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Abstract

In this paper we study the drift parameter estimation for reflected stochastic linear
differential equations of a large signal. We discuss the consistency and asymptotic
distributions of trajectory fitting estimator (TFE).
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1. Introduction

Let (2, F, P) be equipped with a right continuous and increasing family of o-algebras
{F:, t >0}, and let {W;};>0 be a given standard Brownian motion defined on the probability
space (€2, F, IP). In this paper we consider a reflected stochastic linear differential equation of
a large signal,

0
dXt - _Xt dt + th + st,
€ e))
X;>0, 0=<:1<T,
where the initial value Xg=x9 >0, ¢ € (0, 1], 8 € R is unknown, and L = {L;, t > 0} is the
minimal increasing non-negative process which makes the reflected stochastic process (1) sat-
isfy X; > 0 for all > 0. The process L increases only when X hits the boundary zero, so that

00
/ Iix,~0y dL; =0.
0

It can be easily proved (see e.g. [9] and [22]) that the process L has the following explicit
expression:

9 u
L= max{O, sup (—xo - - / X, dv — Wu> } 2)
u€el0,t] € Jo
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742 X. ZHANG AND H. SHU

Usually in applications to financial engineering, queueing systems, storage models, etc., the
reflecting barrier is assumed to be zero. This is principally because of the physical restriction
of the state processes. For example, inventory levels, stock prices, and interest rates should take
non-negative values. We refer to [2], [3], [8], [9], [14], [17], [18], [19], [20], [21], and [22] for
more details on reflected stochastic differential equations (RSDEs) and their wide applications.

But in reality, the drift parameter in RSDEs is seldom known. Parametric inference is one
of the effective methods for solving this type of problem. In the case of statistical inference
for RSDEs driven by Brownian motion, a popular approach is the maximum likelihood esti-
mation method, based on the Girsanov density (see e.g. [23], [24], and [26]). For example,
Bo et al. [4] established the maximum likelihood estimator (MLE) for the stationary reflected
Ornstein—Uhlenbeck processes (OUPs) and studied the strong consistency and asymptotic nor-
mality of the MLE. Jiang and Yang [12] considered asymptotic properties of the MLE of the
parameter occurring in ergodic reflected Ornstein—Uhlenbeck processes (ROUPs) with a one-
sided barrier. Zang and Zhu [26] investigated the strong consistency and limiting distribution of
the MLE in both the stationary and non-stationary cases for reflected OUPs. It is well known
that the TFE was introduced by Kutoyants [15] as a numerically attractive alternative to the
well-investigated MLE. Recently, Zang and Zhang [25] used the trajectory fitting estimation
to investigate the asymptotic behaviour of the estimator for non-stationary reflected OUPs,
including strong consistency and asymptotic distribution. Further, they have shown that the
TFE for ergodic reflected OUPs is not strongly consistent.

On the other hand, trajectory fitting estimation for stochastic process without reflection have
drawn increasing attention (see e.g. [5], [6], [7], [15], and [16]). For instance, Abi-ayad and
Mourid [1] discussed the strong consistency and Gaussian limit distribution of the TFE for
non-recurrent diffusion processes. Jiang and Xie [11] studied the asymptotic behaviours for
the TFE in stationary OUPs with linear drift.

Motivated by the aforementioned works, in this paper we extend the work of Zang and
Zhang [25] and study the consistency and asymptotic distributions of the TFE for RSDE (1)
based on continuous observation of X = {X;, 0 <t < T}. In order to obtain our estimators, we
divide RSDE (1) by ¢'/? and change the variable #, =~ So t, € [0, T] with T, =T~
From the scaling properties of Brownian motion, we find that there exists another standard

Brownian motion {W,},Zo on the enlarged probability space such that W, L1/ 2W,,. Denote
Y,, = X;,ce~'/2. Then, for reflected stochastic process (1), we have

dy,, =6Y, dr, +dW, +dL,,

Y, >0, 0=t =T, 3)
Yo =xpe 1/,

where the realizations of Z,S =gV 2L8ts. It follows from (2) that

S
Ltgzmax{O, sup (—xos_l/z—éf Yudu—Ws)}. )
] 0

s€[0,1¢

e
Atg Z[ YX ds.
0
RSDE (3) can be written as
Y, =Yo+0A, + W, +L,, 0=t <T..

Let
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TFE for reflected stochastic linear differential equations of a large signal 743
The TFE of 6 should minimize

T,
|1 = o0, ar
0
It can easily be seen that the minimum is attained when 6 is given by

oo A, — Yo d
= .
Jo© A? dt,

By simple calculations, we have

T, . Te , ~
5 _g_do A Wy dt, [0° ALy, drg

To 42 To 42
T A2 dr, JeA? dr,

®)

2. Consistency of the TFE 9;

In this section we discuss the consistency of the TFE 8, in both the non-ergodic and ergodic
cases, respectively. We shall use the notation ‘—,’ to denote ‘convergence in probability’

3

and the notation ‘=’ to denote ‘convergence in distribution’. We write
distribution.
We introduce two important lemmas as follows.

2> for equality in

Lemma 2.1. (Dietz and Kutoyants [6].) If o7 is a probability measure defined on [0, 00) such
that o7([0, T]) = 1 and ¢7([0, K]) = 0 as T — oo for each K > 0, then

T
iim [ igr(en =i
T—o00 Jo
for every bounded and measure function f: [0, 00) — R for which the limit foo := lim;—  f;
exists.

Lemma 2.2. (Karatzas and Shreve [13].) Let z > 0 be a given number and let y(-) = {y(¢); 0 <
t < 0o} be a continuous function with y(0) = 0. There exists a unique continuous function k(-) =
{k(1); 0 <t < o0} such that

(1) x(t):=z+yO) +k()>0,0<1< 00,
(ii) k(0) =0, k(-) is non-decreasing,
(i) k() is flat off {t = 0; x(¢) = 0}, that is,
00
/0 Iix(s)>~0y dk(s) = 0.

Then the function k(-) is given by

k() = max] 0, max {~(z +yN], 0=r<oo
<s<t
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Theorem 2.1.
(a) Under 6 > 0, we have

lim 6, —6)=0 a.s. (6)
e—0
(b) Under 6 =0, we have
@—9—),,0 ase — 0. @)
(c) Under 6 <0, we have
lim6, =0 a.s., (8)
e—0

that is, the TFE é; is not strongly consistent.

Proof. (a) (1) If xo > 0, it is easy to see that

Ie
e 0y, =xpe!/? +/
0

te -
e 0 dW, + f e 9 dL,. 9)
0

Because the process L = {L;, };.>0 increases only when Y = {Y;,};.>¢ hits the boundary zero,
f(;s e~%% dL; is a continuous non-decreasing process for which

te - te -
xoe V% + / e 0 dW, + / e 9 dl, >0,
0 0
and increases only when
le N te N
xoe V% 4+ / e s aw, + / e Al =0.
0 0

It follows from Lemma 2.2 that

te _ s ~
/ e % dL, = max [0, max {—x08_1/2 — / e 0u qu}:|. (10)
0 0=<s<te 0

For
t ~
M; = —/ e—@s dws,
0

by time change for a continuous martingale, there exists another standard Brownian motion
{W,}eo on the enlarged probability space such that M; 4 Wl,efzer . It follows from (10) that
20

te - R
/ e % dL; = max |:O, —xoe 24+ max WS:|. (11)
0

1—e—20tg
0<s<—=5;—

Then, under 6 > 0 and xp > 0, by the fact that WS, s €[0, 1/(20)] is almost surely finite, we
have

te -
lim ¢!/? / e " dl,=0 as. (12)
0

e—0
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In view of the definition of the quadratic variation of a continuous local martingale, we find
that

1
lim (M, M);, = — as.
e—0 ’ 20

and

Y 2

My, = M; — (M, M),
is a continuous local martingale. Writing this as

M;

t:3

M; + (M, M),,,
it follows from the convergence theorem of non-negative semi-martingales that

lim M? <oco as.,
e—0 ¢

and hence
OO ~
lim M, = — / e AW, as. (13)
e—0 0

Applying (9), (12), and (13), we obtain

linz) gl2e by, =xy as. (14)
P

Combining Lemma 2.1 with (14) yields

T, o1, Te
lim ¢'/2e 9T A7, = lim (81/2 e 0t Yts)T— d, x e T / e’ dt,
e—>0 e—0 Jo f() ¢ efte dt, 0
X
= go a.s. (15)

By (4) and the self-similarity property for the Brownian motion, we get

L, < max{O, sup (—xosfl/2 — Ws)} 4 1}/? max{O, max (—)cofl/2 - Wu)}, (16)

0<s<t, 0<u<l

where {W,,, u > 0} is a fixed Wiener process on the enlarged probability space. Using (16) and
the fact that W, u € [0, 1] is almost surely finite, we see that

~

. L
lim =% =0 as.
e—=0 ¢

Obviously,

. Ly,
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By the strong law of large numbers, we obtain

~

le

lim

=0 a.s.
e—0 g

This implies that

L,
gl_I)I'(l) m =0 a.s. (18)

By (15), (17), (18), and Lemma 2.1, we have

Te A Wie el 20

. 0 o172 o0t o=172 i T o1 e ar, Ie
lim (6; — 6) = lim 0
e—0 e—0 T, Ase

2
0 (871/260“7) f

e el e dr,

o1 20t

dt,
T. Age ztg g1 20t P
0 g 1/2¢0te ¢—1/2 gbte fOTs o120t dy, £
+ lim

£—0 Ta( Ay )2 g1 e
o \&mem) ]

dr
&
e g1 e2te dr,

=0 a.s.

19)
This completes the desired proof.

(ii) If xp =0, by Theorem 2.1 of Zang and Zhang [23], it follows that (6) holds. This
completes the proof of Theorem 2.1(a). _ _
(b) Under 8 =0, we have Y7, = xoe 12 4 Wr, + L7,. Then

T, 1 t -~ T 2
¢ W, L,
Azdt=T4/ (/(—onr I S)ds) dr

/(‘) e e ¢ 0 0 \/T \/Ts VTa

and

, | - . _ ~
&~ ~ WT LST X0 WuT LuT
W£+L€A5dt=T3f< £+ )/<—+ L ’“'")duds.
/o (W + Lo JAs, &1 =T o \VTe VT ) Jo \NT VT  JTe

By the scaling properties of Brownian motion and Lemma 2.2, it follows that

{(W, L) > 0} 4 {TEI/Z(

W1, , max]0, max (—xoT™"/% - WS/TS)});V > 0}

<s<v

= {T;/Z(W\)/Tga’l‘\U/Te);v Z 0}7

where {Wv, v > 0} is another standard Wiener process on the enlarged probability space. By
the continuous mapping theorem, we have

fOTS (VNVte + Zta)Ata dre 4 i fol (Wv +zs) fos(xoT_l/z + Wu +fu) du ds
OT‘E A? dt, T,

&

S (S (roT=172 + Wy + 1) ds)* ds

—p0 ase—0, (20)
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where

Z\S = max{O, max (—xoT_l/2 - Wu)}

0<u<s

Combining (5) with (20) implies that (7) holds. This completes the desired proof.
(c) We consider the case 6 < 0. We first introduce the reflected OUP

dy, =6V, dr, +dW, +dL,, Yo=0, 0<t <T,. (21)
It is easy to see that
e - e _
e 0y, = / e 05 AW, + / e s dL;. (22)
0 0
Similarly to the discussion of (10), we see that

e _ s ~
/ e % dL; = max [O, max {— / e " aw, ” (23)
0 0<s<te 0

By (9), (10), (22), and (23), we have

N
max|:0, max {—xos_l/z—/ e 0u dW,,H
0<s<T; 0

N
—max|:0, max {—/ e 0u qu}” + xpe 12 fT¢
0

0<s<T;

Yz, — Yr,| ="

<2xpe 12 0T, (24)

For the linear system (21), according to the mean ergodic theorem (see Hu et al. [10]), we have

1 [T 1
lim — Yods= a.s. 25
e—0 T, /0 § N —mh (25)
Combining (24) with (25) yields
CAn 1T 1 (T 1
lim = lim — Yy —Yg)ds+ lim — Yods= a.s. (26)
e—0 Tg e—0 T Jo e—0Te Jo —776

It follows from Zang and Zhang [25] that

Note that

S
|Lr, — Lz, | = ‘max{O, sup (—xoa_1/2 -6 / Y, du— WS)}
s€[0,T¢] 0

s
—max{O, sup (—9/ Y, du—W;)H
s€[0,T¢] 0

Te
§x08*1/2+|9|/ 2x0e /% " du
0

<3xpe V2.
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Then we have

. Ly, . Ly —Lr, . L, -0
lim = lim ——= + lim =,/— as. 27
e—=0 Ty  e—0 T, e—0 Ty T

By (26), (27), Lemma 2.1, and the strong law of large numbers, we have

~

ng Wi, A 2 d
Ot e fyrid©

T, &
. fo Wi Ay, dte

m = lim =0 as. 28)
e—=0 OTS At2 ds, e—=0 [Te (%)2 12 dt,
€ 0 Yt/ [Te2qp
and
~ Te L Ay 2
. -[0 £ LtgAtg dtg — .[0 te 1 ijs tg d[g d € _ 9 as (29)
0 [Te 52 T o0 (Te (A2 2 - >
e fO A7 dte e f() (f) m dt,
By (5), (28), and (29), we can conclude that (8) holds. This completes the proof. O

3. Asymptotic distribution of the TFE 9;
In this section we investigate the asymptotic distribution of the TFE B,.

Theorem 3.1. Let {Wu, u > 0} be another standard Wiener process on the enlarged probability
space.

(a) Assume 6 > 0.
(1) Ifxo > 0, then

- 26
6, —0)eTe = %T‘/ZN ase — 0, (30)

where N is a random variable with the standard normal distribution.

@) Ifxo =0, then

et @ —60)= 20N 0 31)
— (9, — -~ — ase — 0,
VT © |W1/(29) + Ll/(29)‘

where

Zl/@@) = maX[O, max (—Wu)],
0<u<1/(20)

and N is a standard normal random variable which is independent of Wl /26) and
L1/(26)-

(b) If60 =0, then
19 = 1 fol(ws +1Ly) fo(xoT ™" + Wy + L) duds
CUT YT 2 4 Wy + L) ds)” de

ase — 0, (32)

where
L,= max{O, max (—)C()T_l/2 — Wu)}

0<u<s
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Proof. (a) (1) If xo > 0, we have
/T (@ — 0)

ce 0Tt fOTg AW, dte + 70T fOTS AL, dr,

g e~ 20T fOT” A? dt,

T1/2 ~ T,
— - <T8]/2WT881/2 e*eTs/ Ay, dt,
ee20Te [ A2 di, 0

Te - - Te -
+6!/2 e—QTeT;VZ/ A, (Wr, = W, ) dt, + /2 e 0o 12 / AL, dte)
0 0

= NI(e)(a(e) + () + L(e)). (33)

We shall study the asymptotic behaviour of I;(¢), i=1, ..., 4. By (15) and Lemma 2.1, we
can see that

T, —
i fo o 1 eZ@tg dtg /T£< Alg )2 871 e2€ts q
=1um ———F t
— _ T. &
60 e—1e20T: 0 e—1/2 obts f() ¢ o=l @201 dt.

It follows that
263
lim I;(e) = —-T'* as. (34)
e—>0 xo
Now we consider I>(¢g). Using (15) and Lemma 2.1 again, we have

Te
lim /2 ¢=0T¢ / Ay die
0

e—0

. fng e~ 1/2 &0 gy, /Tg( A, ) e—1/2 bt
=1
0 J;

—1/2 0T, —-1/2 T,
e—1/2 0T e—1/2 gbts 06871/26015 dt,

== as. (35)
For the second factor in I>(g), we find that
T, PWr, =T 2 (Wr, = Wyp) + T2 W
It is easy to see that the random variable

T\ (Wr, = Wy 2)
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has a normal distribution N (O, 1-T, 1/ 2), which converges weakly to a standard normal

random variable N as ¢ — 0. By the strong law of large numbers, we see that

WTI/Z
lim ﬁ =0 a.s.
e—0 Ta/
Hence we have
T-'V2Wr, =N ase— 0. (36)
Combining (35) with (36) gives
he)= ;—gzv as & — 0. 37)

Next, we show that I3(¢) — 0 in probability as ¢ — 0. Note that

Te te
IIs(e)lss‘/ze*”ST;‘/Z/ / Y, ds
0

0
Te te i W
(/ |e1/2 e=05y,| &5 1/2 ds) |Wr, — W, | dre
0

|WT8 - Wta| dtg

<2 e—ergTs—l/zf
0

1 Te
< - sup|a21/2 e 0T Y7, |T6_1/2 e 0T¢ / |Wr, — W, | e dze, (38)
0 e>0 0

which converges to zero in probability as ¢ — 0. In fact, using Markov’s inequality and
Fubini’s theorem, we find that for given § > 0,

T,
IP(TSI/Z e 0T / |Wr, — W, | e dr, > a)
0
T,
< 5—1E[T;1/2 e 0T / \Wr, — W,,| " dt5:|
0
T,
:5*1T;1/2/ E|Wr, — W;,| e 0T gr,
0
T,
=37]T871/2/ l)1/2 efev dv
0

< (S_ITS_I/ZG_:;/Z%\/E,

which tends to zero as ¢ — 0. Finally, we consider I4(¢). Combining the self-similarity property
for the Brownian motion with (4) yields

Z ute ~
lt‘gz :ts_l/2 maX{O, sup <—X()8_1/2—9f Yrdr—ng)}
tg/ 0

0<ut,<t,

0<u<l

ute .
4 max{O, max (—xoz‘_l/2 - 9t8_1/2 / Y,.dr— Wu> } a.s. 39)
0
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Note that for any given u € (0, 1] we can choose a positive number € > 0 such that € < u. Then

we have
ute R
lim max (—xot1/2 — 9t;1/2 / Y, dr — Wu)
e—>0ue(0,1] 0
ute .
< lim max (—%”2 f Y, dr) + max (—W,)
e—>0ue(0,1] 0 ue(0,1]
€lg R
< —lim 61, 1/2 / Y,dr+ max (—W,). (40)
e—0 0 ue(0,1]
By (15), we have
€ty €le Y.ds g—1/2 gbete
. —1/2 _ . 0 s
61%9% /0 Y ds_eslg% e 12 gper 172

o i J0 Ysds et
= m ——mF——-
e>0 £—1/2 001: 4172

=00 as. (41)

By (40), (41), and the fact that Wu, u € (0, 1] is almost surely finite, we have
ute .
lim max <—xot1/2 —or;1/? / Y,dr— Wu> =—00 as. (42)
e—>0ue(0,1] 0

If u =0, we find that

f,

ute ~
—xot V2 — 112 / Y, dr — W, = —xot~ /2.
0

Hence we see that

utg ~ -
lim max (_th—l/z — 9t;1/2 / Y, ds — Wu> = —xot_1/2 a.s. 43)
e—>0uel0,1] 0
Applying (39) and (43), we obtain
L,
lim = 0 as. (44)

e—0 te

By (15) and (44) as well as Lemma 2.1, we have

_12.1)2 T, _1/2.1)2
. ) Lo A, L, e V21 eft fofe 1724112 e0te gy,
lim /4(e) = lim 172 ot /2 1 12 dte 12
e—0 e—=0Jo € ev'e ¢ fOs 871/2% efle dt, 871/2T£ e0T:

112 T
<1 Te Ay, L, £ l/ztg/ ele . fos et dr,
1m —_
Tes0Jo  e1/2ef 412 s e=12( 2 e g, ° T

=0 a.s. (45)
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Therefore, by (33), (34), (37), (38), and (45), we conclude that (30) holds. This completes the
desired proof.

(i1) Under xo = 0, by Theorem 2.2 of Zang and Zhang [23], it follows that (31) holds. This
completes the desired proof.

(b) Combining (5) with (20) implies that (32) holds. This completes the proof. O

4. Discussion
In this section we discuss the properties of the TFE 6, and MLE
PMLE ._ fo " Y dYy
& T T
0 sz ds
separately in terms of the range of 9, i.e. 0 > 0, 0 =0, and 0 < 0. By comparing the results of
Zhang and Shu [27], we obtain the following claims.
(a) Under 6 > 0, both estimators are consistent. In addition, the following hold.

(i) If xg > 0, then

260

g71/2 T (@MLE _ 9y = N(O, —2> as e — 0, (46)
X,
0
(ii) If xo =0, then
V26N
e (OMLE — 9) = — = as e — 0, (47)
|Wi/@6) +Li/s)|
where
Li /00 = maX[O, o (—Wu)],

and N is a standard normal random variable which is independent of W, /29y and
L1 /(29). For both estimators, the order of the convergence depends heavily on the
true value of the parameter. It can also be seen that the MLE ’QZWLE converges in
distribution of higher order than the TFE O,

(b) Under 6 =0, it is easy to see that both estimators are consistent. The MLE @LE has the
limiting distribution
1 =12 . W LT ) div
¢~ IGMLE _ 1 Jo (x0T /2 + Wi + L) dW,
& ~ o~ -~ o~
T xoT=1 + fof (W + L) du+ 250712 [} (W, + L) du

ase — 0,

where

L.,= max{O, max (—xoT /% — Wr)}

0<r<u
Both estimators are neither normal nor a mixture of normals. Further, both estimators
have the same order of convergence in this case.
(c) Under 6 <0, the MLE @;MLE of 6 is strongly consistent. But the TFE 0, is not strongly
consistent. The MLE O MLE has the limiting distribution
TMLE
0, -6

20
:>N<0,— 3 ) as e — 0.
T

el/2 2+
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