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Infection mechanism plays a significant role in epidemic models. To investigate the
influence of saturation effect, a nonlocal (convolution) dispersal
susceptible-infected-susceptible epidemic model with saturated incidence is
considered. We first study the impact of dispersal rates and total population size on
the basic reproduction number. Yang, Li and Ruan (J. Differ. Equ. 267 (2019)
2011–2051) obtained the limit of basic reproduction number as the dispersal rate
tends to zero or infinity under the condition that a corresponding weighted
eigenvalue problem has a unique positive principal eigenvalue. We remove this
additional condition by a different method, which enables us to reduce the problem
on the limiting profile of the basic reproduction number into that of the spectral
bound of the corresponding operator. Then we establish the existence and
uniqueness of endemic steady states by a equivalent equation and finally investigate
the asymptotic profiles of the endemic steady states for small and large diffusion
rates to provide reference for disease prevention and control, in which the lack of
regularity of the endemic steady state and Harnack inequality makes the limit
function of the sequence of the endemic steady state hard to get. Finally, we find
whether lowing the movements of susceptible individuals can eradicate the disease or
not depends on not only the sign of the difference between the transmission rate and
the recovery rate but also the total population size, which is different from that of
the model with standard or bilinear incidence.

Keywords: Nonlocal dispersal; susceptible-infected-susceptible (SIS) epidemic model;
basic reproduction number; endemic steady state; asymptotic profiles
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1. Introduction

Infection mechanisms such as bilinear incidence, standard incidence and saturated
incidence adopted in the epidemic models play a vital role in analysing the spread
of infectious diseases. The classical compartmental models such as susceptible-
infected-removed (SIR) model and susceptible-infected-susceptible (SIS) model
proposed by Kermack and McKendrick [25] adopted bilinear incidence of the form
βSI assuming that the contact rate is proportional to the total population size.
Standard incidence of the form βSI

S+I initiated by de Jong et al. [11] on the condi-
tion that the contact rate is a constant. The incidence function βSI

m+S+I displays a
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saturation effect accounting for the fact that the number of contacts an individual
can have with other individuals reaches some finite maximal value due to the spatial
or social distribution of the population and/or limitation of time (Diekmann and
Kretzschmar [14]). For other types of incidence functions, one can refer to Anderson
and May [4], Capasso and Serio [7], Heesterbeek and Metz [21] and Liu et al. [30].
For various epidemic models proposed to describe the spatial spread of infectious
diseases, we refer to the monograph of Murray [31] and surveys by Fitzgibbon and
Langlais [17], Ruan [37], Ruan and Wu [38] and the references cited therein.

Earlier models ignore the movements of individuals and the coefficients are
constants. Allen et al. [2] investigated the impact of spatial heterogeneity of environ-
ment and movements of individuals on the persistence and extinction of infectious
diseases modelled by an SIS reaction-diffusion model with space-dependent coeffi-
cients and standard incidence. Since then, the model proposed in [2] has attracted
much attention. For example, Peng and Liu [33] studied global stability of the
steady states, Peng [32] and Peng and Yi [35] considered the asymptotic profiles
of endemic steady states. For bilinear incidence, Deng and Wu [12, 13] studied
the existence and global attractivity of the steady states. For the same model, Wu
and Zou [43], Wen et al. [42] and Castellano and Salako [8] further investigated
the asymptotic profiles of the endemic steady states for small and large diffusion
rates. For saturated incidence of the form βSI

m+S+I , Suo and Li [41], Guo et al.
[19] and Gao et al. [18] considered the threshold dynamics and asymptotic pro-
files of endemic steady states. For saturated incidence of the form βSI/(1 +mI),
Cui [10], Sun and Cui [40] and Huo and Cui [22] investigated the effects of
diffusion and saturation on asymptotic profiles of the endemic steady states and con-
cluded that the disease will be eliminated if saturated incidence rate is sufficiently
large.

Nowadays, convenient transport mechanisms across many scales have changed
the way we and organisms travelling with us are distributed across the globe.
This causes severe consequences for the spread of epidemics that human infec-
tious diseases rarely remain confined to small spatial regions, but instead spread
rapidly across countries and continents by travel of infected individuals (Hal-
latscheka and Fisher [20]). Long-range dispersal of species including humans
can be better described by nonlocal convolution operators (Andreu-Vaillo et al.
[3], Brockmann et al. [6] and Fife [16]). Nonlocal epidemic models have been
extensively studied since the classical work of Kendall [23, 24], in which he gen-
eralized the Kermack–McKendrick model to a space-dependent integro-differential
equation and used the integral term βS(x, t)

∫∞
−∞K(x− y)I(y, t)dy to describe

how infectious individuals I(y, t) at location y disperse to infect susceptible
individuals S(x, t) at location x. For further results on nonlocal epidemic mod-
els, we refer to the monograph of Rass and Radcliffe [36] and a survey by
Ruan [37].

Recently, Yang et al. [45] investigated a nonlocal dispersal SIS epidemic model
with standard incidence. They showed the property of the basic reproduction num-
ber, the existence, uniqueness and stability of steady states and obtained the
asymptotic profiles of endemic steady states for large diffusion rates. Feng et al. [15]
investigated the impact of bilinear incidence, in which they found a concentration
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phenomenon that the infected individuals concentrate on the sites of

S =
{
x∗ ∈ Ω̄ :

γ(x∗)
β(x∗)

= min
x∈Ω̄

γ(x)
β(x)

}

as the movements of infected individuals tend to zero. And limiting the movements
of susceptible individuals is not always an effective strategy to eradicate the disease.
Only when the total population size is relatively small, this strategy takes effect.
For other nonlocal dispersal epidemic models, we refer to Kuniya and Wang [26],
Yang and Li [44] and references cited therein.

Motivated by Feng et al. [15] and Yang et al. [45], in this paper we intend to
explore the influence of saturated incidence on the asymptotic profiles of endemic
steady states of the following SIS epidemic model with nonlocal (convolution)
dispersal⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= dS

∫
Ω

J(x − y)[S(y, t) − S(x, t)] dy − β(x)SI

m(x) + S + I
+ γ(x)I, x ∈ Ω, t > 0,

∂I

∂t
= dI

∫
Ω

J(x − y)[I(y, t) − I(x, t)] dy +
β(x)SI

m(x) + S + I
− γ(x)I, x ∈ Ω, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω,

(1.1)

where Ω ⊂ R
n is a smooth bounded domain; S(x, t) and I(x, t) represent the den-

sity of susceptible and infectious individuals at location x ∈ Ω and time t > 0,
respectively; positive constants dS and dI are dispersal coefficients for suscepti-
ble and infectious individuals, respectively; β(x) and γ(x) are positive continuous
functions on Ω which denote the transmission rate of susceptible individuals and
the recovery rate of infectious individuals at x ∈ Ω, respectively; positive contin-
uous function m(x) is incorporated to measure the inhibitory effect or model the
situation that a vector or intermediate group can absorb the disease burden (Guo
et al. [19]). The convolution integrals describe the nonlocal dispersal of individu-
als. More specifically,

∫
Ω
J(x− y)S(y, t)dy and

∫
Ω
J(x− y)I(y, t)dy represent the

rates at which susceptible and infectious individuals are arriving at position x from
other places, while

∫
Ω
J(x− y)S(x, t)dy and

∫
Ω
J(x− y)I(x, t)dy are the rates at

which susceptible and infectious individuals are leaving location x for other loca-
tions, respectively. Throughout the whole paper, we assume that the dispersal kernel
function J satisfies

(J) J(·) ∈ C(Rn), J(0) > 0, J(x) = J(−x) � 0,
∫

Rn J(x) dx = 1,

and the initial data satisfy

(H) S0(x) and I0(x) are nonnegative continuous functions on Ω̄, and the total
number of initial infectious individuals is positive; that is,

∫
Ω
I0(x) dx > 0.

Nonlocal eigenvalue problems may not admit principal eigenvalues in general
(Coville [9]). So the basic reproduction number lacks variational characterization.
Yang et al. [45] gave the limits of the basic reproduction number as the dispersal
rate tends to zero or infinity under the condition that a corresponding weighted
eigenvalue problem admits a principal eigenvalue and only studied the effects of
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large dispersal rates on the disease transmission. In the present paper, we prove
the limits of the basic reproduction number removing the additional condition by a
different method in Zhang and Zhao [46], which enables us to reduce the problem
on the limiting profile of the basic reproduction number into that of the spectral
bound of the corresponding operator, and supplement the results about small dis-
persal rates. It should be pointed out that the basic reproduction number of model
in [2, 45] is independent of the total population size and it depends on the total
population size for (1.1) with m �≡ 0. The nonlocal diffusion term brings the lack
of regularity of the endemic steady state and Harnack inequality, which makes
the limit function of the sequence of the endemic steady state hard to get when we
investigate the impacts of small and large dispersal rates. Letting the dispersal rates
go to infinity yields spatial homogeneity, which is a trivial conclusion. But small
dispersal rates may cause interesting phenomenon. We conclude whether lowering
the movements of susceptible individuals can eradicate the disease or not depends
on not only the sign of β − γ but also the total population size, which is different
from that of the model with standard incidence [2, 45] or bilinear incidence [15,
43]. Allen et al. [2] considered the case m ≡ 0 and required that β − γ changes sign
on Ω. They concluded that limiting the movements of susceptible individuals makes
the disease die out. Compared with Allen et al. [2], in this paper, we consider the
following two cases:

(a) the set {x ∈ Ω : β(x) � γ(x)} has interior points in Ω;

(b) {x ∈ Ω : β(x) > γ(x)} = Ω.

For case (a), limiting the movements of susceptible individuals makes the disease die
out. For case (b), lowering the movements of susceptible individuals can eradicate
the disease only when the total population size is relatively small. As for model with
standard incidence [2, 45], it does not depend on the total population size and the
disease always persists with the total number of infected individuals larger than
that of saturated incidence, from which we derive increasing m helps to eliminate
the disease or reduce the size of infected individuals. Similar comparisons can be
seen when both dispersal rates approach zero and the dispersal rate of susceptible
individuals is significantly lower than that of infected individuals.

This paper is organized as follows. In § 2.1, we list the main results of this paper
including not only the existence, uniqueness of endemic steady state of system (1.1)
but also the asymptotic profile of the endemic steady state of system (1.1) for small
and large diffusion rates. In § 2.2, we compare the results of system (1.1) with that
of model with standard incidence or bilinear incidence. In § 3, we present proofs of
the main results stated in § 2.1.

2. Main results and discussion

2.1. Main results

In this section, we state the main results of this paper. Let N :=
∫
Ω
(S0(x) +

I0(x)) dx be the total number of individuals in Ω at t = 0. Define

M[u](x) := dI

∫
Ω

J(x− y)(u(y) − u(x)) dy − γ(x)u(x).
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It is well-known that M can generate a uniformly continuous semigroup, denoted

by {T (t)}t�0. Denote θ(x) :=
β(x) N

|Ω|
m(x)+ N

|Ω|
, F [φ](x) := θ(x)φ(x) and

L[φ](x) := θ(x)
∫ ∞

0

T (t)φdt, φ ∈ C(Ω̄).

We define the basic reproduction number of system (1.1) as follows

R0 = r(L),

where r(L) represents the spectral radius of L. Set R̂0 = r(L̂), where L̂ is defined
by replacing θ(x) by β(x) in the definition of L.

First we give the results about the dependence of R0 on dI and N .

Theorem 2.1. The following statements hold.

(i) R0 is a non-increasing function of dI with R0 → max
x∈Ω̄

θ(x)
γ(x) as dI → 0 and

R0 →
∫
Ω θ dx∫
Ω γ dx

as dI → +∞.

(ii) R0 is a monotone increasing function of N with R0 → 0 as N → 0 and R0 →
R̂0 as N → +∞.

Remark 2.2. Allen et al. [2] obtained the same results as theorem 2.1 (i) for an SIS
reaction-diffusion model with the aid of variational characterization for the basic
reproduction number because the basic reproduction number equals the reciprocal
of the principal eigenvalue of a corresponding eigenvalue problem with random
diffusion. But nonlocal eigenvalue problems may not admit principal eigenvalues in
general. Under the conditions that the nonlocal weighted eigenvalue problem

−dI

∫
Ω

J(x− y)(φ(y) − φ(x))dy + γ(x)φ(x) = μθ(x)φ(x), x ∈ Ω

admits a unique positive principal eigenvalue μp with positive eigenfunction
and there exists some positive function ψdI

(x) ∈ L2(Ω) satisfying L[ψdI
](x) =

R0ψdI
(x), [45, Theorem 2.16] gives that R0 → max

x∈Ω̄
θ(x)/γ(x) as dI → 0 and

R0 → ∫
Ω
θ dx/

∫
Ω
γ dx as dI → +∞. Now we remove these additional conditions

and further investigate the impact of N by means of a different method in Zhang
and Zhao [46], which enables us to reduce the problem on the limiting profile of
the basic reproduction number into that of the spectral bound of the corresponding
operator.

Next we present the existence and uniqueness of endemic steady state of (1.1).

Theorem 2.3. Suppose R0 > 1. Then system (1.1) has an endemic steady state
(S, I) ∈ C(Ω̄) × C(Ω̄). Furthermore, if dS � dI , the endemic steady state of (1.1)
is unique.
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Finally we state results on the asymptotic profile of the endemic steady state for
small and large dispersal rates. Denote

Ω+ =
{
x ∈ Ω :

N

|Ω| (β(x) − γ(x)) − γ(x)m(x) > 0
}
,

H+ = {x ∈ Ω : β(x) > γ(x)} , H−= {x ∈ Ω : β(x) � γ(x)} .

Theorem 2.4. Suppose that R0 > 1 and the set H− has interior points in Ω. For
any fixed dI > 0, up to a subsequence of dS → 0, the corresponding endemic steady
state of (1.1) satisfies (S, I

dS
) → (S∗, V ∗) in C(Ω̄) × C(Ω̄), where S∗, V ∗ > 0 on

Ω̄ and (S∗, V ∗) with
∫
Ω
S∗ dx = N is a positive solution of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω

J(x− y)(S∗(y) − S∗(x)) dy − β(x)S∗V ∗

m(x) + S∗ + γ(x)V ∗ = 0, x ∈ Ω,

dI

∫
Ω

J(x− y)(V ∗(y) − V ∗(x)) dy +
β(x)S∗V ∗

m(x) + S∗ − γ(x)V ∗ = 0, x ∈ Ω.
(2.1)

Theorem 2.5. Suppose that R0 > 1 and H+ = Ω. For any fixed dI > 0, up to a sub-
sequence of dS → 0, the corresponding endemic steady state (S, I) of (1.1) satisfies
one of the following statements:

(i)
(
S, I

dS

)→ (S∗, V ∗) in C(Ω̄) × C(Ω̄), where S∗, V ∗ > 0 on Ω̄ and (S∗, V ∗)
with

∫
Ω
S∗ dx = N is a positive solution of (2.1).

(ii) (S, I) → (
γm
β−γ , 0

)
in C(Ω̄) × C(Ω̄) and

∫
Ω

γm
β−γ dx = N .

(iii) (S, I) → (γ(m+I∗)
β−γ , I∗

)
in C(Ω̄) × C(Ω̄), where I∗ =

N−∫Ω γm
β−γ dx∫

Ω
β

β−γ dx
> 0.

In addition, when N �
∫
Ω

γm
β−γ dx, I → 0; when β − γ and m are positive constants

with N >
∫
Ω

γm
β−γ dx, I → N−∫Ω γm

β−γ dx∫
Ω

β
β−γ dx

.

Remark 2.6. If the set H− has interior points in Ω, theorem 2.4 implies that I → 0
as dS → 0. If H+ = Ω, it follows from theorem 2.5 that I → 0 as dS → 0 if N �∫
Ω

γm
β−γ dx. We conjecture that I → N−∫Ω γm

β−γ dx∫
Ω

β
β−γ dx

as dS → 0 when N >
∫
Ω

γm
β−γ dx.

We only prove this conjecture when β − γ and m are positive constants. In figure 1,
we perform some numerical simulations to support this conjecture.

Theorem 2.7. Suppose that Ω+ is nonempty.

(i) Up to subsequences of dI → 0 and dI

dS
→ d ∈ [0, +∞), the endemic steady

state of (1.1) satisfies (S, I) → (S∗, I∗) in C(Ω̄) × C(Ω̄), where S∗ is a pos-
itive function, I∗ is nonnegative and not identically zero on Ω̄, and (S∗, I∗)

https://doi.org/10.1017/prm.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.62


A nonlocal dispersal SIS epidemic model 7

Figure 1. Numerical simulations of the profiles of endemic steady states (S, I) for system

(1.1) as dS → 0, where Ω = (−1, 1), J(x) = 1√
π

e−x2
, N = 8, dS = 0.0001, dI = 1, (a)

m(x) = 6, β(x) = sin(πx) + 10, γ(x) = sin(πx) + 2, (b) m(x) = cos(πx) + 6, β(x) =
sin(πx) + 10, γ(x) = cos(πx) + 2, (c) m(x) = cos(πx) + 5, β(x) = sin(πx) + 5, γ(x) =
sin(πx) + 2.

satisfies

I∗(x) =

⎧⎪⎨
⎪⎩

l(β(x) − γ(x)) − γ(x)m(x)

d(β(x) − γ(x)) + γ(x)
, if l(β(x) − γ(x)) − γ(x)m(x) > 0, x ∈ Ω̄,

0, if l(β(x) − γ(x)) − γ(x)m(x) � 0, x ∈ Ω̄,

S∗ = l − dI∗,∫
Ω

(S∗ + I∗) dx = N, (2.2)

in which l is some positive constant. In particular, if d ∈ [0, 1], then l is
uniquely determined.
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(ii) If the set H− has interior points in Ω, then up to subsequences of dI → 0
and dI

dS
→ +∞, the endemic steady state of (1.1) satisfies (S, I) → (S∗, 0) in

C(Ω̄) × C(Ω̄), where

S∗(x) =

⎧⎪⎪⎨
⎪⎪⎩

l − l(β(x) − γ(x)) − γ(x)m(x)

β(x) − γ(x)
, if l(β(x) − γ(x)) − γ(x)m(x) > 0, x ∈ Ω̄,

l, if l(β(x) − γ(x)) − γ(x)m(x) � 0, x ∈ Ω̄,

in which the positive constant l is determined by
∫
Ω
S∗ dx = N .

(iii) If H+ = Ω, then up to subsequences of dI → 0 and dI

dS
→ +∞, the endemic

steady state of (1.1) satisfies (S, I) → (S∗, I∗) in C(Ω̄) × C(Ω̄), where S∗ is
a positive function and I∗ is a nonnegative constant. Moreover, the following
conclusions hold.
(a) If N <

∫
Ω

γm
β−γ dx, then (S∗, I∗) = (l − [l(β−γ)−γm]+

β−γ , 0), where the pos-
itive constant l is determined by

∫
Ω
S∗ dx = N . In addition, there exist

positive constants 0 < d0 � 1, C1 and C2 such that

C1
dS

dI
� ‖I‖L∞(Ω) � C2

dS

dI
for all 0 < dI ,

dS

dI
< d0.

(b) If N =
∫
Ω

γm
β−γ dx, then (S∗, I∗) = ( γm

β−γ , 0).

(c) If N >
∫
Ω

γm
β−γ dx, then (S∗, I∗) = (γ(m+I∗)

β−γ ,
N−∫Ω γm

β−γ dx∫
Ω

β
β−γ dx

).

Theorem 2.8. The following statements hold.

(i) Suppose that R0 > 1. If dI is fixed and dS → +∞, then the endemic steady
state of (1.1) (S, I) → (S∗, I∗) in C(Ω̄) × C(Ω̄), where I∗ is the unique
positive solution of

dI

∫
Ω

J(x− y)(I(y) − I(x)) dy +
β(x) 1

|Ω|
(
N − ∫

Ω
I dx

)
I

m(x) + 1
|Ω|

(
N − ∫

Ω
I dx

)
+ I

− γ(x)I = 0

(2.3)
and

S∗ =
N − ∫

Ω
I∗ dx

|Ω| .

(ii) Suppose that
∫
Ω
θ dx >

∫
Ω
γ dx. For any fixed dS > 0, up to a subsequence of

dI → +∞, the corresponding endemic steady state of (1.1) satisfies (S, I) →
(S∗, I∗) in C(Ω̄) × C(Ω̄), where I∗ is a positive constant and S∗ is the positive
solution of⎧⎪⎨
⎪⎩
dS

∫
Ω

J(x− y)(S̃(y) − S̃(x)) dy − β(x)S̃I∗

m(x) + S̃ + I∗
+ γ(x)I∗ = 0, x ∈ Ω,∫

Ω
S̃ dx = N − I∗|Ω|.

(2.4)
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(iii) Suppose that
∫
Ω
θ dx >

∫
Ω
γ dx. If dS → +∞ and dI → +∞, then the

endemic steady state of (1.1) satisfies

(S, I) →
(
N

|Ω|

∫
Ω
γ dx∫

Ω
θ dx

,
N

|Ω|

∫
Ω
(θ − γ) dx∫

Ω
θ dx

)
in C(Ω̄) × C(Ω̄).

Remark 2.9. If m ≡ 0, system (1.1) becomes the following model with standard
incidence⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= dS

∫
Ω

J(x− y)[S(y, t) − S(x, t)] dy − β(x)SI
S + I

+ γ(x)I, x ∈ Ω, t > 0,

∂I

∂t
= dI

∫
Ω

J(x− y)[I(y, t) − I(x, t)] dy +
β(x)SI
S + I

− γ(x)I, x ∈ Ω, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω.
(2.5)

Yang et al. [45, Section 4] only proved asymptotic profiles of endemic steady states
of (2.5) for large dispersal rates. But the proofs in [45, Section 4] contain some
errors. The proof of theorem 2.8 is still correct for m ≡ 0 and the results of theorem
2.8 are consistent with that in [45, Section 4]. Since the endemic steady states of
nonlocal dispersal system (2.5) lack regularity and Harnack inequality, the methods
for reaction-diffusion model (Allen et al. [2] and Peng [32]) are not applicable to
(2.5). Applying similar arguments to the proofs of theorems 2.4, 2.5 and 2.7, we
supplement the following results on asymptotic profiles of endemic steady states of
(2.5) for small dispersal rates.

Proposition 2.10. Suppose that R̂0 > 1.

(i) Assume the set H− has interior points in Ω. For any fixed dI > 0, up to
a subsequence of dS → 0, the corresponding endemic steady state of (2.5)
satisfies (S, I

dS
) → (S∗, V ∗) in C(Ω̄) × C(Ω̄), where S∗ � 0, V ∗ > 0 on Ω̄

and
∫
Ω
S∗ dx = N .

(ii) Assume H+ = Ω. For any fixed dI > 0, if dS → 0, then the corresponding
endemic steady state of (2.5) satisfies (S, I) → (

Nγ

(β−γ)
∫
Ω

β
β−γ dx

, N∫
Ω

β
β−γ dx

)
in C(Ω̄) × C(Ω̄).

Proposition 2.11. Assume H+ is nonempty.

(i) If dI → 0 and dI

dS
→ d ∈ [0, +∞), then the endemic steady state of (2.5)

satisfies (S, I) → (S∗, I∗) in C(Ω̄) × C(Ω̄), where

I∗(x) =

⎧⎪⎨
⎪⎩

N

|Ω| + (1 − d)
∫

H+
β−γ

d(β−γ)+γ dx
β − γ

d(β − γ) + γ
, if x ∈ H+,

0, if x ∈ H−,

S∗ =
N

|Ω| + (1 − d)
∫

H+
β−γ

d(β−γ)+γ dx
− dI∗.
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(ii) If dI → 0 and dI

dS
→ +∞, then the endemic steady state of (2.5) satisfies the

following statements.
(a) If the set H− has interior points in Ω, then I → 0 in C(Ω̄) and S → S∗

uniformly on any compact subset of H− and H+, respectively, where

S∗(x) =

⎧⎨
⎩

0, if x ∈ H+,
N

|H−| , if x ∈ H−.

(b) If H+ = Ω, then (S, I) →
(

Nγ

(β−γ)
∫
Ω

β
β−γ dx

, N∫
Ω

β
β−γ dx

)
in C(Ω̄) × C(Ω̄).

2.2. Discussion

This paper is mainly concerned with the asymptotic profiles of the endemic steady
states of a nonlocal (convolution) dispersal SIS epidemic model (1.1) with saturated
incidence. Yang et al. [45] considered (2.5) with standard incidence and Feng et al.
[15] studied the following model with bilinear incidence⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= dS

∫
Ω

J(x− y)[S(y, t) − S(x, t)] dy − β(x)SI + γ(x)I, x ∈ Ω, t > 0,

∂I

∂t
= dI

∫
Ω

J(x− y)[I(y, t) − I(x, t)] dy + β(x)SI − γ(x)I, x ∈ Ω, t > 0,

S(x, 0) = S0(x), I(x, 0) = I0(x), x ∈ Ω.
(2.6)

When an infectious disease breaks out in an area, people look forward to eradicating
it as soon as possible for their health and normal lives. As a consequence, developing
effective prevention and control strategies is especially important. For the sake of
revealing the impacts of infection mechanism and dispersal rates on the elimination
of infectious disease and providing possible options for disease control, we make
a comparison between our main results about (1.1) and those about models (2.5)
and (2.6). One can see table 1 for a quick understanding about the extinction or
persistence of disease with small dispersal rates of susceptible individuals or/and
infected individuals. Recall

S =
{
x∗ ∈ Ω̄ :

γ(x∗)
β(x∗)

= min
x∈Ω̄

γ(x)
β(x)

}
.

Comparison of basic reproduction number
The basic reproduction number of (2.5) is independent of the total population

size N , but that of (2.6) and (1.1) depends on N and monotonically increases
with respect to N by theorem 2.1. This implies that an infectious disease is more
likely to be endemic in a large population. And the basic reproduction number
of (1.1) is smaller than that of (2.5); that is, the transmission ability of (1.1) is
weaker than that of (2.5). When the total population size is relatively large, the
basic reproduction number of (2.6) is the biggest one corresponding to the strongest
infection ability.
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Table 1. Asymptotic behaviour of endemic steady states (S, I) for small dispersal rates

Model I → I∗ as dS → 0 I → I∗ as dI → 0 and dI
dS

→ d

(1.1) If Int(H−) �= ∅, I∗ ≡ 0; if H+ = Ω,
I∗ ≡ 0 for small N and I∗ > 0 for
large N

If d ∈ [0, +∞), I∗ = 0 in H− and
I∗ � 0 in H+; if d = +∞, behave
like dS → 0

(2.5) If Int(H−) �= ∅, I∗ ≡ 0; if H+ = Ω,
I∗ > 0

If d ∈ [0, +∞), I∗ = 0 in H− and
I∗ > 0 in H+; if d = +∞, behave
like dS → 0

(2.6) I∗ ≡ 0 for small N and I∗ > 0 for
large N

If d ∈ (0, +∞), I∗ � 0 but I∗ �≡ 0; if
d = 0, concentrate on S; if d = +∞,
behave like dS → 0

Comparison of asymptotic profiles of endemic steady states
Case I. dS → 0. The asymptotic profiles of endemic steady states of these three

models are different. For (2.5), in view of theorem 2.10, if there are low-risk sites
which belong to H− (see Allen et al. [2]), the total size of infected individuals
tends to zero. But if the habitats only consist of high-risk sites which belong to
H+, the total size of infected individuals tends to N∫

Ω
β

β−γ dx
; that is, the disease will

always persist. For (2.6), by [15, Theorems 2.3-2.5], if N <
∫
Ω

γ
β dx, the disease can

be eradicated; if N >
∫
Ω

γ
β dx, the total size of infected individuals tends to N

|Ω| −
1
|Ω|

∫
Ω

γ
β dx. As to (1.1), it follows from theorem 2.4 that if H− is nonempty, then

limiting the movements of susceptible individuals yields extinction of the disease;
if H+ = Ω, then the disease is either extinct or persistent by theorem 2.5. The
disease can be eliminated when N �

∫
Ω

γm
β−γ dx and we conjecture that the total

size of infected individuals tends to
N−∫Ω γm

β−γ dx∫
Ω

β
β−γ dx

when N >
∫
Ω

γm
β−γ dx, from which

we derive that increasing m helps to eliminate the disease or reduce the size of
infected individuals. In figure 1, we perform some numerical simulations to support
this conjecture. So systems (1.1) and (2.5) behave similarly when H− is nonempty;
model (1.1) is analogous to (2.6) when H+ = Ω.

Case II. dI → 0 and dI

dS
→ d ∈ [0, +∞]. If d ∈ (0, +∞), the infected individuals

do not reside in H− for (1.1) and (2.5). The infected individuals reside in all sites
of H+ for (2.5) but do not distribute in some sites of H+ for (1.1). If d = +∞ and
H− is nonempty, then the disease is eradicated for (1.1) and (2.5). If d = +∞ and
H+ = Ω, then the disease must be persistent for (2.5) but it depends on the total
population size N for (1.1) and (2.6). The disease is extinct when N is relatively
small and persistent when N is large. If d = 0, system (2.6) represents a particular
concentration phenomenon that the infected individuals concentrate on the sites
of S. Systems (2.5) and (1.1) behave similarly. The infected individuals do not
distribute in H−. For (2.5), the infected individuals live exactly in H+. But in
some sites of H+, there are not infected individuals for (1.1) implying that (1.1)
tends to reduce the scale of disease. As a result, the individuals with significantly
lowered dispersal rates play a dominant role.
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To sum up, once a low-risk region is created or N is relatively small, limiting the
movements of susceptible individuals is an effective method to make the disease
die out. When N is large or all sites of Ω are high-risk, the disease cannot be
totally eradicated by limiting the movements of susceptible individuals and/or that
of infected individuals. But limiting the movements of susceptible individuals and
that of infected individuals can prevent the disease from being extensive over the
whole area.

Remark 2.12. Models (1.1), (2.5) and (2.6) do not incorporate the birth–death
effect and crowding effect such as linear source Λ − S and logistic source S(a− bS).
For random diffusion models with birth–death effect or crowding effect, appealing to
the uniform persistence theory or topological degree argument yields the existence
of endemic steady states. One can see Guo et al. [19], Li et al. [28], Li et al. [29],
Li et al. [27], Peng et al. [34] and references cited therein for related studies. For
nonlocal dispersal model, the lack of compactness of the solution semiflow makes
the uniform persistence theory and topological degree argument unapplicable and a
varying total population results in the difficulty that the stationary system can not
be transformed into a single equation. One needs to find new methods to solve the
existence, uniqueness, stability and asymptotic profiles of endemic steady states.
We leave these for further study.

3. Preliminaries and proof of main results

In this section, we present the proofs of main theorems stated in § 2.1. Before that,
we give some useful results.

3.1. Preliminaries

Adding up the two equations of (1.1) and integrating it on Ω yield that the total
population size is constant, that is,∫

Ω

(S(x, t) + I(x, t)) dx = N for all t � 0.

We investigate the existence and uniqueness of the steady state of system (1.1).
That is, we consider the following stationary problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩
dS

∫
Ω

J(x− y)(S(y) − S(x)) dy − β(x)SI
m(x) + S + I

+ γ(x)I = 0, x ∈ Ω,

dI

∫
Ω

J(x− y)(I(y) − I(x)) dy +
β(x)SI

m(x) + S + I
− γ(x)I = 0, x ∈ Ω.

(3.1)

The solutions of (3.1) also satisfy∫
Ω

(S(x) + I(x)) dx = N. (3.2)

By the same proof as [45, Lemma 3.3], we have the following lemma.
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Lemma 3.1. System (1.1) admits a unique disease-free steady state ( N
|Ω| , 0).

Define

λv(dI) := inf
ϕ∈L2(Ω)

ϕ�=0

dI

2

∫
Ω

∫
Ω
J(x− y)(ϕ(y) − ϕ(x))2 dy dx+

∫
Ω
(γ(x) − θ(x))ϕ2(x) dx∫

Ω
ϕ2(x) dx

.

The nonlocal dispersal eigenvalue problem may not admit a principal eigenvalue.
See a counterexample in [9]. In general, λv defined above may not be the principal
eigenvalue.

Lemma 3.2 Yang et al. [45, Lemma 2.5]. Set v(x) = −dI

∫
Ω
J(x− y)dy + θ(x) −

γ(x). Suppose there is some x0 ∈ Int(Ω) satisfying that v(x0) = max
x∈Ω̄

v(x), and the

partial derivatives of v(x) up to order n− 1 at x0 are zero. Then λv(dI) is the
unique principal eigenvalue of

dI

∫
Ω

J(x− y)(u(y) − u(x))dy + θ(x)u(x) − γ(x)u(x) = −λu(x).

See other sufficient conditions for the existence of the principal eigenvalue in
Coville [9] and Shen and Xie [39].

Remark 3.3. Although the principal eigenvalue does not always exist, we can use
the principal eigenfunction of the approximation problem to construct lower or
upper solution. Since v(x) defined in lemma 3.2 is continuous on Ω̄, there exists
some x0 ∈ Ω̄ such that v(x0) = max

x∈Ω̄
v(x). Define a function sequence as follows:

vn(x) =

⎧⎪⎨
⎪⎩
v (x0) , x ∈ Bx0

(
1
n

)
,

vn,1(x), x ∈ (Bx0

(
2
n

) \Bx0

(
1
n

))
,

v(x), x ∈ Ω\Bx0

(
2
n

)
,

where Bx0(
1
n ) =

{
x ∈ Ω : |x− x0| < 1

n

}
, vn,1(x) satisfies vn,1 � v(x0) and vn,1(x)

is continuous on Ω. Indeed, vn,1(x) exists if only we take n is large enough, denoted
by n � n0 > 0. Thus, lemma 3.2 implies that the eigenvalue problem

dI

∫
Ω

J(x− y)φ(y)dy + vn(x)φ(x) = −λφ(x)

admits a principal eigenpair, denoted by (λn
v (dI), φn). And |λn

v − λv| → 0 as n→
+∞ due to [45, Remark 2.7]. In the following arguments, we sometimes use φn to
construct lower or upper solution.

In view of [45, Corollary 2.11], we have the following relation between λv(dI)
and R0.

Lemma 3.4. λv(dI) has the same sign as 1 −R0.

Following the same proof as [15, Lemma 3.12], an equivalent problem to (3.1) is
obtained.
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Lemma 3.5. Suppose that dI > 0 and dS > 0 are fixed. The following conclusions
hold.

(i) Let (S, I) be a nonnegative solution of (3.1). Then the function

κ = dSS + dII (3.3)

is a constant function. Furthermore, by letting

S̃ =
S

κ
and Ĩ =

dII

κ
, (3.4)

(κ, S̃, Ĩ) satisfies

S̃ =
1
dS

(
1 − Ĩ

)
, (3.5)

κ

dS

∫
Ω

[(
1 − Ĩ

)
+
dS

dI
Ĩ

]
dx = N (3.6)

and⎧⎪⎪⎨
⎪⎪⎩

dI

∫
Ω

J(x − y)(Ĩ(y) − Ĩ(x)) dy +
β(x) κ

dS
(1 − Ĩ)Ĩ

m(x) + κ
dS

(1 − Ĩ) + κ
dI

Ĩ
− γ(x)Ĩ = 0, x ∈ Ω,

0 � Ĩ < 1, x ∈ Ω.

(3.7)

(ii) If (κ, S̃, Ĩ) solves (3.5), (3.6) and (3.7), then (S, I) = (κS̃, κ
dI
Ĩ) is a nonneg-

ative solution of (3.1).

Define

λ∗v(κ) := inf
ϕ∈L2(Ω)

ϕ�=0

dI

2

∫
Ω

∫
Ω

J(x− y)(ϕ(y) − ϕ(x))2 dy dx

+
∫

Ω

(
γ(x) −

κ
dS
β(x)

m(x) + κ
dS

)
ϕ2(x) dx

∫
Ω

ϕ2(x) dx

and

λ∗v(∞) := inf
ϕ∈L2(Ω)

ϕ�=0

dI

2

∫
Ω

∫
Ω

J(x− y)(ϕ(y) − ϕ(x))2 dy dx

+
∫

Ω

(γ(x) − β(x))ϕ2(x) dx∫
Ω

ϕ2(x) dx
.

Recall that the spectral bound of a closed operator A is defined by

s(A) = sup{Reλ : λ ∈ σ(A)},
in which σ(A) and ρ(A) denote the spectrum and resolvent set of A, respectively.
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Lemma 3.6. The following statements hold.

(i) If λ∗v(∞) � 0, then 0 is the only nonnegative solution of (3.7).

(ii) If λ∗v(∞) < 0, then there exists some κ∗ > 0 such that (3.7) admits a unique
positive solution Ĩκ when κ > κ∗ and 0 is the only nonnegative solution of
(3.7) when 0 � κ � κ∗. Moreover, the positive solution satisfies 0 < Ĩκ < 1
and Ĩκ is strictly increasing and continuously differentiable on κ ∈ (κ∗, +∞).

Proof. It is easy to see that λ∗v(0) � min
x∈Ω̄

γ(x) > 0. In view of the continuity and

monotonicity of λ∗v(κ) on κ, if λ∗v(∞) � 0, then λ∗v(κ) � 0 for all κ � 0; if λ∗v(∞) < 0,
then there exists some κ∗ > 0 such that λ∗v(κ) < 0 when κ > κ∗ and λ∗v(κ) � 0 when
0 � κ � κ∗. By [9, Theorem 1.6], one can get that (3.7) admits a unique positive
solution if and only if λ∗v(κ) < 0. Then we derive the conclusions of lemma 3.6 about
the existence of nonnegative solutions of (3.7). By similar arguments as the proof of
[45, Theorem 3.8], we derive that the positive solution satisfies 0 < Ĩκ < 1. Define
a mapping G : R

+ × C(Ω̄) → C(Ω̄) by

G(κ, Ĩ) = dI

∫
Ω

J(x− y)(Ĩ(y) − Ĩ(x)) dy +
β(x) κ

dS
(1 − Ĩ)Ĩ

m(x) + κ
dS

(1 − Ĩ) + κ
dI
Ĩ
− γ(x)Ĩ .

Assume κ0, κ1 ∈ (κ∗, +∞) and κ0 < κ1. It is verified that G(κ1, Ĩκ0) > 0, which
implies that Ĩκ0 is a lower solution of G(κ1, Ĩ) = 0. Clearly, 1 is an upper solution.
By the method of upper and lower solutions and the uniqueness of a positive solution
of G(κ1, Ĩ) = 0, we have Ĩκ0 < Ĩκ1 . By the positivity of Ĩκ0 , 0 is the principal
eigenvalue of

dI

∫
Ω

J(x− y)(ϕ(y) − ϕ(x)) dy +
κ0
dS
β(x)(1 − Ĩκ0(x))

m(x) + κ0
dS

(1 − Ĩκ0(x)) + κ0
dI
Ĩκ0(x)

ϕ(x)

− γ(x)ϕ(x) = λϕ(x).

The Fréchet derivative of G with respect to the second variable at (κ0, Ĩκ0) is

GĨ(κ0, Ĩκ0)u = dI

∫
Ω

J(x− y)(u(y) − u(x)) dy

+
κ0
dS
β(x)(1 − Ĩκ0(x))

m(x) + κ0
dS

(1 − Ĩκ0(x)) + κ0
dI
Ĩκ0(x)

u(x)

− γ(x)u(x) −
κ0
dS
β(x)Ĩκ0(x)

(
κ0
dI

+m(x)
)

[
m(x) + κ0

dS
(1 − Ĩκ0(x)) + κ0

dI
Ĩκ0(x)

]2u(x).

Then we have s(GĨ(κ0, Ĩκ0)) < 0 and 0 ∈ ρ(GĨ(κ0, Ĩκ0)). It follows from the
Implicit Function Theorem that there exists a unique Ĩκ ∈ C(Ω̄) such that
G(κ, Ĩκ) = 0 for κ ∈ (κ0 − ε, κ0 + ε) with ε > 0 and this Ĩκ is continuously dif-
ferentiable with respect to κ. The proof is completed. �
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3.2. Proof of main results

Proof of theorem 2.1. Set Aμ = M + 1
μF . By virtue of [45, Proposition 2.9], we

have M and Aμ are resolvent positive operators and s(M) < 0. (i) For any μ > 0,
it follows from [1, Theorem 6] that s(Aμ) is non-increasing in dI . We derive from
the proof of [45, Theorem 2.10] that R0 = r(−FM−1) and [46, Lemma 2.5 (ii)]
gives that r(−FM−1) is the unique solution of s(Aμ) = 0. As a result, R0 is non-
increasing in dI . In view of [39, Theorem 2.2], lim

dI→0
s(Aμ) = max

x∈Ω̄
[−γ(x) + 1

μθ(x)]

and lim
dI→+∞

s(Aμ) = 1
|Ω|

∫
Ω
(−γ + 1

μθ) dx. Combined with [46, Lemma 2.5 (ii)], we

conclude that R0 → max
x∈Ω̄

θ(x)
γ(x) as dI → 0 and R0 →

∫
Ω θ dx∫
Ω γ dx

as dI → +∞. (ii) Define

λp (Aμ) := sup
{
λ ∈ R : ∃ ϕ ∈ C(Ω̄), ϕ > 0 s.t. (−Aμ + λ) [ϕ] � 0 in Ω̄

}
and

λ′p (Aμ) := inf
{
λ ∈ R : ∃ ϕ ∈ C(Ω̄), ϕ > 0 s.t. (−Aμ + λ) [ϕ] � 0 in Ω̄

}
.

By virtue of [39, Proposition 3.9] and [5, Theorem 1.1], s(Aμ) = λp(Aμ) = λ′p(Aμ).
Combined with [9, Proposition 1.1 (ii)], we conclude that s(Aμ) is increasing in N .
Next we prove s(Aμ) → s(M) as N → 0 for any μ > 0. If s(M) is the principal
eigenvalue, that is, there exists some ϕ ∈ C(Ω̄), ϕ > 0 such that

dI

∫
Ω

J(x− y)(ϕ(y) − ϕ(x)) dy − γ(x)ϕ(x) = s(M)ϕ(x), x ∈ Ω̄.

For any ε > 0, there exists Nε > 0 such that | θ(x)
μ | < ε

2 for all N � Nε. Then, for
N � Nε, we have

dI

∫
Ω

J(x− y)(ϕ(y) − ϕ(x)) dy +
(
θ(x)
μ

− γ(x)
)
ϕ(x)

− (s(M) + ε)ϕ(x) � 0, x ∈ Ω̄.

By the definition of λ′p(Aμ), we have s(Aμ) = λ′p(Aμ) � s(M) + ε for N � Nε.
Meanwhile, it follows from [9, Proposition 1.1 (ii)] that s(Aμ) = λp(Aμ) � s(M)
for N � Nε. Hence s(Aμ) → s(M) as N → 0 for any μ > 0.

If s(M) is not the principal eigenvalue, then we can use an approximation
argument. Set h(x) = −dI

∫
Ω
J(x− y) dy − γ(x). For each ε > 0, we derive from

[39, Lemma 3.1 and Theorem 2.1 (2)] that there exists hε ∈ C(Ω̄) such that
‖hε − h‖C(Ω̄) < ε and s(Mε) is the principal eigenvalue of Mε, where Mε is defined
by replacing h by hε in the definition of M. By the above arguments, we have
s(Mε + 1

μF) → s(Mε) as N → 0. Combined with [39, Theorem 2.1 (5)], we get
s(Aμ) → s(M) as N → 0. It follows from [46, Theorem 2.7] that R0 → 0 as N → 0.
By similar arguments as above, we can prove s(Aμ) → s(M + 1

μ F̂) as N → +∞,

where F̂ is defined by F̂ [φ](x) := β(x)φ(x) for φ ∈ C(Ω̄). Then we derive from [46,
Theorem 2.6] that R0 → r(L̂) as N → +∞. The proof is completed. �
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Proof of theorem 2.3. Define

N (κ) :=
κ

dS

∫
Ω

[(
1 − Ĩκ

)
+
dS

dI
Ĩκ

]
dx,

where Ĩκ is the unique nonnegative solution of (3.7). Since R0 > 1, we have
λ∗v(dS

N
|Ω| ) < 0 due to lemma 3.4. By virtue of the continuity and monotonicity of

λ∗v(κ) with respect to κ, we have dS
N
|Ω| > κ∗, where κ∗ is mentioned in lemma 3.6.

Then, N > |Ω|
dS
κ∗ = N (κ∗). In view of lemma 3.6, N (κ) is continuous on κ. Obvi-

ously, N (0) = 0 and N (κ) → +∞ as κ→ +∞. Then there exists κN > κ∗ such that
N (κN ) = N . As a result, there exists a positive solution of (3.7) satisfying (3.6) for
κ = κN , which implies that system (3.1) admits a positive solution by lemma 3.5.

Next we prove the uniqueness of the positive solution of (3.1). By lemma 3.5, it
suffices to prove the uniqueness of the positive solution of (3.7) satisfying (3.6). If
dS � dI , in view of Lemma 3.6, N (κ) is strictly increasing with respect to κ. Thus,
κN is unique implying the uniqueness of the positive solution of (3.7) satisfying
(3.6). The proof is completed. �

Proof of theorem 2.4. Since R0 > 1, we have λv < 0 and (1.1) admits an endemic
steady state (S, I). It follows from lemma 3.5 that the function κ = dSS + dII is a
constant function and Ĩ = dII

κ satisfies (3.7). Noting 0 < Ĩ < 1, up to a subsequence,
there exists 0 � Î � 1 such that Ĩ(x) → Î(x) as dS → 0 for every x ∈ Ω̄. Suppose
that there is some x0 ∈ H− such that Î(x0) = 1. By (3.7), we have dI

∫
Ω
J(x−

y)(Ĩ(y) − Ĩ(x)) dy > 0 for all x ∈ H−. Letting dS → 0 gives dI

∫
Ω
J(x0 − y)(Î(y) −

Î(x0)) dy � 0. Since 0 � Î � 1 and Î(x0) = 1, we have
∫
Ω
J(x0 − y)(Î(y) − 1) dy =

0, which implies Î(y) = 1 almost everywhere in Bσ(x0) ⊂ H−, where Bσ(x0) is a
ball centred at x0 with radius σ. If β ≡ γ on Bσ(x0), then we derive from (3.7) that

dI

∫
Ω

J(x− y)(Ĩ(y) − Ĩ(x)) dy −
γ(x)

(
m(x) + κ

dI
Ĩ
)
Ĩ

m(x) + κ
dS

(1 − Ĩ) + κ
dI
Ĩ

= 0, x ∈ Bσ(x0),

from which we derive that
γ(x)(m(x)+ κ

dI
Ĩ(x))Ĩ(x)

m(x)+ κ
dS

(1−Ĩ(x))+ κ
dI

Ĩ(x)
→ 0 for all x ∈ Bσ(x0) as dS → 0.

In view of (3.3) and (3.2), we get

κ =
1
|Ω|

[
dSN − (dS − dI)

∫
Ω

I dx
]
. (3.8)

This implies that there is some constant d∗ > 0 such that κ is uniformly bounded
for all 0 < dS < d∗. As a result, S(x) = κ

dS
(1 − Ĩ(x)) → +∞ for all x ∈ Bσ(x0) as

dS → 0. This contradicts (3.2).
If β �≡ γ on Bσ(x0), integrating (3.7) over Bσ(x0) yields

dI

∫
Bσ(x0)

∫
Ω

J(x− y)(Ĩ(y) − Ĩ(x)) dy dx+
∫

Bσ(x0)

(β(x) − γ(x))Ĩ(x) dx � 0.
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Sending dS → 0 gives

dI

∫
Bσ(x0)

∫
Ω

J(x− y)(Î(y) − Î(x)) dy dx+
∫

Bσ(x0)

(β(x) − γ(x))Î(x) dx � 0,

which implies
∫

Bσ(x0)
(β(x) − γ(x))Î(x) dx � 0. A contradiction occurs. Thus,

H−⊂{x ∈ Ω̄ : 0 � Î(x) < 1}. (3.9)

By (3.6), we have

N =
κ

dS

∫
Ω

[(
1 − Ĩ

)
+
dS

dI
Ĩ

]
dx >

κ

dS

∫
Ω

(
1 − Ĩ

)
dx.

If dS is sufficiently small, then
∫
Ω
(1 − Ĩ) dx � 1

2

∫
Ω
(1 − Î) dx � 1

2

∫
H−(1 − Î) dx >

0 due to (3.9). As a result,

0 <
κ

dS
<

N∫
Ω
(1 − Ĩ) dx

� 2N∫
Ω
(1 − Î) dx

for all 0 < dS < d∗.

As the right-hand side is constant, we have κ→ 0 as dS → 0. Then, I = κ
dI
Ĩ → 0

uniformly on Ω̄ as dS → 0. By (3.6), we have

κ

dS
=

N∫
Ω
(1 − Ĩ) + dS

dI
Ĩ dx

→ N∫
Ω
(1 − Î) dx

as dS → 0.

Set v(x) = −dI

∫
Ω
J(x− y) dy + θ(x) − γ(x). Find a sequence {vn} such that

‖vn − v‖L∞(Ω) → 0 as n→ +∞

and the eigenvalue problem

dI

∫
Ω

J(x− y)ϕn(y) dy + vn(x)ϕn(x) = −λϕn(x), x ∈ Ω

admits a principal eigenpair (λn, ϕn(x)). There exists n1 > 0 large enough such
that

λn � 1
2
λv − ‖vn − v‖L∞(Ω) for all n � n1.

By (3.6), we have

κ

dS
=

N∫
Ω
(1 − Ĩ) + dS

dI
Ĩ dx

� N

|Ω| for all 0 < dS < d∗. (3.10)
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Set Ĩ = δϕn and a simple computation gives that

dI

∫
Ω

J(x− y)(Ĩ(y) − Ĩ(x)) dy +
β(x) κ

dS
(1 − Ĩ)Ĩ

m(x) + κ
dS

(1 − Ĩ) + κ
dI
Ĩ
− γ(x)Ĩ

= dI

∫
Ω

J(x− y)(Ĩ(y) − Ĩ(x)) dy +

(
β(x) κ

dS

m(x) + κ
dS

− γ(x)

)
Ĩ

− β(x)
κ

dS
Ĩ
2

⎡
⎣ m(x) + κ

dI(
m(x) + κ

dS
(1 − Ĩ) + κ

dI
Ĩ
)(

m(x) + κ
dS

)
⎤
⎦

� dI

∫
Ω

J(x− y)(Ĩ(y) − Ĩ(x)) dy + (θ(x) − γ(x))Ĩ

− β(x)
κ

dS
Ĩ
2

⎡
⎣ m(x) + κ

dI(
m(x) + κ

dS
(1 − Ĩ) + κ

dI
Ĩ
)(

m(x) + κ
dS

)
⎤
⎦

= (−λn + v(x) − vn(x))Ĩ − β(x)
κ

dS
Ĩ
2

⎡
⎣ m(x) + κ

dI(
m(x) + κ

dS
(1 − Ĩ) + κ

dI
Ĩ
)(
m(x) + κ

dS

)
⎤
⎦

� −1
2
λv Ĩ − β(x)

κ

dS
Ĩ
2

⎡
⎣ m(x) + κ

dI(
m(x) + κ

dS
(1 − Ĩ) + κ

dI
Ĩ
)(

m(x) + κ
dS

)
⎤
⎦

� 0,

provided δ small enough for all 0 < dS < d∗. Hence 0 < δϕn � Ĩ � 1 for all 0 <

dS < d∗. Denote Φ(x, Ĩ) =
β(x) κ

dS
(1−Ĩ)

m(x)+ κ
dS

(1−Ĩ)+ κ
dI

Ĩ
− γ(x) and Θ(x, Ĩ) = Φ(x, Ĩ)Ĩ. It is

easy to check that ∂ĨΦ(x, s) < 0 for all s > 0. For any x1, x2 ∈ Ω̄, we find that

dI

∫
Ω

(J(x1 − y) − J(x2 − y))Ĩ(y) dy − dI Ĩ(x1)
∫

Ω

(J(x1 − y) − J(x2 − y)) dy

+ [Θ(x1, Ĩ(x1)) − Θ(x2, Ĩ(x1))]

= −
[
−dI

∫
Ω

J(x2 − y) dy + ∂ĨΘ(x2, τ Ĩ(x1) + (1 − τ)Ĩ(x2))
]

(Ĩ(x1) − Ĩ(x2)),

(3.11)

in which 0 � τ � 1. Without loss of generality, assume Ĩ(x1) � Ĩ(x2). Since
∂ĨΘ(x, s) = Φ(x, s) + ∂ĨΦ(x, s)s < Φ(x, s) for all s > 0, we have

∂ĨΘ(x2, τ Ĩ(x1) + (1 − τ)Ĩ(x2)) � Φ(x2, τ Ĩ(x1) + (1 − τ)Ĩ(x2)) < Φ(x2, Ĩ(x2)).
(3.12)
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Note that Ĩ(x2) satisfies

dI

∫
Ω

J(x2 − y)Ĩ(y) dy +
[
−dI

∫
Ω

J(x2 − y) dy + Φ(x2, Ĩ(x2))
]
Ĩ(x2) = 0.

Since 0 < δϕn � Ĩ � 1 for all 0 < dS < d∗ and δϕn is independent of dS , there exists
η > 0 such that

−dI

∫
Ω

J(x2 − y) dy + Φ(x2, Ĩ(x2)) < −η. (3.13)

We derive from (3.12) and (3.13) that

−dI

∫
Ω

J(x2 − y) dy + ∂ĨΘ(x2, τ Ĩ(x1) + (1 − τ)Ĩ(x2)) < −η. (3.14)

It follows from (3.11) and (3.14) that Ĩ is equicontinuous with respect to 0 <
dS < d∗. Applying the Arzelà–Ascoli Theorem yields Ĩ → Î uniformly on Ω̄ as
dS → 0 and 0 < Î � 1. Then, I

dS
= Ĩ

dI

κ
dS

→ Î
dI

N∫
Ω(1−Î) dx

:= V ∗ and S = κ
dS

(1 −
Ĩ) → N∫

Ω(1−Î) dx
(1 − Î) := S∗ uniformly on Ω̄ as dS → 0. Dividing two equations

of (3.1) by dS and letting dS → 0 yield that (S∗, V ∗) satisfies (2.1). The proof is
completed. �

Proof of theorem 2.5. Since R0 > 1, we derive from theorem 2.3 that there exists an
endemic steady state (S, I) of (1.1) for any dS > 0 with R0 independent of dS . Note
that

∫
Ω
I dx � N. Then there exists a sequence {dSn

} with dSn
→ 0 as n→ +∞

such that the corresponding endemic steady state (Sn, In) satisfies
∫
Ω
In dx→ l for

some 0 � l � N. By (3.8), we get that

κn =
1
|Ω|

[
dSn

N − (dSn
− dI)

∫
Ω

In dx
]
→ dI

|Ω| l as n→ +∞

and {κn} is bounded. We derive from (3.3) that 0 < In � κn

dI
, which implies

that {In} is uniformly bounded. Since Sn is continuous on Ω̄, there exist
xn ∈ Ω̄ such that Sn(xn) = max

x∈Ω̄
Sn(x). By the first equation of (3.1), we have

− β(xn)Sn(xn)
m(xn)+Sn(xn)+In(xn) + γ(xn) � 0. Then we derive that

Sn(xn) � γ(xn)
β(xn) − γ(xn)

(m(xn) + In(xn)).

Thus, {Sn} is uniformly bounded. By (3.3), In = κn−dSnSn

dI
→ l

|Ω| as n→ +∞.
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If l > 0, the first equation of (3.1) gives

Sn =
dSn

∫
Ω
J(x− y)(Sn(y) − Sn(x)) dy(m(x) + Sn + In) + γ(x)(m(x) + In)In

(β(x) − γ(x))In
,

which implies that Sn → γ(m+ l
|Ω| )

β−γ in C(Ω̄) as n→ +∞. By (3.2), we have

In → l

|Ω| =
N − ∫

Ω
γm
β−γ dx∫

Ω
β

β−γ dx
uniformly on Ω̄ as n→ +∞.

Now, we are in a position to consider the case l = 0 implying κn → 0 as n→ +∞.
Up to a subsequence if needed, one of the following three statements must hold:

(a) κn

dSn
→ 0 as n→ +∞;

(b) κn

dSn
→ C with C being a positive constant as n→ +∞;

(c) κn

dSn
→ +∞ as n→ +∞.

In view of (3.10), (a) is impossible to occur. By similar arguments as the proof
of theorem 2.4, there exists some function 0 < Î � 1 such that Ĩn = dIIn

κn
→ Î

uniformly on Ω̄ as n→ +∞. If (b) holds, then In

dSn
= Ĩn

dI

κn

dSn
→ Î

dI
C := V ∗ and

Sn = κn

dSn
(1 − Ĩn) → C(1 − Î) := S∗ in C(Ω̄) as n→ +∞. Dividing the two equa-

tions of (3.1) by dS and letting n→ +∞ yield (S∗, V ∗) satisfies (2.1). If (c) holds,
then Sn = κn

dSn
(1 − Ĩn) satisfies

dSn

κn
dI

∫
Ω

J(x− y)(Sn(y) − Sn(x)) dy − β(x)Sn(x)Ĩn(x)
m(x) + Sn(x) + κn

dI
Ĩn(x)

+ γ(x)Ĩn(x) = 0.

(3.15)

We derive from (3.15) that

Sn(x) =
dSn

κn
dI

∫
Ω
J(x− y)(Sn(y) − Sn(x)) dy(m(x) + Sn(x) + κn

dI
Ĩn(x))

(β(x) − γ(x))Ĩn(x)

+
γ(x)Ĩn(x)(m(x) + κn

dI
Ĩn(x))

(β(x) − γ(x))Ĩn(x)
,

which implies that Sn → γm
β−γ in C(Ω̄) as n→ +∞. If

∫
Ω

γm
β−γ dx �= N , a contradic-

tion occurs due to In → 0 as n→ +∞.
If N �

∫
Ω

γm
β−γ dx, by above arguments, it is easy to see that In → 0 as n→ +∞.

If β − γ and m are positive constants with N >
∫
Ω

γm
β−γ dx, assume on the contrary

that In → 0 as n→ +∞. We derive from the above arguments that κn

dSn
→ C as
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n→ +∞ and Î satisfies

dI

∫
Ω

J(x− y)(Î(y) − Î(x)) dy +
β(x)C(1 − Î)Î
m(x) + C(1 − Î)

− γ(x)Î = 0. (3.16)

Note that C
∫
Ω
(1 − Î) dx = N . In view of (3.16), we have

N −
∫

Ω

γm

β − γ
dx = −dI

2
m+ C

β − γ

∫
Ω

J(x− y)

(√
Î(y)
Î(x)

−
√
Î(x)
Î(y)

)2

dy � 0,

which is a contradiction. The proof is completed. �

Proof of theorem 2.7. Since Ω+ is nonempty, [45, Corollaries 2.12 and 2.13] implies
that R0 > 1 for all small dI . Then by theorem 2.3, the endemic steady state (S, I)
exists for small dI .

(i) Case I. d ∈ [0, 1]. By (3.6), there exists some positive constant d1 such that

κ

dS
=

N∫
Ω

[
(1 − Ĩ) + dS

dI
Ĩ
]

dx
� N

|Ω| for all 0 < dI ,

∣∣∣∣ dI

dS
− d

∣∣∣∣ � d1. (3.17)

Up to a subsequence, we assume κ
dS

→ l � N
|Ω| as dI → 0 and dI

dS
→ d. Note

that I = κ
dI
Ĩ and Ĩ satisfies (3.7). One can get that I satisfies

dI

∫
Ω

J(x− y)(I(y) − I(x)) dy +
β(x) κ

dS
(1 − dI

κ I)I

m(x) + κ
dS

(1 − dI

κ I) + I
− γ(x)I = 0,

which implies that

I(x) =
−B(x) −√

B2(x) − 4A(x)C(x)
2A(x)

, (3.18)

where

A(x) = − dI

dS
β(x) +

dI

dS
γ(x) − γ(x) −

(
1 − dI

dS

)
dI

∫
Ω

J(x− y) dy,

B(x) = −
(
m(x) +

κ

dS

)
dI

∫
Ω

J(x− y) dy +
κ

dS
β(x) − γ(x)m(x) − κ

dS
γ(x)

+
(

1 − dI

dS

)
dI

∫
Ω

J(x− y)I(y) dy,

C(x) =
(
m(x) +

κ

dS

)
dI

∫
Ω

J(x− y)I(y) dy.

By (3.3) and (3.17), S is uniformly bounded with respect to 0 <
dI ,

∣∣∣ dI

dS
− d

∣∣∣ � d1. Let I(x0) = max
x∈Ω̄

I(x). It follows from the second equation
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of (3.1) that

I(x0) � max
x∈Ω̄

β(x)S(x)
γ(x)

, (3.19)

which implies that I is uniformly bounded with respect to 0 < dI ,
∣∣∣ dI

dS
− d

∣∣∣ �
d1. Let S(x1) = min

x∈Ω̄
S(x). By the first equation of (3.1) that S(x1) �

min
x∈Ω̄

γ(x)m(x)
β(x) . If l = 0, then I = κ

dS

dS

dI
Ĩ → 0 uniformly on Ω̄ as dI → 0 and

dI

dS
→ d ∈ (0, 1]. Then, S = κ−dII

dS
→ 0 as dI → 0 and dI

dS
→ d ∈ [0, 1], which

is a contradiction. Thus, 0 < l � N
|Ω| . By (3.18), up to a subsequence, we have

I → (l(β − γ) − γm)+

dβ + (1 − d)γ
:= I∗ in C(Ω̄) as dI → 0 and

dI

dS
→ d.

Then, up to a subsequence, S = κ−dII
dS

→ l − dI∗ in C(Ω̄) as dI → 0 and
dI

dS
→ d. Moreover,

∫
Ω

[(1 − d)I∗ + l] dx = N. (3.20)

Set g(l) =
∫
Ω
[(1 − d)I∗ + l] dx. Obviously, g(0) = 0, g( N

|Ω| ) > N and g(l) is
strictly increasing with respect to l ∈ [0, N

|Ω| ]. Then l is uniquely deter-
mined by (3.20). Hence the limits of S and I are independent of any chosen
subsequence.
Case II. d ∈ (1, +∞). By (3.6), there exists some positive constant d2 such
that

κ

dS
=

N∫
Ω

[
(1 − Ĩ) + dS

dI
Ĩ
]

dx
� N

|Ω| for all 0 < dI ,

∣∣∣∣ dI

dS
− d

∣∣∣∣ � d2.

It follows from (3.8) that

κ

dS
=

1
|Ω|

[
N −

(
1 − dI

dS

)∫
Ω

I dx
]

� N

|Ω| (2 + d+ d2) for all 0 < dI ,

∣∣∣∣ dI

dS
− d

∣∣∣∣ � d2.
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Up to a subsequence, we assume κ
dS

→ l � N
|Ω| as dI → 0 and dI

dS
→ d. For

any given ε > 0, set

Ĩε
1(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(l − ε)(β(x) − γ(x)) − γ(x)m(x)
l(β(x) − γ(x)) + l

dγ(x)
, if (l − ε)(β(x) − γ(x))

−γ(x)m(x) > 0, x ∈ Ω̄,

0, if (l − ε)(β(x) − γ(x))
− γ(x)m(x) � 0, x ∈ Ω̄,

Ĩε
2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(l + ε)(β(x) − γ(x)) − γ(x)m(x)
l(β(x) − γ(x)) + l

dγ(x)
, if (l + ε)(β(x) − γ(x))

−γ(x)m(x) > 0, x ∈ Ω̄,

ε, if (l + ε)(β(x) − γ(x))
−γ(x)m(x) � 0, x ∈ Ω̄.

It is easy to check that Ĩε
1 and Ĩε

2 are respectively lower and upper solutions
of (3.7) for all 0 < dI ,

∣∣∣ dI

dS
− d

∣∣∣ � d2. Letting ε→ 0 yields that Ĩ → Î in C(Ω̄)

as dI → 0 and dI

dS
→ d, where

Î(x) =

⎧⎪⎨
⎪⎩

l(β(x) − γ(x)) − γ(x)m(x)

l(β(x) − γ(x)) + l
d
γ(x)

, if l(β(x) − γ(x)) − γ(x)m(x) > 0, x ∈ Ω̄,

0, if l(β(x) − γ(x)) − γ(x)m(x) � 0, x ∈ Ω̄.

Then, I = κ
dS

dS

dI
Ĩ → l

d Î and S = κ
dS

(1 − Ĩ) → l(1 − Î) in C(Ω̄) as dI → 0 and
dI

dS
→ d.

(ii) Noting that 0 < Ĩ < 1, up to a subsequence, there exists 0 � Î � 1 such that
Ĩ(x) → Î(x) as dI → 0 and dI

dS
→ +∞ for every x ∈ Ω̄. Similar to the proof

of theorem 2.4, we obtain

H−⊂
{
x ∈ Ω̄ : 0 � Î(x) < 1

}
,

which implies that
∫
Ω
(1 − Î) dx �

∫
H−(1 − Î) dx > 0. Thus, there exists some

constant d3 > 0 such that
∫
Ω
(1 − Ĩ) dx � 1

2

∫
Ω
(1 − Î) dx > 0 and

N

|Ω| <
κ

dS
<

N∫
Ω
(1 − Ĩ) dx

� 2N∫
Ω
(1 − Î) dx

due to (3.6) for all 0 < dI ,
dS

dI
< d3. Then, κ

dI
= κ

dS

dS

dI
→ 0 and I = κ

dI
Ĩ → 0

uniformly on Ω̄ as dI → 0 and dI

dS
→ +∞. Up to a subsequence, we assume
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κ
dS

→ l as dI → 0 and dI

dS
→ +∞. For any given ε > 0, set

Ĩε
1(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(l − ε)(β(x) − γ(x)) − γ(x)m(x)

l(β(x) − γ(x))
, if (l − ε)(β(x) − γ(x))

−γ(x)m(x) > 0, x ∈ Ω̄,

0, if (l − ε)(β(x) − γ(x))

−γ(x)m(x) � 0, x ∈ Ω̄,

Ĩε
2(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(l + ε)(β(x) − γ(x)) − γ(x)m(x)

l(β(x) − γ(x))
, if (l + ε)(β(x) − γ(x))

−γ(x)m(x) > 0, x ∈ Ω̄,

ε, if (l + ε)(β(x) − γ(x))

−γ(x)m(x) � 0, x ∈ Ω̄.

It is easy to check that Ĩε
1 and Ĩε

2 are respectively lower and upper solutions of (3.7)

for all 0 < dI , dS
dI

� d3. Letting ε → 0 yields that Ĩ → Î in C(Ω̄) as dI → 0 and
dI
dS

→ +∞, where

Î(x) =

⎧⎨
⎩

l(β(x) − γ(x)) − γ(x)m(x)

l(β(x) − γ(x))
, if l(β(x) − γ(x)) − γ(x)m(x) > 0, x ∈ Ω̄,

0, if l(β(x) − γ(x)) − γ(x)m(x) � 0, x ∈ Ω̄.

Hence, S = κ
dS

(1 − Ĩ) → l(1 − Î) in C(Ω̄) as dI → 0 and dI

dS
→ +∞. By (3.2),

l is determined by
∫
Ω
l(1 − Î) dx = N .

(iii) In view of (3.6), there exists d0 > 0 such that κ
dS

� N
|Ω| for all 0 < dI ,

dS

dI
< d0.

Up to a subsequence, we assume κ
dS

→ l � N
|Ω| as dI → 0 and dI

dS
→ +∞.

If l < +∞, then κ
dI

= κ
dS

dS

dI
→ 0 as dI → 0 and dI

dS
→ +∞. We derive from (3.7)

that

Ĩ(x) =
−E(x) −√

E2(x) − 4D(x)F (x)
2D(x)

, (3.21)

where

D(x) = −dI

(
− κ

dS
+

κ

dI

)∫
Ω

J(x− y) dy − κ

dS
β(x) −

(
− κ

dS
+

κ

dI

)
γ(x),

E(x) = dI

(
− κ

dS
+

κ

dI

)∫
Ω

J(x− y)Ĩ(y) dy − dI

(
m(x) +

κ

dS

)∫
Ω

J(x− y) dy

+
κ

dS
β(x) −

(
m(x) +

κ

dS

)
γ(x),

F (x) = dI

(
m(x) +

κ

dS

)∫
Ω

J(x− y)Ĩ(y) dy,

which implies that Ĩ → [l(β−γ)−γm]+

l(β−γ) in C(Ω̄) as dI → 0 and dI

dS
→ +∞. We

claim that lim inf
dI→0,

dI
dS

→+∞
‖Ĩ‖L∞(Ω) > 0. Assume on the contrary that it is false.
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Then there exist two sequences {dIk
} and

{
dIk

dSk

}
with dIk

→ 0 and dIk

dSk
→ +∞

as k → +∞ such that Ĩk → 0 as k → +∞. Then, [l(β−γ)−γm]+

l(β−γ) ≡ 0; that is,
l(β − γ) − γm � 0. Since l � N

|Ω| , we have N
|Ω| (β − γ) − γm � 0 contradicting that

Ω+ is nonempty. As a result, there exists some positive constant C1 such that
‖I‖L∞(Ω) = κ

dS

dS

dI
‖Ĩ‖L∞(Ω) � C1

dS

dI
for all 0 < dI ,

dS

dI
< d0. Note that I = κ

dI
Ĩ =

κ
dS

dS

dI
Ĩ � C2

dS

dI
with C2 being some positive constant for all 0 < dI ,

dS

dI
< d0. One

can get that I(x) → 0 uniformly on Ω̄ as dI → 0 and dI

dS
→ +∞. We conclude that

S = κ
dS

(1 − Ĩ) → l[1 − [l(β−γ)−γm]+

l(β−γ) ] := S∗ in C(Ω̄) as dI → 0 and dI

dS
→ +∞. In

addition, l is determined by
∫
Ω
S∗ dx = N .

If l = +∞, then (3.6) implies that
∫
Ω
Ĩ dx =

|Ω|− N
κ

dS

(1− dS
dI

)
� |Ω|

2 for all 0 < dI ,
dS

dI
<

d0. Then κ
dI

=
∫
Ω I dx∫
Ω Ĩ dx

� 2N
|Ω| and I = κ

dI
Ĩ � 2N

|Ω| for all 0 < dI ,
dS

dI
< d0. Up to a

subsequence, we assume κ
dI

→ ϑ � 2N
|Ω| as dI → 0 and dI

dS
→ +∞. By (3.21), Ĩ → 1

in C(Ω̄) as dI → 0 and dI

dS
→ +∞. Then, I = κ

dI
Ĩ → ϑ in C(Ω̄) as dI → 0 and

dI

dS
→ +∞. Note that S = κ

dS
(1 − Ĩ) satisfies

dS

κ
dI

∫
Ω

J(x− y)(S(y) − S(x)) dy − β(x)S(x)Ĩ(x)
m(x) + S(x) + κ

dI
Ĩ(x)

+ γ(x)Ĩ(x) = 0.

(3.22)

Let max
x∈Ω̄

S(x) = S(x0). By virtue of (3.22), we have β(x0)S(x0)

m(x0)+S(x0)+
κ

dI
Ĩ(x0)

� γ(x0)

implying S(x) � S(x0) � max
x∈Ω̄

γ(x)m(x)
β(x)−γ(x) + 2N

|Ω| max
x∈Ω̄

γ(x)
β(x)−γ(x) for all 0 < dI ,

dS

dI
<

d0. We derive from (3.22) that

S(x) =
dS

κ dI

∫
Ω
J(x− y)(S(y) − S(x)) dy(m(x) + S(x) + κ

dI
Ĩ(x))

(β(x) − γ(x))Ĩ(x)

+
γ(x)Ĩ(x)(m(x) + κ

dI
Ĩ(x))

(β(x) − γ(x))Ĩ(x)
,

which implies that S → γ(m+ϑ)
β−γ in C(Ω̄) as dI → 0 and dI

dS
→ +∞. If ϑ = 0, then

N =
∫
Ω

γm
β−γ dx due to (3.2). If ϑ > 0, then ϑ =

N−∫Ω γm
β−γ dx∫

Ω
β

β−γ dx
due to (3.2).

To sum up, up to subsequences of dI → 0 and dI

dS
→ +∞, one of the following

statements hold:

(A1) (S, I) → (S∗, 0) = (l − [l(β−γ)−γm]+

β−γ , 0), where the positive constant l is
determined by

∫
Ω
S∗ dx = N . In addition, there exists positive constants

0 < d0 � 1, C1 and C2 such that

C1
dS

dI
� ‖I‖L∞(Ω) � C2

dS

dI
for all 0 < dI ,

dS

dI
< d0.
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(A2) (S, I) → ( γm
β−γ , 0) and N =

∫
Ω

γm
β−γ dx.

(A3) (S, I) → (γ(m+I∗)
β−γ , I∗), where I∗ =

N−∫Ω γm
β−γ dx∫

Ω
β

β−γ dx
> 0.

In the following, we aim to prove the conclusions item by item.

(a) If N <
∫
Ω

γm
β−γ dx, then (A1) must hold.

(b) If N =
∫
Ω

γm
β−γ dx, then (A1) or (A2) holds. If (A2) holds, there is nothing

to prove. Assume that (A1) holds. By the positivity of I, we know 0 is the
principal eigenvalue of

dI

∫
Ω

J(x− y)(ϕ(y) − ϕ(x)) dy +
(

β(x)S(x)
m(x) + S(x) + I(x)

− γ(x)
)
ϕ(x)

= −λϕ(x), x ∈ Ω. (3.23)

In view of [39, Theorem 2.2], we have min
x∈Ω̄

{
γ(x) − β(x)S∗(x)

m(x)+S∗(x)

}
= 0

implying S∗(x) � γ(x)m(x)
β(x)−γ(x) for all x ∈ Ω̄. Set x ∈ Ωl := {x ∈ Ω̄ : l(β(x) −

γ(x)) − γ(x)m(x) � 0}. If Ωl is empty, then S∗(x) = γ(x)m(x)
β(x)−γ(x) for all x ∈

Ω̄. If Ωl is nonempty, then S∗(x) = l � γ(x)m(x)
β(x)−γ(x) for all x ∈ Ωl. Note

that
∫
Ωl
l dx+

∫
Ω\Ωl

γm
β−γ dx = N =

∫
Ω

γm
β−γ dx. We have

∫
Ωl

(l − γm
β−γ ) dx =

0. Hence, γ(x)m(x)
β(x)−γ(x) = l for all x ∈ Ωl. We derive that S∗(x) = γ(x)m(x)

β(x)−γ(x) for
all x ∈ Ω̄.

(c) If N >
∫
Ω

γm
β−γ dx, then (A1) or (A3) holds. Assume that (A1) holds. By

the proof of (b), we know S∗(x) � γ(x)m(x)
β(x)−γ(x) for all x ∈ Ω̄. Then, N =∫

Ω
S∗ dx �

∫
Ω

γm
β−γ dx, which is a contradiction. Hence (A3) holds. The proof

is completed.

�

Proof of theorem 2.8. In view of [45, Corollaries 2.12 and 2.13] and theorem 2.3,
there exists an endemic steady state (S, I). We first give the proof of (i). Since∫
Ω
I dx � N, up to a subsequence, assume

∫
Ω
I dx→ r for some constant r � 0 as

dS → +∞. In view of (3.8), we have

κ

dS
=

1
|Ω|

[
N −

(
1 − dI

dS

)∫
Ω

I dx
]
→ 1

|Ω| (N − r) as dS → +∞.

Then there exists some positive constant d∗S such that κ
dS

is uniformly bounded with
respect to dS > d∗S . Note that S = κ

dS
− dI

dS
I. We derive that S is uniformly bounded

with respect to dS > d∗S . In view of (3.19), I is uniformly bounded with respect to
dS > d∗S . Hence, S = κ

dS
− dI

dS
I → 1

|Ω| (N − r) := S∗ as dS → +∞. It follows from

https://doi.org/10.1017/prm.2024.62 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.62


28 Y.-X. Feng, W.-T. Li and F.-Y. Yang

the second equation of (3.1) that

I(x) =
−B(x) −√

B2(x) − 4A(x)C(x)
2A(x)

,

where

A(x) = −dI

∫
Ω

J(x− y) dy − γ(x),

B(x) = −
(
dI

∫
Ω

J(x− y) dy + γ(x)
)

(m(x) + S(x))

+ dI

∫
Ω

J(x− y)I(y) dy + β(x)S(x),

C(x) = dI

∫
Ω

J(x− y)I(y) dy(m(x) + S(x)),

which implies that I → I∗ in C(Ω̄) as dS → +∞ and I∗ satisfies (2.3). We
know either I∗ ≡ 0 or I∗ > 0. Otherwise, there exists some x0 ∈ Ω̄ such that
I∗(x0) = min

x∈Ω̄
I∗(x) = 0, then we derive from (2.3) that

∫
Ω
J(x0 − y)I∗(y) dy = 0.

Thus, I∗(x) = 0 for all x ∈ Ω̄, which is a contradiction. By the positivity of I, 0
is the principal eigenvalue of (3.23). If r = 0, then I∗ ≡ 0 and S∗ ≡ N

|Ω| . Note that
w = I

‖I‖L∞(Ω)
satisfies

dI

∫
Ω

J(x− y)(w(y) − w(x)) dy +
β(x)Sw

m(x) + S + I
− γ(x)w = 0.

There exists some ŵ(x) > 0 such that w(x) → ŵ(x) as dS → +∞ and ŵ satisfies

dI

∫
Ω

J(x− y)(ŵ(y) − ŵ(x)) dy +
N
|Ω|β(x)

m(x) + N
|Ω|
ŵ − γ(x)ŵ = 0.

As a result, λv(dI) = 0 contradicting R0 > 1. Hence, r > 0 and I∗ > 0.
Now prove the existence and uniqueness of positive solution of (2.3). Let τ � 0

be a real number. Consider

dI

∫
Ω

J(x− y)(I(y) − I(x)) dy +
β(x) 1

|Ω| (N − τ) I

m(x) + 1
|Ω| (N − τ) + I

− γ(x)I = 0. (3.24)

It follows from [9, Theorem 1.6] that (3.24) admits a unique positive solution if and
only if λτ < 0, where λτ is defined by

λτ := inf
ϕ∈L2(Ω)

ϕ�=0

dI

2

∫
Ω

∫
Ω
J(x− y)(ϕ(y) − ϕ(x))2 dy dx

+
∫
Ω

(
γ(x) − β(x) N−τ

|Ω|
m(x)+ N−τ

|Ω|

)
ϕ2(x) dx∫

Ω
ϕ2(x) dx

.

Since R0 > 1, we have λ0 < 0. Noting that λτ is increasing in τ , there exists τ∗ > 0
such that λτ < 0 for all 0 � τ < τ∗ and λτ∗ = 0. As a result, (3.24) admits a unique
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positive solution Iτ for all 0 � τ < τ∗ and Iτ ≡ 0 is the only nonnegative solution
of (3.24) for all τ � τ∗. And it is verified that Iτ is decreasing with respect to τ ∈
[0, τ∗). Set g(τ) = τ − ∫

Ω
Iτ dx. Then g(τ) is increasing with respect to τ ∈ [0, τ∗].

Since g(0) < 0 and g(τ∗) > 0, there exists a unique τ0 > 0 such that g(τ0) = 0; that
is, τ0 =

∫
Ω
Iτ0 dx. As a consequence, the positive solution of (2.3) uniquely exists.

Hence, the limits of S and I are independent of any chosen subsequence.
Now we are devoted to the proof of (ii). Since

∫
Ω
I dx � N, up to a subsequence,

assume
∫
Ω
I dx→ r for some constant r � 0 as dI → +∞. In view of (3.8), we have

κ

dI
=

1
|Ω|

[
dS

dI
N −

(
dS

dI
− 1

)∫
Ω

I dx
]
→ 1

|Ω|r as dI → +∞.

Noting that dS

dI
S + I = κ

dI
, there exists some constant d∗I > 0 such that I is uni-

formly bounded with respect to dI > d∗I . Then βSI
m+S+I − γI is uniformly bounded

with respect to dI > d∗I . We derive from the second equation of (3.1) that

I(x) =

∫
Ω
J(x− y)I(y) dy∫
Ω
J(x− y) dy

+
β(x)S(x)I(x)

m(x)+S(x)+I(x) − γ(x)I(x)

dI

∫
Ω
J(x− y) dy

,

which implies that I → I∗ in C(Ω̄) as dI → +∞ and I∗ satisfies
∫
Ω
J(x− y)(I∗(y) −

I∗(x)) dy = 0. Thus, I∗ is a constant and I∗ = r
|Ω| .

Claim that S is uniformly bounded with respect to dI > d∗I . Assume on the
contrary that it is false. Then there exists a sequence {dIn

} with dIn
→ +∞ as

n→ +∞ such that ‖Sn‖L∞(Ω) = ‖κn

dS
(1 − Ĩn)‖L∞(Ω) → +∞ as n→ +∞. Set wn =

1−Ĩn

‖(1−Ĩn)‖L∞(Ω)
. One can get that wn satisfies

dIn

κn
κn‖(1 − Ĩn)‖L∞(Ω)

∫
Ω

J(x− y)(wn(y) − wn(x)) dy

− β(x)κn

dS
(1 − Ĩn)Ĩn

m(x) + κn

dS
(1 − Ĩn) + κn

dIn
Ĩn

+ γ(x)Ĩn = 0.

Noting that

∥∥∥∥∥− β κn

dS
(1 − Ĩn)Ĩn

m+ κn

dS
(1 − Ĩn) + κn

dIn
Ĩn

+ γĨn

∥∥∥∥∥
L∞(Ω)

� max
x∈Ω̄

(β(x) + γ(x)),

we get that wn → 1 in C(Ω̄) as n→ +∞. Then, Sn = κn

dS
(1 − Ĩn) = 1

dS
κn‖(1 −

Ĩn)‖L∞(Ω)wn → +∞ contradicting
∫
Ω
Sn dx � N . Hence, the claim must hold. It

follows from the first equation of (3.1) that

S(x) =
−E(x) −√

E2(x) − 4D(x)F (x)
2D(x)

,
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where

D(x) = −dS

∫
Ω

J(x− y) dy, F (x)

=
(
dS

∫
Ω

J(x− y)S(y) dy + γ(x) + I(x)
)

(m(x) + I(x)),

E(x) = dS

∫
Ω

J(x− y)S(y) dy − dS

∫
Ω

J(x− y) dy(m(x) + I(x))

− β(x)I(x) + γ(x)I(x),

which implies that S → S∗ in C(Ω̄) as dI → +∞ and S∗ satisfies (2.4). If I∗ = 0,
we conclude from (2.4) that S∗ = N

|Ω| . By the positivity of I, 0 is the principal
eigenvalue of the eigenvalue problem (3.23). By virtue of [39, Theorem 2.2], we
have

∫
Ω
(γ − θ) dx = 0. A contradiction occurs. Thus, I∗ > 0.

Finally we prove (iii). We derive from (3.2) and (3.3) that

S =
N

|Ω| −
(

1 − dI

dS

)
1
|Ω|

∫
Ω

I dx− dI

dS
I,

which implies that ‖S‖L∞(Ω) � N
|Ω| (1 + dI

dS
). If dI

dS
→ C for some nonnegative con-

stant C, then S is uniformly bounded with respect to dS , dI > d∗ with d∗ some
positive constant. In view of (3.19), I is uniformly bounded with respect to
dS , dI > d∗. If dI

dS
→ +∞, then I = κ

dI
Ĩ = 1

|Ω| [
dS

dI
N − (dS

dI
− 1)

∫
Ω
I dx]Ĩ is uni-

formly bounded with respect to dS , dI > d∗. Similar to the proof of (ii), we can
prove S is uniformly bounded with respect to dS , dI > d∗. The remaining proof
is the same as the proof of [45, Theorem 4.1]. So we omit it. The proof is
completed. �

Proof of proposition 2.10. Similar to the proof of theorem 2.4, we can prove (i).
Here we only prove (ii). By the arguments in the proof of theorem 2.5, we know
I → I∗ in C(Ω̄) as dS → 0 and I∗ is a nonnegative constant. Assume I∗ = 0
and set (Š, Ǐ) = ( S

dS
, I

dS
). Then (Š, Ǐ) satisfies (3.1) with m ≡ 0. In view of

the proof of theorem 2.5, there exists positive constants d̂, C∗ and C∗ such
that C∗ � Ǐ(x) � C∗ for all x ∈ Ω̄ and 0 < dS < d̂. Let Š(x0) = min

x∈Ω̄
Š(x) and

Š(y0) = max
x∈Ω̄

Š(x). We obtain from the first equation of (3.1) that − β(x0)Š(x0)

Š(x0)+Ǐ(x0)
+

γ(x0) � 0 and − β(y0)Š(y0)

Š(y0)+Ǐ(y0)
+ γ(y0) � 0, which implies that min

x∈Ω̄

γ(x)
β(x)−γ(x)C∗ �

Š(x) � max
x∈Ω̄

γ(x)
β(x)−γ(x)C

∗. Adding up two equations of (3.1) with m ≡ 0 yields

Ǐ(x) =
dS

∫
Ω
J(x− y)(Š(y) − Š(x)) dy + dI

∫
Ω
J(x− y)Ǐ(y) dy

dI

∫
Ω
J(x− y) dy

,

which implies that Ǐ → Ǐ∗ in C(Ω̄) as dS → 0 and Ǐ∗ satisfies
∫
Ω
J(x− y)(Ǐ∗(y) −

Ǐ∗(x)) dy = 0. It follows from Andreu-Vaillo et al. [3, Proposition 3.3] that Ǐ∗ is a
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positive constant. The first equation of (3.1) with m ≡ 0 gives

Š(x) =
dS

∫
Ω
J(x− y)(Š(y) − Š(x)) dy(Š(x) + Ǐ(x)) + γ(x)Ǐ(x)Ǐ(x)

(β(x) − γ(x))Ǐ(x)
,

which implies that Š → γǏ∗

β−γ in C(Ω̄) as dS → 0. Then, S = dSŠ → 0 in C(Ω̄) as
dS → 0. Hence,

∫
Ω
(S + I) dx→ 0 as dS → 0 contradicting (3.2). Now we have I∗ >

0. By the proof of theorem 2.5, S → γI∗

β−γ in C(Ω̄) as dS → 0 and
∫
Ω

γI∗

β−γ + I∗ dx =
N . Thus, I∗ = N∫

Ω
β

β−γ dx
. The proof is completed. �

The proof of proposition 2.11 is similar to that of theorem 2.7. So we omit it.
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