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SUMMARY

We describe a method of working on publicly available data to estimate disease prevalence in

small geographic areas using Helicobacter pylori as a model infection. Using data from the Third

National Health and Nutrition Examination Survey, risk parameters for H. pylori infection were

obtained by logistic regression and validated by predicting 737.5 infections in an independent

cohort with 736 observed infections. The prevalence of H. pylori infection in the San Francisco

Bay Area was estimated with the probabilities obtained from a predictive logistic model, using

risk parameters with individual-level 1990 U.S. Census data as input. Predicted H. pylori

prevalence was also compared to gastric cancer incidence obtained from the Northern California

Cancer Center and showed a positive correlation with gastric cancer incidence (P<0.001,

R2=0.87), and no statistically significant association with other malignancies. By exclusively

using publicly available data, these methods may be applied to selected conditions with strong

demographic predictors.

INTRODUCTION

In the United States, significant resources are de-

voted to conducting large population-based surveys.

These surveys can be health-oriented, such as the

National Health and Nutrition Examination Survey

(NHANES) and the Nurses ’ Health Study, or general

surveys such as the Decennial Census [1, 2]. In the

interest of maximizing their value, data from such

studies are made available to other investigators.

These data are often highly desirable, because of

the large sample sizes and careful study design. Even

for very large studies, however, the amount of

information collected is finite, and the number of

hypotheses considered in the design must be limited.

Moreover, although these large health-oriented sur-

veys give an excellent picture of national trends, they

are not always suited for extrapolation down to the

local level. For example, NHANES may describe the

distribution of body mass index at the national level,

but the unique attributes of the population of any

particular census tract preclude the direct application

of NHANES results to understanding the health sta-

tus of that tract’s population. Recent developments in

epidemiological methodology have highlighted the

importance of smaller scale, neighbourhood-level

factors as health determinants [3–5]. Ordinarily, esti-

mates of the prevalence of risk factors at the local

level require direct sampling of that population. This

estimation is done at great expense and the results

cannot be generalized to other geographic areas.

Existing methods for estimating disease prevalence or

incidence in small-area units involve interpolation and

smoothing and their associated limitations [6, 7].
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Here, we describe a method of using the size and

strengths of multiple large-scale population-based

surveys to address such limitations. This is not an at-

tempt to link individual records across databases, but

rather to develop an understanding of disease using

one dataset, then apply that knowledge to make

inferences using another. Specifically, we used data

from NHANES III to develop a model of demo-

graphic risk factors for Helicobacter pylori infection,

then used data from the U.S. Census Bureau to esti-

mate the prevalence of infection. The initial model

was validated using an independent cohort, and the

prevalence estimates were compared with the inci-

dence rates of gastric cancer – a malignancy directly

attributable to H. pylori infection [8–11].

MATERIALS AND METHODS

Modelling H. pylori using NHANES III data

NHANES III (1988–1994), was conducted on a

nationwide probability sample of about 33994 per-

sons aged o2 months, and was designed to obtain

nationally representative information on the health

and nutritional status of the population of the United

States [2]. Serum samples from 7465 adults were test-

ed for the presence of anti-H. pylori IgG antibodies

[12]. These samples were collected during the first

phase of the survey, from 1988 to 1991. The presence

of antibodies was tested using a commercial IgG

ELISA with a sensitivity of 91% and specificity of

96%. For each individual, numerous demographics

and health statistics were also collected, including age,

race, ethnicity, country of birth and annual household

income. A total of 6769 participants had complete

data for these variables and were included in the

analysis (Table 1).

Logistic regression was used to model the relation-

ship between H. pylori infection status and demo-

graphic predictor variables. An individual was defined

as H. pylori-infected if seropositive for H. pylori using

a commercial IgG ELISA as described in the

NHANES protocol [12]. Testing of this assay against

biopsy samples from 268 biopsy-confirmed patients

with H. pylori and 105 patients without H. pylori

revealed a sensitivity of 91% and a specificity of

Table 1. Demographics of study populations

Demographic Category
NHANES III
(n=6769)

Validation
cohort
(n=1355)

Census
(n=4 294 389)

Age (yr) 18–24 14 23 12
25–34 20 40 26
35–44 18 22 23

45–54 12 8 15
55–64 13 4 11
64–74 13 2 8
o75 11 1 5

Median annual

household
income

<$10 000 19 — 6

$10 000–$19 999 27 27 9

$20 000–$29 999 18 30 11
$30 000–$39 999 13 — 13
$40 000–$49 999 9 17 12

o$50 000 14 25 48

Race White 73 92 70
Black 25 2 8
Other 2 6 22

Ethnicity Hispanic 28 80 15

Non-Hispanic 72 20 85

Place of birth Native (USA) 82 20 75
Foreign 18 80 25

NHANES III, Third National Health and Nutrition Examination Survey.
Values are percentages.
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96%. The logistic model used the five demographic

risk factors of age, income, race, ethnicity and place of

birth from the NHANES dataset, and also included

two interaction terms: racerincome and racer
ethnicity. The five risk factors were selected a priori,

being well-established risk factors for H. pylori infec-

tion. Interaction terms were added during the logistic

modelling process. Marginal odds ratios for specific

levels of each demographic predictor were calculated

together with associated 95% confidence intervals

(CI). Calculations were performed with SAS version 9

(SAS Institute, Cary, NC, USA).

Validation of the infection model

To validate the infection model, we predicted the in-

fection status of members of a 1355-person cohort. As

part of an ongoing community-based survey, in-

dividuals presenting at one of 17 medical clinics in the

Silicon Valley (Southern part of San Francisco Bay

Area, CA, USA) for acute gastroenteritis and mem-

bers of their households completed a questionnaire

and underwent IgG serological testing for H. pylori

[13]. This essay was 91% sensitive and 98% specific

for infection in adults [14]. Acute gastroenteritis was

clinically defined as loose or watery stool occurring

o5 times/day in a child aged <2 years or o3 times/

day in a person aged 2 years or at least one instance of

vomiting in a person of any age. Demographic data

collected included age, race/ethnicity, country of birth

and annual household income. A probability of

H. pylori infection was calculated for each individual

using the model parameters derived from the

NHANES III data. The model parameters were held

fixed, and the logistic model was used in a predictive

manner with cohort data as input. The expected

number of infections for this cohort was calculated

as the sum of these probabilities for the cohort and a

receiver operating characteristic (ROC) curve was

generated.

Applying census data to the infection model to

estimate infection prevalence

To estimate the prevalence of infection, we first ob-

tained a special tabulation of the 1990 U.S. Decennial

Census. This dataset consisted of aggregate statistics

for each county in the Silicon Valley area, stratified by

age (seven categories), household income (six cat-

egories), race (three categories), ethnicity (Hispanic or

non-Hispanic), and country of birth (United States or

other). Categories were selected to match available

NHANES III data. Only individuals aged o18 years

were included.

The aggregate census data were converted to

individual profiles based on the categories used. As

the census data was stratified in five dimensions,

each cell was converted into the appropriate number

of individuals with the five-dimensional profile

of the cell. For example, aggregate data for San

Francisco county might report a total of 500 for

the stratification: native-born, non-Hispanic whites

between ages 55–64 with income of $10 000–

$19 999. Although this is an aggregate statistic, it

can be converted into 500 individuals with the speci-

fied demographic profile. The nine counties in our

study area yielded 4294 389 individual profiles

(Table 1).

In the same process as the validation cohort, a

probability of H. pylori infection was calculated for

each individual profile using the model parameters

derived from the NHANES III data. The predicted

prevalence of infection for a given county was calcu-

lated as the average of the infection probabilities for

the region’s population.

Correlation of estimated H. pylori prevalence and

observed cancer incidence

In an ecological manner, the estimated prevalence

of H. pylori was correlated with the incidence of

several malignancies. Using the above methods, the

prevalence of H. pylori was estimated for the

nine counties that comprise the catchment’s area of

the Northern California Cancer Center’s (NCCC)

Greater Bay Area Cancer Registry (San Francisco,

San Mateo, Marin, Alameda, Contra Costa, Santa

Clara, Santa Cruz, Monterey and San Benito). From

the NCCC, we obtained age-adjusted rates and

case counts of leukaemia, gastric and oesophageal

cancers for each county for the period 1988–1997.

For gastric cancer, only non-cardia cases were in-

cluded in the analyses. For oesophageal cancer,

adenocarcinoma and squamous cell carcinoma were

analysed separately. For each county, age-adjusted

rates were calculated for the 10-year period using the

1990 Standard Million. This incidence rate of each

cancer was used as the dependent factor in an ordi-

nary least-squares regression, with the predicted

prevalence of H. pylori infection as the independent

factor.

Estimating disease prevalence using census data 1255
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RESULTS

The logistic regression using NHANES III data on

H. pylori infection and demographic factors yielded

odds ratios consistent with previous studies (Table 2).

Increasing age, decreasing income, non-White race,

Hispanic ethnicity and non-US place of birth were all

associated with increased risk of infection. Everhart

et al. [12] previously described H. pylori prevalence

and demographic risk factors in this cohort.

When the NHANES III-derived logistic model was

used to predict the infection status of a 1355-member

cohort, the total number of infections predicted

was 737.5, compared to an observed 736 infections, as

determined by serology. This corresponds to a pre-

dicted prevalence of 54.4% vs. an observed preva-

lence of 54.3%. Subgroup analysis showed that the

model tended to slightly overestimate the number

of infections in subgroups associated with high risk

of infection and slightly underestimate the number of

infections in subgroups associated with low risk of

infection (Table 3).

The area under the ROC curve was 0.69 (Fig. 1).

The cutpoint with the best balance between sensitivity

and specificity was 0.57. This cutpoint corresponded

to a sensitivity of 0.62, specificity of 0.66, positive

predictive value of 0.68 and a negative predictive

value of 0.59.

When the NHANES III-derived logistic model

was used in conjunction with 1990 census data, the

predicted prevalence of H. pylori infection for the

nine counties in the study area was about 36% on

average (Fig. 2). Prevalence rates for the nine counties

were normally distributed.

Using age-adjusted cancer incidence rates for

each county derived from the registry of the NCCC,

aggregated for the period 1988–1997, predicted

H. pylori prevalence showed a positive correlation

with gastric cancer incidence (P<0.001, R2=0.87,

Fig. 3). We observed a negative association with

esophageal adenocarcinoma incidence, and a positive

association with esophageal squamous cell carcinoma

incidence, although neither were statistically signifi-

cant (P=0.063 and P=0.051, respectively). There

was no association between the predicted H. pylori

prevalence and leukaemia incidence (P=0.56).

We also compared gastric cancer incidence to

H. pylori prevalence modelled using a subset of the

risk factors included in the final model. While some

models showed a stronger correlation (age, race, and

Hispanic ethnicity, R2=0.89), these models were less

Table 2. Odds ratios from logistic regression using

NHANES III data with the outcome of H. pylori

infection. (The model included two interaction terms:

ethnicityrrace and incomerrace.)

Risk factor OR 95% CI

Age (yr)

18–24 1.0 Reference
25–34 1.6 1.3–1.9
35–44 2.2 1.8–2.6

45–54 3.2 2.6–4.0
55–64 4.9 4.0–6.0
65–74 5.8 4.7–7.2
o75 8.0 6.4–10.1

Race*
White 1.0 Reference
Black 3.9 2.6–5.7

Other 3.5 1.2–10.2

Ethnicity*
Hispanic 3.6 3.1–4.2
Non-Hispanic 1.0 Reference

Place of birth

Foreign 1.9 1.6–2.2
Native (USA) 1.0 Reference

Income*
$0–$9999 2.6 2.1–3.3

$10 000–$19 999 2.0 1.6–2.5
$20 000–$29 999 1.8 1.4–2.2
$30 000–$39 999 1.4 1.1–1.8

$40 000–$49 999 1.1 0.9–1.5
o$50 000 1.0 Reference

Income (Black)
$0–$9999 0.6 0.4–0.9

$10 000–$19 999 0.8 0.5–1.3
$20 000–$29 999 0.9 0.5–1.4
$30 000–$39 999 0.7 0.4–1.2

$40 000–$49 999 1.1 0.6–1.9
o$50 000 1.0 Reference

Income (Other)
$0–$9999 0.2 0.1–0.8

$10 000–$19 999 0.6 0.2–1.9
$20 000–$29 999 0.4 0.1–1.5
$30 000–$39 999 1.0 0.2–4.7
$40 000–$49 999 0.6 0.1–3.0

o$50 000 1.0 Reference

Ethnicity (Black)
Hispanic 0.2 0.1–0.5
Non-Hispanic 1.0 Reference

Ethnicity (Other)
Hispanic 0.4 0.2–0.9
Non-Hispanic 1.0 Reference

NHANES III, Third National Health and Nutrition

Examination Survey.
OR, Odds ratio ; CI, confidence interval.
* Denotes variables with interaction terms in the model.
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accurate at predicting the infection prevalence of

the validation cohort (predicted 52.7%, observed

54.3%). The final model made the most accurate es-

timate of prevalence in the validation cohort and had

one of the highest correlations with gastric cancer in-

cidence. The simplest model with both a high R2 and

accurate estimate of prevalence included the two risk

factors age and place of birth, with an R2 of 0.52 and

predicted prevalence of 56.5%.

DISCUSSION

The results of this study illustrate the capability of

these methods to use large datasets to make preva-

lence estimates for small-area units. They were

relatively simple to implement and provided excellent

results, especially when considering the minimal

investment required in obtaining them. We were able

to replicate the results of previous studies using a

small fraction of the resources they required. These

methods offer the potential to use existing data

sources to conduct novel epidemiological studies.

H. pylori has been designated a Group 1 carcinogen

by IARC for its role in the development of gastric

cancer, in part because of ecological studies demon-

strating an association between the infection and

cancer [15]. Our study replicated the results of pre-

vious work describing this ecological correlation

[16, 17]. Our methods, however, appear much more

robust. These studies relied on using limited samples

Table 3. Comparison of the predicted and observed numbers of infections

using the NHANES III-derived infection parameter estimates and the

validation dataset. Displayed are the predicted number of infections for each

category and the observed number of infections with associated standard

error (S.E.)

Total
number

Predicted
H. pylori
infections

Observed
H. pylori
infections (S.E.)

Overall 1355 737.5 736 (22.0)

Subgroups
Age (yr)
18–24 309 141.4 150 (8.5)

25–34 547 311.0 334 (11.2)
35–44 296 161.8 149 (7.8)
45–54 113 63.7 54 (4.7)

55–64 52 33.4 30 (3.1)
65–74 28 19.4 14 (2.2)
o75 10 6.9 5 (1.3)

Income
$0–$9999 0 — — —

$10 000–$19 999 371 236.3 233 (9.0)
$20 000–$29 999 413 255.5 260 (9.6)
$30 000–$39 999 0 — — —

$40 000–$49 999 227 112.0 128 (7.2)
o$50 000 344 133.6 115 (8.4)

Race
White 1252 686.0 702 (16.5)

Black 28 13.5 12 (2.6)
Other 75 38.0 22 (4.1)

Ethnicity
Hispanic 1081 647.2 678 (15.6)

Non-Hispanic 274 90.3 58 (7.2)

Place of Birth
Foreign 1083 657.4 677 (15.7)
Native (USA) 272 80.1 59 (7.2)

NHANES III, Third National Health and Nutrition Examination Survey.
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of individuals to represent very large areas. In one

case, samples of fewer than 200 individuals re-

presented entire countries [17]. In prior studies, the

correlation between H. pylori and gastric cancer was

modest, with an R2 range of 0.12–0.34. In contrast,

our analysis showed a far stronger correlation be-

tween H. pylori prevalence and gastric cancer inci-

dence (R2=0.87).

The model created using the NHANES III data was

qualitatively consistent with previous studies, and was

extremely accurate at predicting the prevalence of

infection in the cohort. Given that this cohort was

completely independent of the population used to

derive the model parameters, as well as some stark

demographic differences between the two groups

(Table 1), the NHANES III-derived model can be

considered highly effective for use in predictive

analyses. Although our final model was the most ac-

curate in predicting the prevalence of the validation

cohort, it is worth noting that a model consisting of

just age and place of birth was quite accurate in

its prevalence estimates (56.5% predicted, 54.3%

observed) and had a relatively strong correlation with

gastric cancer (R2=0.52).

We also found a negative correlation between

H. pylori and incidence of oesophageal adeno-

carcinoma – a phenomenon reported in other studies

[18, 19] – although this finding was not statistically

significant. Similarly, there is some evidence that

H. pylori (particularly CagA-positive strains) is posi-

tively associated with oesophageal squamous cell

carcinoma [19]. We observed this association, but as

with adenocarcinomas, the observed correlation did

not meet the 0.05 standard for statistical significance.

There is no compelling evidence that H. pylori is as-

sociated with leukaemia, and as expected, this study

found no statistically significant association. Thus,

our findings were specific and could not be construed

to reflect factors related to carcinogenesis more

generally. We found that although we could create
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models that yielded a higher R2, their estimates of

the infection prevalence in the validation cohort were

not nearly as accurate as the final model.

Using existing data exclusively, we were able to

estimate the prevalence of H. pylori infection and find

a positive correlation with gastric cancer incidence.

By structuring our model to match categories and risk

factors available in the U.S. Census, it is possible to

accurately estimate the prevalence of disease at any

level of geography for which census data are avail-

able. These regions can be as large as states or coun-

ties, or as small as a census block group. Conducting a

traditional epidemiological survey of disease preva-

lence at a scale as fine as a census block group for an

area the size of even one county would be prohibi-

tively expensive. Using a pre-fit risk model not only

precludes the need to collect samples, but also should

permit geographic portability – for example, the

same study could easily be done with populations in

New York, Texas or Iowa.

To develop our predictive model, we obtained risk

parameters using a large national dataset. While

many such studies are collecting an increasingly large

set of variables, specific risk factors may not be pres-

ent in these datasets, particularly those that do

not have a well-established association with disease.

Although we used a national dataset to maximize

generalizability, it is not a strict requirement of

the methodology – risk parameters can be fit using a

dataset of any size.

Unlike some methods of applying national data to

the local level, we are able to avoid the ‘ecological

fallacy’ [20] – the potential for incorrect conclusions

when extrapolating aggregate data to a more specific

level (e.g. using national data to make inferences

about counties). Although the census data was pro-

vided to us in aggregated form, the tables were

stratified, allowing us to build individual profiles. The

NHANES model was derived from individual-level

data, and we applied individual profiles from census

data, thus avoiding this concern.

With further development and validation, these

methods could be used to conduct low-cost pilot

studies, the results of which, although not definitive

proof, would serve as evidence to justify more

rigorous studies using traditional epidemiological

methods. Once our estimates of infection prevalence

were made for each county, it was relatively simple to

compare prevalence with several different malig-

nancies. The marginal effort to add additional analy-

ses was negligible. While the association between

H. pylori and gastric cancer is well-established, by

using existing data, we could have conducted this

study de novo and highlighted gastric cancer above all

others as worthy of further investigation.

Although these methods offer quick estimates of

prevalence, the results cannot be definitively con-

firmed without more detailed studies. The obligation

to subsequently conduct these studies would eliminate

the advantage of using this methodology. To inspire

confidence in the results, the risk parameters of

the predictive model should be extensively validated,

as we did with an independent dataset. If surprising

results do emerge, they may serve to justify more

detailed studies. This type of analysis is not intended

to supplant observational or experimental studies.

In addition to research, these small-area estimates

of disease prevalence and incidence have applications

in health services. The potential for a high level

of geographic resolution could allow for improved

targeting of outreach or service delivery programmes.

The use of existing data would eliminate survey costs,

leaving more resources available for interventions.

This could be particularly beneficial for rural areas,

which due to their geographic size and low population

density are difficult to survey efficiently.

This methodology is not limited to analysis of

H. pylori prevalence, although H. pylori may be par-

ticularly well-suited for this method, as it has well-

established demographic risk factors. Any disease or

condition that has strong demographic predictors

could be modelled in this way. Other likely candidates

include smoking and cardiovascular disease, and

preliminary studies have shown that smoking may be

particularly amenable to these methods. These results

provide quantitative evidence that demographics

can be used to predict disease, and we have demon-

strated that existing datasets provide the information

needed to estimate the prevalence of disease in a

population.
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