e−θTε T−1/2

ε

∫ Tε

0
Atε L̃tε dtε

)

:= I1(ε)(I2(ε) + I3(ε) + I4(ε)). (33)

We shall study the asymptotic behaviour of Ii(ε), i = 1, . . . , 4. By (15) and Lemma 2.1, we
can see that

lim
ε→0

ε e−2θTε

∫ Tε

0
A2

tε dtε

= lim
ε→0

∫ Tε

0 ε−1 e2θ tε dtε
ε−1 e2θTε

∫ Tε

0

(
Atε

ε−1/2 eθ tε

)2
ε−1 e2θ tε∫ Tε

0 ε−1 e2θ tε dtε
dtε

= x2
0

2θ3
a.s.

It follows that

lim
ε→0

I1(ε) = 2θ3

x2
0

T1/2 a.s. (34)

Now we consider I2(ε). Using (15) and Lemma 2.1 again, we have

lim
ε→0

ε1/2 e−θTε

∫ Tε

0
Atε dtε

= lim
ε→0

∫ Tε

0 ε−1/2 eθ tε dtε
ε−1/2 eθTε

∫ Tε

0

(
Atε

ε−1/2 eθ tε

)
ε−1/2 eθ tε∫ Tε

0 ε−1/2 eθ tε dtε
dtε

= x0

θ2
a.s. (35)

For the second factor in I2(ε), we find that

T−1/2
ε WTε = T−1/2

ε

(
WTε − WTε

1/2

) + T−1/2
ε W

T1/2
ε

.

It is easy to see that the random variable

T−1/2
ε

(
WTε − WTε

1/2

)
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has a normal distribution N
(
0, 1 − T−1/2

ε

)
, which converges weakly to a standard normal

random variable N as ε → 0. By the strong law of large numbers, we see that

lim
ε→0

W
T1/2

ε

T1/2
ε

= 0 a.s.

Hence we have

T−1/2
ε WTε ⇒ N as ε → 0. (36)

Combining (35) with (36) gives

I2(ε) ⇒ x0

θ2
N as ε → 0. (37)

Next, we show that I3(ε) → 0 in probability as ε → 0. Note that

|I3(ε)| ≤ ε1/2 e−θTε T−1/2
ε

∫ Tε

0

∣∣∣∣
∫ tε

0
Ys ds

∣∣∣∣∣∣W̃Tε − W̃tε

∣∣ dtε

≤ ε1/2 e−θTε T−1/2
ε

∫ Tε

0

(∫ tε

0

∣∣ε1/2 e−θsYs
∣∣ eθsε−1/2 ds

)∣∣W̃Tε − W̃tε

∣∣ dtε

≤ 1

θ
sup
ε≥0

∣∣ε1/2 e−θTε YTε

∣∣T−1/2
ε e−θTε

∫ Tε

0
|WTε − Wtε | eθ tε dtε, (38)

which converges to zero in probability as ε → 0. In fact, using Markov’s inequality and
Fubini’s theorem, we find that for given δ > 0,

P

(
T−1/2

ε e−θTε

∫ Tε

0
|WTε − Wtε | eθ tε dtε > δ

)

≤ δ−1
E

[
T−1/2

ε e−θTε

∫ Tε

0
|WTε − Wtε | eθ tε dtε

]

= δ−1T−1/2
ε

∫ Tε

0
E|WTε − Wtε | e−θ(Tε−tε) dtε

= δ−1T−1/2
ε

∫ Tε

0
ν1/2 e−θν dν

≤ δ−1T−1/2
ε θ−3/2 1

2

√
π,

which tends to zero as ε → 0. Finally, we consider I4(ε). Combining the self-similarity property
for the Brownian motion with (4) yields

L̃tε

t1/2
ε

= t−1/2
ε max

{
0, sup

0≤utε≤tε

(
−x0ε

−1/2 − θ

∫ utε

0
Yr dr − W̃utε

)}

d= max

{
0, max

0≤u≤1

(
−x0t−1/2 − θ t−1/2

ε

∫ utε

0
Yr dr − Ŵu

)}
a.s. (39)
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Note that for any given u ∈ (0, 1] we can choose a positive number ε > 0 such that ε < u. Then
we have

lim
ε→0

max
u∈(0,1]

(
−x0t−1/2 − θ t−1/2

ε

∫ utε

0
Yr dr − Ŵu

)

≤ lim
ε→0

max
u∈(0,1]

(
−θ t−1/2

ε

∫ utε

0
Yr dr

)
+ max

u∈(0,1]
(−Ŵu)

≤ − lim
ε→0

θ t−1/2
ε

∫ εtε

0
Yr dr + max

u∈(0,1]
(−Ŵu). (40)

By (15), we have

lim
ε→0

θ t−1/2
ε

∫ εtε

0
Ys ds = θ lim

ε→0

∫ εtε
0 Ys ds

ε−1/2 eθεtε

ε−1/2 eθεtε

t1/2
ε

= θ lim
ε→0

∫ εtε
0 Ys ds

ε−1/2 eθδtε

eθεtε

t1/2

= ∞ a.s. (41)

By (40), (41), and the fact that Ŵu, u ∈ (0, 1] is almost surely finite, we have

lim
ε→0

max
u∈(0,1]

(
−x0t−1/2 − θ t−1/2

ε

∫ utε

0
Yr dr − Ŵu

)
= −∞ a.s. (42)

If u = 0, we find that

−x0t−1/2 − θ t−1/2
ε

∫ utε

0
Yr dr − Ŵu = −x0t−1/2.

Hence we see that

lim
ε→0

max
u∈[0,1]

(
−x0t−1/2 − θ t−1/2

ε

∫ utε

0
Ỹs ds − Ŵu

)
= −x0t−1/2 a.s. (43)

Applying (39) and (43), we obtain

lim
ε→0

L̃tε

t1/2
ε

= 0 a.s. (44)

By (15) and (44) as well as Lemma 2.1, we have

lim
ε→0

I4(ε) = lim
ε→0

∫ Tε

0

Atε

ε−1/2 eθ tε

Ltε

t1/2
ε

ε−1/2t1/2
ε eθ tε∫ tε

0 ε−1/2t1/2
ε eθ tε dtε

dtε

∫ Tε

0 ε−1/2t1/2
ε eθ tε dtε

ε−1/2T1/2
ε eθTε

≤ lim
ε→0

∫ Tε

0

Atε

ε−1/2 eθ tε

Ltε

t1/2
ε

ε−1/2t1/2
ε eθ tε∫ tε

0 ε−1/2t1/2
ε eθ tε dtε

dtε

∫ Tε

0 eθ tε dtε
eθTε

= 0 a.s. (45)
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Therefore, by (33), (34), (37), (38), and (45), we conclude that (30) holds. This completes the
desired proof.

(ii) Under x0 = 0, by Theorem 2.2 of Zang and Zhang [23], it follows that (31) holds. This
completes the desired proof.

(b) Combining (5) with (20) implies that (32) holds. This completes the proof. �

4. Discussion

In this section we discuss the properties of the TFE θ̂ε and MLE

θ̂MLE
ε :=

∫ Tε

0 Ys dYs∫ Tε

0 Y2
s ds

separately in terms of the range of θ , i.e. θ > 0, θ = 0, and θ < 0. By comparing the results of
Zhang and Shu [27], we obtain the following claims.

(a) Under θ > 0, both estimators are consistent. In addition, the following hold.

(i) If x0 > 0, then

ε−1/2 eθTε (θ̂MLE
ε − θ ) ⇒ N

(
0,

2θ

x2
0

)
as ε → 0, (46)

(ii) If x0 = 0, then

eθTε (θ̂MLE
ε − θ ) ⇒

√
2θN∣∣Ŵ1/(2θ) + L̂1/(2θ)

∣∣ as ε → 0, (47)

where

L̂1/(2θ) = max
[
0, max

0≤u≤1/(2θ)
(−Ŵu)

]
,

and N is a standard normal random variable which is independent of Ŵ1/(2θ) and
L̂1/(2θ). For both estimators, the order of the convergence depends heavily on the
true value of the parameter. It can also be seen that the MLE θ̂MLE

ε converges in
distribution of higher order than the TFE θ̂ε.

(b) Under θ = 0, it is easy to see that both estimators are consistent. The MLE θ̂MLE
ε has the

limiting distribution

ε−1θ̂MLE
ε ⇒ 1

T

∫ 1
0

(
x0T−1/2 + Ŵu + L̂u

)
dŴu

x0T−1 + ∫ 1
0

(
Ŵu + L̂u

)2 du + 2x0T−1/2
∫ 1

0

(
Ŵu + L̂u

)
du

as ε → 0,

where

L̂u = max
{

0, max
0≤r≤u

(−x0T−1/2 − Ŵr
)}

.

Both estimators are neither normal nor a mixture of normals. Further, both estimators
have the same order of convergence in this case.

(c) Under θ < 0, the MLE θ̂ MLE
ε of θ is strongly consistent. But the TFE θ̂ε is not strongly

consistent. The MLE θ̂ MLE
ε has the limiting distribution

θ̂ MLE
ε − θ

ε1/2
⇒ N

(
0, − 2θ

x2
0 + T

)
as ε → 0.
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