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Turbulent cascade in fully developed turbulent
channel flow
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We show that Kolmogorov scale-by-scale equilibrium in the intermediate layer of
a fully developed turbulent channel flow is only achieved asymptotically around
the Taylor length and, therefore, not in an inertial range. Furthermore, we analyse
scale-by-scale turbulence production and interscale turbulence energy transfer in terms
of alignments/anti-alignments of fluctuating velocities, straining/compressive relative
motions, forward/inverse interscale transfer/cascade and homogeneous/non-homogeneous
interscale transfer rate contributions. We also propose leading order scalings for
second- and third-order two-point statistics, including the extremum interscale turbulence
energy transfer rate and a second-order anisotropic structure function, which acts as
a scale-by-scale Reynolds shear stress and determines the scale-by-scale (two-point)
turbulence production rate.
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1. Introduction

The Kolmogorov theory of equilibrium cascade works best for statistically stationary and
homogeneous turbulence where the power input balances the dissipation rate and predicts
that the interscale transfer rate balances the turbulence dissipation rate in an inertial range
of scales (Batchelor 1953; Frisch 1995; Lesieur 1997). In particular, this inertial range
equilibrium cascade leads to the well-known turbulence dissipation scaling (Batchelor
1953; Sreenivasan 1984; Vassilicos 2015) first introduced by Taylor (1935) without
justification. In statistically homogeneous but non-stationary, in particular decaying,
turbulence, the situation is different. Specifically, there is a non-equilibrium turbulence
dissipation scaling initially during decay (Vassilicos 2015; Goto & Vassilicos 2016),
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followed at later times by the classical turbulence dissipation as a result of balanced
non-equilibrium (Goto & Vassilicos 2016; Steiros 2022) rather than Kolmogorov
equilibrium throughout an inertial range.

Lundgren (2002) applied a matched asymptotic expansion approach to freely decaying
homogeneous isotropic turbulence far from initial conditions, which led to the conclusion
that the interscale transfer rate has an extremum at a length scale rmax that is proportional to
the Taylor length λ. Wind tunnel data of nominally freely decaying homogeneous isotropic
turbulence (Obligado & Vassilicos 2019) confirm rmax ≈ 1.5λ and EDQNM simulations
of such turbulence (Meldi & Vassilicos 2021) confirm rmax ≈ 1.12λ for Reλ = 102 to
106. Hence, Kolmogorov equilibrium in non-stationary, in fact freely decaying far from
initial conditions, statistically homogeneous isotropic turbulence seems to be achieved
asymptotically only around λ; and not in an inertial range given that λ depends on viscosity
and total turbulent kinetic energy, and that there is a systematic departure from equilibrium
(most clearly demonstrated in Meldi & Vassilicos 2021) when moving away from λ, both
towards the integral scale and towards the Kolmogorov length η.

Diverting attention from homogeneous non-stationary turbulence to stationary
non-homogeneous turbulence, we ask about the validity of Kolmogorov equilibrium in
stationary non-homogeneous conditions and chose to focus in this paper on fully developed
turbulent channel flow (FD TCF). This is a statistically stationary non-homogeneous
turbulent flow where turbulence production approximately balances turbulence dissipation
(similarly to statistically stationary homogeneous turbulence) in some very significant
region of space, the intermediate layer where the log-law of the wall has been traditionally
claimed. Is there an average equilibrium between interscale turbulence energy transfer
rate and turbulence dissipation in the intermediate layer of FD TCF where turbulence
production approximately balances turbulence dissipation? If so, in what range of length
scales, inertial or not? What processes are involved in the scale-by-scale turbulence energy
balance in that range, if there is one, and outside it? What is the role of inhomogeneity, in
particular in terms of scale-by-scale turbulence production but also directly on interscale
energy transfer? What type of flow motions underpin interscale turbulence energy transfers
and scale-by-scale turbulence production (referred to as two-point turbulence production
in the remainder of this paper)?

In the following section, we introduce the scale-by-scale turbulence energy balance in
its most general form and the spherical average operation, which we use to simplify it
for this study. Section 3 is a brief description of the FD TCF DNS data we use for our
post-processing. In § 4, we simplify the spherically averaged scale-by-scale turbulence
energy balance for the particular case of the intermediate layer of an FD TCF and in § 5, we
examine the two-point turbulence production term which appears in this balance. Section 6
deals with second- and third-order structure functions and interscale turbulence energy
transfer by adapting to FD TCF the matched asymptotic expansion approach of Lundgren
(2002), and then we compare the results to the DNS data in § 7. Finally, § 8 introduces two
decompositions of the interscale turbulence energy transfer rate and attempts to answer the
questions of non-homogeneity’s role and of what flow motions are responsible for which
aspects of interscale turbulence energy transfer. In § 9, we summarise our conclusions.

2. Scale-by-scale turbulence energy balance

To analyse the turbulent energy cascade in turbulent channel flow, we use a
Kármán–Howarth–Monin–Hill (KHMH) equation which is a scale-by-scale energy budget
equation in its most general form without any assumptions about the flow (Hill 2001,
2002). The form of the KHMH equation that we use is an evolution equation for |δu|2,
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where δu ≡ u(x + r/2, t) − u(x − r/2, t) is the difference between fluctuating velocities
at two points ξ+ ≡ x + r/2 and ξ− ≡ x − r/2 in the flow where the separation vector
r = (r1, r2, r3) gives some sense of scales. The centroid x = (x1, x2, x3) is mid-way
between these two points.

A Reynolds decomposition U + u is used for the velocity field in this form of
the KHMH equation where U = (U1, U2, U3) is the mean flow. The KHMH equation
follows directly from the incompressible Navier–Stokes equations and, with notation
U±

i ≡ Ui(x ± r/2), u±
i ≡ ui(x ± r/2) and δp ≡ p(x + r/2, t) − p(x − r/2, t), where p is

the fluctuating pressure field (normalised by the constant density), reads as follows:

∂〈|δu|2〉
∂t
At

+ U+
i + U−

i
2

∂〈|δu|2〉
∂xi

A

+ ∂〈δui|δu|2〉
∂ri

Π

+ ∂δUi〈|δu|2〉
∂ri

ΠU

= −2〈δuiδuj〉∂δUj

∂ri
− 〈(u+

i + u−
i )δuj〉∂δUj

∂xi

P

−
∂

〈
u+

i + u−
i

2
|δu|2

〉

∂xi

Tu

− 2
∂〈δuiδp〉

∂xi

Tp

+ ν
1
2

∂2〈|δu|2〉
∂x2

i

Dx

+ 2ν
∂2〈|δu|2〉

∂r2
i

Dr

−
[

2ν

〈(
∂u−

j /∂ξ−
i

)2
〉
+ 2ν

〈(
∂u+

j /∂ξ+
i

)2
〉]

ε

,

(2.1)

where the brackets 〈·〉 denote the averaging operation on which the Reynolds
decomposition is based. The KHMH equation includes the following terms:

(i) At = ∂〈|δu|2〉/∂t is the time derivative term;
(ii) A = (U+

i + U−
i )/2)(∂〈|δu|2〉/∂xi) is the mean advection term;

(iii) Π = ∂〈δui|δu|2〉/∂ri is the nonlinear interscale transfer rate of |δu|2 by turbulent
fluctuations in scale space and thus directly linked to the energy cascade;

(iv) ΠU = ∂δUi〈|δu|2〉/∂ri is the linear interscale transfer rate of |δu|2 in scale space by
mean velocity differences;

(v) P =−2〈δuiδuj〉(∂δUj/∂ri)− 〈(u+
i + u−

i )δuj〉(∂δUj/∂xi) is the two-point production
of |δu|2 by the mean shear;

(vi) Tu = ∂〈((u+
i + u−

i )/2)|δu|2〉/∂xi is the turbulent transport of |δu|2 in physical
space;

(vii) Tp = 2(∂〈δuiδp〉/∂xi) is the pressure-velocity term;
(viii) Dx = (ν/2)(∂2〈|δu|2〉/∂x2

i ) is the viscous diffusion in physical space;
(ix) Dr = 2ν(∂2〈|δu|2〉/∂r2

i ) is the viscous diffusion in scale space;
(x) ε = 2ν〈(∂u−

j /∂ξ−
i )2〉 + 2ν〈(∂u+

j /∂ξ+
i )2〉 is the two-point averaged turbulence

pseudo-dissipation rate which is very close to the actual turbulence dissipation rate
(e.g. see Pope 2000).

At this stage, we specialise this equation to FD TCF by choosing the averaging operation
〈·〉 to be over the streamwise and spanwise homogeneous directions, i.e. over coordinates
x ≡ x1 (streamwise) and z ≡ x3 (spanwise), and over time. The wall-normal coordinate
is y ≡ x2. Note that U2 = U3 = 0 and that this averaging operation implies At = 0 = A.
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In non-homogeneous and non-isotropic turbulent flows (such as FD TCF), energy transfers
and exchanges, including the turbulence cascade, are anisotropic. This equation has been
studied extensively in FD TCF by Marati, Casciola & Piva (2004), Cimarelli & De Angelis
(2012), Cimarelli, De Angelis & Casciola (2013), Cimarelli et al. (2016) and Gatti et al.
(2019). In this paper, we concentrate our interest on the directionally averaged energy
transfers by applying to each term of the KHMH equation an additional average over
spheres in r-space. We therefore work with

Πv + Πv
U = Pv + Tv

u + Tv
p + Dv

x + Dv
r − εv, (2.2)

where (following Zhou & Vassilicos (2020) and § 2 of Chen & Vassilicos (2022))
every term is obtained from its analogue in (2.1) by the application of the normalised
three-dimensional (3-D) integral (3/4πr3)

∫
S(r) d3r, S(r) being the sphere of radius r

in r-space; for example, Πv ≡ (3/4πr3)
∫

S(r) Π d3r, Πv
U ≡ (3/4πr3)

∫
S(r) ΠU d3r, Pv ≡

(3/4πr3)
∫

S(r) P d3r, etc.
This approach averages over and therefore ignores length-scale anisotropies and replaces

r by its modulus r = |r| as a single measure of length-scale. However, the fundamental
anisotropy responsible for correlations between streamwise and wall-normal directions
remains in the turbulence production term. Every term in (2.2) is a function of only y
(spatial non-homogeneity variable) and r (length-scale variable).

In § 3, we describe the data from direct numerical simulations (DNS) of FD TCF
that we use in this paper. We describe these DNS data before starting our analysis
of (2.2) to be able to test against these data certain aspects of our analysis as it
proceeds.

3. DNS data

For our analysis, we use the DNS data of Lozano-Durán & Jiménez (2014) for FD TCF at
Reτ = 932 and 2003, (Reτ ≡ uτ δ/ν, where ν is the kinematic viscosity, δ is the channel
half-width, and uτ is the skin friction velocity obtained by averaging over time and over
streamwise coordinate x and spanwise coordinate z at the channel’s solid wall y = 0).
The domain size for both simulations is Lx = 2πδ in the streamwise and Lz = πδ in
the spanwise directions. The Navier–Stokes equations have been solved by integrating
the evolution equations in terms of the wall-normal vorticity and the Laplacian of the
wall-normal velocity for an incompressible fluid. The Fourier spectral method was used
for the spatial discretisation in the wall-parallel directions. For the discretisation in the
wall-normal direction, Chebyshev polynomials were used in the Reτ = 932 case, whereas
a seven-point compact finite difference scheme was used in the Reτ = 2003 case. Finally,
a third-order semi-implicit Runge–Kutta method with CFL = 0.5 was chosen for time
advancement. A comparison of the two datasets can be found in Table 1 (the superscript
+ refers to non-dimensionalisation with wall units δν ≡ ν/uτ for length and δν/uτ for
time). We focus our DNS data analysis on the wall-normal locations that correspond to the
region where the average production rate of turbulent kinetic energy roughly balances the
average turbulence dissipation rate as identified by Apostolidis, Laval & Vassilicos (2022),
i.e. 60 ≤ y+ ≤ Reτ /2.
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Name Reτ Lx/δ Lz/δ Δx+ Δz+ Ny dt+ Nt

LJ950 932 2π π 11.5 5.7 385 8 3151
LJ2000 2003 2π π 12.3 6.2 633 25 462

Table 1. DNS databases.

4. Scale-by-scale turbulent energy balance in the one-point average equilibrium range
of FD TCF

We now examine (2.2) in the region of FD TCF, where the average one-point turbulence
production rate is in approximate equilibrium with the average turbulence dissipation
rate at a given y. This is a region of distances y from the bottom wall (where y = 0)
such that δν � y � δ (in the limit Reτ = δ/δν � 1) and where, classically, the mean
flow velocity U = (U1, 0, 0) is expected to be logarithmic (e.g. see Pope 2000). Whilst
previous works have suggested some not insignificant deviations from a log dependence
on y of U1 (e.g. see Vassilicos et al. 2015), in this work, we assume that the log law
accounts for most of U1, which implies that ΠU = (∂/∂r1)(δU1〈|δu|2〉) is close to 0 in
the region δν � y � δ if r2 � 2y because δU1 = (uτ /κ) ln (1 + r2/y)/(1 − r2/y) ≈ 0 (κ
is the von Kármán dimensionless coefficient and note that wall blocking implies that r2 is
necessarily smaller or equal to 2y). The DNS data confirm the prediction that Πv

U is close
to zero, see figure 1(c,d). We also make the assumption that turbulence is well mixed in this
region and therefore assume that the physical-space divergence term Tv

u + Tv
p is negligible.

Whilst the DNS data support this assumption, see figure 1(a,b), it must be stressed that
pressure plays an important redistributive role and that spatial energy transfer is not fully
absent in the intermediate layer (e.g. Lozano-Durán & Jiménez 2014; Cimarelli et al. 2016;
Lee & Moser 2019). The numerical details behind our calculations of normalised 3-D
integrals (3/4πr3)

∫
S(r) d3r, and in particular of terms such as Tv

u = (3/4πr3)
∫

S(r) Tu d3r
and Tv

p = (3/4πr3)
∫

S(r) Tp d3r, are given in the Appendix.
We therefore neglect both Πv

U and Tv
u + Tv

p from (2.2) and are left with

Πv ≈ Pv + Dv
x + Dv

r − εv (4.1)

for r2 � 2y in the intermediate layer δν � y � δ.
By application of the Gauss divergence theorem, the interscale transfer rate takes the

form

Πv = 3
4π

∫ 〈
δu · r̂

r
|δu|2

〉
dΩr ≡ S3(r, y)

r
, (4.2)

where Ωr is the solid angle in r space and r̂ ≡ r/|r|. By distinguishing between radial and
solid angle integrations in r-space, the viscous diffusion terms become

Dv
x + Dv

r = 3ν

8πr3

∫ r

0
ρ2 d2S2

dy2 (ρ, y) dρ + 3ν

πr
dS2

dr
(r, y), (4.3)

where

S2(r, y) ≡
∫

〈|δu|2〉 dΩr. (4.4)

In FD TCF, the production term Pv is obtained by applying the integral
operation (3/4πr3)

∫
S(r) d3r on −2〈δu2δu1〉(∂δU1/∂r2) − 〈(u+

2 + u−
1 )δu1〉(∂δU1/∂y).
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y+

(a) (b)

(c) (d )

Figure 1. (a) Turbulent transport Tu plus pressure-velocity term Tp, integrated over the volume of sphere
with radius r, normalised by the volume integral of the two point dissipation rate ε as a function of r/λ
for Reτ = 932, (b) Tv

u /εv for Reτ = 2003 (Tp is unavailable from the recorded DNS data at Reτ = 2003),
(c) volume integral of linear interscale transfer term divided with εv Πv

U/εv for Reτ = 932 and (d) for
Reτ = 2003. Wall-normal distance is increased from light to dark colours (y+ = 59 to 377 for Reτ = 932,
y+ = 82 to 665 for Reτ = 2003). The normalisation by the Taylor length λ (defined in § 6.3) is arbitrary in
these plots.

Targeting again the intermediate region δν � y � δ, where the log law dU1/dy ≈ uτ /κy
might be considered to be a good approximation in the limit δ/δν � 1 (κ is the von
Kármán dimensionless coefficient), the two-point production term becomes

Pv ≈ −u3
τ

κy
3

4πr3

∫ r

0
ρ2

[
S12(ρ, y)

u2
τ

− S1×2(ρ, y)
u2
τ

]
dρ (4.5)

in this intermediate region, where

S12(r, y) ≡ 2
∫

〈δu2δu1〉
[

1 −
(

r2

2y

)2
]−1

dΩr (4.6)

and

S1×2(r, y) ≡
∫

〈(u+
2 + u−

2 )δu1〉(r2/y)

[
1 −

(
r2

2y

)2
]−1

dΩr. (4.7)

We expect S1×2(r, y) to be much smaller in magnitude than S12(r, y), in fact even
close to vanishing, because of the expected decorrelation between wall-normal velocity
fluctuations effectively larger than r (i.e. u+

2 + u−
2 ) and streamwise velocity fluctuations

effectively smaller than r (i.e. δu1). This is confirmed by the DNS data in figure 2,
which also show that S12(r, y) is negative for all r ≤ 2y irrespective of y (because of
wall blocking, r cannot be larger than 2y, and because of the integrand’s singularity
in the definitions of S1×2(r, y) and S12(r, y), we plot them for r ≤ 2y − 8δν throughout
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Figure 2. Ratios of S1×2 in orange colours and S2 in marine colours over S12 for different normalised scales
r/y. Wall-normal distance is increased from light to dark colours as in figure 1. (a) Reτ = 932, (b) Reτ = 2003.

the paper). In the intermediate region, where the log law of the wall might be expected to
hold, we therefore have a positive two-point production term given, to good approximation,
by

Pv ≈ −u3
τ

κy
3

4πr3

∫ r

0
ρ2 S12(ρ, y)

u2
τ

dρ. (4.8)

Bringing together (4.2), (4.3) and (4.8) into (4.1), we obtain the following two-point
energy balance valid for r2 � 2y and δ/δν � 1 in the intermediate region δν � y � δ of
FD TCF:

S3(r, y)
r

− 3ν

8πr3

∫ r

0
ρ2 d2S2

dy2 (ρ, y) dρ + 3ν

πr
dS2

dr
(r, y)

≈ −εv − u3
τ

κy
3

4πr3

∫ r

0
ρ2S12(ρ, y) dρ. (4.9)

In this equation, the first term on the left-hand side is the interscale transfer rate, the
second and third terms on the left-hand side are the viscous diffusion terms, and the second
term on the right-hand side is the two-point turbulence production rate. Before making use
of this equation in § 6, we look closer into the positive sign of the two-point turbulence
production.

5. Two-point turbulence production

Here, Pv represents the rate with which turbulent kinetic energy is gained or lost by scales
smaller than r if Pv is respectively positive or negative. Of course, we may expect energy
to be gained in some r directions and lost in some other r directions: Pv represents the
rate with which the aggregate energy averaged over all directions is gained or lost at scales
smaller than r by the linear effects of mean flow gradients on the turbulence. This is
not a nonlinear interscale mechanism relating to a turbulence cascade which is, in fact,
represented by Πv .

Turbulence production results from the interplay of non-isotropy in the form of non-zero
Reynolds shear stresses with the mean flow gradient. In FD TCF, the one-point Reynolds
shear stress is 〈u1u2〉 and it interacts with the mean flow gradient dU1/dx2 = dU1/dy
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to give the one-point turbulence production rate −〈u1u2〉(dU1/dy) which is positive
(i.e. creation of turbulent kinetic energy) because 〈u1u2〉 is negative. The negative sign
of 〈u1u2〉 results from the predominance of turbulent transport towards the wall of
forward streamwise fluctuating velocities and of turbulent transport away from the wall
of backward streamwise fluctuating velocities. These turbulent momentum fluxes are
partly caused by sweeps in the case of transport towards the wall and ejections in
the case of transport away from the wall (Kline & Robinson 1990; Wallace 2016) and
lead to the well-known increase by turbulence of wall shear stress and skin friction
drag.

The two-point Reynolds shear stress 〈δu1δu2〉 results from anisotropies at scales
comparable to r and smaller, and relates to the one-point shear stress by

〈δu1δu2〉 = (〈u+
1 u+

2 〉 − 〈u+
1 u−

2 〉) + (〈u−
1 u−

2 〉 − 〈u−
1 u+

2 〉). (5.1)

One can expect the two-point Reynolds shear stress to have the same sign as the one-point
shear stresses at ξ+ and ξ− (which are known to be negative in FD TCF) if the magnitudes
of the two-point correlations 〈u+

1 u−
2 〉 and 〈u−

1 u+
2 〉 are decreasing functions of distance

between ξ+ and ξ−. The two-point Reynolds shear stress appears in the two-point
turbulence production rate via S12 (see (4.8) and the definition in (4.6) of S12) and
we therefore define, for initial simplicity of interpretation, a two-point Reynolds shear
stress integrated over the solid angle in r-space as follows: S̃12(r, y) ≡ ∫ 〈δu2δu1〉 dΩr.
Defining additionally

∫ 〈u+
2 u+

1 〉 dΩr = ∫ 〈u−
2 u−

1 〉 dΩr ≡ R̃12( y, r) and
∫ 〈u+

2 u−
1 〉 dΩr =∫ 〈u−

2 u+
1 〉 dΩr ≡ C̃12(r, y), (5.1) leads to

S̃12(r, y) = 2R̃12( y, r) − 2C̃12(r, y) (5.2)

in terms of solid angle-integrated one-point Reynolds shear stress R̃12( y, r) and solid
angle-integrated two-point correlation C̃12(r, y). In figure 3(a,b), we use the DNS data
to plot C̃12(r, y)/|R̃12( y)| vs r (black lines) for the two Reynolds numbers available
and for different values of wall distance y. In all cases, C̃12(r, y)/|R̃12( y, r)| is a
monotonically increasing function of r, from C̃12(r, y)/|R̃12( y, r)| = −1 at r = 0 towards
0 with increasing r. It follows from (5.2) that the solid angle-integrated two-point Reynolds
stress inherits the negative sign of the solid angle-integrated one-point Reynolds shear
stress but with reduced magnitude because of the negative two-point correlation C̃12(r, y),
which is smaller in magnitude than R̃12( y, r) for all y and all r 	= 0.

Inheriting the sign of the one-point Reynolds shear stress means that for the two-point
Reynolds shear stress, sweeps and ejections are contributing to its negative sign. However,
the two-point correlation C̃12(r, y) reduces the proportion of this contribution. Assuming
that fluctuating velocities may be approximately aligned within sweep and ejection
events, particularly for the smaller values of r, we now use the DNS data to calculate
correlations between u2 and u1 at two different points ξ+ and ξ− conditionally on
u+ · u− > 0 for aligned pairs of fluctuating velocities and conditionally on u+ · u− <

0 for anti-aligned pairs. We compute the resulting solid angle-integrated conditional
correlations which we plot in figure 3(a,b) normalised by |R̃12( y, r)|, and identify them
by (⇒) for the aligned and (�) for the anti-aligned condition. For both Reynolds
numbers and for all wall distances tested, the conditional correlations are increasing
functions of r, but positive when the condition is anti-alignment and negative when the
condition is alignment. Anti-alignment, which is not so expected within sweeps and
ejections (but may be linked to sweep-ejection pairs), increases the magnitude of the
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Figure 3. (a,b) C̃12/|R̃12| integrated over the whole sphere in black lines, conditionally integrated over
anti-aligned pairs in blue lines and conditionally integrated over aligned pairs in red lines: (a) Reτ = 932;
(b) Reτ = 2003. (c,d) Similarly for C12/|R12|. Wall-normal distance is increased from light to dark colours as
in figure 1.

negative value of S̃12(r, y), particularly at the larger separations r, whereas alignment,
presumably more present within sweeps and ejections, actually contributes to reduce the
magnitude of the negative value of S̃12(r, y). As a result, the part of −S̃12(r, y) that is
conditional on aligned fluctuating velocities is smaller than the part of −S̃12(r, y) that
is conditional on anti-aligned fluctuating velocities, particularly at values of r larger
than the Taylor length-scale (see figure 4). The actual role of the Taylor length appears
in § 6.

The two-point Reynolds shear stress determines two-point turbulence production via
S12(r, y) in the intermediate y-region (see (4.8)). Our results on S̃12(r, y), R̃12( y, r)
and C̃12(r, y) and their signs carry over qualitatively to S12(r, y), R12 ≡ 2

∫ 〈u+
2 u+

1 〉[1 −
(r2/2y)2]−1 dΩr and C12(r, y) ≡ 2

∫ 〈u+
2 u−

1 〉[1 − (r2/2y)2]−1 dΩr (with differences only
at values of r close to 2y because of the factor [1 − (r2/2y)2]−1 in the integrands which
tends to infinity for r2 → 2y, see figures 3(c,d) and 4(c,d) and compare them respectively
with figures 3(a,b) and 4(a,b)). The two-point turbulence production is therefore positive
for all r ≤ 2y and all y in the intermediate range mainly because one-point turbulence
production is positive even though two-point correlations conditioned on aligned
fluctuating velocities act to reduce this positivity. Two-point correlations conditioned on
anti-aligned fluctuating velocities enhance the positive two-point turbulence production
particularly at the larger separations r.
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Figure 4. (a,b) S̃12 integrated over the whole sphere in black lines, conditionally integrated over anti-aligned
pairs in blue lines and conditionally integrated over aligned pairs in red lines: (a) Reτ = 932; (b) Reτ = 2003.
(c,d) Similarly for S12. Wall-normal distance is increased from light to dark colours as in figure 1. The Taylor
length λ is defined in § 6.3.

6. Interscale transfer rate

Having analysed the production term in the scale-by-scale turbulence energy balance (4.1),
we now turn our attention to the interscale transfer rate (4.2) and the viscous diffusion
terms (4.3). We adapt to the scale-by-scale turbulence energy balance (4.9) (which we
derived from (4.1)) the matched asymptotic expansion approach that Lundgren (2002) used
to study freely decaying homogeneous isotropic turbulence, a very different flow from FD
TCF.

The starting point is the hypothesis that S2, S3 and S12 have similarity forms, namely,

S2(r, y) = v2( y)s2(r/l( y), y), (6.1)

S3(r, y) = v3( y)s3(r/l( y), y), (6.2)

S12(r, y) = v2( y)s12(r/l( y), y), (6.3)

in terms of a characteristic velocity v and a characteristic length l both of which depend on
wall-normal distance y. In §§ 6.1 and 6.2, this hypothesis is made for small scales r � lo
in terms of an inner characteristic velocity v = vi and an inner characteristic length l = li,
and is also made for large scales r � li in terms of an outer characteristic velocity v = vo
and outer characteristic length l = lo.

From the one-point balance between average turbulence production −〈u1u2〉(dU1/dy)
and average turbulence dissipation in the intermediate range δν � y � δ, it is classically
claimed, by assuming validity of the log law for the mean flow and its consequence on
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the one-point Reynolds shear stress, that the turbulence dissipation rate equals u3
τ /(κy)

(e.g. see Pope 2000). Even though there are deviations from both the log law and this
dissipation scaling (e.g. Dallas, Vassilicos & Hewitt 2009; Vassilicos et al. 2015), we use
here the relation εv = 4u3

τ /(κy) as an acceptable approximation (in all figures, however,
εv is computed from the numerical data).

With εv = 4u3
τ /(κy) and similarity forms (6.1), (6.2) and (6.3), the balance (4.9)

becomes

κ

4
v3( y)

u3
τ

s3(r/l( y))
r/y

− 3κy2

32πr3y+

∫ r

0
ρ2

d2
[
v2( y)

u2
τ

s2(ρ/l( y))
]

dy2 dρ

− 3κy2

4πry+
d
dr

[
v2( y)

u2
τ

s2(r/l( y))
]

≈ −1 − 3
16πr3

∫ r

0
ρ2 v2( y)

u2
τ

s12(ρ/l( y)) dρ, (6.4)

where y+ ≡ y/δν = uτ y/ν is a naturally appearing local Reynolds number. The functions
s2, s3 and s12 have also explicit dependencies on y in (6.4), (6.5) and (6.10), which are
omitted to lighten notation.

In the limit y+ � 1 within the intermediate range δν � y � δ, which of course also
requires the limit Reτ = δ/δν � 1, we consider separately outer similarity with outer
variables v = vo and l = lo for r � li, and inner similarity with inner variables v = vi
and l = li for r � lo.

6.1. Outer similarity
For r large enough, i.e. r � li( y) (where the inner length-scale li is to be determined),
the most natural choice for outer variables is v = vo = uτ and l = lo = y given that
the distance to the wall should somehow determine the size of large eddies and that
their characteristic velocity should scale with the skin friction velocity. With these outer
variables, (6.4) becomes

κ

4
s3(r/y)

r/y
− 3κy2

32πr3y+

∫ r

0
ρ2 d2[s2(ρ/y)]

dy2 dρ − 3κy2

4πry+
d
dr

[s2(r/y)]

≈ −1 − 3
16πr3

∫ r

0
ρ2s12(ρ/y) dρ. (6.5)

In the limit y+ � 1, viscous diffusion (the second and third terms on the left-hand side)
tends to 0 as 1/y+ compared with the other terms. This equation therefore suggests outer
asymptotic expansions in integer powers of 1/y+, which means that the outer similarity
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functions s2, s3 and s12 may be approximated as

so
2(r/y, y+) = so,0

2 + 1
y+ so,1

2 + · · · (6.6)

so
3(r/y, y+) = so,0

3 + 1
y+ so,1

3 + · · · (6.7)

so
12(r/y, y+) = so,0

12 + 1
y+ so,1

12 + · · · (6.8)

with leading orders obeying

κ

4
so,0

3 (r/y)
r/y

≈ −1 − 3
16πr3

∫ r

0
ρ2so,0

12 (ρ/y) dρ. (6.9)

The leading order outer scale-by-scale energy balance is therefore a balance
between interscale transfer, turbulence dissipation and two-point turbulence production.
(Turbulence dissipation appears in this outer balance essentially because the scale-by-scale
energy balance that we consider concerns the sphere-averaged second-order structure
function which is cumulative with increasing r.)

6.2. Inner similarity
For r small enough, i.e. r � lo = y, we seek inner variables of the form v2

i = v2
o(1/y+)a =

u2
τ (1/y+)a and li = lo(1/y+)b = y(1/y+)b, where the exponents a, b are positive because

inner variables should tend to 0 relative to outer ones in the limit where the local Reynolds
number y+ tends to infinity. With such variables, (6.4) becomes

κ

4

(
1

y+

)3a/2−b s3(r/li)
r/li

− O

[(
1

y+

)a+3−2b
]

− 3κ

4π

(
1

y+

)a+1−2b s′
2(r/li)
r/li

≈ −1 − 3
16πr3

∫ r

0
ρ2

(
1

y+

)a

s12(ρ/li) dρ, (6.10)

where s′
2(r/li) is the derivative of s2 with respect to r/li. In the limit y+ � 1, the

two-point turbulence production rate tends to 0 as (1/y+)a compared with the dissipation
rate which is represented in this equation by −1 on the right-hand side. At inner
scales, the leading order scale-by-scale turbulence energy balance must therefore involve
interscale energy transfer and viscous diffusion to balance dissipation, which implies
(3a/2) − b = 0 = a + 1 − 2b and therefore a = 1/2 and b = 3/4. In the limit y+ → ∞,
i.e. y+ � 1, this equation therefore suggests inner asymptotic expansions in integer powers
of (1/y+)a = (1/y+)1/2, which means that the inner similarity functions s2, s3 and s12 may
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be approximated as

si
2(r/li, y+) = si,0

2 +
(

1
y+

)1/2

si,1
2 + · · · , (6.11)

si
3(r/li, y+) = si,0

3 +
(

1
y+

)1/2

si,1
3 + · · · , (6.12)

si
12(r/li, y+) = si,0

12 +
(

1
y+

)1/2

si,1
12 + · · · (6.13)

with leading orders obeying

κ

4
si,0

3 (r/li)
r/li

≈ −1 − 3κ

4π
si,0′

2 (r/li), (6.14)

where si,0′
2 (r/li) is the derivative of si,0

2 with respect to r/li. The leading order inner
scale-by-scale energy balance is therefore a balance between interscale transfer, turbulence
dissipation and viscous diffusion.

The values a = 1/2 and b = 3/4 that we derived imply that the inner variables are in
fact Kolmogorov inner variables, i.e. vi = uη ≡ (νεv)1/4 and li = η ≡ (ν3/εv)1/4 (using
εv = u3

τ /(κy)).

6.3. Intermediate matching

Starting with the second-order structure function S2, matching the leading term u2
τ so,0

2 (r/y)
of its outer expansion for r � η with the leading term u2

τ (1/y+)1/2si,0
2 (r/η) of its inner

expansion for r � y leads to

S0
2 ∼ (εvr)2/3 (6.15)

as the overlapping part of the leading order in the intermediate range η � r � y.
Similarly,

S0
12 ∼ (εvr)2/3 (6.16)

is the overlapping part of the leading order in the intermediate range η � r � y for S12.
It may be interesting to note, in passing, the difference compared to turbulence

non-homogeneities with negligible turbulence production but non-negligible spatial
turbulence transport, such as in certain turbulent wake regions where Chen & Vassilicos
(2022) have shown that a second-order structure function scales as ∼ K(r/L)2/3, where K
is the one-point kinetic energy, L is an integral length scale and turbulence dissipation does
not scale as K3/2/L. Note that the K3/2/L scaling is effectively the scaling assumed here for
εv because, in the range δν � y � δ considered here, the turbulent kinetic energy scales
as u2

τ plus logarithmic corrections in y (see Townsend 1976; Dallas et al. 2009) which we
neglect, and because there are integral length scales in FD TCF which are proportional
to y, see Apostolidis et al. (2022). The types of non-homogeneity considered by Chen &
Vassilicos (2022) are opposite to those considered here where spatial turbulence transport
is negligible but turbulence production is not.
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To obtain the leading order of S3, and therefore of the interscale transfer rate Πv via
(4.2), we use (6.9) and (6.14). From the leading order outer balance, (6.9) follows

So,0
3 ≈ −εvr(1 − A(r/y)2/3), (6.17)

where A is a dimensionless constant, and from the leading order inner balance, (6.14)
follows

Si,0
3 ≈ −εvr(1 − B(r/η)−4/3), (6.18)

where B is another dimensionless constant. The composite leading order (see Van Dyke
1964; Cole 1968; Hinch 1991) written directly for the interscale transfer Πv = S3/r is
So,0

3 /r plus Si,0
3 /r minus their common part −εv , i.e.

Πv ≈ −εv(1 − A(r/y)2/3 − B(r/η)−4/3), (6.19)

where we now omit superscripts for ease of notation.
This last equation has the following two verifiable implications, both of which are

relatively easy to verify with the DNS data at our disposal. First, it implies that the value
of r where Πv/εv is minimal and closest to the Kolmogorov equilibrium value −1 is

rmin ∼
√

δνy ∼ λ (6.20)

based on the definition λ2 ≡ 10νK/ε (already used by Dallas et al. (2009) in the context of
FD TCF), and on K ∼ u2

τ and ε ∼ u3
τ /y being good enough approximations in the present

context for δν � y � δ. Conclusions such as (6.19) and (6.20) have recently been obtained
by Zimmerman et al. (2022) for the centreline of FD TCF and central axis of turbulent pipe
flow where turbulence production is effectively absent.

Second, (6.19) also implies that the value (Πv/εv)min of Πv/εv at r = rmin obeys

1 + (Πv/εv)min ∼ y+−1/3 ∼ Re−2/3
λ , (6.21)

where Reλ = √
Kλ/ν. Consistent with our averages over spheres in r-space, these

definitions of λ and Reλ ignore some anisotropies of FD TCF. It is possible to
define different Taylor lengths for different directions so as to take explicit account of
anisotropies, which is an approach we have taken in another study (Yuvaraj 2022). It
may be noteworthy that the Corrsin length (Sagaut & Cambon 2018) does not appear
spontaneously from our analysis, whereas the Kolmogorov and Taylor lengths do. The
reason for this absence of the Corrsin length is that it equals κy at the approximation level
of our theory in the intermediate layer δν � y � δ and is therefore comparable to the
outer bound of the range r ≤ 2y considered here.

In conclusion, the non-homogeneous but statistically stationary case of FD TCF in
the intermediate layer δν � y � δ is such that Kolmogorov equilibrium is achieved
asymptotically around λ and therefore not quite in an inertial range given that λ depends
on viscosity, and that there is a systematic departure from equilibrium when moving
away from λ, both towards L and towards η, see (6.19). (Note, however, that the non-zero
deviation from Kolmogorov equilibrium as Reynolds number tends to infinity for a fixed
small value of r/y or for a fixed large value of r/η (necessarily smaller than λ/η in
the limit) is small.) This is the same conclusion that the analysis of Lundgren (2002)
reached for freely decaying, i.e. non-stationary, but statistically homogeneous and isotropic
turbulence far from initial conditions. Two-point turbulence production (which increases
with r as confirmed in the following section) and its variation with wall-normal distance
play a similar role in FD TCF as the rate of decay of the second-order velocity structure
function (which increases with r because unsteadiness increases with r) and its variation
with time.
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Figure 5. Interscale transfer rate Π (blue lines) and production rate P (red lines), integrated over the volume
of sphere with radius r, normalised by the volume integral of the two-point dissipation rate ε as a function of
r/λ. Wall-normal distance is increased from light to dark colours. (a) For Reτ = 932 and (b) for Reτ = 2003.

7. Comparison with DNS data for FD TCF

In this section, we compare the theory of the previous sections with the DNS data
described in § 3.

In figure 5(a,b), we plot the two-point turbulence production rate Pv and the interscale
transfer rate Πv , both normalised by the turbulence dissipation rate εv . We plot them vs
r/λ because of our prediction that the value of r, where Πv/εv is minimal, scales with λ.
The maximum values of r in the plots are bounded by 2y because of wall-blocking. We
see that the normalised two-point turbulence production rate Pv/εv increases from close
to 0 to a little under 1 as r increases from 0 to 2y. This is evidenced for a wide range of
wall-normal distances y and for both Reynolds numbers at our disposal. It makes sense
that the two-point turbulence production acts as a generation of turbulent kinetic energy at
the larger r scales but decreasingly so at smaller and smaller scales till it vanishes at the
very smallest ones.

It is also clear from figure 5(a,b) that Πv is negative for all scales and wall distances,
indicating a forward, on average, energy cascade for r < 2y. Furthermore, Πv/εv has a
minimum at rmin close to λ for a wide range of y within δν � y � δ and for both Reynolds
numbers. This confirms our prediction (6.20) as can be seen in figure 6(a) where we plot,
in blue, rmin/λ vs y+ for both Reynolds numbers and find that rmin ≈ 1.2λ. One also
sees in figure 5(a,b) that (Πv/εv)min increases in magnitude with increasing y+ and with
increasing Reτ . This is confirmed in figure 6(b) where we plot, in blue, 1 + (Πv/εv)min
vs Reλ confirming that −(Πv/εv)min increases towards 1 following our prediction 6.21,
which collapses both the y+ and the Reτ dependencies of −(Πv/εv)min. Note, in passing,
that the values of Reλ are not so high for the present Reτ values of approximately 1000
to 2000: they range from approximately 50 to 120 (and in fact reach no more than a
maximum of 200 at the outer edge of the intermediate y-range if Reτ is pushed up to
5200 as Apostolidis et al. 2022 also found).

The imbalance seen in figure 5 between Πv and εv is a clear indication that other
processes in the scale-by-scale energy budget are active. The theoretical arguments of
§§ 6.1 and 6.2 concluded that the scale-by-scale balance is approximately Πv − Pv ≈ −εv

at the outer scales and Πv − Dv
r ≈ −εv at the inner scales. This prediction is made in the
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of 1 + (Πv/εv)min, in blue, as a function of Reλ. Dashed line shows a scaling of Re−2/3

λ . Circle markers for
Reτ = 932; square markers for Reτ = 2003.
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Figure 7. (a,b) (Πv − Pv)/εv as a function of r/y: (a) for Reτ = 932 and (b) for Reτ = 2003. (c,d) (Πv −
Dv)/εv as a function of r/η: (c) for Reτ = 932 and (d) for Reτ = 2003. Wall-normal distance is increased from
light to dark colours.

limit Reτ = δ/δν � 1 and δν � y � δ and, as the values of Reλ suggest, the Reynolds
numbers in the DNS data we are using may not be high enough. Nevertheless, figure 7(a,b)
does reveal some tendency for (Πv − Pv)/εv to collapse as a function of r/y and tend
towards −1 at the higher values of r/y as y+ grows, in particular for the higher of
our two Reynolds numbers Reτ . Furthermore, figure 7(c,d) reveals some tendency for
(Πv − Dv

r )/ε
v to collapse as a function of r/η as y+ grows and even to tend towards

−1 at the smallest values of r/η.
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Figure 8. S12 in orange colours (multiplied by a factor of 3 for ease of comparison) and S2 in marine colours
normalised with u2

τ (r/y)2/3 as a function of (a,b) r/y and of (c,d) r/η: (a,c) for Reτ = 932; (b,d) for Reτ =
2003. Wall-normal distance is increased from light to dark colours.

Finally, we compare the high-Reynolds-number predictions (6.15), (6.16) and (6.19)
with the DNS data. In figure 8(a,b), we plot S2/u2

τ (r/y)2/3 and S12/u2
τ (r/y)2/3 vs r/y

to test outer scalings and in figure 8(c,d), we plot the same quantities vs r/η to test inner
scalings. Note that we use u3

τ /y as an estimate of εv . Our DNS data lend more support
to our r2/3 prediction for S12 than for S2, and a better outer collapse in terms of r/y of
S12/u2

τ (r/y)2/3 than S2/u2
τ (r/y)2/3. However, the inner collapse in terms of r/η appears

better for S2/u2
τ (r/y)2/3 than S12/u2

τ (r/y)2/3. At any rate, the values of Reλ are quite low
in the DNS data used here for a conclusive comparison between these data and theoretical
predictions made in the double limit Reτ → ∞, y+ → ∞ (i.e. Reλ ∼ λ/δν ∼ ( y+)1/2 →
∞) with the constraint y � δ. In fact, even at the very lowest/leading order, our predictions
(6.15), (6.16) are incomplete as they should have corrections in terms of powers of r/η and
r/y which are beyond the present theory and which surely matter in comparisons with
DNS data.

We close this section with a comparison in figure 9 of (6.19) with the DNS data which
is clearly better for Reτ = 2003 than Reτ = 932.

8. Interscale transfer decompositions

The two main conclusions of the previous sections concern (i) the importance of the Taylor
length in defining the scale where the normalised interscale transfer rate Πv/εv has a
minimum and is closest to the equilibrium value Πv/εv = −1 and (ii) the importance of
sweeps and ejections but also of aligned and anti-aligned pairs of fluctuating velocities
in determining the sign and magnitude of the two-point turbulence production rate Pv .
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Figure 9. Rearrangement of (6.19) vs r/y: (a) for Reτ = 932; (b) for Reτ = 2003. Wall-normal distance is
increased from light to dark colours.

Looking at (4.2), we start this section by asking whether aligned and anti-aligned pairs of
fluctuating velocities also directly affect the interscale transfer rate Πv .

8.1. Aligned/anti-aligned decomposition
Equation (4.2) shows that a scale-space flux and a cascade from large to small or from
small to large scales correspond to a negative or positive (3/4π)

∫ 〈(r̂ · δu/r)|δu|2〉 dΩr
and contributes a growth or decrease of TKE at scales r and smaller (see Chen &
Vassilicos 2022). Local compression, i.e. δu · r̂ < 0, causes local forward cascade and
local stretching, i.e. δu · r̂ > 0, causes local inverse cascade. Our observation that Πv is
negative at all scales means that local compressions prevail at all scales, but are they mostly
caused by aligned or anti-aligned pairs of fluctuating velocities? This question introduces
our first decomposition, namely

Πv = Πv
⇒ + Πv

� = 3
4π

∫ 〈
δu · r̂

r
|δu|2

〉
⇒

dΩr + 3
4π

∫ 〈
δu · r̂

r
|δu|2

〉
�

dΩr, (8.1)

where Πv
⇒ and Πv

� are respectively equal to the first and second terms on the left-hand
side which are calculated using averages 〈· · · 〉⇒ conditional on u+ · u− > 0 and averages
〈· · · 〉� conditional on u+ · u− < 0.

Compressive and stretching relative motions may not balance in terms of energy transfer,
resulting in a non-vanishing Πv , but they do balance in terms of mass transfer because of
incompressibility which implies

∫
δu · r̂ dΩr = 0. Hence,∫

〈δu · r̂〉⇒ dΩr +
∫

〈δu · r̂〉� dΩr = 0. (8.2)

In figure 10, we plot both terms on the left-hand side of this equation as functions of
r for various wall distances y. We also plot

∫
δu · r̂ dΩr for comparison and as a check

that it is indeed zero in the DNS irrespective of r and y. The first observation is that
aligned fluctuation pairs are stretching relative motions on average given the positive sign
of

∫ 〈δu · r̂〉⇒ dΩr. The joint PDFs of figure 11 show that relative motions of aligned
fluctuation pairs are stretching as a result of δu having a tendency to be directed in the same
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Figure 10.
∫ 〈δu · r̂〉dΩr integrated over the whole sphere in black lines, conditionally integrated over

anti-aligned pairs in marine colours, and conditionally integrated over aligned pairs in orange colours.
Wall-normal distance is increased from light to dark colours. (a) Reτ = 932, (b) Reτ = 2003. (c) r/λ positions
of the minima/maxima observed in panel (a) as a function of wall-distance y+ for Reτ = 932, similarly in panel
(d) for Reτ = 2003.

direction as the separation vector r for pairs of aligned fluctuating velocities. This tendency
weakens with increasing r irrespective of wall distance y and, consistently,

∫ 〈δu · r̂〉⇒ dΩr
tends to 0 with increasing r.

The second observation in figure 10 is that anti-aligned fluctuation pairs are compressing
relative motions, on average, given the negative sign of

∫ 〈δu · r̂〉� dΩr. Looking at
figure 11, it does not seem possible to explain this behaviour purely in terms of velocity
directions. However, the joint PDFs of figure 12 reveal that the range of values over which
δu · r̂ fluctuates around zero is much wider for anti-aligned than for aligned fluctuations.
This effect has to do with the intensity of the fluctuating velocities, not only their relative
directions. This very wide fluctuation range is slightly skewed towards negative values
of δu · r̂ for pairs of fluctuating velocities which are anti-aligned, thereby accounting for
the compressive average behaviour of anti-aligned pairs (u+ · u− < 0). This skewness
diminishes with increasing r irrespective of wall distance y and, consistently,

∫ 〈δu ·
r̂〉� dΩr tends to 0 with increasing r. Note, finally, that it is far more likely to find aligned
(u+ · u− > 0) than anti-aligned (u+ · u− < 0) pairs as figure 11 shows.

The third observation in figure 10 is that
∫ 〈δu · r̂〉� dΩr has a minimum at r = rm near

rmin ≈ 1.2λ for all y and that
∫ 〈δu · r̂〉⇒ dΩr has a maximum at the same value r = rm

for all y. As seen in the previous two sections, rmin is the value of r where Πv/εv has
its minimum. In figure 10(c,d), we plot the positions r of the maxima and minima in
figure 10 vs wall distance for both DNS Reynolds numbers at our disposal. It is quite
striking that, for all wall distances and both Reynolds numbers tried,

∫ 〈δu · r̂〉� dΩr and∫ 〈δu · r̂〉⇒ dΩr peak at r = rm close to the value r = rmin, where Πv/εv peaks and is
closest to the equilibrium −1 value. Even though rm drifts slightly from rmin ≈ 1.2λ at
relatively high wall-normal distances, the suggestion is that, in the layer δν � y � δ of FD

967 A22-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

48
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.487


A. Apostolidis, J.P. Laval and J.C. Vassilicos

–1

–1

0

1
0

0.005

0 1 –1 0 1 –1

–1

0

1
0

0.005

0 1 –1 0 1

r/λ = 1.05 r/λ = 2.91 r/λ = 1.10 r/λ = 3.43

δu ∙ r̂/|δu| δu ∙ r̂/|δu|

u–
 u

+
 /
�|

u–
|2

|u
+
|2

u+ u– > 0
u+ u– > 0

u+ u– < 0 u+ u– < 0

u+ u– > 0
u+ u– > 0

u+ u– < 0 u+ u– < 0

–1 –1

–1

0

1
0

0.005

0 1

10–110–2 10010–110–2 100

0 1 –1

–1

0

1
0

0.005

0 1 –1 0 1

r/λ = 0.38 r/λ = 0.57 r/λ = 0.35 r/λ = 0.56

u+ u– > 0 u+ u– > 0
u+ u– < 0 u+ u– < 0

u+ u– > 0 u+ u– > 0
u+ u– < 0 u+ u– < 0

Reτ = 932

P/Pmax( y+ = 257)

Reτ = 2003

P/Pmax( y+ = 456)(a) (b)

Figure 11. Joint probability distribution functions (JPDFs) of δu · r̂/|δu| and u−u+/
√

|u+|2|u−|2. (a) For
Reτ = 932 and wall-distance y+ = 257, four different JPDFs with increasing scale r/λ = 0.38, 0.57, 1.05
and 2.91. (b) Similarly for Reτ = 2003 and wall-distance y+ = 456, the JPDFs correspond to scales r/λ =
0.35, 0.56, 1.10 and 3.43. The joint PDFs are normalised with their maximum value. Above each JPDF, we
also plot the conditional PDF of δu · r̂/|δu|, conditioned on aligned (red lines) and anti-aligned (blue lines)
pairs.

TCF, Kolmogorov-like equilibrium may be achieved at those length scales r where aligned
fluctuating velocities are stretching with their difference δu maximally or near-maximally
aligned with the separation vector r and where anti-aligned fluctuations are maximally or
near-maximally skewed towards large negative values of δu · r̂. This is a conclusion that is
well beyond the reach of the theory in § 6 but which we might not have been able to reach
without it. (We refer to Kolmogorov-like rather than Kolmogorov equilibrium because the
scale rmin is proportional to the Taylor scale and therefore depends on viscosity.)

It is shown in § 5 that anti-aligned fluctuation pairs enhance the positive two-point
turbulence production rate in the layer δν � y � δ of FD TCF: we have now seen that
these anti-aligned fluctuation pairs are, on average, compressive and figure 13 shows
that Πv

� is consistently negative, indicating forward cascade. Therefore, anti-aligned
fluctuations do not only enhance the two-point production rate at all r, they also contribute
a forward cascade at all r in the layer δν � y � δ of FD TCF. Note, however, that the
minimum value of Πv

� is not at r = rmin, where Πv/εv has its minimum value and is
closest to the equilibrium −1 value. In fact, the r-position of the minimum value of Πv

�
does not scale with λ. The scaling of rmin therefore requires taking into account both
aligned and anti-aligned fluctuations.
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Figure 12. Joint probability distribution functions (JPDFs) of δu · r̂ and u−u+. (a) For Reτ = 932
and wall-distance y+ = 257, four different JPDFs with increasing scale r/λ = 0.38, 0.57, 1.05 and 2.91.
(b) Similarly for Reτ = 2003 and wall-distance y+ = 456, the JPDFs correspond to scales r/λ =
0.35, 0.56, 1.10 and 3.43. The joint PDFs are normalised with their maximum value, while the values of the x
and y axis are normalised with their own standard deviations.
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Figure 13. Decomposition of the interscale transfer term Πv (black lines) into Πv
� (blue lines) and Πv

⇒ (red
lines): (a) Reτ = 932; (b) Reτ = 2003. Wall-normal distance is increased from light to dark colours.

Aligned fluctuation pairs impose a loss of energy on scales smaller than r by mean flow
interaction with turbulence fluctuations and thereby reduce the one-point effect of sweeps
and ejections on the two-point turbulence production rate (see § 5). We have now seen that
aligned fluctuation pairs are on average stretching, which would suggest the presence of
an average inverse cascade element to the interscale transfer rate Πv

⇒. Figure 13 shows
that Πv

⇒ is positive (though only slightly so), and an average inverse cascade by aligned
fluctuations is indeed present at scales r larger than approximately 2 to 3 times λ for the
Reynolds numbers of the DNS data used here. However, figure 13 also shows that Πv

⇒ is
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negative at smaller scales. Stretching aligned fluctuating motions at scales of the order of
the Taylor length and below may dominate over compressive aligned fluctuating motions,
on average, but they do not dominate interscale energy transfer at these scales. There is no
contradiction with the positive values of

∫ 〈δu · r̂〉⇒ dΩr in figure 10. The different signs
of this solid angle integral and the solid angle integral in the definition of Πv

⇒ (see (8.1))
are an effect of small-scale anisotropies over which we are averaging. Future studies of
interscale transfers in FD TCFs will need to take these anisotropies into account for a finer
description of the physics.

Finally, comparing the plots of Πv in figure 5 with those of Πv
⇒ and Πv

� in figure 13
shows that Πv

� dominates over Πv
⇒ at scales of the order of λ and larger, and is

mostly responsible for the value of Πv . At smaller scales, however, Πv
⇒ becomes equally

important and of the same negative sign as Πv
� so that the actual negative value of Πv

cannot be accounted for by only one or the other: the interscale turbulence energy transfers
of both aligned and anti-aligned fluctuations matter.

8.2. Homogeneous/Inhomogeneous energy transfer decomposition
As already mentioned at the start of § 8.1, the right-hand side (3/4π)

∫ 〈(r̂ · δu/r)
|δu|2〉dΩr of (4.2) shows that local compression, i.e. δu · r̂ < 0, causes local forward
cascade, whereas local stretching, i.e. δu · r̂ > 0, causes local inverse cascade (see also
§ 2 of Chen & Vassilicos 2022). These compressions and stretches may be caused either
by turbulence inhomogeneities or by correlated ‘eddy’ motions. In an attempt to formalise
this distinction, Alves Portela, Papadakis & Vassilicos (2020) decomposed the interscale
energy transfer rate Π = (∂/∂ri)(δui|δu|2) as follows:

∂

∂ri
(δui|δu|2) = ∂

∂ri
[δui(|u+|2 + |u−|2)] − 2

∂

∂ri
(δuiu− · u+), (8.3)

where the first term on the right-hand side can be rigorously recast into a gradient in
centroid x-space leading to

∂

∂ri
(δui|δu|2) = 1

2
∂

∂xi
[u+

i |u+|2 + u−
i |u−|2 − u−

i |u+|2 − u+
i |u−|2]

− 2
∂

∂ri
(δuiu− · u+). (8.4)

Here, ΠI ≡ 1
2(∂/∂xi)[u+

i |u+|2 + u−
i |u−|2 − u−

i |u+|2 − u+
i |u−|2] is interpreted as an

inhomogeneity-related interscale turbulent energy transfer rate. In statistically homogeneous
turbulence, the average 〈ΠI〉 is indeed zero and the interscale turbulent energy transfer rate
is only accountable to ΠH ≡ −2(∂/∂ri)(δuiu− · u+) on average.

Integrating Π , ΠI and ΠH over the sphere of radius r in r-space to obtain Πv , Πv
I and

Πv
H , respectively, and then applying the Gauss divergence theorem, we obtain

Πv = Πv
I + Πv

H = 3
4π

(∫ 〈
δu · r̂

r
(|u+|2 + |u−|2)

〉
dΩr

−2
∫ 〈

δu · r̂
r

(u− · u+)

〉
dΩr

)
. (8.5)

This decomposition is partly related to that in § 8.1 because Πv
H is linearly dependent on

correlations between δu · r̂ and u− · u+, and the sign of u− · u+ indicates whether velocity
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Figure 14. Interscale transfer rate (blue lines), inhomogeneous part Πv
I (red lines) and homogeneous part Πv

H
(green lines), all integrated over the volume of a sphere and normalised by the dissipation rate integrated over
the volume of the sphere as a function of r/λ. Wall-normal distance is increased from light to dark colours.
(a) For Reτ = 932 and (b) for Reτ = 2003.

fluctuation pairs are aligned or anti-aligned, which is the basis of decomposition (8.1).
Whilst it follows immediately from (8.4) that Πv

I = 0 if the term inside the x-gradient in
that equation is statistically homogeneous, (8.5) shows that Πv

I = 0 if δu · r̂ and (|u+|2 +
|u−|2) are uncorrelated and if (|u+|2 + |u−|2) is statistically homogeneous. Of course,
this is not the only and necessary way for Πv

I to vanish. In particular, there may be cases
of non-homogeneity for which Πv

I vanishes too, for example, cases where Πv
I vanishes

but ΠI does not.
In figure 14, we plot the terms Πv

I and Πv
H in 8.5 normalised by the volume integral of

the dissipation. For both Reynolds numbers, we observe that Πv
H dominates and describes

almost perfectly the full interscale transfer Πv for all scales r ≤ 2y in the intermediate
range of the channel (y between multiples of δν and approximately half δ). The average
interscale transfer from large to small scales is nearly fully described by the negative
value of Πv

H and the inhomogeneity-related interscale transfer rate Πv
I is close to zero.

In a different non-homogenous turbulent flow, the turbulent wake of a square prism,
Alves Portela et al. (2020) found a significant contribution of the inhomogeneity-related
interscale transfer rate to the total interscale transfer rate. It is therefore not trivial that in
FD TCF, Πv

I is negligible compared to Πv
H in spite of the statistical non-homogeneity of

the FD TCF. However, this is partly an artefact of the integration over spheres in r-space
which we apply to ΠI to obtain Πv

I . If we lift this integration and use the DNS data to
compute ΠI( y, r1, r2, r3) as a function of r2/y for various values of wall-normal distance
y and various values of r1 and r3, we find (figure 15) that ΠI( y, r1, r2, r3) is close to 0 and
negligible in most cases except for ‘attached eddies’, i.e. for values of r2 relatively close
to 2y (wall blocking implies r2 ≤ 2y) where it is positive, thereby potentially reflecting
interscale transfer from small to large scales (similarly to Cimarelli et al. 2016; Cho,
Hwang & Choi 2018) except for r2 near-equal to 2y where it is negative. The non-vanishing
inhomogeneity-related interscale transfer of ‘attached eddies’ is averaged out when we
integrate ΠI to obtain Πv

I .
Returning to Πv

H and the fact that it has very similar dependencies on r and y as Πv ,
we note, in particular, that Πv

H has a minimum at the near same r ≈ rmin where Πv has
a minimum, and even that the minimum value of Πv

H closely obeys the same relation
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Figure 15. Π (blue markers), ΠI (red lines) and ΠH (green lines) normalised with the two-point dissipation
rate ε vs the wall-normal scale r2 divided with y. (a) Reτ = 932, from left to right we increase the streamwise
scale r1 and from top to bottom the spanwise scale r3. (b) Similarly for Reτ = 2003. Wall-normal distance is
increased from light to dark colours.

(6.21) that Πv
min obeys (see figure 16). As seen in § 6, the two-point separation scale

r = rmin demarcates between smaller values of r where Πv is balanced by dissipation
and viscous diffusion and larger values of r where Πv is balanced by dissipation and
two-point turbulence production. However, the theory of § 6, which is conclusive for Πv ,
has no say on Πv

H and can therefore not explain our observation that Πv
H behaves very

much like Πv . We therefore adopt a different point of view from that in § 6 and look
at PDFs of instantaneous (in time) and local (in (x, z) planes) interscale transfer rates
πv ≡ (3/4π)

∫
(δu · r̂/r)|δu|2 dΩr, πv

H ≡ −(3/2π)
∫
(δu · r̂/r)(u− · u+) dΩr and πv

I ≡
(3/4π)

∫
(δu · r̂/r)(|u+|2 + |u−|2) dΩr. Clearly, Πv = 〈πv〉, Πv

H = 〈πv
H〉 and Πv

I =
〈πv

I 〉.
In figure 17, we plot examples of PDFs of πv , πv

H and πv
I for a couple of wall distances

y within the intermediate range δν � y � δ and for different values of separation scale
r to see how these PDFs evolve with varying r. As pointed out by Alves Portela et al.
(2020), at r = 0, we have Πv = Πv

H = Πv
I = 0. As r progressively increases, the PDFs

of πv and πv
H move to the left towards increasingly negative values, as shown in the insets

of figure 17(a,b,e, f ). This overall PDF drift is most pronounced at the smaller values of
r, and causes Πv and Πv

H to progressively decrease below 0 as r increases. However,
the skewnesses of the PDFs of πv and of πv

H grow from negative values close to −10
at the smallest separations r to values between −1 and even slightly positive as r grows
(see figure 18(a,b,e, f )). This evolution of the skewnesses of these two PDFs counteracts
their overall drift towards increasingly negative values and acts to bring Πv and Πv

H back

967 A22-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

48
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.487


Turbulent cascade in fully developed turbulent channel flow

200 400 600 800 1000

y+
0

0.5

1.0

1.5

r m
in

(.
)/
λ

1
 +

 (
Π

(.
)/
ε
) m

in

2.0

(Π
v
/εv)

(Π
v
/εv)

(Π
v
H/εv)

(Π
v
H/εv)

102

100

Reτ = 932 Reτ = 2003

Reλ

∼ Reλ
–2/3

(b)(a)

Figure 16. (a) Values of r/λ where minima of Πv/εv and minima of Πv
H/εv are observed as functions of wall

distance y+. (b) Values of 1 + (Πv/εv)min (in blue) and of 1 + (Πv
H/εv)min (in green), as functions of Reλ.

Dashed line shows a scaling of Re−2/3
λ . Circle markers for Reτ = 932, square markers for Reτ = 2003.

towards zero as r increases. The minima of Πv and Πv
H occur as a result of these two

counteracting tendencies, the overall drift dominating at scales r smaller than rmin and
causing Πv and Πv

H to decrease, and the decreasingly skewed PDF dominating at scales
larger than rmin and causing Πv and Πv

H to increase.
The PDF of the inhomogeneity-related interscale transfer rates πv

I is radically different
as far as skewness is concerned (see figure 18). Whilst the PDFs of both πv and πv

H are
skewed towards forward cascade events at small r and evolve with increasing r towards not
being skewed or even being slightly skewed towards inverse cascade events, the PDF of πv

I
is highly skewed towards inverse cascade events at small r and evolves very quickly with
increasing r towards not being very skewed. It remains only slightly skewed (positively
or negatively) for all permissible r larger than approximately 2λ (the word ‘permissible’
refers to r ≤ 2y). The difference is not only that the PDF of πv

I is oppositely skewed to the
PDFs of πv and πv

H at small r, but the equally if not even more important difference is
that, as r increases, the skewness of πv

I evolves much faster towards small absolute values
(which it actually reaches at r ≈ 2λ) than the skewnesses of πv

H and πv which evolve much
more gradually towards values around and larger than −1.

However, the PDF of πv
I is similar to the PDFs of πv and πv

H in that they all have an
overall drift to the left, i.e. towards forward cascading negative values, as the separation
scale r increases (see insets of plots in figure 17). In the case of the inhomogeneity-related
interscale energy transfer rate, this overall PDF drift towards forward cascade events
is counteracted at small separations r by the significant PDF skewness towards inverse
cascade events leading to small values of Πv

I . As r increases, the drift slows down, and the
skewness quickly drops to small absolute values keeping values of Πv

I small.
In conclusion, the statistics of the inhomogeneity-related interscale transfer rate πv

I are
very different from those of πv

H and πv . The PDFs of πv
I are characterised by a skewness

towards inverse cascade events at the small scales in particular, whereas the PDFs of both
πv

H and πv are characterised by a skewness towards forward cascade events at most scales.
These PDFs result in relatively small values of Πv

I and in very similar dependencies on
separation r of Πv

H and Πv . As the separation scale r decreases from large values close to
2y towards the Taylor length λ, the PDFs of both πv

H and πv become increasingly skewed
towards forward cascading events and the average values Πv

H and Πv become increasingly
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Figure 17. Probability density functions (PDFs) of (a,b) πv , (c,d) πv
I and (e, f ) πv

H normalised with their
respective maximum probability. The values of the terms are normalised with their own standard deviation.
The scale r is increased from light to dark colours. (a,c,e) Reτ = 932, (b,d, f ) Reτ = 2003. Inset is a zoom of
the area close to the maximum probability in lin–lin axes.

negative. However, as r crosses λ and tends towards even smaller separation lengths below
λ, these two PDFs drift towards inverse cascading events in their entirety, thereby bringing
the average values of Πv

H and Πv back towards zero.
These two counteracting effects of drift and skewness remain and are therefore

confirmed if we consider only the tails of the PDFs of πv
H and πv . In figure 19(a,b),

we plot the average values of πv
H and πv over the samples of relatively intense values

representing only 1 % of all samples. The average of πv
H over its relatively intense

values depends on y and r very much like Πv
H but with an order of magnitude higher values
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Reτ = 932 and (b) for Reτ = 2003.

(compare with figure 14). However, the average of πv
I over these relatively intense values

is disproportionally affected by the PDF’s positive skewness, and is therefore positive
or close to zero and higher than Πv

I in figure 14 as the cancelling effect of the drift
is overcome. To concentrate on the drift and minimise the effect of the skewness, in
figure 19(c,d), we report average values of πv

H , πv
I and πv calculated on the basis of only

the most probable part of the PDFs representing 20 % of all samples. These average values
are an order of magnitude smaller than Πv

H , Πv
I and Πv in figure 14. They are close to

zero at the smallest separations r and continuously decrease in negative values till they
more or less stabilise at large enough r, reflecting the effect of overall drift of the PDFs
towards forward interscale transfers and the fact that this drift stabilises at large enough
r. Without the skewness effect, which is not as present around the peaks of the PDFs as
in their extreme tails, these conditional averages (figure 19c,d) do not significantly return
towards 0 with increasing r and therefore look very different from Πv

H , Πv
I and Πv in

figure 14. The averages Πv
H , Πv

I and Πv in this latter figure emerge as a weighted sum of
the conditional averages in figure 19(a,b) with those in figure 19(c,d).

Note, finally, that the skewness dominated r-range of the PDFs of πv
H and πv coincides

with the r-range where Πv is balanced by turbulent dissipation rate and two-point
turbulence production. The root cause of this coincidence may be anti-aligned velocity
fluctuation pairs because they enhance two-point turbulence production (§ 5) while also
being the seat of a significant skewness towards compressive, i.e. forward cascading,
relative motions (§ 8.1). The drift of the PDFs of πv

H and πv towards inverse cascades
is in fact, a recentering of the PDFs so that their peak values move towards zero and
is mostly present in the r-range where Πv is balanced by turbulent dissipation rate
and viscous diffusion (see § 6). At these small scales comparable to λ and below, both
aligned and anti-aligned fluctuation pairs contribute significantly to Πv (see end of § 8.1)
and this may be related to the recentring of the PDFs around zero interscale transfer
rate.

9. Conclusions

In this paper, we have considered fully developed turbulent channel flow (FD TCF) and
have made theoretical predictions concerning its scale-by-scale energy balance averaged
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v,p
I (red lines) and Π

v,p
H (green lines). (a,c) For Reτ = 932, (b,d) for Reτ = 2003.

Wall-normal distance is increased from light to dark colours.

over spheres in r-space in the double limit Reτ → ∞, y+ → ∞ (i.e. Reλ ∼ λ/δν ∼
( y+)1/2 → ∞) with the constraint y � δ. At leading order, both the inner and the
outer scale-by-scale energy balances involve interscale turbulence energy transfer and
turbulence dissipation, but the inner balance is completed with viscous diffusion, whereas
the outer balance is completed with two-point turbulence production.

Previous studies already analysed the Kármán–Howarth–Monin–Hill (KHMH) equation
for FD TCF. For example, Cimarelli et al. (2013, 2016) examined the energy flux path in
reduced spaces r1, r3 and y with r2 = 0 and r2, r3, and y with r1 = 0 (or r1 = Const. in
the case of Gatti et al. (2019)). The omission of one scale-space direction prevents this
approach from accessing the full interscale transfer picture. Our methodology is different
and complementary as it does not omit any scale-space direction but integrates over
spheres in full 3-D scale space. Whilst we lose the ability to distinguish between directions
in scale space, we gain the capability to access decisive information on interscale energy
transfer and forward/inverse cascade which occur normal to the sphere’s surface in scale
space.

The intermediate layer (δν � y � δ) of FD TCF is a non-homogeneous but statistically
stationary turbulent flow region where interscale turbulence energy transfer has properties
similar to interscale turbulence energy transfer in freely decaying (i.e. non-stationary)
homogeneous turbulence far from initial conditions. This paper’s theory predicts that for
any wall-normal distance y in the intermediate layer, Kolmogorov equilibrium is achieved
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asymptotically only around the Taylor length λ (i.e. for scales which are taken to remain a
constant multiple of λ in the asymptotic limit) which is not an inertial length given that it
depends on viscosity and turbulent kinetic energy at y. A similar conclusion was reached
in previous studies of freely decaying homogeneous turbulence far from initial conditions
(Lundgren 2002; Obligado & Vassilicos 2019; Meldi & Vassilicos 2021) where, as shown
here by (6.19) for the intermediate layer of FD TCF, there are systematic departures from
Kolmogorov equilibrium for scales moving away from λ both towards the large eddy
size (here y) and towards the local (here in y) Kolmogorov length η. DNS data for FD
TDF confirm these conclusions and also confirm the specific scaling predictions (6.20)
and (6.21): namely, the interscale transfer rate has a forward cascade peak at rmin ∼ λ
where it tends with increasing Reynolds number towards minus turbulence dissipation,
i.e. Kolmogorov-type equilibrium, as Re−2/3

λ . Viscous diffusion is negligible on the large
r side of this peak whereas turbulence production is negligible on the small r side of the
peak. A similar peak (where production’s role is played by the time derivative term defined
in § 2) and similar scalings hold in freely decaying homogeneous isotropic turbulence far
from initial conditions (Lundgren 2002; Obligado & Vassilicos 2019; Meldi & Vassilicos
2021) but for slightly different though related quantities given that, here, all the terms
in the scale-by-scale turbulence energy budget are averaged over spheres of radius r in
r-space.

The DNS data show that two-point turbulence production is positive for all r ≤ 2y and
all y in the intermediate layer, and that it increases with two-point separation distance r
and decreases with increasing y. The two-point turbulence production is positive mainly
because one-point turbulence production is positive even though two-point correlations
conditioned on more or less aligned fluctuating velocities act to reduce this positivity.
Interestingly, pairs of aligned fluctuating velocities may be expected mostly within
sweeps and ejections, which are regions with a major contribution to the positivity of
one-point turbulence production (Kline & Robinson 1990; Pope 2000; Wallace 2016). The
positivity of two-point turbulence production is in fact enhanced by two-point correlations
conditioned on more or less anti-aligned fluctuating velocities, particularly at larger
separations r.

The two-point production rate is a functional (see (4.8)) of the second-order anisotropic
structure function S12 defined by (4.6). This structure function is identically zero in
homogeneous isotropic turbulence, but in the intermediate layer of FD TCF, the present
theory predicts a leading order (εvr)2/3 ∼ u2

τ (r/y)2/3 behaviour for S12 in the range
η � r � y. The DNS data provide some, though not entirely conclusive, confirmation
for this high-Reynolds-number scaling but the values of Reλ are probably not high enough
(between 50 and 120) in the DNS data used here for which Reτ is approximately 2000 in
one case and approximately 1000 in the other.

The present asymptotically high-Reynolds-number theory also leads to a leading order
scaling for the second-order structure function S2 which is similar to the centreline region
of some turbulent wakes in terms of the r2/3 part of the scaling, but different in terms of
the prefactor which is not proportional to the 2/3 power of a turbulence dissipation rate in
the centreline region of those turbulent wakes (see Chen & Vassilicos 2022). Different
types of non-homogeneity may lead to some important differences in second-order
structure function scalings, an issue which merits future attention. The non-homogeneity
in the intermediate layer of FD TCF is characterised by significant two-point turbulence
production and negligible two-point turbulent transport and pressure-velocity terms,
whereas the non-homogeneity on the centreline of turbulent wakes is inverse, i.e. turbulent
production is negligible but turbulent transport and pressure-velocity terms are not. Future
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attempts at a physically meaningful classification of non-homogeneous turbulent flows
may need to start from this paragraph’s observations.

The opposing roles played by more or less aligned and more or less anti-aligned pairs
of fluctuating velocities in shaping two-point turbulence production have motivated the
second part of our DNS study concerning their roles in shaping interscale turbulence
energy transfer in the intermediate layer of FD TCF. The interscale turbulence energy
is determined by stretching relative motions responsible for inverse transfer from small
to large scales and by compressing relative motions responsible for forward transfer
from large to small scales. It turns out that more or less aligned fluctuation pairs are
stretching relative motions on average, whereas more or less anti-aligned fluctuation pairs
are on average compressive relative motions. The relative motions of more or less aligned
fluctuation pairs are stretching on average as a result of δu having a tendency to be directed
in the same direction as the separation vector r for pairs of aligned fluctuating velocities,
a tendency which weakens with increasing r irrespective of wall distance y. The relative
motions of more or less anti-aligned fluctuation pairs are compressive on average because
the fluctuations of δu · r̂ are skewed towards negative values for such fluctuation pairs.
This skewness diminishes with increasing r irrespective of y. Incidentally, more or less
aligned fluctuation pairs are much more likely than more or less anti-aligned fluctuation
pairs.

Relative motions of more or less aligned fluctuation pairs are maximally stretching on
average, and relative motions of more or less anti-aligned fluctuation pairs are maximally
compressing on average at a separation length r = rm which, for all y, is very close
to rmin, the separation length where Πv/εv has its minimum. Combining the first and
second parts of the present study, it appears that in the layer δν � y � δ of FD TCF, an
approach to Kolmogorov-like equilibrium with increasing local Reynolds number may be
achieved at those length scales r where aligned fluctuating velocities are stretching with
their difference δu maximally or near-maximally aligned with the separation vector r and
where anti-aligned fluctuations are maximally or near-maximally skewed towards large
negative values of δu · r̂.

Even though more or less aligned fluctuation pairs are on average stretching and are
more frequent than more or less anti-aligned fluctuation pairs, they do not dominate
interscale turbulence energy transfer, which is nevertheless forward on average, i.e. from
large to small scales. This is an effect of small-scale anisotropies. At scales of the order of
the Taylor length and larger, the interscale turbulence energy transfer is, in fact, dominated
by more or less anti-aligned fluctuations. However, at scales smaller than the Taylor length,
the actual value of the interscale turbulence energy transfer rate results from interscale
turbulence energy transfers by both aligned (local inverse cascades) and anti-aligned (local
forward cascades) fluctuations, both of which are significant and cannot be ignored.

Finally, correlations between stretching/compression relative motions and alignment/
anti-alignment of fluctuation pairs determine the spherically averaged (in r-space)
homogeneous part of the interscale turbulence energy transfer rate introduced by Alves
Portela et al. (2020). The DNS data of FD TCF used here show that this homogeneous part
accounts almost completely for the total spherically averaged interscale turbulence energy
transfer rate in the intermediate layer for all separation scales r ≤ 2y, including the scaling
with the Taylor length of the separation r = rmin where it peaks and the scaling with Reλ
of its peak value, i.e. scalings (6.20) and (6.21). The spherically averaged inhomogeneous
part of the interscale turbulence energy transfer is negligible even though the turbulence
is significantly non-homogeneous in FD TCF in contrast with the centreline of a turbulent
wake which is also non-homogeneous, but differently, and where Alves Portela et al.
(2020) found a similarly averaged inhomogeneous interscale turbulence energy transfer
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to be significant and, in fact, quite important in the scale-by-scale physics. However, when
the spherical average is lifted, the average inhomogeneous interscale transfer rate remains
close to zero except for separation components r2 characterising attached eddies.

By lifting the average over x, z, t, we obtain PDFs of spherically averaged interscale
turbulence energy transfer rates and of their homogeneous and inhomogeneous parts. The
PDFs of the spherically averaged interscale turbulence energy transfer rates and of their
homogeneous part are very similar and vary with r in a very similar way. Their dependence
on r is governed by counteracting effects of overall PDF drift towards forward cascade
values and of diminishing skewness towards forward cascade events with increasing r.
The approach towards Kolmogorov equilibrium occurs at those scales r near the Taylor
length where these two counteracting effects balance. The PDFs of spherically averaged
inhomogeneous interscale turbulence energy transfer rates are significantly different as
they are characterised by a skewness towards inverse rather than forward cascade events at
small scales.

As a final comment, one area that may reveal more information on energy transfer
in wall-turbulence should be the application of the present paper’s framework to
individual structural elements of the flow such as intense Reynolds shear stress structures
(Lozano-Durán & Jiménez 2014), vortex clusters (del Álamo et al. 2006), uniform
momentum zones and vortical fissures (Bautista et al. 2019).
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Appendix

We use two methods for the numerical computation of the normalised 3-D integrals of
(2.2). The volume integrals that involve divergence in r space are simplified using the
Gauss divergence theorem and therefore transformed into surface integrals of the flux
across the sphere’s surface. We insert a triangulated sphere of 5120 triangles and radius
r at each x, y, z point of the DNS grid, corresponding to the centre of the sphere, and
interpolate the velocity and its derivatives, using a trilinear interpolation, at the centres of
the triangles. Finally, we compute the two-point quantities of interest between the antipodal
triangles on our sphere, multiply them with the corresponding surface area of the triangle,
sum all the triangles and divide the result with the volume of the discretised sphere.
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For the quantities to which we cannot apply the Gauss divergence theorem, we make
a local Cartesian grid of nxl = 41, nyl = 81, nzl = 41 points centred at each x, y, z point
in space, corresponding to the centre of the sphere, and extending from −r to r in all
directions. We then interpolate (with trilinear interpolation) the velocity and its derivatives

at every point, which satisfies
√

x2
l + y2

l + z2
l ≤ r (xl, yl, zl are the local coordinates),

compute the two-point quantities and multiply them with the local volume unit dVl =
dxldyldzl, sum and divide with the volume of the discretised sphere.
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