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ABSTRACT

The three annual 2}'% interest coupons of the Winterthur Insurance
convertible bond (face value CHF 4 700) will only be paid out if during their
corresponding observation periods no major storm or hail storm on one
single day damages at least 6000 motor vehicles insured with Winterthur
Insurance. Data for events, where storm or hail damaged more than 1000
insured vehicles, are available for the last ten years. Using a constant-
parameter model, the estimated discounted value of the three WINCAT
coupons together is CHF 263.29. A conservative evaluation, which accounts
for the standard deviation of the estimate, gives a coupon value of CHF
238.25. However, fitting models which admit a trend or a change-point,
leads to substantially higher knock-out probabilities of the coupons. The
estimated discounted values of the coupons can drop below the above
conservative value; a conservative evaluation as above leads to substantially
lower values. Hence, already the model uncertainty is higher than the
standard deviations of the used estimators. This shows the dominance of the
model risk. Consistency, dispersion, robustness and sensitivity of the models
are analysed by a simulation study.
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1. INTRODUCTION

The Swiss insurance company Winterthur Insurance has launched a three-
year subordinated 2%% convertible bond with so-called WINCAT coupons,
where CAT is an abbreviation for catastrophe. This bond with a face value
of CHF 4700 may be converted into five Winterthur Insurance registered
shares ' at maturity (European-style option) between the 18th and 24th of
February 2000. The annual interest coupon of 2%% will not be paid out if on
any one calendar day during the corresponding observation period for the
coupon at least 6 000 motor vehicles insured with Winterthur in Switzerland
are damaged by hail or storm (wind speeds of at least 75 km/h). If the
number of insured motor vehicles changes by more than 10%, then the
knock-out limit of 6000 claims will be adjusted correspondingly.

' Due to the merger of Winterthur Insurance and Crédit Suisse Group on December 15th, 1997, the
bond may be converted into 36.5 Credit Suisse Group registered shares at maturity. Due to the
conversion right and the rising market value of the Winterthur Insurance registered shares (see [20]),
the convertible bond offered a good investment opportunity during its first few months.
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Had Winterthur launched an identical fixed-rate convertible bond, then,
according to Crédit Suisse First Boston’s brochure [3], the coupon rate
would have been around 0.76% lower (approximately 1.49%). In other
words, the investor receives an annual yield premium of 0.76% for bearing a
portion of Winterthur’s damage-to-vehicles risk. This convertible bond is
intended as an instrument to diversify portfolios. The WINCAT coupons are
very suitable for this purpose, because storm and hail damages have only a
very small correlation with traditional financial market risk. The European-
style conversion right, however, strongly ties the bond to the financial
market. It is the intention of Winterthur Insurance to test the Swiss capital
market for such products, make investors acquainted with them, and obtain
a partial reinsurance through the financial market by securitizing a portion
of its damage-to-vehicles risk.

Within the range of designs of catastrophe bonds, the Winterthur
Insurance convertible bond with WINCAT coupons “Hail” belongs to the
more conservative ones, namely the principal-protected catastrophe bonds.
Besides the pure catastrophe bonds, where the coupons and the principal are
at risk, another more conservative variant are the deferred catastrophe
bonds, where no payment as such is at risk, but the payments may be
deferred. This gives the issuer of such a bond an interest-free credit in case of
a catastrophe.

Two guiding principles for specifying the conditions of the WINCAT
coupons were simplicity and absence of moral hazard. For the purpose of
reinsurance, it would have been interesting for Winterthur Insurance to
include a knock-out limit connected to the total number of claims during an
observation period. To reduce moral hazard, damage arising from a natural
cause was chosen as the triggering event, and the knock-out limit is tied to
the number of claims and not to the capital necessary to pay full indemnity
to the insured. If an event with at least 6 000 claims occurs, then Winterthur
Insurance saves the corresponding 2}“’/0 coupon interest payment on 399.5
million Swiss francs, which makes CHF 8988750 at the corresponding
coupon date. On the other hand, according to Winterthur Insurance, CHF
3000 have to be paid out per claim on the average for motor vehicles
damaged by storm or hail. Therefore, when an event with at least 6000
claims occurs, Winterthur Insurance can expect to save up to 50% by means
of the WINCAT coupons — a profit from a knock-out event seems extremely
unlikely. A possible problem with the knock-out limit can be borderline
cases of events with about 6000 claims when a few insured do not know the
exact date of the damage (because they have been on holiday, for example).
A way to moderate the severity of such a problem would be a linear
reduction of the coupon interest rate from 2}‘% to 0% between 5000 and
7000 claims. However, such a specification would make the product more
complex and the statistical analysis for the coupon pricing even more
involved.

This study was made possible by the willingness of Winterthur Insurance
to collect and publish the relevant available historical data on the web page
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[19] as well as in Crédit Suisse First Boston’s brochure [3] and thereby to set
standards in product transparency, fairness of pricing and investor
education. This enables a scientific discussion of such products and their
corresponding pricing methodologies, which in turn helps to enhance
transparency and acceptance of such products. To satisfy this aim and to
build up the confidence of investors, the various sources of risk of such new
products should be made explicit to avoid unpleasant surprises. The present
paper seeks to make a contribution in this direction with emphasis on
education. Since convertible bonds are well-established securities in the
market, a lot of information concerning Winterthur Insurance is contained
in the legally binding prospectus [18], which helps the investor to judge the
default risk and the possible profits from the European-style conversion
right. However, no information (other than the exact legal specification) for
estimating the knock-out probability of the WINCAT coupons is given in this
legally binding prospectus; in particular, there is no historical data on the
subject in the prospectus. Apparently, Winterthur Insurance and Creédit
Suisse First Boston have been aware of this deficiency; hence their decision
to publish [3] and to make the historical data available on the web page [19].

This paper will focus on estimating the risk arising from the WINCAT
coupons, with emphasis on the model risk which is not addressed in [3]. For
a discussion of the various disguises of model risk, we refer to [4]. Based on
the available historical data, we shall present and work out several models
and calculate the discounted value of the WINCAT coupons in every case for
an easy comparison of the various results. For the pricing of the European-
style option for converting the bond into Winterthur Insurance registered
shares, we refer to [3]. We should mention here, that the current value of the
call option depends on the knock-out probability of the last coupon, because
the exercise price of the call option is either CHF 4 805.75 (face value of the
bond plus last coupon), if the last coupon is paid, or simply the face value of
CHF 4700, if the last coupon is knocked out.

To estimate the risk of the WINCAT coupons, a 10-year history of damage
claims is provided in [3] and [19], see Table 1.1. During this period, a total of
17 events with more than 1000 damaged vehicles were registered. Of these
events, 15 happened during the summer and two were winter storms. None
of these events occurred between 1987 and 1989. Only two of the events,
which happened on the 21st of July 1992 and the 5th of July 1993, caused at
least 6000 claims. Without any sophisticated modelling, this suggests a
knock-out probability of 20%, i.e., the expectation of the annual coupon
payment would be 80% of the 2}% WINCAT coupon, which is an expected
annual yield of 1.8%. Of course, as mentioned in [3, p. 11], this estimate has
little statistical significance.

In Section 2 of this note, we present and briefly discuss the available
historical data. Section 3 contains a critical review of a simple binomial
model. In Section 4 we give a review of the constant-intensity model to
estimate the discounted value of the WINCAT coupons. We discuss several
distributions which can be used to obtain an estimate for the probability that
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an event causing more than 1000 adjusted claims actually leads to the knock-
out of the coupon. These distributions include the Bernoulli distribution, the
Pareto distribution (used in [3]) and finally, as suggested by extreme value
theory, the generalised Pareto distribution. According to [18] and
Winterthur’s web page [19], the length of the observation period for the
first coupon is not an entire year as assumed in [3]; therefore we recalculate
the discounted value of the WINCAT coupons also for the cases already
considered in {3]. In Section 5 we test the constant-parameter model with
respect to over-dispersion and time-inhomogeneity. Since the historical data
set 1s small, we can calculate the corresponding probabilities under the null
hypothesis exactly and do not need to utilise asymptotic results for these tests.

TABLE 1.1.

CLAIM NUMBERS OF PAST EVENTS CAUSING OVER 1000 ADSUSTED CLAIMS AS PROVIDED IN [3] AND [19].
DURING 1987 1989, SUCH EVENTS DID NOT OCCUR. SINCE THE NUMBER OF MOTOR VEHICLES INSURED WITH
WINTERTHUR TENDS TO INCREASE, FORMER ACTUAL CLAIM NUMBERS ARE SET INTO RELATION WITH THE NUMBER
OF INSURLD VEHICLES TO OBTAIN THE NUMBER OF ADJUSTED CLAIMS.

Number of  Vehicles insured

Year Date Event . R Adjusted claims

claims index
1987 1.248
1988 1.204
1989 1.161

1990 27. Feb. Storm 1646 1.127 1855

30. June Hail 1395 1572

1991 23, June Hail 1333 1.104 1472

6. July Hail 1114 1230

1992 21. July Hail 8798 1.098 9660

31. July Hail 1085 1191

20. Aug. Hail 1253 1376

21. Aug. Hait 1733 1903

1993 S. July Hail 6589 1.099 7241

1994 2. June Hail 4802 1.086 5215

24. June Hail 940 1021

18. July Hatil 992 1077

6. Aug. Hail 2460 2672

10. Aug. Hait 2820 3063

1995 26. Jan. Storm 1167 1.0667 1245

2. July Hail 1290 1376

1996 20. June Hail 1262 1.000 1262
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Only the most severe event within an observation period matters for
the possible knock-out of a WINCAT coupon. In Section 6 we therefore fit
a generalised extreme value distribution to the observed yearly maxima.

In Section 7 we present and discuss various models with a time-dependent
parameter for the number of events with more than 1000 adjusted claims.
We shall give several reasons why there might be a trend in the data. An
investor, who wants to take a possible trend into account, might use one of
these models to estimate the discounted value of the WINCAT coupons.
Alternatively, an investor, who prefers a constant-parameter model, can use
one of the trend models to create a stress scenario for risk management.
These trend models will lead to substantially lower estimates for the values
of the WINCAT coupons. In the subsequent section we apply a permutation
test to most of the trend models to test the null hypothesis, that there is no
trend, and we explain why a permutation test is not adequate for the
remaining model with a square-root linear trend.

In contrast to the continuous-trend models, there can also be a sudden
change in the expected event frequency. Such a change-point model 1is
presented in Section 9.

The composite Poisson models discussed in Sections 4-9 make use of the
assumption that the event frequency is independent from the event severity,
namely the adjusted numbers of claims arising from these events. The
corresponding trend and change-point models take only a varying event
frequency into account. The peaks-over-threshold method from extreme
value theory, which we use in Section 10, provides a convenient way to
model a possible trend in the event frequency as well as in the event severity.
However, when choosing only one additional parameter for the time-
inhomogeneous extension of the peaks-over-threshold model, then those two
trends are coupled. .

A short discussion of the various values of the WINCAT coupons is given
in Section 11; see Table 11.1 for a comparison. The substantially different
values indicate that the model uncertainty is the dominating risk for the
evaluation of the discounted value of the WINCAT coupons.

In Section 12 we use a scenario technique to investigate the robustness
and sensitivity of the various models with respect to new data. This is done
by adding fictitious data for the year 1997 to Table 1.1, namely no event for
a favourable scenario or a repetition of the four events from 1992 for a stress
scenario. The corresponding changes of the estimated coupon values are
given in Table 12.1 for the models under consideration. '

In the last section we check the consistency of the models and investigate
the dispersion of the estimated discounted coupon values by a simulation
study. For every fitted model — under the assumption that it describes reality

" Actually, one hail storm in the area Entlebuch/Sarnen with 1825 claims was recorded on the 11th of
June 1997. Another hail storm hit the town of Lucerne on the 2Ist of July 1998 and caused
3085 claims. There were no other events with more than 1000 claims during the years 1997 and
1998. In this paper, however, we only use the information available at the time the bond was issued.
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correctly — we generate 1000 new random data sets according to the
distribution specified by the fitted model. These data sets replace the actual
observations recorded in Table 1.1, and we use the model to estimate the
discounted coupon values based on the random data set. In this way we can
check whether the model can recover its own features from the simulated
data — in particular the mean and the median — and we can see how far the
simulated coupon values deviate from the mean. This can help to determine
conservative estimates of the coupon values for the models. The mean, the
median, the standard deviation and the 15.9%-quantil for the various
models are listed in Table 12.1. Instructive are also the histograms in Figures
13.1 and 13.2, showing the distributions of the estimated coupon values for
some selected models.

If the knock-out probability Pcar, for the WINCAT coupons were
known exactly, then a very small risk premium for the investor would
suffice, because the investor has the freedom to invest only a small fraction
of the capital in the Winterthur Insurance convertible bond thereby
diversifying the risk. This small risk premium is the motivation for
insurance companies to securitize their catastrophe risk. However, the true
knock-out probability Pgc,; is not known. Therefore, at various places in
this paper, we follow the procedure used in [3] and add an estimated
standard deviation 6(Pc,r) to the estimated knock-out probability Pcar
to obtain a conservative upper estimate, thereby adding a risk premium
for the investor to account for the uncertainty of Pc.;. We could elaborate
on this point by using the entire estimated distribution of Pc,r and tilt it
towards higher values (the paper [17] by G.G. Venter is interesting in this
context). Taking investor-dependent utility functions and the current
market price of risk into account, a more profound analysis might be
possible than the one sketched above. However, since the estimated
knock-out probabilities and the corresponding standard deviations will
vary substantially with the models used, the model risk should also be
taken into account, because is seems to be the dominating one in the
present problem. There should be a coherent way to calculate an adequate
risk premium which accounts for the variation of the estimated knock-out
probability and the corresponding model risk. We leave it to future
research to develop a rigorous mathematical basis for this purpose and to
apply it to the present problem.

2. PRESENTATION AND DISCUSSION OF THE DATA

Whether a WINCAT coupon is paid on February 28th depends on the events
happening during the corresponding observation period. These observation
periods are specified on Winterthur’s web page [19], see Table 2.1. The first
observation period is shorter than a year so that there are always four
months left between the end of the observation period and the coupon
payment date. This provides enough time to count the number of claims
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TABLE 2.1.

OBSERVATION PERIODS FOR THE WINCAT COUPONS ACCORDING TO |18]
AND THE WEB PAGE [19] OF WINTERTHUR INSURANCE.

Coupon date Relevant observation period
February 28, 1998 February 28, 1997 — October 31, 1997
February 28, 1999 November 1, 1997 - October 31, 1998
February 28, 2000 November 1, 1998 — October 31, 1999

and to determine whether the corresponding coupon is knocked out. In the
10-year history of damage claims provided in [3] and [19], see Table 1.1, two
events are not within the period from February 28th to October 31st. This is
relevant for the first coupon, we shall therefore always reduce the knock-out
probability for the first coupon in a deterministic way (see Table 3.2) using

Posr =1 — (1 = Po)'™", (2.1)

where Pc,; denotes here the knock-out probability if the observation period
were a full year. Formula (2.1) is motivated by the Poisson models used in
following sections. It corresponds to reducing the Poisson parameter by the
factor 15/17, see the discussion in the introduction of Section 4 and the one
of formula (4.9). By using (2.1), we neglect the fact that the number of events
not occurring in the period from February 28th to October 31st is random
as well. This simplification, however, is suggested by the lack of data and
can be justified by the small influence of this 15/17-correction (CHF 2.21 for
Pcar = 20%, for example) when compared with the model uncertainty to
be discussed. Furthermore, when analysing the adjusted claim numbers,
we assume that the two numbers arising from the winter storms come from
the same underlying distribution as the numbers arising from the hail
storms. Again, this simplifying assumption is suggested by the small
historical data set.

The number of claims arising from damage by storm or hail have to be
set into relation with the number of vehicles insured with Winterthur in
Switzerland. The statistical basis is 773 600 insured risks per year in 1996 or
744764 insured motor vehicles on April 1st, 1996. Note that many motor-
cycles are only insured during the summer months. The above numbers
include the motor vehicles insured with Neuenburger Schweizerische
Allgemeine Versicherungsgesellschaft, which merged with Winterthur
Insurance in 1997. The column Fehicles insured index in Table 1.1 gives
the number of insured risks in 1996 divided by the number of insured risks
for the respective year. The column Adjusted claims in Table 1.1 contains the
claim numbers multiplied with the insured-vehicles index. Only events with
more than 1000 adjusted claims are shown in Table 1.1, because other
historical data is not provided by Winterthur Insurance.
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If the statistical basis changes by more than 10%, based on the number of
insured motor vehicles on April Ist, then, according to [18, Condition 2(e)],
the knock-out limit of 6 000 claims will be adjusted accordingly, rounded to
the nearest multiple of 100 claims. As the column Vehicles insured index of
Table 1.1 shows, the statistical basis tends to increase, but it seems unlikely
that it reaches the adjustment trigger of 10% within three years without a
merger with another insurance company. Apparently, such a scenario slightly
increases the risk of the investor. On the other hand, there was a recent
change in the Swiss legislation concerning the mandatory motor vehicle
insurance, and new competitors are becoming active in the motor vehicles
insurance market. Therefore, it is not clear whether a rising trend in the
statistical basis will persist. For the further analysis in this paper, we assume
that the statistical basis stays constant. It should be kept in mind however,
that (depending on the model) the estimated coupon values in Table 11.1 can
change by up to CHF 10 if the statistical basis changes by as much as £10%
already in the first observation period.

3. A CRITICAL REVIEW OF A BINOMIAL MODEL

To extract the relevant information from the historical data given in Table
1.1, we could use a simple model consisting of ten Bernoulli random
variables X937, Xjosg, ..., X996, where X, = 1 means that an event with at
least 6000 adjusted claims happened in the observation period ending at
October 3lst of the year y. We set X, =0 otherwise. For the model we
assume that these ten random variables are independent and identically
distributed. We are interested in estimating the probability p = P(X, = 1).
An unbiased estimator of p is the empirical mean

1 1996
P=15 > X (3.1)
y=1987

The data of Table 1.1 leads to p = 0.2, because there were two observation
periods out of ten where an event with at least 6000 adjusted claims
happened. Using coupon knock-out probabilities of Pc,r(1997) =
1-(1-0. 2)]5/'7 0.179 for the first observation period and
Pc,1(1998) = Pear(1999) = 0.2 for the following two years, and using the
interest rate structure of Table 3.1, the discounted value of the three WINCAT
coupons is calculated in Table 3.2.

Of course, the estimator in (3.1) can only lead to one of the eleven values
in the set {0.0, 0.1, 0.2, ..., 0.9, 1.0}. Hence, to be realistic, we should not
favour any specific value within the interval [0.15, 0.25]. A recalculation of
Table 3.2 with the knock-out probabilities 15% and 25% gives CHF 259.08
and CHF 229.78, respectively, for the discounted value of the three WINCAT
coupons.

https://doi.org/10.2143/AST.29.1.504608 Published online by Cambridge University Press


https://doi.org/10.2143/AST.29.1.504608

110 UWE SCHMOCK

TABLE 3.1.

ASSUMPTIONS REGARDING THE INTEREST-RATE STRUCTURE TAKEN FROM [3]. THE INTEREST RATES CORRESPOND
TO THE ZERG-COUPON YIELD ON Swiss CONFEDERATION BONDS PLUS A SPREAD OF 35 BASIS POINTS.

Coupon Interest rate Discount factor
1. 1.87% 0.9816
. 2.33% 0.9550
3. 2.57% 0.9267
TABLE 3.2

CALCULATION OF THE DISCOUNTED VALUE OF THE THREE WINCAT COUPONS FOR THE ESTIMATE p = 0.2. THE
THREE DISCOUNT FACTORS ARE TAKEN FROM TABLE 3.1. THE PRODUCT OF THE PRINCIPLE, THE COUPON INTEREST
RATE AND THE DISCOUNT FACTOR IS MULTIPLIED WITH THE PROBABILITY (1 — P, ) THAT THE CORRESPONDING

COUPON IS NOT KNOCKED OUT. THE 15/17-CORRECTION ACCORDING TO (2.1) WAS APPLIED TO THE KNOCK-OUT

PROBABILITY OF THE FIRST COUPON TO TAKE CARE OF ITS SHORTER OBSERVATION PERIOD GIVEN IN TABLE 2.1.

Coupon Principle Interest Discount factor Pcnr Value
. 4700 2%% 0.9816 17.9% CHF 85.25
2. 4700 2}% 0.9550 20% Cur 80.79
4700 2%% 0.9267 20% CuF 7840
Discounted values of the three WINCAT coupons: CHF 244.44

From a statistical point of view we should also consider the standard
deviation of the estimator in (3.1). This will give an impression of the quahty
of the estimator. Since the variance is given by

] 199 p(1=p)
205y _
o“(p) = Var 0 E X, | = o (3.2)

y=1987

we could follow statistical practice and use the estimated value p = 0.2 for p
to obtain an estimate for the variance o?(p). This would mean to use
p{1 = p)/10 as the estimator. In this binomial model, however, a short
calculation shows that

E[f)(l —13)] _10-1 p(i-p)

10 10 10 7

hence we would underestimate the variance in (3.2) by a factor 9/10.
Therefore, we estimate the variance of p by the unbiased estimator

2(p) =0 21L=P) (3.3)
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to obtain 6(p) = 1/0.2-0.8/9 ~ 0.13 for the standard deviation of p. For a
conservative estimate we may use Pcar = p + d(p) =~ 0.33 as the knock-out
probability. A recalculation of Table 3.2 with this knock-out probability
leads to CHF 205.24.

The empirical mean in (3.1) is a minimal sufficient estimator for the
knockout probability p in this model [10, Chapter 1, Problem 17], hence
we have done our best within this model. We cannot expect more from
this model, because it uses the data of Table 1.1 very inefficiently. Already
in the first step, the data is reduced to ten yes/no decisions (10 bit of
information). By taking the mean in (3.1), this information is further
reduced by ignoring the order of the ten yes/no decisions, leading to one
out of eleven possible numbers. This is less then 4 bit of information.
Having gone through this bottleneck, not much can be done with a
statistical examination afterwards.

4. COMPOSITE POISSON MODELS WITH CONSTANT PARAMETER

To extract more data from Table 1.1 than in the previous section, we shall
review several composite Poisson models. The one in Subsection 4.2 was
used for the analysis in [3]. For every calendar day in an observation
period there is a slight chance of a major storm or hail storm causing
more than 1000 adjusted claims. The data of Table 1.1 as well as common
knowledge suggest that this slight chance varies with the season: In
Switzerland, a storm is more likely to occur in late autumn or winter than
in any other season while hail storms usually occur in summer. If the
dependence between the different days is sufficiently weak, then the
Poisson limit theorem suggests that a Poisson random variable might be a
good approximation for the number of those events within an observation
period, which cause more than 1000 adjusted claims. Note that Table 1.1
records hail storms for August 20th, 1992, and the following day, hence
the assumption of “‘sufficiently weak dependence” has to be kept in mind.
Such two-day events can arise artificially from a single storm due to the
dividing line at midnight, or they can arise due to weather conditions
favouring a hail storm on two consecutive days. The use of a compound
Poisson model however, which allows us to model such two-day events
conveniently, does not seem to be appropriate here, because a single
observation is not sufficient for a reliable estimate of the corresponding
parameter. Concerning Poisson approximation, we refer to Barbour, Holst
and Janson [1].

" All numerical calculations for this paper were done with the software package Mathematica. Only
rounded numbers are given in the text, but for subsequent calculations machine precision of the
numbers is used. Values in Swiss francs are given up to 1/100, although not all given digits are
necessarily significant.
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The seasonal dependence mentioned above is also the reason why we
have chosen the exponent 15/17 in the correction formula (2.1). We think
that this exponent based on the available data is more appropriate than the
exponent 2/3 based on the length of the shorter first observation period given
in Table 2.1.

The Poisson distribution with parameter A > 0 is defined by

k

Poissony (k) = 2' - for k € Ny. 4.1)
Let the random variable N, describe the number of days within the
observation period ending in year y € {1987, ..., 1996} on which more than
1000 adjusted claims arose from damage by storm or hail. We assume that
these ten random variables are independent and that each of them has a
Poisson distribution with the same parameter A > 0. Since E[N,] = X, the
empirical mean

1 1996
const
AT000 :T(‘) _Z Ny (4.2)
y=1987

is an unbiased estimator for A, which is also sufficient [10, Section 1.9,
Example 16]. Table 1.1 contains m = 17 events within the n = 10
observation periods, hence
m 17
Ao — = =1.7. 4.3

1000 n 10 ( )
Figure 4.1 contains an illustration of the counting data and this empirical
mean. Since Var(N,) = A, the variance of the estimator X{je in (4.2) is A/n
with n = 10, hence the estimated standard deviation of X{jp is :

. )\“’“St Im/n  m 17
A /\Lonbt — 711000 = ~(041. 4.4
&(ATooo ) n n n 10 (44)

It remains to determine the probability that an event, which causes more
than 1000 adjusted claims, actually causes at least 6 000 adjusted claims and
therefore leads to the knock-out of the corresponding WINCAT coupon. For
this purpose we shall consider a sequence {Xj},.y of independent,
1dentlcally distributed random variables, where X describes the severity of
the k™ event. We always assume that the sequence { X} xen 1s independent of
Nigg7, ..., Niggs. The random variables Xj, ..., Xy,,, are used to describe
the severity of the events in 1987, the variables X Niss+1s <5 X Niggr+Nyogs LHOSE
in 1988 and so on. In the following subsections we consider three different
distributions for the random variables { Xy},
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A Number of events with more

5 than 1000 adjusted claims
- L ]

1.7
B e

Year

& & 1 1 i 1 I L 1 A
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

Lal

FIGURE 4.1: Obscrved number of events in the ten observation periods November 1st to October 31st

const.

causing more than 1000 adjusted claims. The empirical mean of Ay = 1.7 events per observation period
is also shown. The dashed lines indicate the estimated standard deviation 0.41 of the estimator Ay given
by (4.4). The estimated standard deviation for the distribution of the observations is
(o) "= V1T = 1.30.

4.1. Bernoulli distribution for the knock-out events

In this subsection we introduce a simple model to describe events with more
than 1000 adjusted claims, which actually cause at least 6000 adjusted
claims; meaning that they lead to a knock-out of the WINCAT coupon. For
this purpose we introduce Bernoulli random variables Xi, ..., X, for the

=17 events, where X; =1 means that event number k € {1, ..., m}
caused at least 6 000 adjusted claims. We set X; = 0 otherwise. We assume
that X|, ..., X,, are independent and identically distributed. Proceeding as in
Section 3, we can estimate the probability peogo = P(X; = 1) by the unbiased
empirical mean

. 1 &
Poooo = — Z Xk (4.5)
M

The data of Table 1.1 leads to peooo = 2/m =2/17 ~ 0.118. An analysis
similar to (3.2) and (3.3) gives the estimate

H(peooo) = \/ m__ peooo(l — Peono) _ \/2/17 (1-2/17) _ 0081 (46)

m—1 m 16

for the standard deviation of pgggo.
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If N is a random variable with the Poisson distribution given by (4.1)
describing the number of events, and if independently of everything else we
perform a Bernoulli experiment with success probability peooo € [0, 1] for
each of the N events, then an elementary exercise shows that the resulting
number of successful events has a Poisson distribution with parameter
peoooA. Therefore, under the above assumptions, the number of events per
observation period leading to at least 6 000 adjusted claims has a Poisson
distribution. An estimate for the corresponding Poisson parameter is

2 m 2
m n 10
_)\(:onst

The probability that no such event happens, is given by exp( €000 ) see
(4.1) with £ = 0. Hence, the estimated knock-out probability is

Poar = 1 —exp(—=Ag00) = 1 — exp(—0.2) ~ 0.181 . (4.8)

Afooo = Peoco - Xigoo = 0.2. @7

A recalculation of Table 3.2 with this value of Pc,., leads to a discounted
value of CHF 249.93 for the three WINCAT coupons.

To estimate the knock-out probability of the first WINCAT coupon, we
have to replace Aoy = 17/10 from (4.3) by Ao = 15/10, because only 15
events are recorded in Table 1.1 for the period from February 28th to
October 31st. This leads via (4.7) and (4.8) to

Poyr=1-— exp(—ﬁmoo . A?BEBt)

2 15 15 4.9
=1 —exp(——~—> =1 —exp(——700.2> ~ (0.162, (+9)

which is exactly the same result as the one obtained by applying the
correction formula (2.1) to the result of (4.8). ’

The variance of the estimator A is not easily computable from the
variances of peooo and /\ﬁg‘agt, because these two estimators are dependent
(knowing A{30q restricts the set of possible values for peono). According to our
model assumptions however, we have observations from n = 10 independent
Poisson random variables available, which describe the number of events in
each of the ten observation periods leading to at least 6 000 adjusted claims.
Similar to (4.2) and (4.4), we therefore see that the estimator (4.7) for {0 is
unbiased and that

(NG00 ) = A/ ALt /n = 1/0.2/10 ~ 0.141 .
For a conservative estimate of the knock-out probability we might use
Poar =1 —exp(=2g00 — 6(Megoe ) &~ 1 — exp(—0.341) ~ 0.289 .

A recalculation of Table 3.2 with this value of Pc,; leads to CHF 218.24 for
the discounted value of the thee WINCAT coupons.
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There is a methodical problem with the approach in this subsection so
far. We are mainly interested in an unbiased estimator for the knock-out
probability Pc,;. The unbiasedness of the estimator Agge for a model
specific parameter is not of primary concern. To elaborate on this point, let
Neooo» be the number of events with at least 6000 adjusted claims within
n = 10 observation periods. According to our model assumptions, Neooo
has a Poisson distribution with parameter npA, where A is the intensity for
the number of events per observation period with more than 1000 adjusted
claims, and p = peooo 1s the “success’ probability for the following Bernoulli
experiment indicating whether actually at least 6000 adjusted claims arise

from the event. The estimator (4.8) corresponds to
PCAT =1- exp(—-Néooo,,,/n) (410)

with n = 10. Calculating the expectation gives

00 k
]E[] — exp(—N6000’n/n):| =1- Zéfk/n(_n_p)\_)e—np)\

pr k!
0 —1/myk 4.1
= 1 — E%eﬁnp/\ ( 1)
k=0
=1-exp(—(1- e_l/")np)\),

which is different from 1 — exp(—pA), hence (4.10) is biased. Multiplying
Neooo,» in (4.10) by the correction factor log(;2;)" leads to the estimator

1 N0,
Pear=1- (1 _Z) (4.12)

with expectation 1 —exp(—pA) as a calculation similar to (4.11) shows.
Hence the estimator (4.12) is unbiased. Since n = 10 and Ngggo 10 = 2 by
Tabie 1.1, we obtain

9 2
P =1-— (ﬁ) =0.19. (4.13)
The corresponding recalculation of Table 3.2 gives CHF 247.37 for the
discounted value of the three WINCAT coupons.
For the variance of the estimator in (4.12) we obtain after a short
calculation similar to (4.11)

1 2Ne000.n
(1 - —) — 7PN = WA (ePMm 1),

n
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Using the estimate A{pst = 0.2 for pA from (4.7) and (9/10)? for e ?* from
(4.13), we obtain

9 2
6(Poar) = e PV e — 1 = e PA\/pA/n ~ (ﬁ) Vv0.02~0.115. (4.14)

A recalculation of Table 3.2 with the conservative knock-out probability
Pepr + 6(Pcar) = 0.305 gives CHF 213.73 for the discounted value of the
WINCAT coupons.

The estimated standard deviation in (4.14) is slightly smailer than the
one in the simple binomial model calculated via (3.3). This indicates that
in our case the composite Poisson model of this subsection leads only to a
slight improvement. Indeed, the estimator (4.13) for the knock-out
probability uses only the information that two events within the ten years
caused at least 6000 adjusted claims. Since the model of this subsection
allows these two events to happen in the same year, the estimated knock-
out probability in (4.13) is 1% lower than the one in the binomial model.
If the two events with at least 6000 adjusted claims had actually happened
in the same year and not in consecutive ones, the discrepancy in the
estimated knock-out probabilities would be 9%, because the estimate in
the binomial model of Section 3 would drop from 20% to 10%. In this
respect the composite Poisson model of this subsection is more robust
than the binomial one.

4.2. Pareto distribution for the knock-out events

The binomial model of Section 3 and the corresponding composite Poisson
model of Subsection 4.1 do not use the adjusted claim numbers recorded in
Table 1.1. For the benefit of a better estimate of pgggo, let us incorporate
these numbers into the model. The step function in Figure 4.2 is the
empirical distribution function of the adjusted claim numbers from Table 1.1.
A heavy-tailed distribution of common use is the Pareto distribution, its
distribution function is given by

1= (a/x)" for x > a,

(4.15)
0 for x < a,

Pareto, (x) = {

where a and b are strictly positive parameters. The Pareto distribution is
used in [3] to model the number of adjusted claims per event given that more
than 1000 adjusted claims arise from the event. We choose the threshold
a = 1000, because only such events are contained in Table 1.1. At first glance
it might look as if we make a conceptual mistake by fitting the distribution of
an apparently integer-valued random variable by a distribution having a
density. However, the involved numbers from the last column of Table 1.1
are sufficiently large for such an approximation and, in addition, they are
actually rounded numbers arising as the product of the number of claims
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and the vehicles insured index. Therefore, the use of a continuous
distribution function should not cause an intellectual problem (see Section
6 and the end of Section 13 however).

To fit the empirical distribution with a Pareto distribution as in Figure
4.2, we need an estimator for the exponent b. If a random variable X has a
Pareto distribution with parameters ¢ and b, then Y = log(X/a) satisfies

b
P(ng):IP’(Xgaey)zl—(%) =1—e? y >0,

which means that Y has an exponential distribution with expectation
E[Y] = 1/b. Hence, if the independent random variables X, ..., X, with a
Pareto distribution given by (4.15) describe the adjusted number of claims
for the m events, then the random variables Yy, ..., Y, with Y; = log(X/a)
are independent and exponentially distributed. Their empirical mean
(1/m) >, Yk is an unbiased estimator for 1/b. This suggests to estimate
b by the reciprocal value

m m

m = 7 . (4]6)

i1 Yk j—1log(Xi/a)

Another way to derive this estimator is to consider the likelihood function

mop
k

h
Lm(b):ll—[l?<yk> ., b>0, (4.17)

which is the product of the densities of the Pareto distribution (4.15)
evaluated at X, ..., X,,. By differentiating the logarithm of L,,, we find that
b given by (4.16) maximises L,,, hence (4.16) is also the maximum-likelihood
estimator for b.
Let us calculate the expectation of the estimator in (4.16). The sum
w1 Y has a gamma distribution with parameters m and b, meaning that

L - Yob m—1 __pt
< = _ > 0.
P<k§1 Yi < y) /0 F(m)(bt) e ’dt, y>0

This fact is easily proved by an induction on m, because the convolution of
the exponential density and the gamma density of parameter m leads to the
gamma density of parameter m + 1:

o f b
/ be,h(,,lv) ) (bs)mAIe—bde _ (bt)me—bt7 t > 07
0

'(m) mlI'(m)
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FIGURE 4.2: The step function is the empirical distribution of the number of (adjusted) claims per event, given
that more than 1000 claims arise from the event. Also shown is the fitted Pareto distribution (4.15) with
a = 1000 and b = b7, where b;7 ~ 1.37 is the maximum-likelihood estimate, corrected with the factor
(m — 1)/m for m = 17 to eliminate the bias. The estimated probability, that an event with at least | 000 claims
causes at most 6000 claims, is around 0.914. Two additional Pareto distributions (dashed curves) illustrate
the estimated standard deviation of by7. The lowed dashed curve corresponds to b7 — 6(b\7) == 1.02, the
upper one to b7 + 6(b17) ~ 1.73.

and the gamma function satisfies I'(m + 1) = mI'(m). Calculating the
expectation of (4.16) for m > 2 shows that

m “m b
E - m—/ :/ —_— bt mjleibtdl
[Zk:llog(Xk/a)] o ! F(Wl)( )
mb [ b 2 m
— ( m ! —
/ T (bt)" “e dt = ——b.

m—1 m—1) m—1

(4.18)

This means that the estimator in (4.16) underestimates the tail of the
Pareto distribution. To obtain an unbiased estimator for b, we therefore
have to use

1; i m—1
" Y log(Xe/a)
instead of (4.16). The data from the last column of Table 1.1 leads to

(4.19)

by~ 1.37. (4.20)

The Pareto distribution with this value is shown in Figure 4.2.
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A calculation similar to (4.18) leads to
bZ
m—2

Var(b,,) = (4.21)
for all m > 3. Therefore, &(Bm) = Bm/\/m — 2 is an unbiased estimator for
the standard deviation; using the numerical value from (4.20) gives

6(bi7) ~ 1.37/V/15 %~ 0.35 . (4.22)

The Pareto distributions with by, + 6(b17) are shown as dashed curves in
Figure 4.2,

Using b, for the parameter of the Pareto distribution (4.15), we obtain
the estimator

Peooo = 1 — Pareto,q, ;, (6000) = 6 Pn (4.23)

for the probability that an event, which causes more than 1000 adjusted
claims, actually causes at least 6000 adjusted claims. The numerical value
b17 = 1.37 from (4.20) leads to

Peooo = 6717 ~ 0.0857 . (4.24)

Considering the two Pareto distributions corresponding to b1y — 6(b17) ~
1.02 and by7 + 6(b17) = 1.73 (see Figure 4.2), we obtain via (4.23) the
asymmetric interval

(67173 67192] ~ [0.045, 0.162] (4.25)

around the estimate pPgooo =~ 0.0857 as an indication of the standard
deviation. This is an improvement compared to the interval [0.037, 0.199]
arising from the Bernoulli distribution via (4.6).

Following the approach in [3], we recalculate the estimate (4.7) for the
Poisson parameter Aot describing the number of knock-out events per
observation period using A{yGy = 1.7 from (4.3) and peooo ~ 0.0857 from
(4.24). We obtain AQos = peooo - Ao = 0.1457. As in (4.8), the estimated
knock-out probability is

P(jAT =1- CXp(—)\g((;SBL) =1- exp(—-f)(,ooo . )‘(i((;l(;?)t) ~ 0.1356 . (426)

A recalculation of Table 3.2 with this value of Pc,; leads to a discounted
value of CHF 263.29 for the three WINCAT coupons.

To get a rough estimate of the standard deviation of the knock-out
probability in (4.26), consider it as a function of the two parameters by,
and A = Afd:

Piar(biz, A) =1 —exp (—671;” A) .
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Using the approximating plane in (b, A} and thereby neglecting all higher
order terms in the Taylor expansion, we get

OP CAT
ob

8P(AT

o\ (B, A) (A=)

Piar(b17, A) & Par(b, ) + (b, \)(b17 —b) +

Since b7 and A are unbiased, we obtain for the variance

.. OPCar : OPcur 2 .
Var(PCAT(b”,/\)):z( 82 (b,/\)> Var(b17)+< a: (b,)\)) Var(})

aPCAT aPCAT
ob (5:2) oA

(B NE[(br7—b)(A=N)].

The two estimators b, and X = Xo0s are certainly not independent,
because the observed number m of events determines Ay via (4.3) and
the variance of b, via (4.21). However, b7 and X are independent and
therefore uncorrelated, meaning that E[(b;; — b)( A — A)]. Evaluating
the partial derivatives of the knock-out probability Po.y at the
estimated point (b7, A) instead of (b, \), and using the estimated standard
deviations from (4.22) and (4.4) instead of (Var(b|7)) and (Var( A Y2, we
obtain the approximation

. .. OPoxr; o\ s OPcuri o\ oy
a(PCAT(b”,)\))z\/( aZA (b”,)\)) 02(b17)+< a; (b17,/\)) 52(N)

~ 0.086. (4.27)

From (4.26) and (4.27) we obtain PCAT(bn, —f—a(P(AT(bn, ))zO.ZZl
as a conservative estimate of the knock-out probdblhty A recalculation of
Table 3.2 leads to a discounted value of CHF 238.25 for the three WINCAT
coupons. Due to these calculations, in [3] the rounded knock-out probability
of 0.25 is considered to be a conservative estimate, leading to a discounted
value of CHF 229.78. ' This value is supposed to include a risk premium for
the investor because the standard deviation of the knock-out probability is
added and the result rounded in a conservative way.

Before turning our attention to a generalised Pareto distribution for
the knock-out events, let us conclude this subsection with some supple-
mentary considerations concerning the biasedness of the estimators for
Peoos and Pc,r. First note that Aﬁ%gff from (4.2) and b7 from (4.19) are
unbiased estimators for the two model parameters A and b, but this does

' In [3] a discounted value of CHF 227.09 is actually derived, because the 15/17-correction (or the first
observation period is not taken into account.
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not imply that peogo and Pear, given by (4.23) and (4.26), respectively, are
unbiased. The arguments leading to the unbiased estimator (4.12) in the
case of the Bernoulli distribution for the knock-out probability in
Subsection 4.1 suggest that the estimator

D N) .7 6_1317 N X
PCAT _ 1 _ ( _péZOO) 1000, _ 1 _ (1 _ . ) 1000, (428)

is a small improvement, because this would be an unbiased estimator for
Pcar if b7 were non-random. Here the random variable Nigy, denotes the
number of events with more than 1000 adjusted claims within the »
observation periods. Recall that Nigy, has a Poisson distribution with
parameter nA. Substituting our estimate b7 = 1.37 from (4.20) and
Niggn = 17 for the n = 10 observation periods into (4.28) leads to
Py = 0.1361, which gives a discounted value of CHF 263.13 for the three
WINCAT coupons. This is a decrease of only CH¥ 0.16 compared to the value
arising from (4.26). o

If we consider Njgoo.10 = 17 as non-random and replace by7 ~ 1.37 from
(4.20) by b17 — &(bh17) = 1.02 in the estimator (4.28) to find a conservative
estimate, we get Pc.r =~ 0.242, which via Table 3.2 leads to CHF 232.14 for
the discounted value of the three WINCAT coupons. Note that this knock-
out probability is about 0.02 larger than the one obtained from (4.27) and
is already very close to the conservatively rounded value of 0.25 from [3].

An examination of the above model reveals that the conditional
distribution of the estimator b,, given m = Njgp, is only specified in
the case Nigoo, = 2. Furthermore, (4.21) shows that b,, does not have a
variance unless m = Njgo0,, > 3. Hence, the above approach of fitting the
empirical distribution of the adjusted claim numbers by a Pareto distribution
is applicable only in the case of appropriate data sets. Such an a priori
exclusion of certain data sets already introduces a bias which suggests that
unbiasedness for estimators like (4.26) or (4.28) is a problematical notion.
Maybe a notion of conditional unbiasedness would be more appropriate.
This means in our case that one would like to have estimators for Pc,r such
that the conditional expectation given peoooNigoo,, > 1, for example, is the
right one.

4.3. Generalised Pareto distribution for the knock-out events

In Subsection 4.2, we did not give a theoretical argument in favour of the
Pareto distribution in addition to the desire to pick a heavy-tailed
distribution. Let us use an idea from extreme value theory to overcome
this deficiency. It will turn out that we should use a generalised version of the
Pareto distribution defined in (4.15).
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Let Xj, ..., X; denote the adjusted number of claims arising from k&
events. We shall assume that X7, ..., X; are independent and distributed
according to a heavy-tailed distribution function. We are only interested
in those numbers which exceed a certain threshold a, which is 1000 in our
case. This means we are interested in the excess distribution function

F,(x)=P(X) —a<x| X1 >a), xeR.

Extreme value theory essentially says the following in our case [6, Section
3.4]: If the original distribution function of X\, ..., Xj is heavy-tailed, then
the excess distribution functions {F,},~0 can be better and better
approximated (with respect to the supremum norm) by generalised Pareto
distributions of the form

Ge, (x) =
(%) 0 for x < 0,

{ 1—(1+&x/m) ¢ forx >0,

as the threshold a tends to infinity. Here £ is a strictly positive ' shape
parameter and the scale parameter 7, > 0 varies with the threshold a. This
suggests that we should try to fit the empirical distribution function of the
observations exceeding the threshold a by a distribution function of the
form

Gagr(x) = (4.29)

1—(1+&x—a)/r)" Ve for x > a,

0 for x < a.
Note that in the heavy-tailed case & > 0, the (shifted) generalised Pareto
distribution (4.29) with 7 = a€ reduces to the Pareto distribution (4.15)
with b = 1/¢. Hence, G,¢, gives us the freedom of the additional scale
parameter 7.

Before fitting a generalised Pareto distribution function to the observa-
tions, an exploratory data analysis should be done, see [6, Chapter 6], to
check the assumption of a heavy-tailed distribution and to determine a
suitable threshold. However, since there are only m = 17 observations
available in Table 1.1, there seems to be no point in choosing a higher
threshold than ¢ = 1000 in our case, because the historical data set is quite
small already. The assumption of a heavy tail is (at least partially) supported
by Figure 4.4,

The log-likelihood function for the m = 17 observations originating from
a generalised Pareto distribution is

H{&T)=—mlogT— <1 —i—é) ilog(l +§w> , £€>0,7>0. (4.30)
k=1

! The cases £ = 0 and ¢ < 0 are discussed in Section 13, see (13.1) and (13.2).

https://doi.org/10.2143/AST.29.1.504608 Published online by Cambridge University Press


https://doi.org/10.2143/AST.29.1.504608

VALUE OF THE WINCAT COUPONS AND MODEL RISK 123

rProbability o=
0.978 - aaieiaiiiit iaiainiiinininliinbuisininied
0.924 froroermmrme e :

0.813

0.6
0.4

0.2

Number of adjusted claims
L%

1 1 1 1 L
2000 4000 6000 8000 10000 12000”

FIGURE 4.3: The empirical distribution of the number of adjusted claims per event (solid step function) and
the fitted generalised Pareto distribution (solid curve) with threshold ¢ = 1000, estimated exponent
1/€ =~ 1.38 and estimated scale parameter 7 ~ 660.7. The estimated probability that an event with at

least 1000 claims causes at most 6 000 claims, is approximately 0.924, and [0.813, 0.978] is an approximate

68%-confidence interval for this probability. The two dashed curves are generalised Pareto distributions
chosen such that they indicate the standard deviation of the estimated probability for at most 6 000 claims.

Inserting the data from the last column of Table 1.1, we can calculate the
maximum-likelihood estimator (£, 7) numerically, i.e., we can search for the
point (£, 7) which maximises /. As starting values for the numerical iteration
procedure, we can choose £ = 1/b,, and 7 = a/b,,, where b,, is the estimator
(4.19) for the Pareto distribution, or we can use a probability-weighted
moment approach (see [6, Section 6.3.2 and page 358]) to obtain a priori
estimates for £ and 7. We find

£~0.7243 and 7~ 660.7, (4.31)
hence
Peooo =1 — G0+ (6000) = 1 — 0.92425 = 0.07575. (4.32)

The corresponding fit of the empirical distribution with a generalised Pareto
oneis shownin Figures4.3 and 4.4. A calculation asin (4.28) gives the estimate

ﬁﬁOOO Nyooo.10
Poyr =1 — —— ~ 0.121
CAT ( 10 ) 3

which leads via a recalculation of Table 3.2 to a discounted value of
CHF 267.48.
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FIGURE 4.4: This is Figure 4.3 on log-log scale to magnify the important part. Instead of the distribution
functions, the corresponding tail probabilities are shown. Pareto distribution functions defined by (4.15)
would give straight lines in this log-log plot. The estimated generalised-Pareto fit x — 1 — G”W,U(x) is close
to a straight line because a&/7 = 1.096 is quite close to one. The estimates Proo = 0.022, pepoo =~ 0.0757 and
Péooo = 0.187 are shown. This figure supports the model assumption, that the adjusted claim numbers follow
a heavy-tailed distribution.

For comparison with the earlier results on the standard deviation of pgoog
in the case of the Bernoulli distribution for the knock-out events in (4.6) and
for the corresponding case of the Pareto distribution in (4.25), we would like
to give again an estimate for the standard deviation of pgggp. This does not
seem to be possible by analytical means, however. Therefore, we prefer to
construct an interval [pg, D] around the estimated vatue pgogo = 0.0757
from (4.32), which can serve as the region for accepting the null hypothesis
P = Peooe at a 68%-confidence level when using the log-likelihood ratio
statistic. We choose the 68% level, because this is the probability that a
normally distributed random variable with mean ;. and variance o2 > 0
takes its value in the interval [ — o, u + o]. As log-likelihood ratio statistic,
also called deviance, we use

D(&,7) =21(,7) =26, 7),  €£€>0,7>0. (4.33)
We want to determine the smallest interval [f’goom [7;000} such that
{(€.7) € (0,00 | D&,7) < e

, (4.34)
C {(57 7) € (0,00) ‘ 1 — Gio00,6,-(6000) € [IA’gooOalA’Zooo}} ;
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where X33, ~ 2.30 denotes the 32%-quantile of the chi-squared distribu-
tion with two degrees of freedom. In other words: We are looking for the
smallest probability pg,,, and the largest probability pg,,, which can arise
from generalised Pareto distributions with parameters (£, 7) close to (£,7) in
the sense that the deviance D(&, 7) does not exceed the 32%-quantile )(%()32
of the X7-d15tr1but10n This choice for the upper bound of the deviance

D(&,7) is based on the asymptotic normality of the maximum-likelihood
estimators, see for example [10, Section 8.8]. According to [12, Appendix A},
the approximation of the distribution of the deviance by the chi-squared
distribution is often quite accurate for small numbers of observations, even
when the normal approximation for the parameter estimates is unsatisfac-
tory. When compared to methods using the second derivatives of the log-
likelihood function at the estimated point (£,7), the log-likelihood ratio
statistic has the advantage of being able to give asymmetric confidence
intervals and thereby being less prejudiced. This is useful in our case, because
we don’t want to obtain negative estimates for pgy,, for example. It should
be kept in mind that (4.34) is in general a strict inclusion, hence [P0, Peooo)
can correspond to a higher confidence level than 68%. This is problematical
for larger numbers of parameters, because the confidence intervals get too
large. Bootstrap methods are an alternative in this case.

Note that the interval [Pgyq Pigee] 1 (4.34) does not depend on the
parametrisation arising from (§,7) — Gioooe,r in (4.29). We can use this
observation to change to an advantageous parametrisation which reduces
the amount of numerical calculations necessary to determine the above
acceptance interval. Since the equation p = 1 — Giggo,¢,-(6000) can be solved
for 7 yielding

we can use p itself as a parameter by changing the parametrisation from (4.29)
to (£,p) — Glovo g (¢ p). Rewriting the inclusion (4 34) with this parametrisation

yields  {(&,p) € (0,00) x (0,1) | D(€,7(£,p)) < X332} C (0,00) X [Peo00: a0 -
Numerical calculatlons lead to [p6000, Peooo] ~ [0.022, 0.187], the correspond-

ing exponents £ ~0.355772 and &t z 1.396 are the only ones with a
deviance less or equal to the quantile X20 3. The shifted generalised-Pareto
distribution functions

X Gy » () with 77 =7(E, pegge) ~ 620.3
and

x = Gge 7 (x)  with 7= T(§A+7l3§000) ~ 740.6
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are shown in Figures 4.3 and 4.4. If we consider the number Nygg 10 = 17
as non-random and use pgy,, ~ 0.187 instead of peooo, a calculation as in
(4.28) leads to the conservative estimate Pc.y = 0.274. A recalculation of
Table 3.2 gives a discounted value of CHF 222.75 for the three WINCAT
coupons.

5. TESTING THE CONSTANT-PARAMETER POISSON MODEL

5.1. Testing for over-dispersion

In Section 4 the number of events with at least 1000 adjusted claims per
observation period is modelled by ten independent random variables N, for
the years y e {1987, ..., 1996}, each one having the same Poisson
distribution (4.1) with parameter A > 0. Since the expectation and the
variance of the Poisson distribution are equal to the parameter A, the
empirical mean A3 of Nigsy, ..., Niggg was used in (4.2) as an unbiased
estimator for the expectation and the variance. However, if we don’t want to
rely on the assumption of a Poisson distribution when investigating the
variance (but keep the assumption that Njeg7, ..., Njgo are independent and
identically distributed), then we should estimate the variance % = Var(N,)
by the unbiased estimator

, 1 1% ) 1996
N=3 Z (Ny — fiy)”  with N =10 Z Ny.
y=1987 y=1987

The data of Table 1.1 leads to 6%, = 2.9, which yields the standard deviation

6(an) = 1/6%/10 = v29/10 = 0.54 (5.1)
for the empirical mean fiy of Niog7, ..., Niges. Note that 6,%, =2.9is quite a

bit larger than A{3os’ = 1.7 from (4.3). This observation raises the question
whether the data of Table 1.1 exhibits over-dispersion, meaning in our case
that the variance of Nygg7, ..., Niggg is actually larger than the mean. Such an
over-dispersion can arise, for example, from a Poisson parameter A which is
itself a random variable. In the present case, global weather conditions could
have determined different values for A in the ten observation periods. See,
e.g., [12] for a discussion of over-dispersion.

To investigate this question of over-dispersion, let us consider the
possibility that a large variance as above, namely 6% > 2.9, happened by
chance. This means that we want to calculate the conditional probability
P(6% > 2.9 | iy = 1.7) under the null hypothesis that Njog7, ..., Ny are
independent and distributed according to (4.1) with an unknown Poisson
parameter A > 0. The small number of observations and their small values
make it feasible to calculate the above conditional probability exactly.
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Under the null hypothesis, the sum Njgg7 + ... + Njgg¢ has a Poisson
distribution with parameter 10\ and we obtain

P(N, = n, for every y € {1987, ..., 1996} | fix = 1.7)

1996 yp, 17 y 1996
(] e U0 1R L (5:2)
! 17! 107 L1 50

y=1987 10" y=1987

for every tuple (1987, ..., Mj99) € N(I)O with n1987 + ... + 11996 = 17. Note that
the conditional probability in (5.2) does not depend on the unknown
parameter A > 0. For every tuple in (5.2), there are

10!
17, (#{y € {1987, ..., 1996} with n, = i})!

different rearrangements of the tuple all of these lead to the same
probability in (5.2). A small program, ' which considers all possible tuples
for (5.2) satisfying n,., <n, for all y € {1987, ..., 1995}, finds 267 such

tuples and yields

P(6% > 7) ~ 0.0889 . (5.3)
While this one-sided test does not show a significant deviation from the
Poisson distribution on the 5%-level, it is certainly more conservative to use
the standard deviation 6(fiy) =~ 0.54 from (5.1) instead of a(/\‘lgggt) ~ 0.41
from (4.4) to take the possibility of over-dispersion into account. Combining
this result with the fitted Pareto distribution for the knock-out events (see
Subsection 4.2), the analogue of (4.27) for the approximation of the standard
deviation of the knock-out probability gives &(Pcyr(bi7, )\)) ~ (0.0893.
Together with (4.26) we obtain Pc,.(b, )\)+U(PCAT(b A))=0.225 as a con-
servative estimate of the knock-out probability. A recalculation of Table 3.2
leads to a conservative discounted value of CHF 237.15 for the three WINCAT
coupons. This is only CHF 1.10 below the conservative value CHF 238.25
derived from (4.27).

It is possible to test the assumption of a Poisson distribution further by
choosing an explicit alternative like a negative binomial distribution and
considering the corresponding Neyman—Pearson test. In addition, we could
choose a preferred measure of discrepancy for distributions and apply model
selection criteria to come to a decision about the underlying distribution. In
this paper, however, we want to pursue a different route, namely a possible
deterministic time-inhomogeneity of the distribution of the numbers
Nigg7, ..., Niggg of events per observation period. Concerning model
selection in the case of independent and identically distributed random

' The Mathematica command NumberOfPartitions[17] from the standard add-on package
DiscreteMath ‘Combinatorica’ shows that there are 297 partitions of 17 altogether, hence the
running time of the program will be acceptable. Unnecessary loops in the program can be avoided
by using the condition (1996 — y)n, 1 > 17 — (nigs7 + ... +ny) for y € {1987, ..., 1995}
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variables, we therefore refer the reader to [11], in particular to [11, Example
4.4.3], where the Poisson and the negative binomial distribution are the
alternatives.

5.2. Testing for time-inhomogeneity

When looking at Figure 4.1 which shows the number of events in the ten
observation periods causing more than 1000 claims, we can ask whether
there is something special about the order of the ten observations; in
particular, whether the assumption of an identical distribution for the
random variables Njog7, ..., Nygge is justified.

Starting from (0, 0, 0, 1, 1, 2, 2, 2, 4, 5), namely the ten observations in
increasing order, we need 38 successive transpositions of adjacent entries of
the tuple to rearrange it in decreasing order. To rearrange the observed tuple
0,0,0,2,2,4,1, 5 2, 1) into decreasing order, we need 28 successive
transpositions of adjacent entries:

(0,0,0,2,2.4,1,5,2,1) — (2,2,4,1,5,2,1,0,0,0)
—(2,2,4,5,2,1,1,0,0,0) 2 transpositions
— (4,5,2,2,2,1,1,0,0,0) 4 transpositions
—(5,4,2,2,2,1,1,0,0,0)

21 transpositions

1 transposition

Since the number of 28 transpositions is well above the half of 38, we can use
this observation for a permutation test to find out whether the data shows a
tendency to be arranged in increasing order.

Under the assumption that the ten observations are given by ten
exchangeable, Nj-valued random variables Njog7, ..., Niggs €very permuta-
tion of the ten observations has the same probability. If Njog7, ..., Nigeg are
independent and identically distributed, then exchangeability follows. For
every one of the

10!

31312

different permutations of the ten observations, we can count the required
number of successive transpositions of adjacent entries to obtain the
decreasing order given by the tuple (5,4, 2, 2,2, 1, 1,0, 0, 0). This number is
always between zero and 38. Figure 5.1 shows the resulting distribution
function of this number.

Under the null hypothesis where all permutations of the ten observations
have the same probability, only for 2953 permutations out of 50400, about
5.86% of them, 28 or more transpositions of adjacent entries are needed to
reach the decreasingly ordered tuple. (If there were a substantially higher
number of permutations than 50400, then a suitable number of random
permutations would have to be generated in order to get an estimate for this
percentage.)

= 50 400 (5.5)
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FIGURE 5.1: Distribution function of the number of successive transpositions of adjacent entries necessary
to order a random permutation of the ten observations into decreasing order. For the observed data,
28 transpositions are necessary. At least 28 transpositions are necessary for about 5.86% of all permutations.

Note that for the permutation test of this subsection we do not assume
that the distribution of Njgg7, ..., Nyggs lies in a certain class; in particular,
the test is parameter-free. Furthermore, the test does not depend on the
actual numbers but merely on their relative order or ranks; an observation
like (0, 0, 0, 3, 3,4, 1, 7, 3, 1) would give the same test result. For such a
distribution-free test and just ten observations, 5.86% is a remarkable result.
However, as we can see from (5.4), it is mainly caused by the position of the
three zero observations.

6. FITTING A GENERALISED EXTREME VALUE DISTRIBUTION

For a knock-out of a WINCAT coupon, only the most severe event within
the corresponding observation period matters. We can use extreme value
theory to model this event directly. The theoretical background for this
approach is the Fisher-Tippett theorem (see for example [6, Theorem
3.2.3]), which identifies all possible limit distributions for properly scaled
maxima M(n) = max{Xj, ..., X,} of independent, identically distributed
random variables X1, ..., X, as n — oo. If the distributions of the properly
scaled maxima do converge, then the limiting distribution is either a
Fréchet, a Weibull or a Gumbel distribution. In the following we use the
Jenkinson—von Mises representation of these extreme value distributions,
see [6, Definition 3.4.1]. Let u € R denote the location parameter, = > 0
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FIGURE 6.1: The censored empirical distribution function of the number of adjusted claims of the most severe

event per year (solid step function) and the fitted generalised extreme value distribution (solid curve) with

estimated exponent 1/£ ~ 1.316, scale parameter 7 ~ 1008 and location parameter ;i = 1168. The estimated

probability, that no knock-out event occurs within one year, is approximately 0.876. The two dashed curves,

derived from 1000 bootstrap samples, indicate 68%-confidence intervals for the fitted generalised extreme
value distribution.

the scale parameter and £ € R the shape parameter. In the case £ > 0, which
corresponds to the Fréchet distribution, we define the distribution function
H/,,@T by ‘

exp(—(1 +&(x —p)/m) ), if 1+ E&(x — p)/7 >0,

H X) =
e r(X) otherwise.

¥

In the case £ < 0, which corresponds to the Weibull distribution, we define
similarly

exp(—(1+&x —p)/m) ), if 1+ &x—p)/r>0,

H X) =
pg;( ) otherwise.

With the above representation, the Gumbel distribution
Hyor(x) = exp(—exp(=(x —p)/7)),  x€R,

for the case £ = 0 is actually the limit of H, ¢, as £ — 0.
When fitting the generalised extreme value distribution H,.. with
i1, € € R and 7 > 0 to the observed maxima given in Table 1.1, we have to
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cope censored data. The most severe events of the years 1987-1989 are not
given because they caused less than 1000 adjusted claims (assuming that
there were damages caused by storm or hail at all). Next, when we want to
use the maximum-likelihood method to estimate the parameters p, £ and 7,
we encounter another problem: The density of H,., is unbounded for
E<—land x /" p—1/8

Both problems can be solved by discretizing the distribution H,¢ ;. The
censored data for the years 1987-1989 corresponds to three observations in
the interval (0, 1000]. The most severe events in the years 1990-1996 are
adjusted claim numbers which correspond to intervals of the form (n, n + 1]
with an integer n > 1000 (at least approximately, ignoring that the vehicles
insured index in Table 1.1 is not always exactly one). This suggests the
likelihood function

1996

L(Nvfﬂ') = (HM&T(IOOO) - Hu,f,r(o))BX H (H/tyé,T(My + 1) - Hu,&T(My))
y=1990

with 4, & € R and 7 > 0, where M99, ..., M1996 denote the yearly maxima
from Table 1.1. The numerical iteration procedure applied to the log-
likelihood function leads to the maximum-likelihood estimates (i ~ 1168,
£€=~0.760 and 7 =~ 1008; the corresponding fit is shown in Figure 6.1.
These values lead to an estimated knock-out probability of only
Pear =1 — H;67(6000) ~ 12.4%, because the fitted distribution is well
above the empirical one at 6000 in Figure 6.1. A recalculation of Table
3.2 gives a discounted value of CHF 266.62 for the three WINCAT coupons.
For further background on parameter estimation for the generalised
extreme value distribution, see [6, Section 6.3] and the references given
there.

It would be unreasonable to insist on estimates for p, £ and 7 giving a
generalised extreme value distribution with support in [0,00), because
H;:+(0) ~ 6.8 -107% is already a very good approximation of zero, the true
distribution is almost certainly not in the family {Hu,&r | 1, E€ER, 7> 0},
and a good fit at this end of the distribution, where the data is censored
anyway, is not our primary concern.

To estimate the 68.3%-confidence intervals in Figure 6.1, we use the
bootstrap method; see e.g. [5] for an introduction. We take 1000 bootstrap
samples (M log7s v M I‘g%), where for each component the values
M990, ..., M1996 have probability 1/10 of being chosen, and with probability
3/10 we take a censored observation. For each bootstrap sample we calculate
the corresponding maximum-likelihood estimate (4*, £, 7*). This gives 1000
bootstrap values for H- i +(x), we take the 159th and the 841st largest
values as boundaries for a 68.3 %-confidence interval for H;¢:(x). The
estimated 68.3 %-confidence interval for the above knock-out probability is
[0.046, 0.198]; the conservative estimate Pc,r = 0.198 leads to a discounted
value of CHF 245.17 for the three WINCAT coupons.
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The model of this section has a drawback in our case: While we explicitly
use the absence of recorded events in 1987-1989, we are partially discarding
10 of the 17 adjusted claim numbers given in Table 1.1; we only implicitly
use that they do not exceed the corresponding maxima.

7. COMPOSITE POISSON MODELS WITH A TIME-DEPENDENT PARAMETER

The constant-parameter composite Poisson models of Section 4 are static
ones. They give equal weight to every recorded event and, by construction,
do not allow to discover a trend in the data. Every redistribution of the
17 events in Table 1.1 to the ten observation periods would lead to the same
result for the coupon values (if we disregard the 15/17-correction in
Table 3.2). However, the tests for over-dispersion and time-inhomogeneity
from Subsections 5.1 and 5.2 suggest — although not significantly on the 5%-
level but very close — to consider the possibility of a time-dependent
distribution. Such a deterministic time-dependence can account for the
tendency of over-dispersion considered in Subsection 5.1, it doesn’t need to
be a randomly varying Poisson parameter as mentioned in Subsection 5.1. In
particular, an investor might want to take a possible trend into account
when estimating the discounted value of the WINCAT coupons. Even when a
constant-parameter model is preferred for pricing the WINCAT coupons, a
model capable to accommodate a possible trend can be useful for risk
management, because model risk can be an important risk factor. In Section
8, we shall test for the existence of a trend within most of these models we are
considering below. There are several reasons why there might be a trend, for
example:

o The variability of the weather could change, due to human influence
(increased CO;-part in the atmosphere) or solar activity (11-year cycle of
sun spots), for example.

o Winterthur might increase its market share in other regions like the
French or Italian speaking parts of Switzerland; this can happen in
particular when Winterthur merges with another insurance company
(like merging with Neuenburger Schweizerische Allgemeine Versiche-
rungsgesellschaft in 1997, for example). Due to the Swiss Alps, the
local climate is in general quite different in different regions of
Switzerland, so a change in Winterthur’s engagement in a particular
region can considerably increase or decrease the company’s exposure to
storm or hail damages.

o Severe damage caused by hail is a local event. If the density of motor
vehicles insured with Winterthur increases (due to more cars per
inhabitant, more inhabitants per area or a greater market share of
Winterthur Insurance within an area), then more insured motor vehicles
are likely to be damaged in every single event.

o The relation of the number of cars to the number of motor-cycles within
Winterthur’s insurance portfolio of motor vehicles might change.
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o The habits of the insured might change. They might buy a second or
third car for the family without building or renting an additional
garage to protect the car in case of bad weather. Or the insured are
better off financially and they can afford the deductible, hence they
take chances and don’t drive the car to a secure place in case of a
storm/hail forecast.

e Motor vehicles might get more or less susceptible of hail damage, because
the material changes (different kinds of steel, aluminium, different coats
of lacquer, for example) or the thickness of the automobile body sheet
changes (a thicker sheet can give more protection in case of an accident, a
thinner sheet reduces weight and thereby fuel consumption).

In any case — whatever the particular reason — it is a reasonable idea to
consider a model which is flexible enough to take a possible trend in the data
into account as long as such a possible trend can not be ruled out by
additional information concerning all the points mentioned above (and the
ones we have not thought of).

- When modelling low-frequency event risks, the scarcity of the available
statistical data is a typical problem. If one wants to follow a kind of
Bayesian approach, it is desirable to take additional information into
account when selecting a model (see [13, Section 6] for such a case study
of the correlation of wind storm losses of the Swedish insurance group
Lansférsdkringar with wind speed data provided by the Swedish Meteor-
ological and Hydrological Institute). For a fair and transparent pricing of
financial products, such information should either be public or should be
published together with the introduction of the financial product. For the
pricing of the WINCAT coupons, such additional information besides the
historical data of Table 1.1 is contained in the study [21] of Winterthur
Insurance. This study, as well as the publicly available report [14], for
example, provide information on the variability of the weather; they also
describe the development of hail storms, the different frequency of hail
storms in the various parts of Switzerland, and the properties of hailstones
(size, shape, speed) that cause damage to motor vehicles. The study [21]
also points out that damages to agriculture and motor vehicles are mainly
caused by different types of hail storms: damage to motor vehicles requires
a large momentum of the hailstones (large product of mass and speed),
while damage to agriculture can already be caused by small but numerous
hailstones. This indicates that the extensive statistical data collected from
insured damages to agriculture since 1881 is of limited use when estimating
a possible trend in the frequency or severity of damages to motor vehicles
caused by hail. Also in the report [14], the severity of hail storms is
measured by the number of communities reporting damages to agriculture.

In the following subsections we shall use, for every year
y € {1987, ..., 1996}, a random variable N, describing the number of
calendar days within the observation period ending in year y, during which
more than 1000 adjusted claims are caused by storm or hail. We assume that
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these random variables are independent and that every N, has a Poisson
distribution given by (4.1), but with a parameter A\(y) depending on the year
y € {1987, ..., 1996}. For the purpose of nicer graphics, we shall treat y as a
continuous variable within the figures. We shall discuss five different choices
for the dependence y — A(y).

7.1. Linear trend of the parameter

To start with the apparently simplest dependence, we assume that the
Poisson parameter for the number of events with more than 1000 adjusted
claims depends linearly on the year y, namely

Aos(y) = a+ B(y — 1987), (7.1)

where we subtract 1987 to get reasonable numbers for «« . When using (7.1),
we have to make sure that A, 3(y) > 0 for all years under consideration. This
will certainly be the case when o, > 0. The corresponding likelihood

function arising from the ten observations Njgg7, ..., Nigge 1S
1996
Lo, B) = H Poisson,, ,(,)(N,) (7.2)
y=1987

with the Poisson distribution given by (4.1) and the parameter A, () as in
(7.1). When trying to calculate the maximum-likelihood estimators for a and
0 numerically, it turns out that for the given data there is no simultaneous
solution of

%L(a,ﬁ) =0 and %L(a,ﬁ) =0 (7.3)
satisfying « > 0. As a pragmatic approach, let us set « = 0. This means we
consider the special case where the Poisson parameter A/j( ) depends on 3 in
the form A\s(y) = B(y — 1987). In this case the equation 9ﬁlog; L(0,3) =0 for
the maximum-likelihood estimator 3 can be solved explicitly, leading to

5 219:916988 Ny 1 R 17
b= v _ Ny = —~0378 . (7.4)
2;9316988 (v—1987) 45 y=219:88 #

The corresponding straight line is shown in Figure 7.1. Extrapolation to the
years 1997-1999 gives the estimated values for A4(y) contained in Figure 7.1
and Table 7.1. Using these extrapolated P01sson parameters and the
conditional probability pgoeo = 0.0757 from (4.32), which was estimated by a
generalised Pareto distribution, the knock-out probabilities can be
calculated as in (4.26) by the formula

Pear(v) = 1 = exp(—peoso - A5(»)) (7.5)
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FIGURE 7.1.: Observed number of events causing more than 1000 adjusted claims. A linear fit of the intensity
As(y) = B(y — 1987), using the maximum-likelihood method, leads to 5 = 17/45 ~ 0.378. The increasing
dashed lines indicate this estimated standard deviation of A;(y). This model has a problem with the years up
to 1987 and it certainly underestimates the standard deviation in the first years.

for y € {1997, 1998, 1999}. The results are given in the fourth column of
Table 7.1. Applying the 15/17-correction of (2.1) to Pcsr(1997) and inserting
the resulting coupon-dependent knock-out probabilities into Table 3.2, a
recalculation of this table leads to the discounted values of the three WINCAT
coupons. These values are given in the last column of Table 7.1. The sum of
these discounted values of the three WINCAT coupons is CHF 223.88.

To estimate the standard deviation of the Poisson parameter Aj(y), note
that Var(N,) = A\s(y) = B(y — 1987) for every one of the independent
random variables Njgg7, ..., Njggg in this model. By (7.4),

12995) 5 9%
Var(3) = Var(N,) = (y —1987) = — .
452 y=1988 452 y=1988 45

Using (7.4), this leads to &(A(y)) =6(B)(y —1987) with 6(F) =
V17/45 = 0.0916.

This model with a linear trend in the Poisson parameter y — Az(y) has a
severe problem with the year 1987, because the estimate A;(1987) =0 is
certainly wrong. The estimated standard deviations for the years 1987-1989,
as shown in Figure 7.1, are quite unrealistic, too. Model predictions for the
years before 1987 are impossible, because negative values for As(y) are
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unacceptable. In the following subsections we shall discuss models which do
not have these deficiencies.

TABLE 7.1.

CALCULATION OF THE DISCOUNTED VALUE OF THE THREE WINCAT COUPONS IN THE CASE OF A LINEAR
DEPENDENCE Ag(y) = B(y — 1987) OF THE POISSON PARAMETER. THE POISSON PARAMETERS A;(y) ARE THE
EXTRAPOLATED VALUES FROM FIGURE 7.1. THE CONDITIONAL PROBABILITY Pggq FOR A KNOCK-OUT EVENT, GIVEN
THAT AN EVENT OCCURS, IS TAKEN FROM (4.32). THE FORTH COLUMN CONTAINS Prxr(y) = 1 — exp(—Peono - A/;(y)).
THE DISCOUNTED COUPON VALUES ARE THEN CALCULATED ACCORDING TO TABLE 3.2 TAKING INTO ACCOUNT THE
15/17-CORRECTION FROM (2.1) FOR THE SHORTER FIRST OBSERVATION PERIOD.

Year y Ag (») Po0oo Pcar(y) Coupon value
1997 3.78 0.0757 24.9% CHF 80.64
1998 4.16 0.0757 27% CHF 73.72
1999 4.53 0.0757 29% CHF 69.52
Discounted value of the three WINCAT coupons: CHF 223.88

7.2. Log-linear trend of the parameter

To avoid the problem of negative Poisson parameters, let us consider the
prime example of a model where this cannot occur, namely a generalised
linear model with the log-linear dependence

Aag(y) = exp(a + B(y — 1991.5)), a, B,y €R. (7.6)

We subtract 1991.5 from y in order to get approximately orthogonal
parameters, meaning that the maximume-likelihood estimators for « and
have only a small correlation (for the notion of orthogonal parameters, see
e.g. [2, p. 182-185]). This parametrisation is also useful in Section 8, because
it introduces a symmetry which reduces the computational effort for the
permutation test. The log-likelihood function for this model arising from
(7.2) with A, g(y) as in (7.6) is given by

1996
[a,8)= Y (Ny(a + B(y — 1991.5)) — o tAV=19LS) g Ny!> . (17
y=1987

The maximum-likelihood estimates for « and 3, calculated numerically, are

G ~0.406 and [~0.176. (7.8)

The corresponding curve y — X, s(») is shown in Figure 7.2. It approx-
imates quite well within the time span 1987-1996. The extrapolated values
of the Poisson parameter A, ﬁ(y) for the years 1997-1999 can be read off
from Figure 7.2. A recalculation of Table 7.1 with these numbers leads to
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A Number of events with more ,
13 } than 1000 adjusted claims /

12
11
10

5.62

4.71
3.95

Year

>1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

FiGURE 7.2: Log-linear dependence X, (¥} = exp(a + B(y — 1991.5)) of the Poisson parameter. The
maximum-likelihood method leads to & = 0.406 and 5 = 0.176, the result is shown as a solid curve together
with the extrapolation. The dashed piecewise linear curves indicate for every year y the estimated standard

deviation of A ;(y) as derived from the log-likelihood ratio statistic. The uncertainty of the extrapolated
values is very large for the years 1997-1999.

the knock-out probabilities 25.9% (without 15/17-correction), 30% and
34.7% for the three WINCAT coupons and a discounted value of CHF 214.37.
For calculating the maximum-likelihood estimates (7.8), we needed
appropriate starting values for the numerical iteration procedure. We took
ap = log Ao = log 17/10 = 0.53 with A3 from (4.2). This value for « is
the correct choice in the constant-parameter case 8 = 0. For 3 we used the
followmg heuristic: The approximating tangent of y — A, g(») at the middle
= 1991.5 of the interval [1987,1996] is /\tangem( ) = €™ + Fe*(y — 1991.5)
w1th e™ = 17/10. The optimal S for the 1east squares fit of this tangent to

the data Nyeg7, ..., Nigge has to satisfy
1996

Z N o tangent‘( ) 2 -0
1987 i )T
)’

This linear equation in 3 is solved by

2;9916987N (y —1991.5) o4

~0.168 .
en 1P (v - 199157 561

Bo =

To obtain an estimate for the standard deviation of the estimated Poisson
parameter ), 5(y) for every year y € {1987, ..., 1999}, we use the log-
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likelihood ratio statistic, which we already applied in Subsection 4.3.
Similarly to (4.33), we define the log-likelihood ratio statistic or deviance by
D(a, ) =21(&,8) — 2l(a, B3) for «,3 € R. Corresponding to (4.34), for
every year y € {1987, ..., 1999}, we want to determine the smallest 68%-

confidence interval [;, \I] C (0, 00) such that

{(c,8) €R* | D(c, 8) < X330} C {0, 8) €R* | Ao s(5) € [A;, A ]} (7.9)

Solving equation (7.6) for « yields o3(3,A) = log A — 3(¥ — 1991.5). With
this reparametrisation, the inclusion (7.9) reduces to

{(8.%) € Rx (0,00) | D(e5(8, M), 8) < X501} CRx A7, AF]

The numerical results are shown in Figure 7.2 as dashed piecewise linear
curves. '

The results in Figure 7.2 for the years 1987 up to 1996 look quite
satisfactory, although the 68%-confidence intervals are larger than the
estimated standard deviation &(Xf%‘éﬁt) in the constant-parameter model, see
Figure 4.1. (However, since the inclusion (7.9) is strict in general, we may have
slightly overestimated the size of the confidence intervals here.) In Figure 7.2,
the upper 68%-confidence bounds Ajgg;, Afges and Ay, for the future
observation periods show a large uncertainty of the estimates. Of course,
the small size of the historical data set is partially responsible for this
uncertainty. The main contribution, however, comes from the log-linear
model itself, because it blows up the unavoidable uncertainty of the
maximum-likelihood estimators & and § in an exponential way. This log-
linear model is already a very pessimistic one with respect to the future
development of the event frequency. Due to the exponential amplification of
the estimator uncertainty, the log-linear model is certainly not the favourite
one for calculating a conservative estimate for the value of the WiNCAT
coupons.

7.3. Square-root linear trend of the parameter

To avoid the possibly negative Poisson parameters of the linear model from
Subsection 7.1 and the very pessimistic perspective of the future event
frequency in the log-linear model from Subsection 7.2, we want to consider
the usual root-linear model

Xas(y) = (@ + By — 1991.5))%, a,B,y €R.

Along the lines of the previous subsection, we obtain Figure 7.3. A
recalculation of Table 7.1 leads to the knock-out probabilities 27.8%
(without 15/17-correction), 31.4% and 35% for the WINCAT coupons and a
discounted value of CHF 210.86. A
Incidentally, note that the maximume-likelihood estimators & and 3 are
not uniquely defined in this square-root linear model: If (&, 5) maximises the
likelihood function, then so does (—&, —3). The starting values for « and 3
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determine which of these solutions is found by the numerical iteration
procedure.

In this square-root linear model, the estimated Poisson parameter drops
to zero between 1983 and 1984 and increases in the more distant past. This
model deficiency, however, is not of great importance for the extrapolation
into the future. A more important probiem is, as in the log-linear model of
Subsection 7.2, the built-in pessimistic perspective of a future quadratic
growth of the event frequency. In the next subsection we shall present a
model which is better tailored for the extrapolation of the estimated Poisson
parameter in our case.

A Number of events with more
101 than 1000 adjusted claims

5.68
4.97
4.31

===

. A i A " . . L i 1 1
1987 1988 1983 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

»
>

FIGURE 7.3: Root-linear dependence A, ;(y) = (a + B(y — 1991.5))? of the Poisson parameter, The
maximum-likelihood method leads to & ~ 1.23 and /3 =~ 0.154. These estimates give the solid curve and the
extrapolated values. The 68%-confidence bounds are indicated by the dashed piecewise linear curves.

7.4. Modified-linear trend of the parameter

To avoid the problems of negative Poisson parameters and too pessimistic
perspectives of the future event frequency, we want to consider the
dependence

Ao p(y) = log(l +exp(a+ By — 1991.5))), o, 8,y €R. (7.10)

We shall call it modified linear, because y — A, 5(y) is approximately linear
for a+B(y—1991.5)>0 and the graph bends smoothly for
a+ B(y —1991.5) ~ 0 to avoid negative values. The number one in (7.10)
arises from this restriction; another value, let us call it v, would lead to the
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asymptotic value log v when a + (¥ — 1991.5) < 0. Maximum-likelihood
estimators and 68 %-confidence intervals are calculated with the procedures
outlined in Subsections 7.1 and 7.2. The results are shown in Figure 7.4, the
maximum-likelihood estimates are & ~ 1.36 and § = 0.521. Figure 7.4 also
shows that the estimator uncertainty is amplified only in a linear way. A
recalculation of Table 7.1 with the extrapolated values of the Poisson
parameter from Figure 7.4 lead to the knock-out probabilities 27.4% (without
15/17-correction), 30.2% and 32.9% for the three WINCAT coupons and a
discounted value of CHF 214.44,

A Number of events with more -
8 I than 1000 adjusted claims .

5.27
4.75
4.24

Y 1 1 1 1 1 1 I i 1 3
1987 1988 1989 1990 1991 1092 1993 1994 1995 1996 1097 1998 1999

FIGURE 7.4: Observed number of events with more than 1000 adjusted claims together with a
modified-linear fit of the Poisson parameter for such events using A, ;(v) = log(1 + exp(o + S{y - 1991.5))).
The maximum-likelihood method leads to & = 1.36 and 3 = 0.521. The dashed piecewise linear curves
indicate the estimated 68%-confidence interval for A; 35(p) as derived from the log-likelihood ratio statistic.
The uncertainty of the estimates grows only linearly.

7.5. Smooth transition of the parameter

The models from the previous subsections can be criticised in the sense that
an extrapolation far into the future gives unreasonable results. Of course,
such a far-reaching extrapolation should not be done in the current case with
just ten observations, and the models of the previous subsections were not
chosen for this purpose. If future observations would confirm an increasing
trend of the strength estimated in the previous subsections, then Winterthur
Insurance would have a strong incentive to introduce preventive measures.
Notice that the WINCAT coupons provide a reinsurance on the financial
market for only half the amount necessary for the adjustment of damages

https://doi.org/10.2143/AST.29.1.504608 Published online by Cambridge University Press


https://doi.org/10.2143/AST.29.1.504608

VALUE OF THE WINCAT COUPONS AND MODEL RISK 141

arising from just one event per observation period with at least 6000
adjusted claims. Hence, let us also consider a model for a smooth transition
between two limiting intensities, where the speed and the direction of the
transition is measured by a parameter 3. While zero is certainly a natural
lower limit for the intensities, there is some ambiguity for the upper bound.
A plausible ad hoc choice based on the data is the largest observation. To
avoid an exponentially fast convergence to the limiting values, we do not
propose a scaled version of the normal or the logistic distribution function
but take a scaled version of the Cauchy distribution function instead:

1 1
Aap(y) = 5(5 + ;arctan(a + 8y — 1991.5))) , o, B,yeR. (7.11)

Maximume-likelihood estimators and 68%-confidence intervals are calcu-
lated with the procedures outlined in Subsections 7.1 and 7.2. The results are
shown in Figure 7.5, the values of the estimators are & ~ —0.466 and
3 =~ 0.442. A recalculation of Table 7.1 with the extrapolated values of the
Poisson parameter from Figure 7.5 lead to the knock-out probabilities
27.5% (without 15/17-correction), 28.2% and 28.7% for the three WINCAT
coupons and a discounted value of CHF 220.53.

A Number of events with more
5 +than 1000 adjusted claimsl ------------------- @ m mm e e

’

- : : Year

vid 1 1 t 1

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

3
>»

FIGURE 7.5: A smooth transition of the Poisson parameter according to (7.11). The possible range of the
parameter is determined by the smallest and largest observed value, respectively. The maximum-likelihood
method leads to & =~ —0.466 and 3 =~ 0.442. The dashed piecewise linear curves indicate the estimated 68 %-
confidence intervals for . ;(y) as derived from the log-likelihood ratio statistic. These intervals clearly show

the artificial restriction of the range of the Poisson parameter.
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The drawback of this model is illustrated by the 68%-confidence intervals
given in Figure 7.5. For the years 1990-1994, they are considerably larger
than the ones in Figure 7.4, and starting from 1991, one clearly sees the
influence of the artificial model assumption about the upper bound.

8. TESTING FOR A POSITIVE TREND IN THE POISSON PARAMETER

For the various models with a time-dependent Poisson parameter discussed
in Section 7, it is of interest to check whether the additional parameter (3 for
modelling a trend is significantly different from zero. For this purpose
we shall assume that there is no trend in the data, and try to determine the
probability that the estimated trend parameter 3 takes values which are at
least as large as the observed one.

The model with a linear trend in the Poisson parameter given by (7.1) has
a serious deficiency with respect to the positivity of the Poisson parameter as
pointed out in Subsection 7.1. However, we can test whether the
observations Njgg7, ..., Nigos exhibit a linear dependence on the year of
the observation period. For this test, as for the one in Subsection 5.2, we
assume that Njeg7, ..., Nigos are exchangeable so that every permutation of
the ten observations has the same probability. We do not assume that
Niog7, ..., Niggg are independent or that they have a Poisson distribution.
For every permutaticn w of the ten years 1987, ..., 1996, which gives a
different sequence of observations, we calculate the value of

1996

p(r) = > Nypy(y —1991.5). (8.1)
y=1987

This test statistic has a symmetric distribution under the above null
hypothesis and attains all 88 possible values of the form k+%, keZ,
between —43.5 and 43.5. When the permutation 7 is the identity id, then
Nr(1987), s Nr(1996) are given by the observed values (0,0, 0, 2, 2, 4, 1, 5, 2,
1) and we obtain ¢(id) = 23.5. Working through all 50400 different
permutations from (5.5), it turns out that for 3726 of them, about 7.39%,
the value of (n) is larger or equal to o(id) = 23.5. (Due to symmetry, it
suffices to consider only one half of these permutations in our case. If there
were a substantially higher number of permutations, then a suitable number
of random permutations would have to be generated.)

For the remaining tests of this section we assume that Nygg7, ..., Njggg are
independent and identically distributed according to a Poisson distribution,
meaning that the trend models are correct with § = 0. This no-trend
assumption implies in particular that every permutation 7 of Nigg7, ..., Niggs
has the same probability. The maximum-likelihood estimator 3, corre-
sponding t0 Ni(1087), -.., Nx(1996) via one of the trend models is then a
function of the random permutation 7, and we can determine the percentage
of all permutations which lead to a value of (3, larger or equal to the
observed value for 3.
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The model with the log-linear trend (7.6) of the Poisson parameter is not
more sensitive to permutations than the test statistic (8.1): For a
permutation w of the years 1987-1996 we can define the log-likelihood
function /; similarly to (7.7) by

1996

lw(()‘yﬁ) = Z (Nﬂ'(y)(a + ,B(y - 19915)) - ea+ﬁ(y—199].5) — lOgNﬂ.(y)')
y=1987

for a,feR. Using (8.1) and the associativity of summation to rewrite
I.(«,[3), we see that

1996 By
o B) = Bp(m) + 3 7oy, (@, — 071919 _1og 1),

which means that all the dependence of the log-likelihood function /; on the
permutation 7 is contained in the test statistic ¢(7) and no new information
can be obtained by calculating the maximum-likelihood estimator 3,
corresponding to /..

A similar permutation test for the model from Subsection 7.3 with a
square-root linear trend of the Poisson parameter is meaningless. As
already noted in Subsection 7.3, if (&,) maximises the likelihood
function, then so does (—&,—g). Hence we should only consider the
absolute value of the estimator 3. Furthermore, a large value such as
| 8| A~ 0.2486 for the maximum-likelihood estimator arises from an increas-
ing tuple like (0, 0, 0, 1, 1, 2, 2, 2, 4, 5) and also from a_decreasing tuple
like (5,4, 2,2,2,1, 1, 0 O 0) An even larger value of |ﬁ| ~ 0.4535 arises
from a ‘““U-shaped” tuple like (5,2, 1,1, 0,0, 0, 2, 2, 4). A corresponding
“N-shaped” tuple like (0, 1, 2, 2, 5, 4, 2, 1, 0, 0) gives |ﬂ| ~ 0.047 however.
Therefore, large values of |3| are not equivalent to a large “rate of
change” in the tuple. Nonetheless, for the curious reader: About 24.7%
of all permutations result in |ﬂ| > 0.154.

We can use the permutation test to challenge the no-trend hypothesis
within the modified-linear trend model. For every permutation w of the
50400 ones, which lead to different sequences of the ten observations, we
determine the estimator [, which maximises the corresponding log-
likelihood function

1996

177(()[,,6) = Z log(POisson,\”‘_‘,(y)(Nﬂ(y))) (82)
y=1987

with A, 4(y) given by (7.10). The corresponding distribution function for £,
viewed as a random variable depending on 7, is given in Figure 8.1. Note
that 3 is quite sensitive to the permutations, because — except close to zero —
the distribution function in Figure 8.1 looks “smooth” compared to the one
in Figure 5.1 or the one with 88 jumps which would arise from the test
statistic (8.1). The probability under the no-trend assumption for § > 0.52 is
about 1.66%, which is quite significant.
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FIGURE 8.1: Distribution function of the estimated trend parameter 3 in the modified-linear model under
the assumption that there is no trend, i.., all permutations of the ten observations have the same probability.
Under this assumption the probability for 3 > 0.52 is about 1.66%.

For the permutation test in the model with a smooth transition of the
Poisson parameter, we also determine, for every permutation , the estimator
Bx, which maximises the log-likelihood function (8.2) with A, g(y) given by
(7.11). The corresponding distribution function looks similar to the one in
Figure 8.1 in the sense that it is ““smooth” and therefore sensitive to the
permutations. There are 1504 permutations of the 50400 different ones,
about 2.98% of them, which lead to a maximum-likelihood estimate
(3 > 0.442. Again, the result is quite significant for the small data set.

Note that the various trend models “measure trend” by the parameter 3
in different ways, therefore it is no surprise that the test results depend on the
used model. More explicitly, every model defines a map 7 — (3, on the set of
all permutations of the ten observations, and if 3, < gr for two
permutations 7 and 7’ in one trend model, then the corresponding inequality
does not need to hold for the maximume-likelihood estimators in another
trend model.

9. COMPOSITE POISSON MODEL WITH A CHANGE-POINT

The models in Section 7 allowed to take a continuously changing Poisson
parameter into account by choosing a non-vanishing trend parameter 3. By
extrapolating far enough into the future, these models — with the exception
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of the smooth-transition model of Subsection 7.5 — lead to extrapolated
values of the Poisson parameters which are larger than any value observed
so far. Since the Poisson parameter is equal to the mean of the
corresponding Poisson distribution, such large values might not be desirable
or might be too pessimistic. While it is desirable that more recent
observations have a greater influence than older observations for estimating
the value of the WINCAT coupons, new observations can have a considerable
impact on these estimated values when one of the models of Section 7 is
chosen; see Section 12 for a more detailed discussion. If one is willing to
accept a discontinuously changing Poisson parameter, then a compromise
between the constant parameter models of Section 4 and the trend models of
Section 7 can be considered, namely a model with a change-point in the
Poisson parameter.

Let y. € {1988, ..., 1996} be the year of the parameter change. The
corresponding likelihood function arising from the ten observations

Nigg7, ..., Nigos 18
ye—1 1996
L(y.) = H Poisson,, () (V) x H Poisson,, (,,)(N,) , 9.1)
y=1987 =
where
e s Ly
M(Ye) = =505 N, and MN(y))=—77—> N,
ye— 1987 2z 1997 — y, &~

are the (maximume-likelihood) Poisson parameter estimators arising from the
observations before and after the change-point. For y. = 1987, which means
that there is no change-point in the observed data, we omit the first product
in (9.1). For the log-likelihood function /(y.) = log L(y.), we get

Ye iy.)

1988 | —16.23 1994 | —16.94

1989 | —14.23 1995 | —17.99
1990 | ~11.96 1996 | ~17.84
and /(1987) = —18.02, if there is no change-point. Clearly, the choice

¥e = 1990 by far maximises the log-likelihood, leading to A¢(1990) = 0 and
A1(1990) = 17/7 =~ 2.43, see Figure 9.1. Of course, the estimate \o(1990) = 0
cannot be the true value and this might be considered a model deficiency.
However, only the Poisson parameter A;(1990) for the observations after the
jump is of interest for the extrapolation and the estimate of the knock-out
probability Pc,r. This also means that all observations before the change-
point are ignored for the extrapolation. Using pgooo = 0.0757 from (4.32), we
obtain similarly to (4.7) and (4.8) that

PCAT =1- eXp(—i)éooo)\](1990>) = 0.1680 .
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A Number of events with more

57 than 1000 adjusted claims
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FIGURE 9.1: A model with a change-point in the Poisson parameter. A change from A\ = 0 to
Ay = 17/7 = 2.43 between 1989 and 1990 maximises the likelihood. The dashed lines indicate the estimated
standard deviations of the Poisson parameters disregarding the uncertainty arising from the estimate of the
location of the change-point.

A recalculation of Table 3.2 gives a discounted value of CHF 253.80 for the
WINCAT coupons. Using an analogue of (4.28) leads to Pcur = 0.1689 and
CHF 253.56. :

For the standard deviation of A;(1990) indicated by the dashed lines i
Figure 9.1, we take an estimate similar to (4.4), namely

6(A\1(1990)) = /A (1990)/7 = V17/7 ~ 0.59.

A similar estimate for Ao(1990) does not lead to a meaningful result, because
Ao(1990) = 0. The log-likelihood ratio statistic does not seem to be suitable
here, because the application of asymptotic results to just three observations
is questionable. Looking for the largest Poisson parameter A such that the
likelihood for the joint occurrence of the three independent events Nygg7; = 0,
Nigggs =0 and Nyggg =0 is 68%, we get exp(—-3&()\o(l990))) = 0.68,
which gives 6(2o(1990)) ~ 0.13. However, the smallest possible observation
for Aop(1990) besides zero is 1/3, hence we should take at least
(Ao(1990)) = 1/3. This is also the smallest value besides zero, which we
can get by the formula /Xo(1990)/3 similarly to (4.4).

Note that the two estimates d(A(1990)) and &(1;(1990)) do not
incorporate any uncertainty about the location of the change-point. While

https://doi.org/10.2143/AST.29.1.504608 Published online by Cambridge University Press


https://doi.org/10.2143/AST.29.1.504608

VALUE OF THE WINCAT COUPONS AND MODEL RISK 147

asymptotic results for confidence regions of change-point estimates based on
likelihood ratio tests are available, see e.g. [9] and [22], it is problematical to
apply these to the present short sequence with a priori unknown Ay and A,
in particular since the log-likelihood function gives such a clear-cut answer
for the location of the change-point here.

10. PEAKS-OVER-THRESHOLD METHOD

The composite Poisson models discussed in Sections 4, 5 and 7-9 make an a
priori distinction between the event frequency and the event severity, which
is the adjusted number of claims arising from these events. This distinction
allows to choose from a selection of constant-parameter and time-dependent
parameter models for the event frequency and, independently, to choose a
distribution for the event severity: the Bernoulli distribution,-the Pareto
distribution and the generalised Pareto distribution have been discussed in
Section 4.

- So far we fitted several Poisson models with a time-dependent
parameter to the observed event frequencies. It is an obvious idea to
consider also a time-dependent distribution for the event severity; most of
the arguments given at the beginning of Section 7 can be used to support
this idea. However, there is also the aim of parameter parsimony and the
danger of overfitting. With the present small historical data set, this
danger probably becomes real when we try to estimate trend parameters
for the event frequency and the event severity separately. If we tear down
the wall between event frequency and severity, then there is a three-
parameter model available, which incorporates the for theoretical reasons
desirable generalised Pareto distribution for the event severity and the
Poisson distribution for the event frequency. The Poisson distribution is
also backed up by extreme value theory, because the point process of
exceedances over thresholds, in an appropriate set-up, converges weakly
to a time-homogeneous Poisson point process as the threshold increases
and the time is rescaled accordingly to keep the expected number of
exceedances constant, see [6, Theorem 5.3.2]. By allowing a trend in one
of the three parameters, which requires a fourth parameter, we can model
a possible time-inhomogeneity in both distributions. Note that such a
joint model for event frequency and severity might better account for the
two events in 1994 which just pierced the threshold of 1000 adjusted
claims.

The original continuous-time model is called peaks-over-threshold model
and we shall give a brief outline adapted to the present problem below. For a
more detailed discussion, see [6, Chapter 6.5] for example. This peaks-over-
threshold model is also used in a case study of wind storm losses
encountered by a Swedish insurance group, see H. Rootzén and N. Tajvidi
[13]; their fifth section is devoted to trend detection.
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Consider a Poisson point process on the set {1987, ..., 1996} x R with an
intensity measure A, ¢, which is uniquely determined by

— o —1/8

M} x (x00)) = (14+65=F) 7, xeR, ye {1987, ., 1996}; (10.1)
_+_

where 7 and ¢ are strictly positive model parameters and p € R denotes a

location parameter. If £(x — u) < —7, then the right-hand side of (10.1) has

to be interpreted as infinity. The value

Aner ({2}  (a,00)) = (1 +£a_“)_l/f (10.2)

T /4

is the Poisson parameter for the number of events exceeding the threshold a
in the observation period ending in year y. All events for which the number
of adjusted claims exceeds the threshold of @ = 1000 are recorded in Table
i.1. Of course, the model parameters should be chosen such that the Poisson
parameter in (10.2) is finite, which is equivalent to {(a — u) > —7. For x > a,
the ratio of the Poisson parameters from (10.1) and (10.2) is

Aper ({0} X (x,00)) _ x=a\ " mm el
Aﬂ,g,f({y}x(a,oo))—(l-ki Ta) with 7, =7+&(@—p). (10.3)

This ratio is the conditional probability for a Poisson point to lie in the
subset {y} x (x,00) given that it lies in {y} x (a,00). It is also the expected
number of points in {y} x (x,00) divided by the expected number of points
in {y} x (a,00). As the right-hand side of (10.3) shows, the conditional
probability is the tail 1— G,¢.(x) of a shifted generalised Pareto
distribution of the form (4.29).

The above calculation shows that the points-over-threshold model is
structurally stable with respect to an increase in the threshold a; according to
(10.2) and (10.3) we just get different Poisson and scale parameters. This
stability can be used to determine an appropriate threshold by exploratory
data analysis; due to our small historical data set, we do not attempt such an
analysis here. Note that we have chosen the set {1987, ..., 1996} instead of a
ten-year interval because we want to refrain from modelling a seasonal
dependence of the storm and hail damages.

As an abbreviation for the Poisson parameter from (10.2), let ¥ (x; u, &, 7)
denote the right-hand side of (10.1) for all £,7 > 0 and u, x € R satisfying
&(x —p) > —1, and let v(x; u, &, 7) = —(0/9x) V{(x; i, &, 7). The function

v(x;p,g,r) _ 1 X —da Tl
400) 3 X e T

is the (—0/0x)-derivative of (10.3) and therefore the density of the shifted
generalised Pareto distribution G,¢ -, on [a, c0), see (4.29).
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To take a time-inhomogeneity into account, we first consider a linear
dependence of the location parameter given by

baps(y) =a+ By —1991.5), o, B,y €R. (10.4)

The location parameter has to satisfy §(a — ,uaﬂ(y)) > —7 for all years y
under consideration. In this way we get a family of Poisson parameters and
shifted generalised Pareto distributions via (10.2) and (10.3), respectively.
Motivated by the simulation study in [13, Section 3], we use only the
maximum-likelihood method for estimating the parameters and do neither
consider the method of moments nor probability weighted moments. The
maximum-likelihood method is also more flexible with respect to model
extensions.
The likelihood function is given by

1996 N,
. 2V ( Xiyi ttas(0),6,7)

L{a,B,6,7)= Poissony ... .. (Ny) : : (10.5)
y=1;9[87 (e 0)6) g ];1[ V(a;,uaﬂ(y),f”r)

with the Poisson distribution as in (4.1), where Nigg7, ..., Njog¢ are the

numbers of observed events exceeding the threshold a = 1000 in the years
1987, ..., 1996 and X ,, ..., Xy, , are the numbers of adjusted claims of the
events in the year y given by Table 1.1. Using the abbreviation
c=- 2;1916987 log N,!, we can write the log-likelihood function correspond-
ing to (10.5) as

1996 17

[(047,875;7-) =C— Z V(a;ll’uﬂ(y)7£a7_) +ZlOgV(XiSNa,,B(J’i)a§77') ’ (106)
y=1987 i=1

where Xp, ..., Xj7 are the numbers of adjusted claims of the 17 events

recorded in Table 1.1 and y, ..., y17 are the corresponding years these

events happened. Incidentally, note that the log-likelihood function in (10.6)
would be flexible enough to accommodate a changing threshold for
recording historical events; the constant ¢ = 1000 simply has to be replaced
by a function y + a, for this purpose.

If we take 0 =0, then we actually have a three-parameter model
consisting of the constant-parameter Poisson model for the event frequencies
and the generalised Pareto distribution for the event severity. This model
coincides with the one discussed in Subsection 4.3. The maximum-likelihood
method using (10.6) leads to the estimates fig = &g ~ 1427.5, & ~ 0.7243
and 7y &~ 970.3, which give via (10.2) and (10.3) the Poisson parameter
Ny b7 ({¥} x (1000, 00)) ~ 1.7 for every year y and the scale parameter
70 ~= 660.7, where the index zero refers to 8 = 0. These estimated values
coincide with the ones in (4.3) and (4.31), which is reassuring. On the other
hand, we can use this fact to determine the maximum-likelihood estimates
arising from (10.6) with 3 = 0 in an easier way. The scale parameter 7,0 and
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the shape parameter & for the generalised Pareto distribution can be
calculated as in Subsection 4.3; the Poisson parameter A{30s" is given by (4.2).
Solving (10.2) and (10.3) leads to

To = Tu0 (ngggt)&) and fio =a+ (7o — fa,o)/éco .

In this way we can determine starting values for the numerical iteration
procedure in the time-inhomogeneous cases discussed below.

Maximising the log-likelihood function (10.6) without the restriction
B =0, we obtain the estimates &~ 1376.9, 5~ 93.99, £~ 0.6534 and
7= 1021.3. The positive value of 3 leads to an increasing value of
the location parameter, which leads to an increasing Poisson parameter
via (10.2) and to a decreasing scale parameter via (10.3). This means
that the event frequency increases, but the event severity decreases.
The expected number of events above the thresholds 1000 and 6000
for the years under consideration, calculated according to (10.2), are
given in the second and third column of Table 10.1. A recalculation of
Table 7.1 using the estimated parameters from the last three lines of
Table 10.1 leads to a discounted value of CHF 264.00 for the three
WINCAT coupons.

Note that 3 is so large that the restriction £(a — s (V) > —7 18
violated for the years v > 2005, which shows again that extrapolation has
to be done with great care. We should test whether the trend parameter g3
is significantly different from zero. Under the null hypothesis 3 = 0, every
redistribution of the 17 observations to the ten observation periods has
the same probability; the log-likelihood function in (10.6) would not
depend on this redistribution. In principle, we could use this observation
for a permutation test. In practice, it is numerically demanding to
determine the four maximum-likelihood estimators for several thousand
random redistributions (there are 10'7 redistributions in total, hence it is
impossible to use all of them). We therefore resort to asymptotic results
and use the log-likelihood ratio statistic. Assuming the model with § =0
and the above estimates &, 50 and 7y to be the correct one, the deviance
2l(&, B8, €, 7) — 21( &, 0, 50,7-0) has approximately a x2-distribution with
one degree of freedom [15, Section 5.2.3]. With the above maximum-
likelihood estimates &~ 1376.9, 8~93.99, £~0.6534 and 7~ 1021.3, we
obtain 2/(a&, 3,€,7) — 2l(a0,0 £0,70) ~3.166, which corresponds to the
7.52%-quantil of the x?-distribution.

Another possibility to allow for a trend in the model is to assume that the
location parameter p and the strictly positive scale parameter 7 depend in
the same way log-linearly on the year, meaning that

fas(y) = exp(a + B(y — 1991.5)),
Tﬂj(y) = exp(y + B(y — 1991.5)), o, 8,7y €R. (10.7)

https://doi.org/10.2143/AST.29.1.504608 Published online by Cambridge University Press


https://doi.org/10.2143/AST.29.1.504608

VALUE OF THE WINCAT COUPONS AND MODEL RISK 151

TABLE 10.1.

RESULTS FOR THE PEAKS-OVER-THRESHOLD MODEL WITH A LINEAR DEPENDENCE 1, 3(y) = a + 8(y — 1991.5) oF
THE LOCATION PARAMETER OR A LOG-LINEAR DEPENDENCE (10.7) OF THE SCALE AND THE LOCATION PARAMETERS.
FOR BOTH MODELS THE FITTED POISSON PARAMETERS  Ajgg0 AND Agogg FOR THE NUMBER OF EVENTS WITH MORE
THAN 1000 AND 6000 CLAIMS, RESPECTIVELY, ARE LISTED. IN ADDITION, THE CONDITIONAL PROBABILITY
Poooo = Asoon/ Aoy THAT AN EVENT CAUSES MORE THAN 6000 CLAIMS AND THE ESTIMATED KNOCK-OUT
PROBABILITY Pr,; ARE GIVEN FOR THE YEARS 1987-1999.

Linear dependence of the location parameter Log-linear dep'emlence of the scale
and location parameters

Year Aooo Aoono Poono Pcyr A1ooo Asooo Poooo Peur

1987 0.957 0.110 0.115 10.4% 0.616 0.036 0.058 3.5%
1988 1.049 0.113 0.107 10.6% 0.756 0.045 0.059 4.4%
1989 1.157 0.115 0.099 10.9% 0.925 0.056 0.061 5.5%
1990 1.285 0.118 0.092 11.1% 1.128 0.070 0.062 6.8%
1991 1.437 0.120 0.084 11.3% 1.369 0.088 0.064- 8.4%
1992 1.623 0.123 0.076 11.6% 1.655 0.110 0.066 10.4%
1993 1.851 0.126 0.068 11.9% 1.950 0.137 0.069 12.8%
1994 2.139 0.129 0.060 12.1% 2.381 0.171 0.071 15.7%
1995 2.508 0.132 0.053 12.4% 2.831 0.213 0.075 19.2%
1996 2.995 0.136 0.045 12.7% 3.347 0.265 0.079 23.3%
1997 3.663 0.139 0.038 13.0% 3.930 0.328 0.084 28.0%
1998 4.618 0.143 0.031 13.3% 4.583 0.406 0.089 33.4%
1999 6.067 0.147 0.024 13.6% 5.307 0.501 0.094 39.4%

Such a model extension is appropriate when the event severity is measured in
currency units subject to a yearly inflation rate of e® — 1, for example. The
parameters have to satisfy £(a — pag(y)) > —75,(y) for all years y under
consideration. Defining the corresponding log-likelihood function similarly

to (10.6) by

5 1996 17

[a.Bv8)=c— Y V(@pap():E7,1)) + D _logv(Xiipta,s(0),6:73,(0))
y=1987 i=1

(10.8)

and maximising it numerically, we obtain the estimates a¢~7.199, 3~0.1379,
4~ 6.835 and £~ 0.5972. Since £exp(a)~ 799.1 < 929.8 =~ exp(¥), the
above inequality §(a — pa3(v)) > —734(y) is satisfied for all y € R. The
results are given in Table 10.1, the discounted value of the three WINCAT
coupons is CHF 204.34. With the values estimated above, the Poisson
parameters Ajpoo and Agooo for the frequency of events with more than 1000
or 6000 claims, respectively, increase with time. This is illustrated by the
sixth and seventh column of Table 10.1. Note that the two extensions of the
peaks-over-threshold model come to opposite conclusions concerning the
trend of the event severity. The fourth column of Table 10.1 exhibits a
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decreasing trend of the probability pepog, that an event causes at least
6000 claims, while the eighth column shows an increasing trend of pgooo-
This partial cancellation or superposition of trends leads to a difference of
CHF 59.66 between the two estimated values of the three WINCAT coupons.

To test the null hypotheses 3 =10 in the model extension specified
by (10.7), we assume that this model with 3=0 and the above
estimates fip ~ 1427.5, 50 ~ 0.7243 and 7y &~ 970.3 is the correct one (which
via (10.7) gives & =logfig ~ 7.264 and 7y = log7y ~ 6.88 here) and
determine the _value of the log-likelihood ratio statistic. We get
21(a 8,4, §) 21(a0, ,70,50) ~ 4.088, which corresponds to the 4.32%-
quantil of the x?-distribution.

Various other extensions of the peaks-over-threshold model for
incorporating a trend are possible. We could consider a time-dependent
shape parameter &, for example. Furthermore, instead of a linear or log-
linear dependency as in (10.4) or (10.7), we could consider a greater
selection of possible dependencies as we have done for the Poisson
parameter in Sections 7 and 9. If the historical data set were bigger, also
other suitable selections of two or even all three parameters p, £, and 7
could be made time-dependent. We refrain from justifying, discussing,
fitting and testing such models here, but we hope that the worked-out
cases in this section can serve as a guideline when the need for one of the
above-mentioned extensions arises.

11. COMPARISON OF THE ESTIMATED VALUES

Table 11.1 contains the estimated discounted values of all three WINCAT
coupons for the models considered in the previous sections. We have added
several additional models, which arise by combining the Bernoulli or Pareto
distribution for the event severity with the various models for the event
frequency. The entries of the table are grouped according to the used model
for the event frequency. There is an additional partial order according to the
value of the coupons.

The following remarks should be kept in mind when comparing the
“conservative” value of CHF 229.78 obtained in [3] with the results of this
paper.

o No explicit risk premium is included in the discounted values of the
WINCAT coupons given in Table 11.1.

e The extrapolated estimated Poisson parameters are in the region from
3.78 in Figure 7.1 up to 5.68 in Figure 7.3. In the historical data set, two
observation periods with four and five events are recorded, hence the
extrapolated parameters are not unreasonable if one accepts the
possibility of a trend.

o Time homogeneity is possible with all the models considered in this paper
by choosing either 3 = 0 or no change-point. It is the historical data set
that leads to the positive estimates for G or the clear-cut location of the
change-point, respectively.
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TABLE 11.1.

COMPARISON OF THE VALUE OF THE THREE DISCOUNTED WINCAT COUPONS ARISING FROM THE BINOMIAL MODEL,
I'HE COMPOSITE POISSON MODELS, THE GENERALISED EXTREME VALUE MODEL AND THE TWO EXTENSIONS OF THE
PEAKS-OVER-THRESHOLD MODEL. NO EXPLICIT RISK PREMIUM IS INCLUDED. THE VARIOUS ESTIMATED COUPON
VALUES CLEARLY ILLUSTRATE THE MODEL RISK.

No. Coupon value Corresponding model

1 CHF 244.44 Binomial model of Section 3

Constant-parameter Poisson model of Section 4 and

2 CHF 267.48 — generalised Pareto distribution of Subsection 4.3
3 CHF 263.29 — Pareto distribution of Subsection 4.2
CHF 247.37 — Bernoulli distribution of Subsection 4.1
5 CHF 266.62 Generalised extreme value distribution of Section 6

Peaks-over-threshold model of Section 10 and
6 CHF 264.00 — linear trend of the location parameter
7 CHF 204.34 — log-linear trend of the scale and location parameter

Change-point model of Section 9 and

8 CHF 253.80 — generalised Pareto distribution of Subsection 4.3
CHF 247.99 — Pareto distribution of Subsection 4.2
10 CHF 225.28 — Bernoulli distribution of Subsection 4.1

Generalised Pareto distribution (4.29) and
time-dependent Poisson parameter with the

11 CHF 223.88 — linear trend of Subsection 7.1

12 CHF 220.53 — smooth transition of Subsection 7.5

13 CHF 214.44 — modified-linear trend of Subsection 7.4
14 CHF 214.37 — log-linear trend of Subsection 7.2

15 CHF 210.86 — square-root linear trend of Subsection 7.3

Pareto distribution (4.15) and a time-dependent
Poisson parameter with the

16 CHF 215.19 — linear trend of Subsection 7.1

17 CHF 211.54 — smooth transition of Subsection 7.5

18 CHF 204.96 — modified-linear trend of Subsection 7.4

19 CHF 204.93 — log-linear trend of Subsection 7.2

20 CHF 201.12 — Square-root linear trend of Subsection 7.3

Bernoulli distribution and a time-dependent
Poisson parameter with the

21 CHF 189.56 — linear trend of Subsection 7.1

22 CHF 185.11 — smooth transition of Subsection 7.5

23 CHF 177.36 — modified-linear trend of Subsection 7.4
24 CHF 177.44 — log-linear trend of Subsection 7.2

25 CHF 172.87 — square-root linear trend of Subsection 7.3
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A higher event frequency magnifies the differences between the estimate
Peooo ~ 0.0857 from (4.24) obtained by the Pareto fit of the adjusted claim
numbers, the estimate pgogo &~ 0.0757 from (4.32) obtained by the general-
ised-Pareto fit, and the estimate peooo = 2/17 = 0.118 from the Bernoulli
distribution of Subsection 4.1. As Table 11.1 shows, these differences
between the empirical and the fitted distribution functions in Figures 4.2 and
4.3 give rise to quite different values of the WINCAT coupons. The specific
form of a possible trend is of minor importance.

In the linear-trend model of Subsection 7.1, the slope 3 is restricted by the
positivity requirement of the Poisson parameter. Similarly, in the smooth-
transition model of Subsection 7.5, there is the imposed upper bound for the
Poisson parameter. Both restrictions lead to higher estimated coupon values.

12. MODEL ROBUSTNESS AND SENSITIVITY ANALYSIS

When choosing a model, in particular for low frequency event risks, it is of
interest to know how sensitive the model reacts to changes of the data. We
refrain from manipulating the available historical data of Table 1.1 for this
purpose. Instead, we employ a scenario technique by adding fictitious data
for 1997 to the historical data set of Table 1.1. For a favourable scenario, we
assume the best possible case, namely that no event with more than 1000
claims is recorded in 1997. Such an event history happened three times
already during the recorded 10-year history. For a stress scenario, we want
to add a bad event record for 1997. To remain realistic, we prefer to pick a
bad year from the available historical data set. While the vear 1994 is
certainly the worst case with respect to the event frequency, it would not lead
to a knock-out of the coupon and therefore counts as a favourable year for
the binomial model of Section 3. Hence we choose the data of the year 1992
as a common stress scenario for all models listed in Table 11.1. ‘

For an easy comparison of the previous results with the coupon values
arising from these scenarios, we assume that an identical three-year bond is
issued in February 1998, that the observation period for the first coupon is
shorter for applying the 15/17-correction from (2.1), and that the interest-
rate structure for the coupons is again given by Table 3.1. Based on the
extended 1l-year data set, we estimate the discounted value of the
corresponding three WINCAT coupons using all models discussed so far.
The model-dependent changes of the value are given in the third and forth
column of Table 12.1.

The robustness and sensitivity of the models should not be judged
exclusively on the numbers in Table 12.1, because the two scenarios do not
illustrate every possible behaviour of the models. In the change-point model
of Section 9, the change-point illustrated by Figure 9.1 remains between
1989 and 1990 in both scenarios. Similarly, in the linear-trend model of
Subsection 7.1, there is no solution of the likelihood equations (7.3) in either
scenario, hence we use the pragmatic approach again and set & = 0. Three
trend models, namely the root-linear model of Subsection 7.3, the modified-
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linear model of Subsection 7.4, and the smooth-transition model of
Subsection 7.5 lead to a slightly smaller estimate for the trend parameter 3
even in the stress scenario. These are exactly those trend models of Section 7
that predicted a Poisson parameter larger than four for the year 1997. For
the favourable scenario, the biggest relative change shows up in the smooth-
transition model of Subsection 7.5; the trend parameter 3 drops from 0.442
to 0.114. Due to our choice of the stress scenario, the imposed upper bound
in the smooth-transition model remained at 5.

TABLE 12.1.

ASSUME THAT A SIMILAR BOND WITH THREE WINCAT COUPONS IS ISSUED ONE YEAR LATER AND ASSUME THAT THE
INTEREST RATE STRUCTURE IS THE SAME. I1° THERE 1S NO EVENT IN 1997 (FAVOURABLE SCENARIO). THEN THE
MODELS LISTED IN TABLE 11.1 GIVE HIGHER VALUES FOR THE CORRESPONDING THREE WINCAT COUPONS. IF THERE
ARE FOUR EVENTS IN 1997 (STRESS SCENARIO) WITH ADJUSTED CLAIMS AS IN 1992, SEE TABLE 1.1, THEN THE MODELS
LEAD TO LOWER VALUES. THE VALUECHANGES SHOW THE ROBUSTNESS/SENSITIVITY OF THE MODELS WITH RESPECT
TO NEW DATA. THE LAST FOUR COLUMNS CHARACTERISE THE DISTRIBUTIONS OF THE COUPON VALUES BASED

ON 1000 SIMULATED DATA SETS FOR EVERY FITTED MODEL. SEE SECTION (3.
Model C ouponiv Value change in Coupon value distribution (in CHF) arising
No. value scenario with from simulated model data

g, -
in CHF no event 4 events Mean Median Median 15'9/".
quantil
1 244 .44 5.33 —21.35 244.74 244.44 37.45 215.07
2 267.48 3.04 —8.90 272.26 274.20 22.51 249.68
3 263.29 3.36 —7.83 258.46 260.43 22.95 234.81
4 247.37 4.81 —17.21 249.41 247.37 33.69 223.60
S 266.62 3.20 —12.51 271.18 273.96 23.33 246.69
6 264.00 4.78 -9.98 266.55 268.70 26.52 241.89
7 204.34 43.24 -21.19 199.05 206.37 70.18 121.53
8 253.80 5.66 -9.88 259.95 262.69 31.04 226.60
9 247.99 6.27 —8.29 240.95 243.39 31.32 208.54
10 225.28 9.09 —-19.07 230.90 225.28 46.00 194.34
11 223.88 7.36 —16.21 235.17 236.03 47.37 185.22
12 220.53 28.89 —10.14 232.08 231.12 43.26 185.78
13 214.44 24 .41 —16.51 225.32 230.68 54.55 165.14
14 214.37 32.83 -24.93 223.21 233.39 62.27 154.02
15 210.86 28.59 ~18.60 223.55 227.69 56.13 159.11
16 215.19 8.02 -13.76 208.39 210.39 41.98 162.12
17 211.54 31.61 —7.26 207.96 209.10 39.16 166.62
18 204.96 26.56 —13.71 195.08 198.98 4990 140.85
19 204.93 35.79 -22.48 196.78 205.29 59.55 132.81
20 201.12 31.07 —15.76 189.15 193.58 51.33 134.90
21 189.56 9.74 ~27.72 196.58 189.56 60.75 150.18
22 185.11 38.98 —19.84 195.82 195.63 55.54 136.24
23 177.36 32.19 —27.85 185.41 182.04 65.20 115.16
24 177.44 43.60 —38.05 187.14 189.51 73.88 106.55
25 172.87 37.51 —30.28 183.51 182.14 70.87 108.60
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The trend models of Section 7 combined with the generalised Pareto
distribution of Subsection 4.3 have four parameters, similarly as the two
extensions of the peaks-over-threshold model of Section 10. However, as
Table 12.1 for models no. 6 and 7 shows, an extension of the peaks-over-
threshold model may be more robust, because the increasing trend in the
event frequency is partially compensated by the decreasing trend in the event
severity (see the left part of Table 10.1 for model no. 6), or the extension can
be more sensitive if both trends go in the same direction (see the right part of
Table 10.1 for model no. 7).

13. MODEL CONSISTENCY AND DISPERSION ANALYSIS

For every fitted model listed in Table 11.1 — under the assumption that the
model describes reality correctly — we generate 1000 new random data sets
according to the distribution specified by the fitted model. These data sets
replace the actual observations recorded in Table 1.1, and we use the model
to estimate the discounted coupon values based on the random data set. This
gives a list of 1000 (not necessarily different) values for the coupons; for
some selected models the corresponding histograms are shown in Figures
13.1 and 13.2. Using these simulated distributions, we can calculate the mean
value of the estimated coupon values, the median, and the standard
deviation; these results are listed in Table 12.1. For models no. 1, 4, 10, and
21, the exact distribution could have been used. For some model variants,
the results are in Table 13.1. For comparison with conservative estimates
calculated in previous sections, we also give the 15.9 %-quantiles of these
simulated distributions. This 15.9 %-quantil corresponds to one standard
deviation in the case of a normal distribution. If the standard deviation or
the desired quantil cannot be derived by analytical means, these simulated
values can give an indication for a conservative estimate within the used
model; see the end of the introduction for a further discussion of this topic.

TABLE 13.1.

MEAN, MEDIAN, STANDARD DEVIATION AND 159 %-QUANTIL IN CHF OF THE SIMULATED DISTRIBUTION FOR
VARIANTS OF THE MODELS § 10 (VARIABLE LOCATION OF THE CHANGE-POINT OF THE POISSON PARAMETER) AND FOR
THE VARIANTS OF MODELS 12, 17. AND 22 (VARIABLE UPPER BOUND FOR THE SMOOTH TRANSITION OF THE POISSON

PARAMETER). COMPARE THE RESULTS WITH THE CORRESPONDING ENTRIES IN TABLE 121

Model Coupon value Values from 1000 simulated data sets
variant no. in CHF Mean Median St. dev. 15.9%-quantil
g 253.80 256.91 259.99 34.00 223.36
9 247.99 238.05 240.69 31.67 206.93
10 225.28 229.77 225.28 47.84 179.22
12/ 220.53 226.20 229.06 49.56 175.94
17 211.54 196.89 199.26 4522 147.65

22 185.11 185.85 186.34 58.50 126.56

https://doi.org/10.2143/AST.29.1.504608 Published online by Cambridge University Press


https://doi.org/10.2143/AST.29.1.504608

VALUE OF THE WINCAT COUPONS AND MODEL RISK

300 300

200 200

100 100 l
N | - PR | I - |

125 150 175 200 225 250 275 300 125 150 175 200 225 250

Binomial model
and Bernoulli distribution

300 120

80

275

Constant-parameter Poisson model

200
100 l 10

0 50 100 150 200 250 300 0 50 100 150 200 250
Linear trend of the Poisson parameter Modified-linear trend of the Poisson
and Bernoulli distribution parameter and Bernoulli distribution

157

300

FIGURE 13.1: Distribution of the estimated coupon values for models no. 1, 4, 21, and 23 of Table 11.1
resulting from 1000 simulated data sets. The mean, median, standard deviation and 15.9%-quantil are given
in Table 12.1. Note the different scales, the discreteness of the two upper and the lower left distribution, the
different sizes of the gaps, and the persistence of the peak at the highest possible coupon value representing

the number of simulated data sets without a knock-out event.

We want to explain the model variants first. For the models no. 8-10,
the change-point of the Poisson parameter was kept between 1989 and
1990. Therefore, these models correspond to the constant-parameter
Poisson models no. 2—4 with a shorter historical data set of seven years.
Table 13.1 contains the simulation results for the model variants 8-10,
where the change-point is taken to be the earliest year such that the
likelihood function (9.1) corresponding to the simulated data set is
maximised. Since Ao(y) = 0 for y € {1987, 1988, 1989}, the change-point
y. can only move to later years; it has done so for 133 of the 1000

simulated data sets.

To obtain the simulation results for the models with a smooth transition
of the Poisson parameter (models no. 12, 17, and 22), the imposed upper
bound for the Poisson parameter was kept at 5. However, in Subsection 7.5,
we took the largest observation as the upper bound. Doing the same for the

simulated data sets leads to the model variants 12/, 17/, and 22'.
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FIGURE 13.2: Distribution of the estimated coupon values for models no. 3, 18, 2, and 13 of Table 11.1
resulting from 1000 simulated data sets. Note the different scales and the peak at the highest possible coupon
value for the two models using a generalised Pareto distribution. The mean, median, standard deviation and

15.9%-quantil of these distributions are given in Table 12.1. )

Using the same model for generating the data and for fitting this simulated
data creates a bias towards the model, hence the model should exhibit a good
performance. Let us comment on some peculiarities of the models.

The binomial model no. 1 can lead to at most 11 different estimated
values for the WINCAT coupons; seven of them are shown in the upper left
histogram of Figure 13.1. Since we used p = 0.2 from (3.1), the other four
values have a probability of 2}\017 (1,? )PF(1 = p)'°7F ~ 0.000864 together and
did not show up in the simulation.

For the constant-parameter Poisson model with a Bernoulli distribution
for the event severity (model no. 4), we generate the number Nggoo10 Of
knock-out events during the ten years using a Poisson distribution with
parameter 2, see Subsection 4.1. The simulated knock-out probability P,y
is calculated from Neogo 10 using the unbiased estimator (4.12), the resulting
discrete distribution is the upper right histogram in Figure 13.1. Similarly for
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model no. 10: we generate Negogo7 from a Poisson distribution with parameter
2 and use (4.12) with n = 7. The resulting histogram has bigger gaps than the
upper right one in Figure 13.1. When the change-point can move (model no.
10°), then small bars appear between the large ones of the histogram,
representing about 13% of the simulated data sets with a later change-point.

The model with a linear trend Ag(y) = G(y — 1987) of the Poisson
parameter and a Bernoulli distribution for the event severity (model no. 21)
also results in a discrete distribution, see the lower left histogram in Figure
13.1. Notice the large gap between the two highest values, it is about twice
as large as the (2aps in the binomial model. With 3 from (7.4), the number
Niogo,10= Zlgng of events from 1987 until 1996 in the linear-trend model
has a Poisson distribution with parameter 17. Remember that in this model
there can be no events during 1987. With pegoo = 2/17 from (4.5), the
number Ngooo,10 knock-out events in the 10-year period has again a Poisson
distribution with parameter 2. Corresponding to (7.5), the knock-out
probability is calculated from Ngggo10 by

Pear(y) = 1 — exp(—Neooo,10(y — 1987)/45)

for y € {1997, 1998, 1999}. If desired, an unbiased estimator for Pcar(y)
could be used, see the discussion in Subsection 4.1.

For the discrete distributions of models no. 1, 4, 10, 1¢/, and 21, the
median of the simulated distribution coincides with the estimated value of
the coupons; the other possible case of a substantial deviation did not occur
in our simulation runs.

The other models with a time-dependent Poisson parameter and a
Bernoulli distribution for the event severity (models no. 22-25 and 22') give a
histogram similar to the lower right one in Figure 13.1. The peak in the
histogram at the highest possible value of the WINCAT coupons reflects the
fact that, depending on the estimated event frequency, about 10% of the
simulated data sets do not contain a knock-out event. Table 12.1 shows that
the mean of these simulated distributions is about CHF 10 above the
estimated values of the WINCAT coupons. This indicates a bias towards
higher coupon values. Moving the imposed upper bound of the smooth-
transition model according to the data seems to compensate this effect, see
the results for model no. 22’ in Table 13.1.

All models using a Pareto distribution for the event severity (models no.
3,9,9, 17, and 16-20) lead to a histogram similar to the two upper ones
in Figure 13.2. Depending on the estimated event frequency for the years
1997--1999 in the used models, the simulated distribution is more or less
concentrated. Since the Pareto distribution for the event severity reflects the
model assumption of a heavy-tailed distribution, none of the histograms
contains a peak at the highest possible value. As Tables 12.1 and 13.1 show,
the mean of the simulated distributions for these models is always below the
estimated value of the coupons. With the exception of model no. 19, the
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same observation applies to the median. This indicates a bias towards lower,
hence more conservative coupon values.

The constant-parameter composite Poisson model with a Pareto
distribution for the event severity (model no. 3) that was used in [3],
exhibits one of the smallest standard deviations in this simulation study; only
the standard deviation of model no. 2 is slightly smaller, but the difference is
within the variation arising from repeated simulation runs. Note that model
no. 5, which uses a generalised extreme value distribution, exhibits a
standard deviation of similar small size as models no. 2 and 3. The histogram
for model no. 5 looks similar to the lower left one in Figure 13.2.

The models no. 12, 17, and 22 use a smooth transition of the Poisson
parameter with a fixed upper bound at 5. This clearly restricts the possible
extrapolated values of the coupons and leads to the smallest standard
deviation of the simulated distributions within the corresponding model
groups 11-15, 16-20, and 21-25. If the upper bound is allowed to move to
the highest simulated event frequency (models no. 12/, 17, and 22’ in Table
13.1), then the simulated mean coupon values and the 15.9%-quantiles drop
considerably and the standard deviations increase.

When estimating the shape parameter ¢ and the scale parameter 7 of
the generalised Pareto distribution (4.29) for the models no. 2, 8, 8, 12/, and
11-15, then in about 10% of all simulated data sets there is no pair (¢, 7) of
strictly positive numbers maximising the log-likelihood function. An
examination of the corresponding data sets reveals that this tends to happen
when the simulated data set is smaller than the average one and does not
contain events with a large number of claims. For this reason we consider
the full family of (shifted) generalised Pareto distributions, which are
defined, for all location parameters a € R and scale parameters 7 > 0, by
(4.29) in the case £ > 0, by the shifted exponential distribution

1 —exp(—(x —a)/7), if x> a,

13.1
0, if x <a, ( )

Ga,O,‘r (X) = {

in the case £ =0, and by

L= (1+&x-a)y/n)™V  ifxelaa—r1/0),
Gagr(x) =14 0, if x < a, (13.2)
1, if x>a—r1/¢,

in the case £ < 0. The shifted exponential distribution G, - is the pointwise
limit of G,¢, as § — 0. Note that the distributions G, ¢, with £ <0 have a
bounded support. For £ < —1, the densities of G, ¢, are unbounded at the
left-hand side of a — 7/£. Hence, maximum-likelihood estimators (7, ) are
not well-defined within the full family consisting of (4.29), (13.1), and (13.2),
because the likelihood function is wunbounded for every sequence
{(7, &) }heny I (0,00) x (—o0,—1) such that a—7,/§ approaches the
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largest observation from the rlght -hand side as »n — oo. Therefore,
maximum-likelihood estimators ' are only meaningful within the range
7> 0and £ > —1. However, in about 2% of all simulated data sets, there is
no maximum of the log-likelihood function in the range 7 > 0 and £ > —1.
An example is the set of claim numbers 1021, 1256, 1420, 1450, 1493, 1839,
2251, 2326, 3109, 3167, 3403, 4857, 4865, and 4877, which showed up in
one of the simulation runs. A similar problem for obtaining maximum-
likelihood estimates for small sample sizes in a simulation study is reported
in [8, Section 4].

A possible solution well adopted to the present case is to maximise a
grouped-data likelihood function; this method is investigated in [7]. For this
method we have to remind ourselves that the spacing of adjusted claim
numbers in the last column of Table 1.1 is given by the corresponding
vehicles insured index of that table; for simplicity we set this spacing to one
in the following considerations. Every simulated value from the generalised
Pareto distribution with parameters given by (4.31) then represents an
interval of length one. If X, ..., X, represent the simulated values, then we
use the grouped-data log-likelihood function

Her) =S log(Goer (LX) + 1) — Goer (LK) . (13.3)
k=1

where £ € R and 7 > 0 have to satisfy max{Xi, ..., X,} <a—7/€ in the
case € < 0. This log-likelihood function avoids the singularity of the density
of G¢. for £ < —1. All simulation results of this section for the models
using a generalised Pareto distribution rely on the grouped-data log-
likelihood function (13.3).

We conclude from these observations, that in about 10% of all simulated
data sets the models using a generalised Pareto distribution do not reproduce
the original heavy-tailed behaviour because there is no such evidence in the
simulated data sets. The data sets with a negative maximum-likelithood
estimate for the shape parameter £ are mainly responsible for the high peaks
in the lower two histograms of Figure 13.2: If £ < 0, then the support of the
distribution is bounded above. If this bound is below 6000, then the
probability of events with more than 6 000 claims is zero, making a knock-
out of the coupons impossible and thereby leading to the highest possible
value for the coupons. As Tables 12.1 and 13.1 show, the mean and the
median of the simulated distributions are well above the coupon value for all
the models using a generalised Pareto distribution. This indicates a bias of
these models towards higher coupon values.

When we use the grouped-data log-likelihood function (13.3) instead of
(4.30) for the original data set of Table 1.1, then the maximum-likelihood

" Remember that the data sets are generated from a generalised Pareto distribution with parameters
given by (4.31). According to [16, Section 7], the classical asymptotic theory of maximum-likelihood
estimators is applicable, because £ from (4.31) satisfies £ > —1/2.
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estimates are £ ~ 0.7229 and 7 & 662.1 instead of £ ~ 0.7243 and # ~ 660.7
from (4.31). This leads to peooo =~ 0.07573 instead of pgooo = 0.07575 from
(4.32). The change in the coupon value stays below CHF 0.02. Therefore, our
use of different likelihood functions does not explain the observed bias.

To perform the simulation study also for the two extensions of the peaks-
over-threshold model from Section 10, we extended the definition of the
Poisson point-process intensity (10.1) to the cases £ = 0 and £ < 0 as we have
done for the generalised Pareto distribution (4.29) by adding (13.1) and
(13.2). We modified the log-likelihood functions (10.6) and (10.8) by using
grouped-data log-likelihood functions similar to (13.3). We refrain from
spelling out all the details here. Note that in the case £ < 0 and the
extensions specified by (10.4) and (10.7), the range of the possible number of
claims depends on the year. The histograms for these extensions look like the
lower left and the lower right ones in Figure 13.2, respectively. The same log-
linear trend in the scale and location parameters leads to a more spread-out
distribution of the simulated coupon values.
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