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Abstract. Let P be an (unbounded) countable multiset of primes (that is, every prime
may appear multiple times) and let G = ⊕

p∈P Fp. We develop a Host–Kra structure
theory for the universal characteristic factors of an ergodic G-system. More specifically,
we generalize the main results of Bergelson, Tao and Ziegler [An inverse theorem for
the uniformity seminorms associated with the action of F∞

p . Geom. Funct. Anal. 19(6)
(2010), 1539–1596], who studied these factors in the special case P = {p, p, p, . . .}
for some fixed prime p. As an application we deduce a Khintchine-type recurrence
theorem in the flavor of Bergelson, Tao and Ziegler [Multiple recurrence and convergence
results associated to Fωp -actions. J. Anal. Math. 127 (2015), 329–378] and Bergelson,
Host and Kra [Multiple recurrence and nilsequences. Invent. Math. 160(2) (2005),
261–303, with an appendix by I. Ruzsa].
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1. Introduction
This paper is concerned with the study of the structure of the universal characteristic
factors corresponding to multiple averages associated with the action of G = ⊕

p∈P Fp
for some countable multiset of primes P (formal definitions below). The study of char-
acteristic factors for multiple averages plays an important role in ergodic Ramsey theory.
For example, in the case of Z-actions they are related to the theorem of Szemerédi on
arithmetic progressions in sets of positive density in the integers. Universal characteristic
factors corresponding to multiple averages associated with Z-actions were studied by Host
and Kra [29] and Ziegler [45] and, for Fωp-actions, by Bergelson, Tao and Ziegler [6]. In
this paper we develop the theory further to

⊕
p∈P Fp-actions for a countable multiset of

primes P. If P is unbounded, the universal characteristic factors may have a pathological
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structure, as can be seen in Theorem 1.21. This and other properties make the unbounded
case differ significantly from that of Fωp-systems; see for instance Example 1.28 and the
discussion afterwards.

We briefly survey our results. All definitions and statements used here are defined later
in the paper where the results are formulated.
• Strongly Abramov

⊕
p∈P Fp-systems. In [6], Bergelson, Tao and Ziegler proved that

the universal characteristic factors for Fωp-actions are strongly Abramov (see Definition
1.18). We show that this is not generally true for

⊕
p∈P Fp-actions and construct an

example in §9. Most of the paper is devoted to proving an if and only if criterion
for a

⊕
p∈P Fp-system to be strongly Abramov (Theorem 1.19). Roughly speaking, in

Theorem 1.26 we prove that unless a system admits some pathological properties it
must be strongly Abramov.

•
⊕

p∈P Fp-systems as nilpotent systems. Host and Kra [29] and Ziegler [45] proved that
the universal characteristic factors for Z-actions are inverse limits of nilsystems. In the
case of Conze–Lesigne systems (systems of order < 3), we prove a counterpart for
the Host–Kra theorem for

⊕
p∈P Fp. We show that every such system is an inverse

limit of nilpotent systems; these are similar to nilsystems, but the Host–Kra group
(the homogeneous group), as defined in [29], is not necessarily a Lie group. For more
details, see Theorem 1.31.

• Limit formula for multiple ergodic averages and a Khintchine-type recurrence
theorem.
Lesigne [33] and Ziegler [44] proved a limit formula for the multiple ergodic averages
associated with Szemerédi’s theorem when the underlying space is a connected
simply connected homogeneous space. We prove a counterpart for multiple averages
associated with Szemerédi’s theorem for four-term progressions on nilpotent systems
(see Theorem 11.3). We use our structure results to deduce a Khintchine-type
recurrence result for four-term progressions (Theorem 1.32). Similar averages for Z
and Fωp actions were studied by Bergelson, Host and Kra [5] and by Bergelson, Tao
and Ziegler [7], respectively.

1.1. Universal characteristic factors. We begin with some standard definitions, essen-
tially taken from [6].

Definition 1.1. A G-system is a quadruple (X, B, μ, G), where (X, B, μ) is a probability
measure space which is separable modulo null sets†, together with an action of G on X
by measure-preserving transformations Tg : X → X. For every topological group‡ (U , ·),
measurable map φ : X → U and element g ∈ G, we define the shift Tgφ = φ ◦ Tg and
the multiplicative derivative �gφ = Tgφ/φ. We say that a G-system X is ergodic if
the only functions in L2(X) which are invariant under the G-action are the constant
functions.

The Gowers–Host–Kra seminorms play an important role throughout this paper.

† For technical reasons, we assume that the space (X, B, μ) is regular, meaning that X is compact, B is the Borel
σ -algebra and μ is a Borel measure.
‡ All topological groups in this paper are implicitly assumed to be metrizable.

https://doi.org/10.1017/etds.2021.109 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.109


Host–Kra theory for
⊕

p∈P Fp-systems and multiple recurrence 301

Definition 1.2. (Gowers–Host–Kra (GHK) seminorms for an arbitrary countable abelian
group G) Let G be a countable abelian group, let X = (X, B, μ) be a G-system,
let φ ∈ L∞(X) and let k ≥ 1 be an integer. The Gowers–Host–Kra seminorm ‖φ‖Uk of
order k of φ is defined recursively by the formula

‖φ‖U1 := lim
N→∞

1
|�1

N |
∥∥∥∥

∑
g∈�1

N

φ ◦ Tg
∥∥∥∥
L2

for k = 1 and

‖φ‖Uk := lim
N→∞

(
1

|�kN |
∑
g∈�kN

‖�gφ‖2k−1

Uk−1

)1/2k

for k ≥ 1, where φ1
N , . . . , φkN are arbitrary Følner sequences.

These seminorms were first introduced by Gowers in the special case whereG = Z/NZ

in [20], where he derived quantitative bounds for Szemerédi’s theorem about the existence
of arbitrarily large arithmetic progressions in sets of positive upper Banach density [41].
Later, in [29], Host and Kra introduced essentially the above ergodic theoretical version of
the Gowers norms for G = Z (see [30, Ch. 8, Proposition 16] for this version).

Gowers’ work raised a natural question about the behavior of functions with large Uk

norm. In the context of finite groups, this question is known as the inverse problem for the
Gowers norms and it was answered partially by Gowers for the case G = Z/NZ. Inspired
by the work of Host and Kra [29], Green and Tao proved an inverse theorem for the Gowers
Uk norms for Z/NZ in the case k = 3 in [21] and together with Ziegler for general k in
[22]. Their work hints at a link between the ergodic theoretical structure of the universal
characteristic factors and the inverse problem for the Gowers norms. Surprisingly, if
one considers these problems in the context of vector spaces over finite fields, this link
becomes more concrete. Namely, in [42], Tao and Ziegler deduced an inverse theorem
for the Gowers norms over finite fields from an ergodic theoretical structure theorem for
Fωp-systems, which they established together with Bergelson in [6].

Another approach for the inverse problem is the study of nilspaces. In [2], Antolín
Camarena and Szegedy introduced a purely combinatorial counterpart of the universal
characteristic factors called a nilspace. The idea was to give a more abstract and general
notion which describes the ‘cubic structure’ of an ergodic system (see Host and Kra [29,
§2]). In [9], Candela and Szegedy used nilspaces to prove a structure theorem for character-
istic factors for GHK seminorms associated with any nilpotent group, giving in particular
an alternative proof of the Host–Kra structure theorem. The notion ‘nilspace’ is more gen-
eral and abstract than the measure-theoretical counterpart. Thus, describing these nilspaces
in a concrete way is often a difficult problem on its own. In a series of papers [24–26],
Gutman, Manners and Varjú studied further the structure of nilspaces (more results in
this direction can be found in [8, 10] by Candela, González-Sánchez and Szegedy and in
[19] by Glasner, Gutman and Ye). By imposing another measure-theoretical aspect to these
nilspaces, Gutman and Lian [23] gave another alternative proof of Host and Kra’s theorem.
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In our work we do not pursue this approach; instead our goal is to generalize the ergodic
theoretical structure for other groups and to deduce a Khintchine-type recurrence.

The GHK seminorms correspond to a ‘factor’ of X (see Proposition 1.4 below).

Definition 1.3. (Factors, push-forwards and pullbacks) Let (X, BX, μX, (Tg)g∈G) be
a G-system. We say that a G-system (Y , BY , μY , (Sg)g∈G) is a factor of (X, BX, μX,
(Tg)g∈G) if there is a measure-preserving factor map πXY : X → Y such that the
push-forward of μX by πXY is μY and πXY ◦ Tg = Sg ◦ πXY μX-a.e. (almost everywhere) for
all g ∈ G.

For a measure space U and a measurable map f : Y → U , we define the pullback
(πXY )

�f : X → U by (πXY )
�f = f ◦ πXY . We define the push-forward of f by πXY to be

the unique element (πXY )�f ∈ L2(Y ) such that E(f |Y ) := (πXY )
�(πXY )�f , where E(f |Y )

is the conditional expectation of f with respect to the factor Y.
We say that a function f is BY -measurable or measurable with respect to Y if f =

E(f |Y ) or equivalently if f = (πXY )
�F for some F ∈ L2(Y ).

In this case we refer to X as an extension of the G-system Y. Finally, we say that a factor
Y is generated by a collection F of measurable functions f : X → C if Y is the minimal
factor of X such that all f ∈ F are measurable with respect to Y.

We have the following proposition/definition (see Host and Kra [29, Lemma 4.3]).

PROPOSITION 1.4. (Existence and uniqueness of the universal characteristic factors) Let G
be a countable abelian group, let X be a G-system and let k ≥ 1. Then there exists a factor
Z<k(X) = (Z<k(X), BZ<k(X), μZ<k(X), πXZ<k(X)) of X with the property that for every f ∈
L∞(X), ‖f ‖Uk(X) = 0 if and only if (πXZ<k(X))�f = 0 (equivalently, E(f |Z<k(X)) = 0).
This factor is unique up to isomorphism and is called the kth universal characteristic factor
of X.

The structure of the universal characteristic factors for the GHK norms for Z-systems
was studied by Host and Kra in [29] as a tool in the study of some non-conventional
ergodic averages. Those averages were originally introduced by Furstenberg [16] in his
proof of Szemerédi’s theorem. In [45], Ziegler defined these factors differently and in [6,
pp. 841–853] Leibman proved the equivalence.

THEOREM 1.5. (Structure theorem for Z<k(X) for ergodic Z-systems [29, Theorem 10.1],
[45, Theorem 1.7]) For an ergodic system X, Z<k(X) is an inverse limit of k-step
nilsystems, where a k-step nilsystem is a quadruple (G/	, B, μ, Z), where G is a k-step
nilpotent Lie group, 	 a cocompact subgroup, B the Borel σ -algebra, μ the induced Haar
measure and the action of Z is given by a left translation by an element in G.

This theorem led to various multiple recurrence and convergence results in ergodic
theory; see for instance [7, 12–14, 18].

1.2. Abelian cohomology and some notation. We use the same notation as in [6].
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Definition 1.6. (Abelian cohomology) Let G be a countable abelian group. Let X =
(X, B, μ, G) be a G-system and let U = (U , ·) be a compact abelian group.
• We denote by M(X, U) the set of all measurable functions φ : X → U with two

functions φ, φ′ being identified if they agree μ-almost everywhere. M(X, U) is
a topological group with respect to pointwise multiplication and the topology of
convergence in measure.

• Similarly, let M(G, X, U) denote the set of all measurable functions ρ : G×X → U

with ρ, ρ′ being identified if ρ(g, x) = ρ′(g, x) for μ-almost every x ∈ X and every
g ∈ G.

• We let Z1(G, X, U) denote the subgroup of M(G, X, U) consisting of those ρ :
G×X → U which satisfy ρ(g + g′, x) = ρ(g, x)ρ(g′, Tgx) for all g, g′ ∈ G and
μ-almost every x ∈ X. We refer to the elements of Z1(G, X, U) as cocycles.

• Given a cocycle ρ : G×X → U , we define the abelian extensionX ×ρ U of X by ρ to
be the product space (X × U , BX × BU , μX × μU), where BU is the Borel σ -algebra
on U and μU the Haar measure. We define the action of G on this product space
by (x, u) 	→ (Tgx, ρ(g, x)u) for every g ∈ G. In this setting we define the vertical
translations Vu(x, t) = (x, ut) on X ×ρ U for every u ∈ U . We note that this action
of U commutes with the G-action on this system.

• If F ∈ M(X, U), we define the derivative �F ∈ M(G, X, U) of F to be the
function �F(g, x) := �gF(x). We write B1(G, X, U) for the image of M(X, U)
under the derivative operation. We refer to the elements of B1(G, X, U) as
(G, X, U)-coboundaries.

• We say that ρ, ρ′ ∈ M(G, X, U) are (G, X, U)-cohomologous if ρ/ρ ′ ∈
B1(G, X, U). As usual, we denote the cohomology group by H 1(G, X, U) =
Z1(G, X, U)/B1(G, X, U).

Remark 1.7. Observe that if ρ and ρ̃ are (G, X, U)-cohomologous, then X ×ρ U

and X ×ρ̃ U are measure-equivalent systems. The isomorphism is given by π(x, u) =
(x, F(x)u), where F : X → U is a function such that ρ = ρ̃ ·�F .

1.3. Type of functions. We introduce the notion of cubic systems from [29, §3]
(generalized for arbitrary countable abelian groups).

Definition 1.8. (Cubic measure spaces) Let X = (X, B, μ, G) be a G-system for some
countable abelian group G. For each k ≥ 0, we define X[k] = (X[k], B[k], μ[k], G[k]),
where X[k] is the Cartesian product of 2k copies of X, endowed with the product σ -algebra
B[k] = B2k , G[k] = G2k acting on X[k] in the obvious manner. We define the cubic
measures μ[k] and σ -algebras Ik ⊆ B[k] inductively. I0 is defined to be the σ -algebra of
invariant sets in X and μ[0] := μ. Once μ[k] and Ik are defined, we identify X[k+1] with
X[k] ×X[k] and define μ[k+1] by the formula∫

f1(x)f2(y) dμ
[k+1](x, y) =

∫
E(f1|Ik)(x)E(f2|Ik)(x) dμ[k](x)

for f1, f2 functions on X[k] and E(·|Ik) the conditional expectation, Ik+1 being the
σ -algebra of invariant sets in X[k+1].
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This construction leads to the following notion of type for functions and cocycles; see
[29, Definition 7.1] and [6, Definition 4.1].

Definition 1.9. (Functions of type < k) Let G be a countable abelian group and let X =
(X, B, μ, G) be a G-system. Let k ≥ 0 and let X[k] be the cubic system associated with X
and G acting on X[k] diagonally.
• For each measurable f : X → U , we define a measurable map d [k]f : X[k] → U to

be the function

d[k]f ((xw)w∈{−1,1}k ) :=
∏

w∈{−1,1}k
f (xw)

sgn(w),

where sgn(w) = w1 · w2 · · · · · wk .
• Similarly, for each measurable ρ : G×X → U , we define a measurable map d [k]ρ :

G×X[k] → U to be the function

d[k]ρ(g, (xw)w∈{−1,1}k ) :=
∏

w∈{−1,1}k
ρ(g, xw)sgn(w).

• A function ρ : G×X → U is said to be a function of type < k if d [k]ρ is a
(G, X[k], U)-coboundary. We let M<k(G, X, U) denote the subspace of functions
ρ : G×X → U of type < k. We let C<k(G, X, U) denote the subspace of
M<k(G, X, U) consisting of elements of this space which are also cocycles.

Definition 1.10. (Phase polynomials) Let G be a countable abelian discrete group, let X
be a G-system, let φ ∈ L∞(X) and let k ≥ 0 be an integer. A function φ : X → C is
said to be a phase polynomial of degree < k if we have �h1 · · · �hkφ = 1μX-almost
everywhere for all h1, . . . , hk ∈ G. (In particular, by setting h1 = · · · = hk = 0, we
see that φ must take values in S1, μX-a.e.) We write P<k(X) = P<k(X, S1) for the
set of all phase polynomials of degree < k. Similarly, a function f : G×X → C is
said to be a phase polynomial of degree < k if f (g, ·) ∈ P<k(X, S1) for every g ∈
G. We let P<k(G, X, S1) denote the set of all phase polynomials f : G×X → C of
degree < k.

Definition 1.11. We write Abr<k(X)† for the factor of X generated by P<k(X) and say
that X is an Abramov system of order < k if it is generated by P<k(X) or equivalently if
P<k(X) spans L2(X).

Remark 1.12. The notion of phase polynomials can be generalized for an arbitrary abelian
group (U , ·). A function φ : X → U is said to be a phase polynomial of degree < k

if �h1 · · · �hkφ = 1μX-a.e. for all h1, . . . , hk ∈ G. We let P<k(X, U) and similarly
P<k(G, X, U) denote the spaces of phase polynomials of degree < k taking values in U.

We recall some basic facts about functions of type < k from [6, Lemma 4.3].

LEMMA 1.13. Let G be a countable abelian group, let X = (X, B, μ, G) be an ergodic
G-system, let U = (U , ·) be a compact abelian group and let k ≥ 0.

† It was Abramov who studied systems of this type for Z-actions; see [1].
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(i) Every function f : G×X → U of type < k is also of type < k + 1.
(ii) The set M<k(G, X, U) is a subgroup of M(G, X, U) and it contains the

group B1(G, X, U) of coboundaries. In particular, every function that is
(G, X, U)-cohomologous to a function of type < k is a function of type < k.

(iii) A function f : G×X → U is a phase polynomial of degree < k if and only if
d[k]f = 1, μ[k]-almost everywhere. In particular, every phase polynomial of degree
< k is of type < k.

(iv) If f : G×X → U is a (G, X, U)-coboundary, then d [k]f : G×X[k] → U is a
(G, X[k], U)-coboundary.

We also recall some properties of functions of type < k and phase polynomials from
[6, Lemma 1.15].

LEMMA 1.14. Let G be a countable abelian group, X a G-system and k ≥ 0.
(i) (Monotonicity) We have P<k(X, U) ⊆ P<k+1(X, U). In particular, Abr<k(X) ≤

Abr<k+1(X).
(ii) (Homomorphism) P<k(X, U) is a group under pointwise multiplication and, for

each h ∈ H , �h is a homomorphism from P<k+1(X, U) to P<k(X, U).
(iii) (Polynomiality criterion) Conversely, if φ : X → U is measurable and, for every

g ∈ G, �gφ ∈ P<k(X, U), then φ ∈ P<k+1(X, U).
(iv) (Functoriality) If Y is a factor of X, then the pullback (πXY )

� is a homomorphism
from P<k(Y , U) to P<k(X, U). Conversely, if f : Y → U is such that (πXY )

�f ∈
P<k(X, U), then f ∈ P<k(Y , U).

We can now formulate the main result of Bergelson, Tao and Ziegler [6, Theorem 1.20].

THEOREM 1.15. (Structure theorem for Z<k(X) for ergodic Fωp-systems) There exists a
constant C(k) such that for any ergodic Fωp-system X, L2(Z<k(X)) is generated by phase
polynomials of degree < C(k). Moreover, if p is sufficiently large with respect to k, then
C(k) = k.

1.4. Main results. We say that a system X is of order < k if X = Z<k(X). We begin
with the following result of Host and Kra [29, Proposition 6.3] generalized for an arbitrary
discrete countable abelian group action.

PROPOSITION 1.16. (Order < k + 1 systems are abelian extensions of order < k systems)
Let G be a discrete countable abelian group, let k ≥ 1 and let X be an ergodic G-system
of order < k + 1. Then X is an abelian extension X = Z<k(X)×ρ U for some compact
abelian metrizable group U and a cocycle ρ : G× Z<k(X) → U of type < k.

In other words, for a countable discrete abelian group G, an ergodic G-system of order
< k + 1 is isomorphic to a tower of abelian extensions

U0 ×ρ1 U1 × · · · ×ρk Uk (1.1)
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such that for each 1 ≤ i ≤ k, ρi : G× Z<i−1(X) → Ui is a cocycle of type < i. We call
U1, . . . , Uk the structure groups of X. We are particularly interested in the structure of
these groups. We need the following definitions.

Definition 1.17. (Totally disconnected systems and Weyl systems) Let k ≥ 1. Let G be
a countable abelian group and X be an ergodic G-system of order < k. We write X =
U0 ×ρ1 U1 × · · · ×ρk−1 Uk−1 as in equation (1.1).
• We say that X is a totally disconnected system if U0, U1, . . . , Uk−1 are totally

disconnected groups.
• We say that X is a Weyl system if for every 1 ≤ i ≤ k − 1 the cocycle ρi is a phase

polynomial.
Note that we will show that totally disconnected systems are isomorphic to Weyl systems
(Theorem 5.3).

We are particularly interested in systems whose abelian extensions by cocycles of finite
type are Abramov of some finite order (see Definition 1.11). More formally, we have the
following definition.

Definition 1.18. Let X be an ergodic G-system. We say that X is strongly Abramov if for
every m ∈ N there exists lm ∈ N such that for any compact abelian group U and a cocycle
ρ : G×X → U of type < m the extension X ×ρ U is Abramov of order < lm.

Note that if X is strongly Abramov, then it is Abramov of order< l0. To see this, consider
the trivial extension of X with the trivial group and the trivial cocycle (which is of type
< 0).

For a natural number m ≥ 0 and a G-system X, we define the cohomology class
H 1
<m(G, X, S1) = Z1

<m(G, X, S1)/B1(G, X, S1) to be the set of all cocycles of type< m

modulo coboundary. Our first result is the following equivalent characterization of the
strongly Abramov property.

THEOREM 1.19. (A criterion for the strong Abramov property) Let P be a countable
(unbounded) multiset of primes and let G = ⊕

p∈P Fp. Let X = Z<k(X) be an ergodic
G-system of order < k. Then the factors Z<1(X), Z<2(X), . . . , Z<k(X) are strongly
Abramov if and only if there exists a totally disconnected factor Y of X such that for every
1 ≤ l ≤ k the homomorphism induced by the factor map πl : Z<l(X) → Z<l(Y )

π�l : H 1
<m(G, Z<l(Y ), S1) → H 1

<m(G, Z<l(X), S1)

is onto for everym ∈ N. Moreover, we can take lm = Ok(1)† and, if k, m ≤ min P , we can
take lm = m+ 1.

In particular, we deduce the following result.

COROLLARY 1.20. Let G be as in Theorem 1.19 and let X be an ergodic totally discon-
nected G-system of order < k. Fix an integer m ∈ N; then any cocycle ρ : G×X → S1

† Here we fix m. Namely, there may be a different bound for different m’s.
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of type < m is (G, X, S1)-cohomologous to a phase polynomial of degree < Ok,m(1). If
k, m < min P , then it is cohomologous to a phase polynomial of degree < m.

Since all ergodic Fωp-systems of order < k are totally disconnected (see Theorem 1.23),
this result generalizes Theorem 1.15. A priori, it is not clear that systems which are not
strongly Abramov exist. In fact, Bergelson, Tao and Ziegler [6, Theorem 4.5] proved that
in the case where P is bounded, every system is strongly Abramov. We show that when P
is unbounded, there exists an ergodic Abramov system which is not strongly Abramov.

THEOREM 1.21. (An Abramov system that is not strongly Abramov) Let P be the set of
prime numbers. There exists a solenoid† U with an ergodic

⊕
p∈P Fp-action such that

(U ,
⊕

p∈P Fp) is of order< 2 and a cocycle ρ :
⊕

p∈P Fp × U → S1 of type< 2 that is
not (

⊕
p∈P Fp, U , S1)-cohomologous to a phase polynomial of any degree. The extension

U ×ρ S
1 is an ergodic

⊕
p∈P Fp-system of order < 3 that is not Abramov of any order.

This example is based on the work of Furstenberg and Weiss [17]. They showed
that in the case of Z-actions, not all systems are strongly Abramov. (In [28], Host
and Kra worked out their example in detail). In Furstenberg and Weiss’ example, the
group U is the two-dimensional torus. While a torus can be given a structure of an
ergodic

⊕
p∈P Fp-system (Example 1.28), it is impossible to generalize their example

for
⊕

p∈P Fp-actions with U being a torus. In Theorem 1.26 below, we show that the
torus and a much larger family of non-pathological ergodic systems are strongly Abramov.
Before we formulate the theorem, we recall the following results of Host and Kra [29] for
Z-actions and the result of Bergelson, Tao and Ziegler [6] for Fωp-actions.

Let X be an ergodic G-system of order < k and let U0, U1, . . . , Uk−1 be its structure
groups as in (1.1). We say that X is a toral system if U1 is a Lie group and, for all 2 ≤ i ≤
k − 1, Ui is isomorphic to a finite-dimensional torus. Host and Kra proved the following
result [29, Theorem 10.3].

THEOREM 1.22. Let X be an ergodic Z-system of order < k. Then X is an inverse limit of
toral systems of order < k.

We say that a group (U , ·) is n-torsion if un = 1U for all u ∈ U . Bergelson, Tao and
Ziegler proved the following result [6, Theorem 4.8].

THEOREM 1.23. Let X be an ergodic Fωp-system of order < k. Then every structure group
U0, U1, . . . , Uk−1 is a pm-torsion group‡ for somem = Ok(1). In particular, X is a totally
disconnected system.

Let X be a G-system and ρ : G×X → U be a cocycle into some compact abelian
group U. If V is a quotient of U with quotient map p : U → V , then we refer to the cocycle
p ◦ ρ : G×X → V as the projection of ρ to the group V. The next definition captures all
non-pathological systems including toral systems and totally disconnected systems.

† A solenoid is a compact abelian finite-dimensional group that is not a Lie group. These are known for their
pathological properties.
‡ A group (U , ·) is n-torsion for some n ∈ N if un = 1U for every u ∈ U .
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Definition 1.24. (Splitting condition) Let G be a countable discrete abelian group and let
X be an ergodic G-system of order < k and write X = U0 ×ρ1 U1 × · · · ×ρk−1 Uk−1 as
in (1.1). If, for every 0 ≤ i ≤ k − 1, the group Ui is isomorphic to Ti ×Di , where Ti is
a torus (possibly zero dimensional or infinite dimensional) and Di is totally disconnected
and the projection of each ρi to Di is invariant under T1 × · · · × Ti−1, then we say that
X satisfies the splitting condition (or that X splits in short). In this case we denote by
T (X) := ∏k−1

i=0 Ti the torus part of X and by D(X) := ∏k−1
i=0 Di the totally disconnected

part of X.

Remark 1.25. The assumption that the projection of ρi toDi is invariant under the torus is
necessary to avoid pathological systems such as in Theorem 1.21. For instance, there exists
an ergodic system (T,

⊕
p∈P Fp) where T is a torus and a cocycle ρ :

⊕
p∈P Fp × T →

� (which is non-constant) into a disconnected group� such that the extensionX := T ×ρ

� is isomorphic to a solenoid.

Our main result implies that these systems are strongly Abramov.

THEOREM 1.26. (Splitting implies strongly Abramov) Let P be a countable (unbounded)
multiset of primes and G = ⊕

p∈P Fp. Let k, m ∈ N and let X be an ergodic
G-system of order < k which splits. Then any cocycle ρ : G×X → S1 of type < m

is (G, X, S1)-cohomologous to a phase polynomial of degree < Ok,m(1).

We also prove an exact version in the case where min P is large.

THEOREM 1.27. Under the assumptions of Theorem 1.26, if in addition we have k, m <

min P , then ρ is (G, X, S1)-cohomologous to a phase polynomial of degree < m.

Theorem 1.26 is the main result in this paper and it implies Theorem 1.19 (see §8).
In order to demonstrate some of our difficulties, we give a simple example of an ergodic⊕

p∈P Fp-action on the torus.

Example 1.28. (The torus as an ergodic
⊕

p∈P Fp-system) Consider the circle X = S1

with the Borel σ -algebra and the Haar measure. We define an action of
⊕

p∈P Fp on X by
Tgx = ϕ(g)x, where the homomorphism ϕ :

⊕
p∈P Fp → S1 is given by the formula

ϕ((gp)p∈P ) =
∏
p∈P

w
gp
p ,

where wp = e2πi/p is the first root of unity of degree p. This formula is well defined
because gp = 0 for all but finitely many p ∈ P (including multiplicities).

Let f ∈ L∞(X) be an invariant function. We write f (x) = ∑
n∈Z anxn for the Fourier

series of f. By comparing the Fourier coefficients of f and f ◦ Tg , we see that an = 0
whenever ϕ(g)n �= 1. In particular, if P is unbounded, then for every n �= 0 there exists
g ∈ ⊕

p∈P Fp such that ϕ(g)n �= 1. This implies that f must be a constant and X :=
(S1,

⊕
p∈P Fp) is ergodic. Moreover, it is easy to see that the characters χn(z) = zn form

an orthonormal basis of eigenfunctions in L2(X). From this, it follows that X is a system of
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order < 2 and every phase polynomial of degree < 2 is a constant multiple of a character.
Observe the following fact.

CLAIM. Let X be as in Example 1.28. Then every phase polynomial F : X → S1 is of
degree < 2 (there are no phase polynomials of higher degree).

Proof. Fix m ∈ N and let F : X → S1 be a phase polynomial of degree < m. By
Corollary B.3, the map s 	→ �sF from S1 to P<m(X) takes values in P<1(X). In ergodic
systems phase polynomials of degree < 1 are constants. Therefore, there exists a function
χ : X → S1 such that �sF = χ(s) for every s ∈ X. Using the cocycle identity (that is,
�stF (x) = �sF(tx)�tF (x)), we conclude that χ(st) = χ(s)χ(t) and χ is a character. It
follows that �s(F (x)/χ(x)) = 1 for every s ∈ S1. Hence, F/χ is a constant. Since χ is a
phase polynomial of degree < 2, we conclude that so is F.

From this example, we see that many results of Bergelson, Tao and Ziegler [6] for
Fωp-systems could not be generalized directly for

⊕
p∈P Fp where P is unbounded, due

to several new difficulties including the following.
(1) Ergodic

⊕
p∈P Fp-systems of finite order need not be totally disconnected.

(2) Phase polynomials need not take finitely many values.
(3) From the last claim, we see that some phase polynomials, like the identity map, need

not have phase polynomial roots†.

1.4.1. Nilpotent systems, limit formula and Khintchine-type recurrence. We prove a
structure result for systems of order < 3, from which we deduce a limit formula and a
Khintchine-type recurrence theorem.

Definition 1.29. LetG = ⊕
p∈P Fp. For an ergodic G-system X, let G(X) be the Host–Kra

group of X as defined in [29, §5] (see also Definition 10.1). We say that X is a two-step
nilpotent G-system if the Host–Kra group of X is two-step nilpotent and it acts transitively
on X.

Remark 1.30. In this case X = (G/	, B, μ, G), where 	 is the stabilizer of some point
x ∈ X, B is the Borel σ -algebra, μ is the Haar measure (which always exists because
nilpotent groups are uni-modular) and the action of g ∈ G is given by a left multiplication
by ϕ(g) ∈ G for some homomorphism ϕ : G → G.

We prove the following counterpart of Host and Kra’s structure theorem for systems of
order < 3.

THEOREM 1.31. Let X be an ergodic G-system of order < 3. Then X is an inverse limit of
finite-dimensional two-step nilpotent systems.

Let X be a two-step nilpotent system. We prove a (pointwise) limit formula for
three-term ergodic averages

† By a phase polynomial root for a phase polynomial p : X → S1 we mean a phase polynomial q such that
qn = p for some n > 1.
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lim
N→∞ Eg∈�NTgf1(x)T2gf2(x)T3gf3(x)

for any f1, f2, f3 ∈ L∞(X) along a Følner sequence of G (see Lemma 11.3 for the exact
formulation). Recall that a subset A ⊆ G is syndetic if there exists a finite subset C ⊆ G

such that A+ C = {a + c : a ∈ A, c ∈ C} = G. Using the formula above, we deduce the
following Khintchine-type recurrence for

⊕
p∈P Fp-systems.

THEOREM 1.32. Let P be a multiset of primes and suppose that minp∈P p > 3. Then, for
every ergodic

⊕
p∈P Fp-system (X, μ), every measurable set A ⊆ X of positive measure

and every ε > 0, the set{
g ∈

⊕
p∈P

Fp : μ(A ∩ TgA ∩ T2gA ∩ T3gA) ≥ μ(A)4 − ε

}

is syndetic.

Remark 1.33. It is also possible to prove a counterpart for three-term progressions, namely
that {

g ∈
⊕
p∈P

Fp : μ(A ∩ TgA ∩ T2gA) ≥ μ(A)3 − ε

}

is syndetic. One can also extend this result for other configurations. For instance, if
c0, c1, c2, c3 ≤ minp∈P p are such that ci + cj = ck + cl for some permutation {i, j , k, l}
of {0, 1, 2, 3}, then the same argument as we provide in §11 allows to replaceμ(A ∩ TgA ∩
T2gA ∩ T3gA) with μ(Tc0gA ∩ Tc1gA ∩ Tc2gA ∩ Tc3gA) in the theorem above.

1.5. The structure of the paper. Most of the paper (§§2–7) will be devoted to the
proof of Theorem 1.26, which is also the main component in the proof of Theorem
1.19 (§8). The proof follows the ideas of Bergelson, Tao and Ziegler [6] and those of
Host and Kra [29] with various modifications. In §9, we give an example of an ergodic⊕

p∈P Fp Kronecker system (system of order < 2) that is not strongly Abramov as in
Theorem 1.21. In the next section, we show that Theorem 1.26 implies a structure theorem
for all ergodic

⊕
p∈P Fp-systems of order < 3 as an inverse limit of two-step nilpotent

systems. Finally, we use this structure theorem to prove a limit formula, from which we
deduce the Khintchine-type recurrence as in Theorem 1.32.

2. Standard reductions
Throughout the rest of the paper, it will be convenient to use the letter G to denote the
group

⊕
p∈P Fp for some fixed and possibly unbounded countable multiset of primes P.

We need the following definition.

Definition 2.1. (Automorphism) Let X be a G-system. A measure-preserving transforma-
tion u : X → X is called an automorphism if the induced action on L2(X) by Vu(f ) =
f ◦ u commutes with the action of G. In this case, we define the multiplicative derivative
with respect to u by �uf = Vuf · f .
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Automorphisms arise naturally from Host–Kra theory. For instance, given an abelian
extension Y ×ρ U , the group U acts on this extension by automorphisms defined by
Vu(y, t) = (y, tu).

Our next goal is to show that Theorem 1.26 follows from the following two theorems.
The first asserts that in order to prove Theorem 1.26, it suffices to do so on a totally
disconnected system. We begin with the following definition.

Definition 2.2. Let m ≥ 1 be a natural number. Let X be an ergodic G-system and
f : G×X → S1 be a function of type < m. We say that f is a CL function† if for
every automorphism t : X → X there exist a phase polynomial pt ∈ P<m(G, X, S1) and
a measurable map Ft : X → S1 such that for all g ∈ G,

�tf (g, x) = pt (g, x) ·�gFt (x). (2.1)

If the equation is satisfied only for a certain group of automorphisms, we say that f is a CL
cocycle with respect to that group.

THEOREM 2.3. (Reduction to a totally disconnected factor) Let k ≥ 1 and X be an ergodic
G-system of order < k which splits. Then there exists a totally disconnected factor Y with
a factor map π : X → Y such that the following holds.

For everym ∈ N and a cocycle ρ : G×X → S1 of type< m, if ρ is a CL cocycle, then
ρ is (G, X, S1)-cohomologous to π�ρ′ for a cocycle ρ′ : G× Y → S1.

The second theorem is a version of Theorem 1.26 for totally disconnected systems. As
in [6, Theorem 5.4], the theorem holds for general functions of type < m that may not be
cocycles.

THEOREM 2.4. (The totally disconnected case) Let k, m ≥ 0 and let X be an ergodic
totally disconnected G-system of order < k. Let f : G×X → S1 be a function of type
< m. Then f is (G, X, S1)-cohomologous to a phase polynomial of degree < Ok,m(1).

Note that, in retrospect, knowing that Theorem 1.19 holds, reducing the proof of
Theorem 1.26 to a totally disconnected case is a reasonable approach.

2.1. Proof of Theorem 1.26 assuming Theorems 2.3 and 2.4. We recall some results
from Bergelson, Tao and Ziegler [6, Proposition 8.11 and Lemma 5.3].

LEMMA 2.5. (Descent of type for cocycles) Let k ≥ 0 and let X be an ergodic G-system of
order < k. Let Y be a factor of X with factor map π : X → Y . Suppose that ρ : G× Y →
S1 is a cocycle. If π�ρ is of type < k, then ρ is of type < k.

LEMMA 2.6. (Differentiation lemma) Let k ≥ 1 and let X be an ergodic G-system. Let f :
G×X → S1 be a function of type < m for some m ≥ 1. Then, for every automorphism
t : X → X which preserves Z<k(X), the function �tf (x) := f (tx) · f (x) is of type <
m− min(m, k).

† Equation (2.1) is named after the mathematicians Conze and Lesigne, who studied these equations in the case
where m = 2; see [12–14].
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In [6], Bergelson, Tao and Ziegler assumed that the automorphism t in the lemma above
is a transformation of the form Vt (y, u) = (y, tu), whereX = Y ×ρ U is an abelian group
extension of a G-system Y. However, the proof does not use this fact and the result holds
for any automorphism as stated above.

We prove Theorem 1.26 assuming Theorems 2.3 and 2.4. This proof is similar to the
proof of [6, Theorem 5.4].

Proof of Theorem 1.26 assuming Theorems 2.3 and 2.4. Let k, m, X, ρ be as in Theorem
1.26. We claim that for every 0 ≤ j ≤ m and automorphisms t1, . . . , tj : X → X, we have

�t1 · · · �tj ρ ∈ P<Ok,m,j (1)(G, X, S1) · B1(G, X, S1). (2.2)

We prove this by downward induction on j. For j = m, the claim follows by iterat-
ing Lemma 2.6 (with no polynomial term). Fix j < m and assume inductively that
the claim is true for j + 1. By Theorem 2.3, we can find a factor Y with factor
map π : X → Y so that �t1 · · · �tj ρ is (G, X, S1)-cohomologous to π�ρt1,...,tj , where
ρt1,...,tj : G× Y → S1 is a cocycle. By assumption, ρ is of type < m. Since t1, . . . , tj
commute with the G-action, �t1 · · · �tj ρ is also of type < m and, by Lemma 1.13(ii),
so is π�ρt1,...,tj . Thus, Lemma 2.5 implies that ρt1,...,tj : G× Y → S1 is a cocycle of
type < m. Since ρt1,...,tj is defined on a totally disconnected system Y, we see from
Theorem 2.4 that ρt1,...,tj is (G, Y , S1)-cohomologous to a phase polynomial Pt1,...,tj : G×
Y → S1 of degree < Ok,m,j (1). Lifting everything up by π , we conclude that ρt1,...,tj is
(G, X, S1)-cohomologous to π�Pt1,...,tj , which, by Lemma 1.14(iv), is a phase polynomial
of degree < Ok,m,j (1). This completes the proof of the claim. Theorem 1.26 now follows
from the case j = 0.

The rest of the paper is devoted to the proof of Theorems 2.3 and 2.4 assuming the
induction hypothesis of Theorem 1.26.

3. Reduction to a finite-dimensional U
In the next two sections, we develop a theory which eventually allows us to reduce the proof
of Theorem 1.26 to the case where X is totally disconnected. We work in general settings
(we do not assume that X splits) and so we potentially deal with some pathological groups.
Since we work in full generality, one can adapt our proof to prove a more general version of
Theorem 1.26. More concretely, it is possible to replace the torus in the splitting condition
with any compact connected abelian group U that has no non-trivial local isomorphism to
Ĝ (that is, there are no open neighborhood U ′ of the identity in U and a non-trivial map
ϕ : U ′ → Ĝ such that ϕ(u · u′) = ϕ(u) · ϕ(u′) whenever u, u′, u · u′ ∈ U ′). For the sake
of simplicity, we only prove Theorem 1.26 in the way formulated above.

We define a notion of dimension of compact abelian groups. First, we say that a compact
abelian group is of dimension zero if it is totally disconnected. As for higher dimensions,
we have the following definition/proposition from [27, Theorem 8.22].

Definition 3.1. (Definition and properties of finite-dimensional compact abelian groups)
The following conditions are equivalent for a compact abelian group H and a natural
number n.
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(1) There are a compact zero-dimensional subgroup � of H and an exact sequence

1 → � → H → Tn → 1,

where Tn is the n-dimensional torus.
(2) There are a compact zero-dimensional subgroup � of H and a continuous quotient

homomorphism ϕ : �× Rn → H which has a discrete kernel.
We say that a compact abelian group H is finite dimensional if it satisfies at least one of
these conditions.

Remark 3.2. Note that condition (1) in the previous definition is equivalent to the existence
of some zero-dimensional subgroup D of H and an exact sequence

1 → D → H → Tn × Ck → 1

for some finite group Ck . For, if H/D ∼= Tn × Ck , then Ck is a subgroup of H/D. Hence,
the isomorphism theorem implies that there exists D ⊆ D′ ⊆ H such that D′/D ∼= Ck . It
follows that D′ is also a zero-dimensional group and H/D′ ∼= Tn.

We need the following definition.

Definition 3.3. (Free action) Let U be a locally compact group acting on a probability
space X in a measure-preserving way. The action of U is said to be free if X is measure
equivalent to a system of the form Y × U and the action of u ∈ U is given by Vu(y, v) =
(y, uv).

In this section, we study CL cocycles ρ : G×X → S1 with respect to some group
U of measure-preserving transformations on X. Note that, in retrospect, if X satisfies the
splitting condition and Theorem 1.26 holds, then any cocycle of type< m is a CL cocycle.
The main result in this section is the following proposition.

PROPOSITION 3.4. Let X be an ergodic G-system. Let U be a compact abelian group
acting freely on X and commuting with the action of G. Let m ≥ 0 and ρ : G×X → S1

be a CL cocycle of type < m with respect to U. Then ρ is (G, X, S1)-cohomologous to a
cocycle which is invariant under some closed connected subgroup J of U for which U/J is
a finite-dimensional compact abelian group.

We will take advantage of the following results of Bergelson, Tao and Ziegler [6, Lemma
C.1 and Lemma C.4].

LEMMA 3.5. (Separation lemma) Let X be an ergodic G-system, let k ≥ 1 and let φ, ψ ∈
P<k(X, S1) be such that φ/ψ is non-constant. Then ‖φ − ψ‖L2(X) ≥ √

2/2k−2.

Since X is compact, L2(X) is separable. From this, it follows that up to a constant
multiple, there are only countably many phase polynomials of a given degree.

The next lemma asserts that the components in the Conze–Lesigne equations can be
chosen in a measurable way.
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LEMMA 3.6. (Measure selection lemma) Let X be an ergodic G-system and k ≥ 1.
Let U be a compact abelian group. If u 	→ hu is a Borel measurable map from U
to P<k(G, X, S1) · B1(G, X, S1) ⊆ M(G, X, S1), where M(G, X, S1) is the group of
measurable maps of the form G×X → S1 endowed with the topology of convergence
in measure, then there is a Borel measurable choice of fu, ψu (as functions from U to
M(X, S1) and U to P<k(G, X, S1), respectively) obeying hu = ψu ·�fu.

The next lemma deals with CL cocycles in which the polynomial term is trivial. In this
case, up to coboundary, the cocycles are linear on an open subgroup [29, Lemma C.9].

LEMMA 3.7. (Straightening almost translation-invariant cocycles) Let X be an ergodic
G-system, let K be a compact abelian group acting freely on X by automorphisms and let
ρ : G×X → S1 be such that �kρ is a (G, X, S1)-coboundary for every k ∈ K . Then ρ
is (G, X, S1)-cohomologous to a cocycle which is invariant under the action of some open
subgroup of K.

Remark 3.8. Note that if K is connected, then it has no non-trivial open subgroups (see
Lemma A.13). In this case, we have that ρ is (G, X, S1)-cohomologous to a function which
is invariant under K. Moreover, it is important to note that such result does not work for
cocycles which take values in an arbitrary compact abelian group. Finally, we note that
Lemma 3.7 holds even if one replaces the cocycle ρ with an arbitrary function f : G×
X → S1

Taking advantage of the fact that there are only countably many phase polynomials
of a given degree (modulo constants), we can assume that the polynomial terms in all
Conze–Lesigne equations are almost linear. Formally, we have the following lemma.

LEMMA 3.9. (Linearization of the polynomial term) Let X be an ergodic G-system and let
U be a compact abelian group acting freely on X by automorphisms. Let ρ : G×X → S1

be a cocycle and suppose that there exists m ∈ N such that for every u ∈ U , there exist
phase polynomials pu ∈ P<m(G, X, S1) and a measurable map Fu : X → S1 such that
�uρ = pu ·�Fu. Then there exists a measurable choice u 	→ p′

u and u 	→ F ′
u such that

�uρ = p′
u ·�F ′

u for phase polynomials p′
u ∈ P<m(G, X, S1) which satisfies p′

uv = p′
u ·

Vup
′
v whenever u, v, uv ∈ U ′, where U ′ is some open neighborhood of the identity in U.

The proof of this lemma is given in [6] as part of the proof of Proposition 6.1 (see in
particular equation (6.5) in that proof).

Remark 3.10. The idea of linearizing the term pu as in the lemma above was originally
introduced by Furstenberg and Weiss in [18]. Later, this idea was used by Ziegler in
[45] and by Bergelson, Tao and Ziegler in [6], who studied the structure of the universal
characteristic factors for the groups Z and Fωp , respectively.

Finally, we prove the following lemma about phase polynomial cocycles and connected
groups. This lemma plays an important role in the proof of Proposition 3.4.
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LEMMA 3.11. Let X be an ergodic G-system, let H be a compact abelian group acting
freely on X by automorphisms and let p : H → P<m(G, X, S1) ∩ Z1(G, X, S1) be a
measurable map. Suppose that p satisfies p(hk) = p(h)Vhp(k) for every h, k ∈ H . Then
p(h, ·) = 1 for every h ∈ H0, where H0 is the connected component of the identity in H.

Proof. By evaluating the polynomials at g, we see that the map p : H → P<m(G, X, S1) ∩
Z1(G, X, S1) induces a map pg : H → P<m(X, S1) with the property that pg(hk) =
pg(h)Vhpg(k) for every h, k ∈ H . Let g ∈ G be arbitrary and let H0 be the connected
component of the identity in H. Since this group is a subgroup of any open subgroup of
H, we conclude by applying Corollary B.3 that the image of the restriction of pg to H0

is an element in P<1(X, S1). Since this holds for every g ∈ G, we conclude that p(H0)

is a subset of P<1(G, X, S1) ∩ Z1(G, X, S1). By ergodicity, P<1(G, X, S1) consists
of maps of the form c : G → S1 (constant in x). If in addition c ∈ Z1(G, X, S1), then
c is a character of G. In other words, we can identify P<1(G, X, S1) ∩ Z1(G, X, S1)

with the dual Ĝ. Observe that the topology on P<1(G, X, S1) ∩ Z1(G, X, S1) as
a subset of M(G, X, S1) coincides with the natural topology on Ĝ (of pointwise
convergence). In other words, the identification of P<1(G, X, S1) ∩ Z1(G, X, S1) with
Ĝ is an isomorphism of topological groups. Therefore, we can assume that p|H0 takes
values in Ĝ. Since p(hk) = p(h)Vhp(k) = p(h)p(k) for every h, k ∈ H , we see that
p|H0 : H0 → Ĝ is a measurable homomorphism. By Lemma A.5, p|H0 is continuous.
Since H0 is connected and Ĝ is totally disconnected, this map is trivial.

We can finally prove Proposition 3.4.

Proof of Proposition 3.4. LetX, U , ρ, m, pu, Fu be as in Proposition 3.4. By Lemma 3.6,
we may assume that u 	→ pu and u 	→ Fu are measurable. Moreover, by Lemma 3.9, we
may assume that there exists an open neighborhood U ′ of the identity in U on which pu
is a cocycle in u (that is, puv = puVupv whenever u, v, uv ∈ U ′). It is well known that
every compact abelian group can be approximated by Lie groups (Theorem A.3). In other
words, there exists a closed subgroup J ′ contained in U ′ such that U/J ′ is a Lie group.
Let p : J ′ → P<m(G, X, S1) be the map j 	→ pj . From Lemma 3.11, it follows that p
is trivial on the connected component of the identity in J ′. Let J := J ′

0; we conclude
that �jρ is a coboundary for every j ∈ J . By Lemmas 3.7 and A.13, we have that ρ is
(G, X, S1)-cohomologous to a cocycle which is invariant under the action of J.

It is left to show that U/J is a finite-dimensional group. We have the following exact
sequence:

1 → J ′/J → U/J → U/J ′ → 1.

Here J ′/J is totally disconnected and U/J ′ is a Lie group. By the structure theorem for
compact abelian Lie groups (Theorem A.17), we know that U/J ′ is a finite extension of
a torus. Hence, U/J ′ is a finite-dimensional compact abelian group as in property (1) of
Definition 3.1.

4. Reduction to the totally disconnected group case
In this section, we work with a finite-dimensional group U acting on a system X. By
the structure of finite-dimensional compact abelian groups (Definition 3.1), we can write
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U ∼= (Rn ×�)/	 for some n ∈ N, a totally disconnected compact abelian group � and a
discrete subgroup 	 of Rn ×�. Throughout this section, it will be convenient to identify
Rn × {1} with Rn and {1} ×� with �.

Definition 4.1. Let (H , +) and (K , ·) be two abelian groups. We say that a map ϕ : H →
K is a homomorphism on some set A ⊆ H if ϕ(x + y) = ϕ(x) · ϕ(y) whenever x, y ∈ A.

Below is a simple lemma about homomorphisms on open subsets of Rn.

LEMMA 4.2. (Lifting of homomorphisms on open sets of Rn) Let H be a compact abelian
group and let ϕ : Rn → H be a measurable map. Suppose that there exists an open ball
around zeroW ⊆ Rn such that ϕ(v + w) = ϕ(v)+ ϕ(w) whenever v, w ∈ W . Then there
exists a homomorphism ϕ̃ : Rn → H such that ϕ̃ and ϕ agree on W.

Remark 4.3. Lemma 4.2 is a special case of [45, Lemma 4.7]. Also, we note that if ϕ is
measurable, then so is ϕ̃.

Proof. Write W = B(0, r) for the open ball of radius r around zero for some r > 0. We
extend ϕ to a function ϕ1 which is a homomorphism on 1.5W = B(0, 1.5r) as follows.

If a �∈ 3W , let ϕ1(a) = 1 (or any other element in H). Otherwise, choose any x ∈ W
and y ∈ 2W with a = x + y and let ϕ1(a) = ϕ(x)ϕ(y). Assume for now that ϕ1 is well
defined (that is, independent of the choice of x, y); we claim that ϕ1 is a homomorphism
on 1.5W . Indeed, let x, y ∈ 1.5W and then write x = 1.5u and y = 1.5v for u, v ∈ W . We
have

ϕ1(1.5u+ 1.5v) = ϕ1(u+ (0.5u+ 0.5v)+ v)

as u, v ∈ W . We see that 0.5u+ 0.5v ∈ W and 0.5u+ 1.5v ∈ 2W . If ϕ1 is well defined,
we have

ϕ1(u+ (0.5u+ 0.5v)+ v) = ϕ(u)ϕ(0.5u+ 0.5v + v) = ϕ(u)ϕ(0.5u+ 0.5v)ϕ(v),

where the last equality follows from the linearity of ϕ on W. Using the linearity of ϕ a few
more times, we have

ϕ(u)ϕ(0.5u+ 0.5v)ϕ(v) = ϕ(u)ϕ(0.5u)ϕ(0.5v)ϕ(v) = ϕ1(1.5u)ϕ1(1.5v).

Combining everything, we conclude that ϕ1(x + y) = ϕ1(x)ϕ1(y), as desired.
It is left to show that ϕ1 is well defined. Let x, x′ ∈ W and y, y′ ∈ 2W be so that x +

y = x′ + y′. We want to show that ϕ(x)ϕ(y) = ϕ(x′)ϕ(y′).
By assumption, x − x′ = x + (−x′) is a sum of two elements in W and hence we have

that ϕ(x − x′) = ϕ(x)ϕ(x′)−1 and so ϕ(x) = ϕ(x′)ϕ(x − x′). It is thus enough to prove
that ϕ(y′) = ϕ(y)ϕ(x − x′). We have

ϕ

(
y′

2

)
= ϕ

(
x − x′

2
+ y

2

)
= ϕ

(
x − x′

2

)
ϕ

(
y

2

)
.

Now, as y′/2, (x − x′)/2 and y/2 are elements in W, we see that
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ϕ(y′) = ϕ

(
y′

2

)2

=
(
ϕ

(
x − x′

2

))2(
ϕ

(
y

2

))2

= ϕ(x − x′)ϕ(y).

We conclude that ϕ1 is well defined.
Replacing ϕ with ϕ1 and W with 1.5W , by the same arguments as before we can

construct ϕ2 which extends ϕ1 on 1.5W and is a homomorphism on (1.5)2W . Continuing
in this way, we deduce that there exists a sequence ϕ1, ϕ2, . . . with ϕi extending ϕi−1 for
each i such that ϕn is a homomorphism on (1.5)nW for every n ∈ N.

Thus, for every x ∈ Rn, there exists m so that x ∈ B(0, (1.5)mr). Let ϕ̃(x) = ϕm(x). It
is easy to see that ϕ̃ is well defined, is a homomorphism and it agrees with ϕ on W.

Given a finite-dimensional compact abelian group U, its connected component U0 is
also finite dimensional (see [27, Corollary 8.24]). Let ρ be a CL cocycle; we use the
previous lemma to obtain some results on the map p : U0 → P<m(G, X, S1) given by
u 	→ pu.

LEMMA 4.4. Let X be an ergodic G-system. Let U be a finite-dimensional compact abelian
group acting freely on X and commuting with the action of G. Let m ≥ 1 and let ρ : G×
X → S1 be a CL cocycle of type < m and write �uρ = pu ·�Fu as in (2.1). We denote
by U0 the connected component of the identity in U and write U0 = (Rn ×�)/	 for some
n ∈ N, a totally disconnected group � and a discrete subgroup 	. Let π : Rn ×� → U0

be the projection map. Then:
(1) there exists an open subgroup V of � such that

pπ(uv) = pπ(u)pπ(v)

whenever u, v ∈ V ;
(2) there exists an open ball W ⊆ Rn such that pπ(w) = 1 for all w ∈ W ;
(3) pπ(w) is a (G, X, S1)-coboundary for every ω ∈ Rn.

Proof. In order to keep the same notation as above, we use the multiplicative notation to
denote the additive operation of Rn.

Applying the linearization lemma (Lemma 3.9), there exists an open neighborhood U ′
of the identity in U0 on which u 	→ pu is a cocycle (that is, puv = puVupv whenever
u, v ∈ U ′). Since π is continuous, π−1(U ′) is an open subset of Rn ×� around zero and
therefore it contains an open subset of the form W × V , where W is an open subset of Rn

and V is an open subset of �. By shrinking W and V, we can assume that W is an open
ball around zero and by Proposition A.9 that V is an open subgroup of �. Since π(V ) is a
subgroup of U0 and it lies inside U ′, we conclude that

pπ(uv) = pπ(u)Vπ(u)pπ(v) = pπ(u)pπ(v),

where the last equality follows from Proposition B.5. This proves (1).
Let p : U0 → P<m(G, X, S1) be the map u 	→ pu. Then p ◦ π : Rn ×� →

P<m(G, X, S1) is a homomorphism on W × V . Applying Lemma 4.2 once for every
v ∈ V , we see that there exists a homomorphism p̃ : Rn × V → P<m(G, X, S1) which
extends p ◦ π on W × V . We restrict p̃ to Rn. Since the index of P<1(X, S1) in

https://doi.org/10.1017/etds.2021.109 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.109


318 O. Shalom

P<m(X, S1) is at most countable (Lemma 3.5) and Rn has no proper measurable subgroups
of countable index (Corollary A.4), we conclude that p̃|Rn takes values in P<1(G, X, S1).
By ergodicity, every element in P<1(G, X, S1) is a constant. Hence, since pu are cocycles
for every u ∈ U , we conclude that pu : G → S1 is a character for every u ∈ Rn. Therefore,
p̃|Rn gives rise to a homomorphism from Rn into Ĝ. Since Rn is divisible, such a
homomorphism must be trivial. In other words, the image of p̃|Rn is trivial. This completes
the proof of (2) because p̃ and p ◦ π agree on W and p̃(W) = {1}.

For (3), we let

H = {s ∈ Rn : pπ(s) is a coboundary}.
Using the facts that p1 = 1, pst is cohomologous to psVspt = pspt and ps is cohomolo-
gous to ps−1 for every s, t ∈ U0, we have that H is a subgroup of Rn. Moreover, from (2),
we have that H contains the open ball W and therefore H = Rn. This proves (3).

In this situation we would like to use Lemma 3.7 in order to eliminate the Rn part of
U0. Unfortunately this is impossible because the image of Rn is not necessarily a compact
subgroup of U0. In fact, the image of Rn is dense and it is closed if and only if U0 is a
torus. We have the following proposition as a corollary.

PROPOSITION 4.5. In the settings of Lemma 4.4, if U0 is a torus, then ρ is
(G, X, S1)-cohomologous to a cocycle which is invariant under the action of U0.

Assuming that X splits, we combine this with the results of the previous section to
conclude the following result.

THEOREM 4.6. (Eliminating the connected components of a system X of order < k which
splits) Let k ≥ 1 be such that Theorem 1.26 has already been proven for smaller values
of k. Let X be an ergodic G-system of order < k which splits. We can then write X =
U0 ×ρ1 U1 × · · · ×ρk−1 Uk−1, where ρi : G× Z<i(X) → Ui is a cocycle of type < i for
all 1 ≤ i ≤ k − 1. Let m ≥ 0 and ρ : G×X → S1 be a CL cocycle of type < m. Then ρ
is (G, X, S1)-cohomologous to a cocycle ρ̃ : G×X → S1 which is invariant under the
action of Uj ,0 on X by translations for all 0 ≤ j ≤ k − 1.

Proof. Fix 1 ≤ j ≤ k − 1. We prove the theorem by induction on k. If k = 1, then X is
just a point and the claim in the theorem is trivial. Fix k ≥ 2 and assume that the claim
holds for smaller values of k. We replace the cocycles ρj+1, . . . , ρk−1 with cocycles that
are invariant under the action of Uj ,0. We begin with ρj+1 : G× Z<j+1(X) → Uj+1.
Since ρj+1 is of type < j + 1, we can apply Theorem 1.26 to the projection of ρj+1

to the torus of Uj+1 (that is, T (Uj+1)) by applying it to each coordinate separately. We
conclude that ρj+1 is (G, Z<j+1(X), T (Uj+1))-cohomologous to a phase polynomial,
which, by Proposition B.5, is invariant with respect to the action of Uj ,0. Now, since X
splits, the projection of ρj+1 to the totally disconnected part of Uj+1 is also invariant
under the action of Uj ,0. Hence, by Lemma 3.7 (applied with K = Uj ,0) and Remark 1.7,
we can replace ρj+1 with a cocycle ρ′

j+1 that is invariant under Uj ,0. We conclude that
Zj+2(X) is isomorphic as G-systems to Z<j+1(X)×ρ′

j+1
Uj+1 (see Remark 1.7). On the
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new system, since ρ′
j+1 is invariant with respect to Uj ,0, we see that for every g ∈ G

the transformation Tg commutes with the translations Vu for u ∈ Uj ,0. To see this, let
(s, t) ∈ Z<j+1(X)× Uj+1. Then, for every u ∈ Uj ,0 and g ∈ G, we have TgVu(s, t) =
(SgVus, ρ′

j+1(g, us)t), where Sg is the action of G on Z<j+1(X) and we abuse notation
and denote the translation by u on Z<j+1(X) by Vu as well. Now, since Vu commutes with
Sg and ρ′

j+1 is invariant to u, we conclude that TgVu(s, t) = (SgVus, ρ′
j+1(g, Vus)t) =

(VuSgs, ρ′
j+1(g, s)t) = VuTg(s, t), as required. Therefore, the same argument as before

can be applied with ρj+2 instead of ρj+1. Continuing in this way (using induction), we
can assume that ρj+1, . . . , ρk−1 are invariant with respect to the action of Uj ,0. In this
case, it follows that Uj ,0 acts on X by automorphisms.

Thus, by Proposition 3.4, ρ is (G, X, S1)-cohomologous to a cocycle ρ′ : G×X →
S1 which is invariant with respect to the translations by some connected subgroup
J of Uj ,0 for which Uj ,0/J is a finite-dimensional torus. Since ρj+1, . . . , ρk−1 are
invariant with respect to the action of Uj ,0, they are also invariant to the action of J.
In particular, we can define a factor Y := U0 ×ρ1 U1 × · · · ×ρj Uj/J ×ρ′

j+1
Uj+1 ×ρ′

j+2

· · · ×ρ′
k−1
Uk−1 of X, where ρ′

j+1, . . . , ρ′
k−1 are induced from ρj+1, . . . , ρk−1 under

the projection Uj → Uj/J . Let π : X → Y be the factor map π(u0, . . . , uk−1) =
(u0, . . . , uj + J , . . . , uk−1). We have that ρ′ is equal to π�ρ′′, where ρ′′ : G× Y → S1

is a cocycle and Uj ,0/J is a finite-dimensional torus acting freely on Y and commuting
with the G-action.

We want to apply Proposition 4.5, but first we have to show that ρ′′ is a CL cocycle of
type < m with respect to Uj ,0/J .

As ρ′ is (G, X, S1)-cohomologous to ρ, we have that

�uρ
′ = pu ·�Fu (4.1)

for a phase polynomial pu ∈ P<m(G, X, S1) and a measurable map Fu : X → S1. Recall
that ρ′ is invariant with respect to the action of J. Since J is connected, we conclude by
Proposition B.5 and equation (4.1) that �Fu is also invariant with respect to J. Since the
action of J commutes with the G-action, we conclude that�jF is invariant. By ergodicity
and since �jj ′F = �jFVj�j ′F for every j , j ′ ∈ J , we see that �jFu = χu(j) for all
j ∈ J for some character χu : Uj → S1§.

Applying Theorem 1.26, we have that χu ◦ ρj−1 is (G, Z<i(X), S1)-cohomologous to
a phase polynomial q of degree < Ok(1), that is, χu ◦ ρj−1 = q ·�F . Let φχu = χu ·
F . Then φχu : Z<j (X) → S1 is a phase polynomial of degree < Ok(1) and it satisfies
�jφχu = χu(j) for all j ∈ J . Let φ̃χu = (πXZ<j (X)

)�φχu . We have that F ′
u := Fu/φ̃χu is

invariant with respect to the action of J and that�uρ′ = p′
u ·�F ′

u, where p′
u = pu ·�φ̃χu

is a phase polynomial of degree< Ok,m(1). Now ρ′, p′
u and F ′

u are all invariant under J and
so there exist p̃u : G× Y → S1 and F̃u : Y → S1 such that pu = π�p̃u and Fu = π�F̃u.
It follows that�uρ′′ = p̃u ·�F̃u for all u ∈ Uj/J and by functoriality we have that p̃u are
also phase polynomials of degree < Ok,m(1).

We can therefore apply Proposition 4.5. It follows that ρ′′ is (G, Y , S1)-cohomologous
to a cocycle ρ̃ : G× Y → S1 which is invariant under Uj ,0/J . Therefore, π�ρ̃

§ Initially χu is a character of J which we can lift (arbitrarily) to a character of Uj using Pontryagin duality.
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is (G, X, S1)-cohomologous to ρ′ = π�ρ′′ and is invariant under Uj ,0. As ρ is
(G, X, S1)-cohomologous to ρ′, it is also (G, X, S1)-cohomologous to π�ρ̃, which
completes the proof.

Remark 4.7. To obtain a Conze–Lesigne equation for ρ ′, it is also possible to use a similar
argument as in [6, Lemma B.11].

Theorem 2.3 follows by repeatedly applying the theorem above, each time eliminating
the connected component of the next group. After k − 1 iterations we get a totally
disconnected factor of X. In the next section, we study these totally disconnected systems.

5. Topological structure theorem and Weyl systems
We denote by Cp the group of all pth roots of unity in the circle, equipped with
discrete topology. We prove the following counterpart of [6, Lemma 4.7] for the group
G = ⊕

p∈P Fp in the special case where X is a totally disconnected system.

THEOREM 5.1. (The structure of totally disconnected systems) Let k ≥ 2 be an integer
such that Theorem 1.26 has already been proven for smaller values of k. Let X be a
totally disconnected system of order< k and suppose that X = Z<k−1(X)×σ U for some
totally disconnected group U. Then there exist d = Ok(1), integers 0 ≤ m1, m2, . . . ≤ d

and primes p1, p2, . . . ∈ P such that U ∼= ∏∞
n=1 Cpmnn as topological groups. Moreover,

if pi sufficiently large (pi > k), we can take mi ≤ 1.

Recall that if X is totally disconnected, then any phase polynomial P : X → S1 takes
finitely many values (see Proposition B.7 and Theorem B.9). In this case, we can also prove
that these phase polynomials have phase polynomial roots (see Corollary B.14). These
results imply the following useful lemma.

LEMMA 5.2. Let X be a totally disconnected ergodic G-system of order < k.
Let ρ : G×X → S1 be a cocycle which takes values in Cn and suppose that
ρ is (G, X, S1)-cohomologous to a phase polynomial of degree < d. Then ρ is
(G, X, Cn)-cohomologous to a phase polynomial of degree < Od,k(1).

Proof. Write

ρ = q ·�F , (5.1)

where q ∈ P<d(G, X, S1) and F : X → S1 is a measurable map. Then it follows that

1 = ρn = qn ·�Fn. (5.2)

We conclude that P := Fn is a phase polynomial of degree < d + 1.
As X is totally disconnected, Theorem B.8 implies that P takes values in some closed

subgroup H of S1 (after rotating F by a constant if necessary). Therefore, we can write
H ∼= Cp1

l1 × · · · × Cpmlm for l1, . . . , lm = Ok(1) and distinct primes p1, . . . , pm.
Let πi : H → C

p
li
i

be one of the coordinate maps and let Pi := πi ◦ P . Clearly, Pi is

also a phase polynomial of degree < d + 1 and we have that P = ∏m
i=1 Pi . Our goal is to
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find for each coordinate 1 ≤ i ≤ m a phase polynomial ψi of degree < Od,k(1) such that
ψni = Pi .

Fix 1 ≤ i ≤ m; then Pi takes values in Cpi li . Write n = p
ri
i · n′ for some ri ∈ N and

some integer n′ ∈ N that is coprime to pi . First, we find an n′th root of Pi . To do this, let
α ∈ N be such that n′ · α = 1 mod plii and let φi = Pαi . We conclude that

φn
′
i = Pn

′α
i = Pi .

Clearly, φi is also a phase polynomial of degree < d + 1. It is therefore left to find a
p
ri
i th root for φi . We have two cases. If pi , ri = Ok,d(1), then the claim follows from

Corollary B.14. Otherwise, suppose that either pi or ri are sufficiently large. Let G =
Gpi ⊕G′, where Gpi is the subgroup of G of elements of order pi . In this case, we claim
that q(g, x)n = 1 for all g ∈ Gpi . Indeed, if ri is sufficiently large, then Proposition B.1
implies that q(g, x)n = 1 for all g ∈ Gpi . Otherwise, if pi is sufficiently large (pi > k),
then by Theorem B.9 we have that q(g, x) takes values in Cpi and hence q(g, x)n = 1.

From equation (5.2), we see that in both cases P is invariant under g ∈ Gpi and therefore
so is Pi . Recall that Pi takes values in C

p
li
i

and so from Proposition B.1 it is invariant under

g ∈ G whose order is coprime to p as well. It follows that Pi is G-invariant and hence by
ergodicity it is a constant. Since φi is some power of Pi , it is also a constant. Hence, φi has
a prii th root.

We conclude that either way, there exists a phase polynomial ψi of degree < Od,k(1)
with ψni = Pi . Now we glue all coordinates together. Let ψ : X → H be the product of all
coordinates ψ(x) = ψ1(x) · · · ψm(x). As ψ1, . . . , ψm are phase polynomials of degree
< Ok,d(1), so is ψ . Since ψni = Pi , we conclude that ψn = P .

To finish the proof, we now let F ′ = F/ψ and q ′ = q ·�ψ . From equation (5.1), we
see that

ρ = q ′ ·�F ′.

As ψ is an nth root of P = Fn, we have that F ′ takes values in Cn and therefore so does
q ′. Moreover, as ψ is a phase polynomial of degree < Ok,d(1), we have that so is q ′, as
required.

Proof of Theorem 5.1. Let X = Z<k−1(X)×σ U be as in the theorem. By Proposition
A.11, we have that U = ∏

p Up, where Up are the p-sylow subgroups of U.
Fix any prime p and let χ : Up → S1 be any continuous character of Up. As Up is

a p-group, the image of χ is a cyclic group Cpn for some n ∈ N. Noting that χ ◦ σ is
a cocycle in Z1(G, Z<k−1(X), S1), by our induction use of Theorem 1.26 we have that
χ ◦ σ is (G, X, S1)-cohomologous to a phase polynomial of degree < Ok(1). Therefore,
by Lemma 5.2, it is (G, X, Cpn)-cohomologous to a phase polynomial q : G×X → Cpn

of degree < Ok(1) (potentially higher bound than before). It follows by Lemma B.1 that q
is trivial for all g of order coprime to p. If g is of order p, then by Proposition B.7 we have
that qp

d
(g, x) = 1 and, if p is sufficiently large (greater than k), then by Theorem B.9 we

can take d = 1. By the cocycle identity in g, it follows that qp
d
(g, x) = 1 for all g ∈ G.

Since σ is cohomologous to q, we conclude that σp
d

is a coboundary.
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The system Z<k(X)×
σp

d Cpn−d is a factor of Z<k−1(X)×σ U and therefore a factor
of X. Since X is ergodic, so is every factor, which means that n = d . Otherwise,
if n > d, then write σp

d = �F for some measurable map F : Z<k(X) → S1 and observe
that (s, u) 	→ F(s)u is a non-constant invariant function on Z<k(X)×

σp
d Cpn−d .

We conclude that Up is a pd -torsion subgroup for some d = Ok(1). Theorem A.12
implies that Up is a direct product of copies of Cpr for r ≤ d , as required.

We can finally prove that all totally disconnected systems of order < k are Weyl,
assuming that Theorem 1.26 holds for all smaller values of k.

THEOREM 5.3. (Totally disconnected systems are Weyl) Let k ≥ 1 be an integer such
that Theorem 1.26 has already been proven for all smaller values of k. Let X be a totally
disconnected system of order < k. Then X is isomorphic to a Weyl system.

Proof. We prove the claim by induction on k. If k = 1, then X is a point and the claim
is trivial. Let k ≥ 2 and assume inductively that the theorem holds for systems of order
< k − 1. Write X = Z<k−1(X)×σ U . By the induction hypothesis, we can assume that
Z<k−1(X) is a Weyl system. Moreover, from Theorem 5.1, we have that U ∼= ∏∞

i=1 Cp
mi
i

,
where mi = Ok(1) and mi = 1 if pi is sufficiently large. Let τi : U → C

p
mi
i

be one of

the coordinate maps. We think of C
p
mi
i

as a subgroup of S1. By Theorem 1.26 applied for

the factor Z<k−1(X), we have that τi ◦ σ is (G, Z<k−1(X), S1)-cohomologous to a phase
polynomial of degree < Ok(1) (into S1). Finally, from Lemma 5.2, we have that τi ◦ σ
is (G, Z<k−1(X), Cpmii

)-cohomologous to a phase polynomial qi : G×X → C
p
mi
i

of
possibly higher but bounded (< Ok(1)) degree. Since this is true for every coordinate map,
we conclude that σ is (G, Z<k−1(X), U)-cohomologous to q : G× Z<k−1(X) → U ,
where q(x) := (q1(x), q2(x), . . .). Since all of the phase polynomials qi are of bounded
degree which only depends on k (and is independent of i), it is easy to see that q
is of bounded degree. Since cohomologous cocycles define isomorphic systems (see
Remark 1.7), it follows that X = Z<k−1(X)×σ U is isomorphic to Z<k−1(X)×q U .
Since q is a phase polynomial andZk−1(U) is a Weyl system, this completes the proof.

6. Proof of Theorem 2.4
The proof of Theorem 2.4 follows by similar methods as in [6]. However, the multiplicity of
generators of different prime orders in G leads to some new difficulties in the ‘finite-group
case’. These can be solved by working out each prime separately.

6.1. Reduction of Theorem 2.4 to solving a Conze–Lesigne-type equation on a totally
disconnected system. Arguing as in the proof of Theorem 1.26 in §2.1 (see in particular
equation (2.2)), we can reduce matters into solving a Conze–Lesigne-type equation. It is
thus left to show the following result.

THEOREM 6.1. (Conze–Lesigne-type equation for functions on a totally disconnected
system) Let k ≥ 1 be such that Theorem 1.26 has already been proven for smaller values
of k and letX = Z<k−1(X)×ρ U be a totally disconnected ergodic G-system of order< k.
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Let f : G×X → S1 be a CL function of type < m for some m ∈ N as in Definition 2.1.
Then f is (G, X, S1)-cohomologous to P · π�f̃ for some P ∈ P<Ok,m(1)(G, X, S1) and a
measurable f̃ : Z<k−1(X) → S1, where π : X → Z<k−1(X) is the factor map.

Remark 6.2. Note that we do not require that the function f : G×X → S1 is a cocycle.
This theorem is a counterpart of [6, Theorem 4.5].

Proof of Theorem 1.26 assuming Theorem 6.1. We prove the theorem by induction on k.
If k = 1, then the system X is a point and the claim follows. Let k ≥ 1 and suppose that
Theorem 1.26 has already been proven for all smaller values of k and let ρ : G×X → S1

be a cocycle of type < m. Let t1, . . . , tm be any automorphisms of X. We claim by
downward induction on 0 ≤ j ≤ m that equation (2.2) holds. The case j = m follows
by iterating Lemma 2.6. Fix j < m and assume inductively that the equation holds for
j + 1. Let ρt1,...,tj = �t1 · · · �tj ρ. By the induction hypothesis on j, ρt1,...,tj is a CL
cocycle. Therefore, by Theorem 2.3, we can reduce matters to the case where X is totally
disconnected. Now, by Theorem 6.1, we see that there exists a phase polynomial P of
degree < Ok,m,j (1) such that P · ρt1,...,tj is measurable with respect to Z<k−1(X). Since
X is totally disconnected, we can apply the induction hypothesis on k. We conclude that
P · ρt1,...,tj (and ρt1,...,tj ) are cohomologous to a phase polynomial of degree < Ok,m,j (1),
as required. The case j = 0 in equation (2.2) implies Theorem 1.26.

6.2. Reduction to a finite U. Now we turn to the proof of Theorem 6.1 assuming the
induction hypothesis of Theorem 1.26.

Just like in [6, Proposition 6.1], we first show that it suffices to prove the theorem in the
case where the group U is a finite group.

We recall the following results from [6, Lemmas 5.1 and B.6].

LEMMA 6.3. (Descent of type) Let Y be a G-system, let k, m ≥ 1 and let X = Y ×ρ U be
an ergodic extension of Y by a phase polynomial cocycle ρ : G× Y → U of degree < m.
Let π : X → Y be a factor map and let f : Y → S1 be a function such that π�f is of type
< k. Then f is of type < k +m+ 1.

LEMMA 6.4. (Polynomial integration lemma) Let m, k ≥ 1 and let X = Y ×ρ U be an
ergodic abelian extension of a G-system Y by a cocycle ρ : G× Y → U that is also a
phase polynomial of degree < k. For all u ∈ U , let qu : X → S1 be a phase polynomial
of degree< m which obeys the cocycle identity quv = quVuqv for all u, v ∈ U . Then there
exists a phase polynomial Q : X → S1 of degree < Ok,m(1) such that �uQ = qu for all
u ∈ U .

The following proposition is a corollary of Lemma 6.4.

PROPOSITION 6.5. (Descent of the Conze–Lesigne equation) LetX, U , ρ be as in Lemma
6.4. Letm ≥ 0 and f : G×X → S1 be a U-invariant function. Suppose that f = p ·�F
for some phase polynomial p ∈ P<m(G, X, S1) and a measurable map F : X → S1.
Then there exist a phase polynomial p′ : G×X → S1 of degree < Ok,m(1) and a
measurable map F ′ : X → S1 such that p′ and F ′ are invariant under the action of U and
f = p′ ·�F ′.
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Proof. We take the derivative of both sides of the equation f = p ·�F by some u ∈ U .
Since the action of U commutes with the action of G, we have

�up ·��uF = 1.

It follows that �uF is a phase polynomial of degree < m+ 1. Moreover, it satisfies the
cocycle identity �uvF = �uFVu�vF . Therefore, applying Lemma 6.4, we conclude that
there exists a phase polynomial Q : X → S1 of degree < Ok,m(1) with the property that
�uF = �uQ. Let p′ = p ·�Q and F ′ = F/Q. We have

f = p′ ·�F ′.

As F ′ is invariant under U and f is invariant under U, we conclude that p′ is invariant
under U and this completes the proof.

We need the following basic fact about the product topology.

Fact. Let U ∼= ∏∞
n=1 Cpmnn be as in Theorem 5.1. The cylinder neighborhoods of the

identity (that is, the cofinite subproducts of these cyclic groups) form a basis for the
topology of U around the identity. That is, any open neighborhood of the identity in U
contains a cylinder set.

Below we prove the following counterpart of Proposition 6.1 from [6]. We fix an integer
k and assume (inductively) that Theorem 1.26 holds for smaller values of k.

THEOREM 6.6. In order to prove Theorem 6.1, it suffices to do so in the case where U is
finite.

Proof. Let X be a totally disconnected system of order < k and write X = Z<k−1(X)×σ

U . By Theorem 5.3, we can assume that σ : G× Z<k−1(X) → U is a phase polynomial
of degree < Ok(1). Let f : G×X → S1 be a function of type < m and assume that
for every u ∈ U we have that �uf = pu ·�Fu for some pu ∈ P<m(G, X, S1) and
Fu ∈ M(X, S1). From the linearization lemma (Lemma 3.9), we know that there exists
an open neighborhood U ′ of the identity in U such that u 	→ pu is a cocycle on U ′
(that is, puv = puVupv whenever u, v ∈ U ′). By Theorem 5.1, U ′ contains a cylinder
neighborhood. Therefore, by shrinking U ′, we can write U = U ′ ×W for some finite
group W.

We pass from U to U ′. First, we write X = Y ×σ ′ U ′, where Y = Z<k−1(X)×σ ′′ W
and σ ′ and σ ′′ are the projections of σ toU ′ and W, respectively. By construction ofU ′, we
have that puv = puVupv for all u, v ∈ U ′. We integrate pu(g, ·) by applying Lemma 6.4
once for every g ∈ G. We deduce that there exists a phase polynomialQ : G×X → S1 of
degree < Ok(1) such that �uQ = pu for every u ∈ U ′ (note that Q may not be a cocycle
in g). In particular, for every u ∈ U ′, we have that �u(f/Q) is a (G, X, S1)-coboundary.
Therefore, by Lemma 3.7, we see that f/Q is (G, X, S1)-cohomologous to a function
f ′ : G×X → S1 that is invariant under the action of some open subgroup U ′′ of U ′.

Let ϕ : U → U/U ′′ be the quotient map, let X′ = Z<k−1(X)×ϕ◦σ U/U ′′ and let π :
X → X′ be the factor map. We can then write f ′ = π�f̃ , where f̃ : G×X′ → S1.

We claim that f̃ is of bounded type. To see this, recall that f is of type < m and
Q is a phase polynomial of degree < Ok,m(1). By Lemma 1.13(iii), Q and f/Q are of
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type < Ok,m(1). Since π�f̃ is (G, X, S1)-cohomologous to f/Q, it is also of type
< Ok,m(1). Therefore, by Lemma 6.3, f̃ is of type < Ok,m(1).

Since Q is a phase polynomial of degree < Ok,m(1), we have that �u(f/Q) is
(G, X, S1)-cohomologous to a phase polynomial. In particular, π��ϕ(u)f̃ = �uπ

�f̃ is
(G, X, S1)-cohomologous to a phase polynomial of degree < Ok,m(1). Thus, for every
u ∈ U/U ′′, we can write

π��uf̃ = qu ·�Fu (6.1)

for some phase polynomial qu of degree < Ok,m(1). Applying Proposition 6.5, we
can assume that qu and Fu are invariant under U ′′. Therefore, all of the functions in
equation (6.1) are invariant with respect to U ′′ and so everything can be pushed to X′.
We conclude that �uf̃ is (G, X′, S1)-cohomologous to a phase polynomial of degree
< Ok,m(1). Now, applying Theorem 6.1 for the system X′, which is an extension of
Z<k−1(X

′) by a finite group U/U ′′, we conclude that f̃ is (G, X′, S1)-cohomologous
to P · π̃ �f0, where P ∈ P<Ok,m(1)(G, X′, S1), f0 : Z<k−1(X) → S1 is a measurable map
and π̃ : X → Z<k−1(X) is the factor map. As P is a phase polynomial of degree <
Ok,m(1) and f̃ is of type < Ok,m(1), arguing as before we have that f0 is also of type
< Ok,m(1). Finally, applying Theorem 1.26 for the system Z<k−1(X), we have that f0 is
(G, Z<k−1(X), S1)-cohomologous to a phase polynomial of degree < Ok,m(1). Lifting
everything up, we conclude that f is (G, X, S1)-cohomologous to a phase polynomial of
degree < Ok,m(1).

6.3. Proving the theorem for a finite U. We prove the following counterpart of
Proposition 7.1 from [6] for totally disconnected systems.

THEOREM 6.7. (Theorem 6.1 for a finite U) Let k ≥ 1 and U be a finite group. Suppose
that X = Z<k−1(X)×ρ U is a totally disconnected ergodic G-system of order < k and
let f : G×X → S1 be a CL function of type < m. Then f is (G, X, S1)-cohomologous
to P · π�f̃ for some P ∈ P<Ok,m(1)(G, X, S1) and a measurable f̃ : Z<k−1(X) → S1,
where π : X → Z<k−1(X) is the factor map.

The proof follows the general lines of the proof of Proposition 7.1 in [6]. The main
technical difference is that the results in Appendix B.1 (the counterpart of Appendix D in
[6]) are only valid for polynomials which take values in a finite cyclic group Cpn , where p
is a prime and n ∈ N. Recall that if X is a totally disconnected system then by Proposition
B.7 any phase polynomial p : X → S1 (after constant multiplication) takes values in a
finite subgroup H of S1. These subgroups take the form H ∼= ∏N

i=1 Cq
li
i

for some primes

qi and li ∈ N (and the li’s are bounded by a constant which only depends on the degree of
the polynomials and the order of X). Therefore, in order to apply the results from Appendix
B.1, we have to study each coordinate of p with respect to H separately. The formal proof
is given below.

Proof. By Theorem 5.1, we have that U is isomorphic to
∏N
i=1 Cpini for some

n1, n2, . . . , nN = Ok(1) and N unbounded but finite. Moreover, if pi is sufficiently
large with respect to k, we can take ni = 1.
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Let e1, . . . , eN be the standard basis. By the assumption of f being a CL function, for
each 1 ≤ i ≤ N we can write

�eif = Qi ·�Fi (6.2)

for a phase polynomial Qi ∈ P<m(G, X, S1) and Fi : X → S1 a measurable map.
The idea here is to find a measurable map F such that Fi = �eiF times a polynomial

error. This will imply that �eif/�F is a phase polynomial. The cocycle identity then
implies that �u(f/�F) is also a phase polynomial (and a cocycle in u). At this point the
claim in the theorem follows by the polynomial integration lemma.

The group U is isomorphic to the free group with N generators e1, . . . , eN modulo the

relations of the form e
p
nj
j

j = 1 for every 1 ≤ j ≤ N and [ei , ej ] = 1 for every 1 ≤ i, j ≤
N . This will help us to construct the function F.

First, observe that we have the following telescoping identity:

p
nj
j −1∏
t=0

V tej�ej f = 1

and so equation (6.2) implies that

�

p
nj
j −1∏
t=0

V tej Fj =
p
nj
j −1∏
t=0

V tejQj ∈ P<m(G, X, S1). (6.3)

In particular, we have that

p
nj
j −1∏
t=0

V tej Fj ∈ P<m+1(X, S1).

Observe that, a priori, if Fj = �ej F · Pj for some function F and a phase polynomial Pj

of degree < Ok,m(1), then the term above can be written as
∏p

nj
j −1
t=0 V tej Pj . In particular,

it means that we must be able to replace Fj with a new function F̃j = Fj/Pj such that
Fj/F̃j is a phase polynomial of degree < Ok,m(1) and

�

p
nj
j −1∏
t=0

V tej F̃j = 1.

To do this, we claim that there exists a phase polynomial ψj of degree < Ok,m(1) which

is invariant to the translation Vej and is a pj nj th root of
∏p

nj
j −1
t=0 V tej Fj . Then we set

Pj = ψj . Observe that
∏p

nj
j −1
t=0 V tej Fj is invariant to the translation by ej . We study two

cases. First, if pj = Ok,m(1), then we view
∏p

nj
j −1
t=0 V tej Fj as a phase polynomial on the

factor induced by quotienting out < ej >. At this point we apply Corollary B.14 in order

to find a phase polynomial of degree< Ok,m(1) that is also a p
nj
j th root of

∏p
nj
j −1
t=0 V tej Fj .
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Lifting everything up, we conclude that there exists a phase polynomial ψj of degree

< Ok,m(1) that is invariant under ej and is a p
nj
j th root of

∏p
nj
j −1
t=0 V tej Fj , as required.

Otherwise, we have that pj is sufficiently large. In this case, Theorem 5.1 implies that
nj = 1. Since X is totally disconnected, Proposition B.7 implies that up to a constant

multiple,
∏pj−1
t=0 V tej Fj takes values in a finite subgroup H of S1. Rotating Fj by a pj th

root of this constant, we may assume that
∏pj−1
t=0 V tej Fj takes values in H without changing

equation (6.2).
Recall that a finite subgroup H ≤ S1 takes the form H ∼= ∏N ′

i=1 Cq
li
i

, where the qi are

primes. The idea now is to find a root for each of the coordinates of
∏pj−1
t=0 V tej Fj (similar

to the proof of Lemma 5.2).
Let πi : H → C

q
li
i

be one of the coordinate maps of H; we study the term πi ◦∏pj−1
t=0 V tej Fj . We have two cases: if qi �= pj , then pj is invertible modulo qlii (that is,

there exists a ∈ N such that apj = 1 mod q
li
i ). In this case, we conclude that some power

of
∏pj−1
t=0 V tej πi ◦ Fj is a pj th root that is also a phase polynomial of degree < m+ 1.

This power is clearly invariant under Vej and the claim follows. We denote this phase
polynomial root by ψi,j . Otherwise, we have that qi = pj . Since pj is large, so is qi and
so by Theorem B.9 we have that li = 1. We conclude, by equation (6.3), that the derivative
of πi ◦ ∏pj−1

t=0 V tej Fj by �g satisfies

πi ◦
( pj−1∏

t=0

V tejQj

)
= πi ◦

( pj−1∏
t=0

(�tejQj )
(
pj
t+1)

)
. (6.4)

Write G = Gpj ⊕G′, where Gpj is the subgroup of elements of order pj and G′ is its
complement. The terms in equation (6.4) are of order qi = pj . In particular, this means
that for g ∈ G′ both of them are trivial (by Proposition B.1). For g ∈ Gpj , we claim that the
right-hand side is trivial. For such g ∈ Gpj , we have by Proposition B.1 and Theorem B.9
that Qj(g, ·) takes values in Cpj . Observe that pj divides

( pj
t+1

)
for every 0 ≤ t < pj − 1

and, since pj is sufficiently large, �
pj−1
ej eliminates Qj (by Lemma B.2) and hence for

g ∈ Gpj we have
∏pj−1
t=0 (�tejQj (g, x))(

pj
t+1) = 1. Since Qj is a cocycle in g and every

g ∈ G can be written as gpj + g′, where gpj ∈ Gpj and g′ ∈ G′, we conclude from the
above that the terms in equation (6.4) are trivial for every g ∈ G. Therefore, by ergodicity,
πi ◦ ∏pj−1

t=0 V tej Fj is a constant and we can find a pj th root, which we denote by ψi,j .

Thus, in any case every coordinate of
∏p

nj
j −1
t=0 V tej ◦ Fj has a root that is also a

polynomial of degree < m+ 1 and is invariant with respect to the translation Vej . Gluing
all the coordinates ψi,j together, we see that there exists a phase polynomial ψj(x) =
∏N ′
i=1 ψi,j of degree < m+ 1 such that ψ

p
nj
j

j = ∏p
nj
j −1
t=1 V tej Fj . Now set F̃j := Fj/ψj

and Q̃j := Qj ·�ψj ; then Q̃j is a phase polynomial of degree < Ok,m(1) and we have

�ej f = Q̃j ·�F̃j (6.5)
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and

p
nj
j −1∏
t=1

V tej F̃j = 1. (6.6)

Now that we have already dealt with the torsion relations, we proceed by defining the
desired F and then we will work out the relations which come from the commutators
[ei , ej ] = 1.

Write [t1, . . . , tN ] = e
t1
1 · · · · · etNN and X = Z<k−1(X)×σ U and let F : X → S1 be

the function

F(y, [t1, . . . , tN ]) =
N∏
i=1

∏
0≤t ′i<ti

F̃i (y, [t1, . . . , ti−1, t ′i , 0, . . . , 0])

with the convention that
∏

0≤t ′i<ti at ′i = (
∏
ti<t

′
i≤0 at ′i )

−1. Equation (6.5) implies that F is
well defined.

We compute the derivatives of F. We have

�ej F (y, [t1, . . . , tN ]) =
N∏
i=1

∏
0≤t ′i<ti

�ej Fj (y, [t1, . . . , ti−1, t ′i , 0, . . . , 0])

for any 1 ≤ j ≤ N . On the other hand, we have that telescoping identity

N∏
j=1

∏
0≤t ′j<tj

�ej Fi(y, [t1, . . . , tj−1, t ′j , 0, . . . , 0]) = Fi(y, [t1, . . . , tN ])
Fi(y, 1)

and thus

�ej F (y, [t1, . . . , tN ])

= F̃j (y, [t1, . . . , tN ])

F̃j (y, 1)

N∏
i=1

∏
0≤t ′i<ti

ωi,j (y, [t1, . . . , ti−1, t ′i , 0, . . . , 0]), (6.7)

where ωi,j = �ei F̃j /�ej F̃i . Since [ej , ei] = 1, we see that ei and ej commute and so by
(6.5) we have that ωi,j are phase polynomials of degree < Ok,m(1).

We study these polynomials. Recall that σ is a phase polynomial of degree < Ok(1).
This means that the map (y, u) 	→ u is also a phase polynomial (the derivative is
σ ). Since [t1, . . . , tn] 	→ [t1, . . . , ti−1, t ′i , 0, . . . , 0] is a constant multiple of a homo-
morphism, we have that (y, [t1, . . . , tn]) → [t1, . . . , ti−1, t ′i , 0, . . . , 0] is also a phase
polynomial of degree < Ok(1). From Lemma B.4, we conclude that (y, [t1, . . . , tn]) 	→
ωi,j (y, [t1, . . . , ti−1, t ′i , 0, . . . , 0]) are all phase polynomials of degree < Ok,m(1).

We claim that the map

ξj (y, [t1, . . . , tN ]) =
N∏
i=1

∏
0≤t ′i<ti

ωi,j (y, [t1, . . . , ti−1, t ′i , 0, . . . , 0])
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is a phase polynomial of degree< Ok,m(1). Clearly, ξj is a function of phase polynomials.
From Theorem B.8, it follows that there exists a finite subgroup H ≤ S1 such that all
ωi,j (y, [t1, . . . , ti−1, t ′i , . . .]) take values in H (up to a constant multiple). Therefore, so
does ξj . We show that every coordinate of ξj is a phase polynomial. Let πn : H → C

q
ln
n

be one of the coordinate maps. We study two cases. If qn = Ok,m(1), then Corollary B.13
implies that πn ◦ ξj is a phase polynomial of degree < Ok,m(1). Otherwise, we have that
qn is sufficiently large. In this case, πn ◦ ωi,j (y, [t1, . . . , ti−1, t ′i , 0, . . . , 0]) is a phase
polynomial in t ′i that, by Theorem B.9, takes values in Cqn . Note that since there are an
unbounded number of ωi,j ’s in the definition of ξj , we cannot yet deduce that ξj is a phase
polynomial of bounded degree. Instead, we consider the Taylor expansion of ωi,j . We have

ωi,j (y, [t1, . . . , ti−1, t ′i , 0, . . . , 0])

=
∏

0≤j≤Ok,m(1)

[�jeiωi,j (y, [t1, . . . , ti−1, t ′i , 0, . . . , 0])](
t ′
i
j
)

and thus ∏
0≤t ′i≤ti

ωi,j (y, [t1, . . . , ti−1, t ′i , 0, . . . , 0])

=
∏

0≤j≤Ok,m(1)

[�jeiωi,j (y, [t1, . . . , ti−1, t ′i , 0, . . . , 0])](
ti
j+1).

Since the product is over a bounded number of ωi,j ’s, we see by Lemma B.4 that πn ◦
ξj is a phase polynomial of degree < Ok,m(1). Since the degree is independent of the
coordinate, we conclude that ξj ∈ P<Ok,m(1)(X, S1), as required.

From (6.7), we finally have that

�ej F (y, u) ∈ F̃j (y, u)

F̃j (y, 1)
· P<Ok,m(1)(X, S1).

Now let f ′ = f/�F . Then

�ej f
′ ∈ (π�F ′

j ) · P<Ok,m(1)(G, X, S1), (6.8)

where π�F ′
j (y, u) = F̃j (y, 1) (that is, �ej f

′ is a multiplication of π�F ′
j with a phase

polynomial of some bounded degree).
We repeat the same argument as above now with f ′ instead. Note that since π�F ′

j is
invariant with respect to the action of U, we do not need to work out the commutator
relations again. Namely, for every i, j , we have that �eiπ

�F ′
j = �ej π

�F ′
i = 1. We deal

with the torsion relations. As before, we have the telescoping identity

p
nj
j −1∏
t=0

V tej f
′ = 1,

which implies that

π��(F ′
j )
p
nj
j ∈ P<Ok,m(1)(G, X, S1).
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Therefore, (F ′
j )
p
nj
j is a phase polynomial of degree < Ok,m(1) on Z<k−1(X).

We apply the same argument as before. We see that there exists a p
nj
j th root Pj for the

phase polynomial (F ′
j )
p
nj
j . Let F ′′

j = F ′
j /Pj . Then F ′′

j takes values in C
p
nj
j

and from (6.8)

we have

(�ej f
′) ∈ π�F ′′

j · P<Ok,m(1)(G, X, S1).

We define F� : X → S1 by F�(y, [t1, . . . , tN ]) := ∏N
j=1 F

′′
j (y)

tj . This map is well
defined since F ′′

j takes values in Cpj
nj . We observe that π��F ′′

j = �ej�F
� and let

f ′′ = f ′/�F�. We have that f ′′ is cohomologous to f and �ej f
′′ ∈ P<Ok,m(1)(G, X, S1)

for all 1 ≤ j ≤ N . The cocycle identity implies that �uf ′′ ∈ P<Ok,m(1)(G, X, S1) for
every u ∈ U . Integrating this term by Lemma 6.4 once for every g ∈ G, we have that
�uf

′′ = �uP for some P ∈ P<Ok,m(1)(G, X, S1). It follows that f ′′/P is invariant under
U and so f ′′ = P · π�f̃ , where f̃ : G× Z<k−1(X) → S1.

7. The high-characteristic case
Throughout this section, we denote char(G) = min{p : p ∈ P}. We prove the following
version of Theorem 1.26.

THEOREM 7.1. Let 1 ≤ k, j ≤ char(G) and X be an ergodic G-system of order< j which
splits. Let ρ : G×X → S1 be a cocycle of type < k; then ρ is (G, X, S1)-cohomologous
to a phase polynomial of degree < k.

As with the original version, we want to prove this theorem in two steps. First, we reduce
matters to a totally disconnected case and then prove the theorem in that case.

We begin by introducing some definitions and an important lemma from [6].

Definition 7.2. (Quasi-cocycles) Let X be an ergodic G-system and let f : G×X → S1

be a function. We say that f is a quasi-cocycle of order < k if for every g, g′ ∈ G one has

f (g + g′, x) = f (g, x) · f (g′, Tgx) · pg,g′(x)

for some pg,g′ ∈ P<k(X, S1).

The following lemma is given in [6, Proposition 8.11].

LEMMA 7.3. (Exact descent) Let X be an ergodic G-system of order < k for some
k ≥ 0. Let π : X → Y be a factor map. Suppose that a function f : G× Y → S1 is a
quasi-cocycle of order < k. If π�f is of type < k, then so is f.

Definition 7.4. (Line cocycle) Let X be an ergodic G-system and let f : G×X → S1

be a function. We say that f is a line cocycle if for every g ∈ G of order n we have∏n−1
t=0 f (g, T tgx) = 1.

We claim that Theorem 7.1 is a consequence of the following result.
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THEOREM 7.5. (The totally disconnected case in high characteristics) Let 1 ≤ j , k ≤
char(G). Let X be a totally disconnected and Weyl ergodic G-system of order < j , where
the phase polynomial cocycles σ1, . . . , σj that define X are of degrees < 1, . . . , < j .
Then every f : G×X → S1 of type < k which is also a line cocycle and a quasi-cocycle
of order < k − 1 is (G, X, S1)-cohomologous to a phase polynomial P of degree < k.
Moreover, for g ∈ G of order n, we have that P(g, ·) takes values in Cn.

We note that the fact about the values of P is only needed for inductive reasons (see for
example equation (7.1)).

Proof of Theorem 7.1 assuming Theorem 7.5. Let k, j , X, ρ be as in Theorem 7.1.
Our goal is to reduce matters to the case where X is totally disconnected and then apply
Theorem 7.5. We prove Theorem 7.1 by induction on k. The case k = 1 is trivial. Fix
k and assume that the claim holds for smaller values of k. We observe that since that
the proof of Theorem 1.26 is now complete, we have that ρ is cohomologous to a phase
polynomial of some degree (possibly higher than k). Therefore, we can apply Theorem
4.6 to eliminate the connected components of X. As in Theorem 2.3, X admits a totally
disconnected and Weyl factor Y and by the induction hypothesis on k we have that the
cocycles which define Y, σ1, . . . , σj are phase polynomials of degrees < 1, . . . , < j .
Moreover, ρ is cohomologous to some π�ρ′, where ρ′ : G× Y → S1. By Lemma 2.5, we
have that ρ′ is of type< k and therefore by Theorem 7.5 we have that it is cohomologous to
a phase polynomial P of degree < k. We conclude that ρ is cohomologous to π�P , which
is also a phase polynomial of degree < k.

It is left to prove Theorem 7.5. The proof method is very similar to [6, Theorem 8.6].
We first deal with the easy case k = 1. In this case, f is a quasi-cocycle of order< 0 and is
thus a cocycle. It is well known (Lemma 10.2) that a cocycle of type< 1 is cohomologous
to a constant c(g). Therefore, we can write f (g, x) = c(g) ·�gF(x) for some measurable
maps F : X → S1 and c : G → S1. Since f is a cocycle, c is a character of G and therefore
c(g) ∈ Cn for every g ∈ G of order n and the claim follows.

Now suppose that 2 ≤ k ≤ char(G) and assume inductively that the claim has already
been proven for smaller values of k. We have the following analogue of Theorem 5.1.

THEOREM 7.6. (Exact topological structure theorem for totally disconnected systems) Let
1 ≤ k ≤ char(G) be such that Theorem 7.5 holds for all values smaller than or equal to
k. Let X be an ergodic totally disconnected Weyl G-system of order < k, where the phase
polynomial cocycles σ1, . . . , σk−1 are of degrees < 1, . . . , < k − 1. Then there exists a
multiset of primes A such that Z<j (X) = Z<j−1(X)×σj−1 Uj , where Uj ∼= ∏

p∈A Cp.

When j = 1, X is just a point and Theorem 7.5 is trivial. Now suppose that 2 ≤ j ≤
char(G) and assume inductively that the claim has already been proven for the same value
of k and smaller values of j.

We first deal with the lower case j ≤ k; write X = U0 ×σ1 U1 × · · · ×σj−1 Uj−1 and
let t ∈ Uj−1. We have the following result [6, Lemma 8.8].
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LEMMA 7.7. �tf is a line cocycle, is of type < k − j + 1 and is a quasi-coboundary of
order < k − j .

By the induction hypothesis, �tf is (G, X, S1)-cohomologous to a phase polynomial
qt ∈ P<k−j+1(G, X, S1) and qt (g, ·) takes values in Cn for g of order n. Since �tf is a
line cocycle and a quasi-cocycle of order < k − j , so is qt .

7.1. Reduction to the finite-U case. We now argue as in Theorem 6.6. We show that is
suffices to prove Theorem 7.5 in the case when Uj−1 is finite.

We will take advantage of the following result of Bergelson, Tao and Ziegler
[6, Proposition 8.9].

LEMMA 7.8. (Exact integration lemma) Let j ≥ 0, let U be a compact abelian group and
let X = Y ×ρ U be an ergodic G-system with Y ≥ Z<j (X), where σ : G× Y → U is
a phase polynomial cocycle of degree < j . For any t ∈ U , let pt : X → S1 be a phase
polynomial of degree < l and suppose that for any t , s ∈ U , pt ·s = ps(x)pt (Vsx). Then
there exists a phase polynomialQ : X → S1 of degree< l + j such that�tQ(x) = pt (x).
Furthermore, we can take Q(t , uu0) := pu(y, u0) for some u0 ∈ U .

We continue the proof of Theorem 7.5. Let f be as above and write�tf = qt ·�Ft . By
Lemma 3.9 (linearization lemma), there exists an open neighborhood of the identity U ′

j−1
in Uj−1 such that qts = qtVtqs whenever s, t ∈ U ′

j−1. As in Theorem 6.6, we can write
Uj−1 = U ′ ×W for some finite W. LetX = Y ×σ ′ U ′, where Y = Z<j−1(X)×σ ′′ W and
σ ′, σ ′′ are the projections of σj−1 to U ′ and W, respectively. Note that as σj−1 is a phase
polynomial of degree < j − 1, so is the projection σ ′.

Applying Lemma 7.8 once for every g ∈ G, we can find a phase polynomial Q : G×
X → S1 such that qt = �tQ for every t ∈ Uj−1. In fact, we can take Q(g, y, uu0) =
qu(g, y, u0) for y ∈ Y , u ∈ U ′ and some u0 ∈ U ′. As qu(g, ·) takes values in Cn whenever
g is of order n, so does Q.

We claim thatQ : G×X → S1 is a quasi-cocycle of order < k − 1. The proof follows
the arguments of Bergelson, Tao and Ziegler from [6]. For the sake of completeness,
we repeat the proof. For every g, h ∈ G and x = (y, uu0) ∈ X, we have the following
computation.

Q(g + h, x)
Q(g, x)Q(h, Tgx)

= Q(g + h, x)
Q(g, x)Q(h, x)�gQ(h, x)

= qu(g + h, y, u0)

qu(g, y, u0)qu(h, y, u0)�gQ(h, x)

= qu(g + h, y, u0)

qu(g, yu, u0)qu(h, Tgy, σj−1(g, y)u0)

qu(h, Tgy, σj−1(g, y)u0)

qu(h, y, u0)�gQ(h, x)

= Pu,g,h(y, u0)�g

(
qu(h, x)
Q(h, x)

)
,

where Pu,g,h(x) = qu(g + h, x)/qu(g, x)qu(h, Tgx). Since qu is a phase polynomial of
degree < k − j + 1 and Q is of degree < k, we conclude that �g(qu(h, x)/Q(h, x)) is
a phase polynomial of degree < k − 1. As qu is a quasi-cocycle of order < k − j , we
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have that Pu,g,h(x) is a phase polynomial of degree < k − j . Moreover, since u 	→ qu is
a cocycle in u, so is u 	→ Pu,g,h(x). By the ‘furthermore’ part of Lemma 6.4, the map
(y, uu0) 	→ Pu,g,h(y, u0) is a phase polynomial of degree < k − 1 and the claim follows.

We continue the proof of Theorem 7.5. Set f ′ = f/Q. It follows from the construction
of Q that �uf ′ ∈ B1(G, X, S1) for every u ∈ U ′. Therefore, by Lemma 3.7, f ′ is
(G, X, S1)-cohomologous to a function f ′′ which is invariant with respect to the action
of some open subgroup U ′′ of U ′. The projection map Uj−1 → Uj−1/U

′′ gives rise to a
factor map π : Y ×σj−1 Uj−1/U

′′. We let f̃ = π�f
′′ be the push-forward of f ′′ to Y.

Observe that if g is of order n, thenQ(g, ·) takes values inCn. Therefore, by Proposition
B.11 applied with F = Q(g, ·), we see that Q is a line cocycle. As f ′′ is cohomologous to
f/Q and f ′′ = π�f̃ , we conclude that π�f̃ and f̃ are line cocycles. Similarly, since f and
Q are quasi-cocycles of order < k − 1, so is f̃ .

We show that f̃ is of type < k. First, observe that Q is a phase polynomial of degree
< k and so by Lemma 1.13(iii) it is of type < k. Since f is also of type < k, f/Q and
π�f̃ are of type < k. Therefore, by Lemma 7.3, we have that f̃ is of type < k. Since f̃ is
measurable with respect to an extension of X by a finite group, we can apply the finite case
of Theorem 7.5 to complete the proof.

7.2. The finite-group case. We now establish Theorem 7.5 for a finite Uj .
First, we recall the following lemma [29, Lemma C.8].

LEMMA 7.9. (Free actions of compact abelian groups have no cohomology) Let U be a
compact abelian group acting freely on X by measure-preserving transformations. Then
every cocycle ρ : U ×X → S1 is a (U , X, S1)-coboundary.

Using Theorem 7.6, we can write Uj = C
L1
p1 × · · · × C

Lm
pm for some finite L1, . . . , Lm

and a finite m ∈ N. We proceed by induction on L = L1 + · · · + Lm; the case L = 0
is trivial. Suppose that L ≥ 1; then without loss of generality L1 ≥ 1 and we assume
inductively that the claim has already been proven for L− 1. Write Uj = C

L1−1
p1 × 〈e〉 ×

C
L2
p2 × · · · CLmpm , where e is a generator for Cp1 . For simplicity, we denote p = p1.
Recall from equation (7.1) that�ef is (G, X, S1)-cohomologous to a phase polynomial

qe of degree < k − j + 1 and that qe(g, ·) takes values in Cn, where n is the order of g.
We write

�ef = qe ·�Fe. (7.1)

Arguing as in Theorem 6.7, we can assume that Fe satisfies

p−1∏
i=0

V ie Fe = 1 (7.2)

without changing equation (7.1) and qe is still a phase polynomial of degree < k − j + 1.
We now define a function qes (g, x) for all 0 ≤ s < p by the formula

qes (g, x) :=
s−1∏
i=0

qe(g, V ie x).
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Since qe is a phase polynomial of degree < k − j + 1, so is qes and by equations (7.1) and
(7.2) we have that

∏p−1
i=0 V

i
e qe = 1. It follows that u 	→ qu is a cocycle for u ∈ 〈e〉.

By the cocycle identity, we have

�esf (g, x) =
s−1∏
i=0

�ef (g, V ie x). (7.3)

Since �ef is cohomologous to qe, it follows that �uf is cohomologous to qu(g, x) for
every u ∈ 〈e〉.

Now, as qu is a cocycle in u, applying the polynomial integration lemma (Lemma 7.8),
we see that there exists a phase polynomial Q of degree < k such that �uQ = qu, and
Q(g, ·) takes values in Cn, where n is the order of g. Moreover, arguing as in the previous
section, we also have that Q is a quasi-cocycle of order < k − 1.

From equation (7.1), we have

�e(f/Q) = �Fe.

From the telescoping identity

p−1∏
i=0

V ie�e(f/Q) = 1,

we conclude that�
∏p−1
i=0 VeiFe = 1 and so by ergodicity

∏p−1
i=0 VeiFe is a constant in S1.

Thus, we can rotate Fe by a pth root of this constant and assume that

p−1∏
i=0

VeiFe = 1.

Now, by (7.2), we can define

Fes :=
s−1∏
i=0

V ie Fe.

Direct computation shows that Fu is a cocycle for u ∈ 〈e〉 and hence a coboundary (Lemma
7.9). Thus, we can write Fe = �eF for some F : X → S1. We conclude that �e(f/(Q ·
�F)) = 1 and so f/Q is cohomologous to f ′, which is invariant under 〈e〉; arguing as
before and using the induction hypothesis, we conclude that f/Q is cohomologous to a
phase polynomial P. From Theorem B.9, we have that P(g, ·) takes values in Cn, where
n is the order of g. Since f is (G, X, S1)-cohomologous to Q · P , this completes the
proof.

7.3. The higher order case. The case j > k is completely analogous to the proof of
Bergelson, Tao and Ziegler [6, §8.5] and so is omitted.

We have therefore completed the proof of Theorem 1.27.
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8. The proof of Theorem 1.19
Now that Theorem 1.26 is established, we can prove Theorem 1.19. The theorem has two
directions; we start with the following one (compare with [6, Theorem 3.8]).

THEOREM 8.1. Let X be an ergodic G-system of order < k. Let 1 ≤ l ≤ k and suppose
that Z<l−1(X) is strongly Abramov and that there exist a totally disconnected factor Y and
a factor map πl : Z<l(X) → Z<l(Y ) such that

π�l : H 1
<m(G, Z<l(Y ), S1) → H 1

<m(G, Z<l(X), S1)

is onto for every m ∈ N. Then, for every 1 ≤ l ≤ k, Z<l(X) is strongly Abramov.

Proof. We prove the claim by induction on l. If l = 1, then Z<1(X) is a point. In
this case, we can take Y to be the trivial system and the claim follows. Let 1 < l ≤ k

and suppose that the claim has already been proven for smaller values of l. Let Y
be as in the theorem. Fix m ∈ N and let ρ : G× Z<l(X) → U be a cocycle of type
< m into some compact abelian group U. From the assumption, we see that for all
χ ∈ Û , χ ◦ ρ is (G, Z<l(X), S1)-cohomologous to a cocycle ρχ which is measurable
with respect to Z<l(Y ). Let π : Z<l(X) → Z<l(Y ) be the projection map. By Lemma 2.5,
the push-forward π�ρχ is a cocycle of type < m on Z<l(Y ). Since Z<l(Y ) is totally dis-
connected, Theorem 1.26 implies that π�ρχ is (G, Z<l(Y ), S1)-cohomologous to a phase
polynomial of degree < lm for some lm = Ok,m(1). Lifting everything back to Z<l(X)
using π�, we conclude that χ ◦ ρ is (G, Z<l(X), S1)-cohomologous to a phase polynomial
of degree < lm = Ok,m(1). Write χ ◦ ρ = qχ ·�Fχ for some Fχ : Z<l(X) → S1 and a
phase polynomial qχ : G× Z<l(X) → S1. The map �(x, u) = χ(u) · F(x) is a phase
polynomial of degree < lm + 1 on Z<l(X)×ρ U with derivative qχ . Since Z<l−1(X)

is strongly Abramov, there exists some rl such that Z<l(X) is Abramov of degree < rl .
In particular, F can be approximated by phase polynomials of some bounded degree.
Therefore, χ can be approximated by phase polynomials of degree < max{rl , lm + 1}.
Finally, since L2(Z<l(X)×ρ U) is generated by L2(Z<l(X)) and the characters in Û , this
completes the proof.

This proves one of the directions of Theorem 1.19. It is left to prove the other direction.

THEOREM 8.2. Let X be an ergodic G-system of order < k and suppose that
Z<1(X), . . . , Z<k(X) are strongly Abramov. Then there exists a totally disconnected
factor Y such that for every m ∈ N, the homomorphism

π�l : H 1
<m(G, Z<l(Y ), S1) → H 1

<m(G, Z<l(X), S1)

is onto for every 1 ≤ l ≤ k, where πl : Z<l(X) → Z<l(Y ) is the factor map.

Proof. We prove the claim by induction on k. If k = 1, then the system X is trivial
and we can take Y = X. Let k > 1 and suppose that the claim has already been proven
for systems of order < k − 1. Fix 1 ≤ l < k and recall that Z<l+1(X) = Z<l(X)×σl Ul

for some compact abelian group Ul and a cocycle σl : G× Z<l(X) → Ul of type < l.
Therefore, by applying the induction hypothesis and Theorem 1.26, we have that χ ◦ σl is
(G, Z<l(X), S1)-cohomologous to a phase polynomial for every χ ∈ Ûl .
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Our main tool now is Proposition B.5, which asserts that polynomials are invariant to
the action of connected groups. We prove by induction on l < k that there exists a compact
connected abelian group Hl which acts on Z<l(X) by automorphisms and contains the
group of transformations Ul−1,0. For l = 1, we let H1 be the trivial group. Suppose
inductively that we have already constructed Hl for some l ≥ 1. For every χ ∈ Ûl , we
have that χ ◦ σl is cohomologous to a phase polynomial. Therefore, we can write

χ ◦ σl = qχ ·�Fχ (8.1)

for some phase polynomial cocycle qχ : G× Z<l(X) → S1 and a measurable map Fχ :
Z<l(X) → S1. Recall that by Proposition B.5, qχ is invariant with respect to the action of
the connected group Hl . We take the derivative of both sides of equation (8.1) by some
h ∈ Hl ; since the action of Hl commutes with the action of G, we conclude that �hχ ◦ σl
is a (G, Z<l(X), S1)-coboundary for every h ∈ Hl . Since this holds for every χ ∈ Ûl , we
conclude that �hσl is a (G, Z<l(X), Ul)-coboundary.

For every h ∈ Hl and F : Z<l(X) → Ul , we define the measure-preserving transfor-
mation Sh,F (x, u) := (hx, F(x)u) on Z<l(X)× Ul . Let Hl+1 := {Sh,F : �hσl = �F }.
Direct computation reveals that the action of Hl+1 on Z<l+1(X) commutes with the
G-action. Since Hl is abelian and commutes with the G-action on Z<l(X), we have
that Hl+1 is two-step nilpotent. Indeed, if Sh,F , Sh′,F ′ ∈ Hl+1, then [Sh,F , Sh′,F ′] =
S1,(�h′F/�hF ′). Now, for every h, h′ ∈ Hl+1, we have

�

(
�h′F

�hF ′

)
= �h′�F

�h�F ′ = �h′�hσl
�h�h′σl

= 1

and therefore by ergodicity c := �h′F/�hF ′ is a constant. A simple computation implies
that S1,c commutes with Ss,F and we conclude that Hl+1 is two-step nilpotent. We can
view every element u ∈ Ul as a function Z<l(X) → Ul which sends every s ∈ Z<l(X) to
this u. This defines an embedding of Ul in Hl+1 by u 	→ S1,u and so we can view Ul as
a subgroup of Hl+1. Finally, since �hσl is a (G, Z<l(X), Ul)-coboundary, the projection
Hl+1 → Hl is onto. In other words, we have a short exact sequence

1 → Ul+1 → Hl+1 → Hl → 1.

Since Ul+1 and Hl are compact, so is Hl+1 (Corollary A.7).
Now let Hl+1 be the connected component of the identity in Hl+1. Then Hl+1 is a

compact connected nilpotent group and so is abelian (Proposition A.19). Clearly, it contains
Ul,0 and it acts on Z<l+1(X) by automorphisms. This proves the induction step. Let
H = Hk and define an equivalence relation ∼H on X such that x ∼H y if there exists
an element h ∈ H so that hx = y. Since H acts on X by automorphisms, the quotient
space Y = X/ ∼H has a natural G-action and is a factor of X. We return to the proof of
the original claim.

Fix 1 ≤ l ≤ k and m ∈ N and let ρ : G× Z<l(X) → S1 be a cocycle of type < m.
Let X̃ := Z<l(X)×ρ S

1. Since Z<l(X) is strongly Abramov, we have that X̃ is Abramov
of order < lm. We prove that ρ is cohomologous to a phase polynomial. To do this, we
consider two cases.
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Case I. X̃ is ergodic. If P : X̃ → S1 is a phase polynomial, then by Proposition
B.5 we see that �sP = χ(s) for all s ∈ S1 for some character χ : S1 → S1. Therefore,
P = χ · F , where F : Z<l(X) → S1. If χ : S1 → S1 is not the identity, then P = χ · F
is orthogonal to the map (x, u) 	→ u on X̃ = Z<l(X)×ρ S

1. Since the system is Abramov,
the polynomials generate L2(X̃) and therefore some polynomial must be of the form
P(x, s) = sF (x) for x ∈ Z<l(X), s ∈ S1 and F : Z<l(X) → S1. By taking derivatives,
we see that

ρ ·�F = �P .

Since ��sP = 1 and s commutes with the action of G, the cocycle �P defines a phase
polynomial on Z<l(X). In other words, ρ is (G, Z<l(X), S1)-cohomologous to a phase
polynomial of degree < lm − 1. By Proposition B.5, this polynomial is measurable with
respect to Z<l(X)/Hl

∼= Z<l(Y ). This completes the proof in the case where X̃ is ergodic.
Case II. If X̃ is not ergodic, then by the theory of Mackey ρ is (G, Z<l(X), S1)-

cohomologous to a minimal cocycle τ : G× Z<l(X) → S1 which takes values in a proper
closed subgroup of S1 (see [46, Corollary 3.8]). In particular, this means that τn = 1
for some n ∈ N. Let X be as in the theorem. We claim by induction on m that every
(G, X, S1)-cocycle of type < m is cohomologous to a phase polynomial of degree < lm.
Ifm = 0, the claim is trivial. Therefore, using a proof by induction, we may assume that as
a cocycle into S1, �hτ is (G, X, S1)-cohomologous to a phase polynomial for all h ∈ Hl .
Write

�hτ = ph ·�Fh.

Since τn = 1, we conclude that pnh is a coboundary. The cocycle identity and Proposition
B.5 imply that phn is a coboundary for all h ∈ Hl . Since Hl is connected, it is also divisible
(Lemma A.15) and so �hτ is a coboundary for all h ∈ Hl . Finally, since Hl acts freely on
Z<l(X) by automorphisms, Lemma 3.7 implies that τ is (G, Z<l(X), S1)-cohomologous
to a cocycle that is invariant under H̃l . This cocycle is measurable with respect to Z<l(Y )
and therefore is cohomologous to a phase polynomial (by Theorem 1.26). Since τ and ρ
are cohomologous, this completes the proof.

9. A G-system that is not Abramov
In this section, we provide an example of a G-system X of order< 3 that is not an Abramov
system. This example is based on the Furstenberg–Weiss example for a Z-cocycle that
is not cohomologous to a polynomial (which is given in detail in [28]). Our example is
constructed as a circle-group extension of a finite-dimensional compact abelian group (see
Definition 3.1) that is not a Lie group. Such groups are called solenoids and are known for
their pathological properties.

We first construct the underlying group and the G-action on it.

9.1. The underlying group. Let P denote the set of all prime numbers. We construct a
two-dimensional compact abelian group as follows: let P1, P2 be disjoint infinite sets such
that P = P1

⊔
P2 and let �1 := ∏

p∈P1
Cp and �2 := ∏

p∈P2
Cp. Fix i ∈ {1, 2} and let
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Pi = {p1, p2, . . .}. The map ıi(n) = (n, ωnp1
, ωnp2

, ωnp3
, . . .), where ωpk is the first root

of unity of order pk , defines an embedding of Z as a closed subgroup of R ×�i . We
abuse notation and denote by (R ×�i)/Z the quotient of R ×�i by ıi(Z). This gives rise
to two one-dimensional compact abelian groups, which we denote by U1 := (R ×�1)/Z

and U2 := (R ×�2)/Z. We note that for every i ∈ {1, 2},
{1} → �i → Ui → R/Z → {1}

is a short exact sequence, where the embedding �i → Ui is given by t 	→ (1, t)Z and the
quotient Ui → R/Z by (r , t)Z 	→ rZ.

CLAIM. The two-dimensional compact abelian group U := U1 × U2 is connected.

Proof. LetU0 ≤ U be the connected component of the identity in U. By Proposition A.13,
U/U0 is a totally disconnected group. If by contradiction U is not connected, then by
Corollary A.10 there exists a non-trivial character χ : U → S1 with a finite image. By
composing χ with the projection map R2 ×�1 ×�2 → U , we obtain a character χ̃ :
R2 ×�1 ×�2 → S1 with finite image. We conclude that ker χ̃ is an open subgroup of
R2 ×�1 ×�2 which is invariant to translations by ı1(Z) and ı2(Z); hence, ker χ̃ = R2 ×
�1 ×�2 and χ̃ = 1. It follows that χ is trivial, which is a contradiction.

9.2. The G-action. Let G = G1 ⊕G2, where Gi = ⊕
p∈Pi Fp. We construct a homo-

morphism σ : G → U such that the G-system (U , G) is an ergodic Kronecker system.
Let i, j be such that {i, j} = {1, 2} and g be a generator of the component Fp of Gi .

We denote by vg ∈ �j the unique pth root of the element (ωp1 , ωp2 , . . .) ∈ �j . This root
is easily constructed component by component, since by our assumption p �∈ Pi . We let
σi(g) be the element (1/p, vg) ∈ Uj (so Gi acts on Uj ). This is an element of order p in
Uj and hence σ extends uniquely to a homomorphism.

Then the group G acts on U by Tgu = σ(g) · u, where σ(g) = (σ1(g), σ2(g)). We claim
that this action is ergodic. Equivalently, we need to show that the image of G under σ is
dense (see [46, Corollary 3.8]). Let π : R ×�1 × R ×�2 → U be the quotient map. We
consider a general open set of the form W1 × v1 · V1 ×W2 × v2 · V2, where W1, W2 are
balls in R and viVi is a coset of some open subgroup Vi ≤ �i for i = 1, 2 (by Proposition
A.9, every open subset contains a set of this form). Rotating by an element in Z, we
may assume that W1, W2 intersect non-trivially with (0, 1). It is enough to show that
π−1(σ (G)) intersects with this set. Let s and t denote the sizes of �1/V1 and �2/V2,
respectively. Let n be a sufficiently large number depending only on W1, W2, s, t that we
will choose later. Let g1 ∈ G1 and g2 ∈ G2 be two generators of orders p1, p2 for p1, p2 >

n. Recall that vpigi is a generator of �i and therefore so is vgi . Since �1/V1, �2/V2 are

finite, we can find powersmi , m′
i ≤ max{s, t} such that vmigi ∈ vi · Vi and v

m′
i

gi ∈ Vi . Hence,

for every k, we have that v
mi+km′

i
gi is in vi · Vi . Sincem′

i depend only on s and t, we see that
for n sufficiently large, one of the elements in {(mi + km′

i )/pi : k ∈ N} must intersect
with Wi ∩ (0, 1) for all pi > n. Let g = ((m1 + km′

1)g1, (m2 + km′
2)g2); then σ(g) is an

element in the image of W1 × v1 · V1 ×W2 × v2V2 under π . Thus, σ(G) intersects with
any open subset in U and therefore is dense.
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9.3. A cocycle that is not cohomologous to a phase polynomial. For every g ∈ G1 ⊕
G2, choose any αg = (ag , bg) ∈ R2 such that ag mod 1 is equal to the first coordinate of
σ(g) in U1 and bg mod 1 to the first coordinate in U2. In particular, if g ∈ G1, then ag = 0
and, if g ∈ G2, then bg = 0.

We define a bilinear form φ : R2 × R2 → S1 by the formula φ(x, y) = e(x1y2 −
x2y1), where e(a) = e2πia , and let f̃ (x) = φ(x, �x�), where �x� is the integer part of
x coordinate-wise. For every k ∈ Z2, we have

f̃ (x + k) = f̃ (x) · φ(x, k). (9.1)

This gives rise to a function f : G× R2 → S1 which is given by

f (g, x) = f̃ (x + αg)

f̃ (x)
· φ(αg , x).

Equation (9.1) implies that f is well defined on (R/Z)2. We note that (R/Z)2 ∼= U/(�1 ×
�2) and so we can think of f as a function on U which is invariant under multiplication by
elements in �1 ×�2.

LEMMA 9.1. For every t ∈R2,�tf (g, x) is (G, U , S1)-cohomologous to φ(αg , t)φ(t , αg).

Proof. Let t ∈ R2 and let Ft(x) := f̃ (x + t)/f̃ (x) · φ(t , x); equation (9.1) implies that
Ft is well defined on (R/Z)2. A direct computation shows that �tf = φ(αg , t)φ(t , αg) ·
�αgFt .

Observe that for every g ∈ G, the constants φ(αg , t)φ(t , αg) give rise to a character of
R2, χ(g, x) := φ(αg , x) · φ(x, αg). By the lemma above, we have that �t(f · χ) = �Ft

for every t ∈ R2.
We extend χ to a character of U. To do this, we define a map ϕ : G×�1 ×�2 → S1

by the formula ϕ(g, v1, v2) := (v2(g))
2 · (v1(g))

−2, where v1, v2 are identified with the
corresponding elements in Ĝ ∼= �1 ×�2. It is not hard to see that χ · ϕ : G× R2 ×�1 ×
�2 → S1 is well defined as a function (homomorphism) on U (that is, it is invariant under
multiplication by an element in Z).
f · χ · ϕ is not a cocycle, but it satisfies the following facts.

THEOREM 9.2. f · χ · ϕ is a line cocycle and �hf · χ · ϕ(g, ·) = �gf · χ · ϕ(h, ·).
Assuming this theorem, there is a unique cocycle ρ : G× U → S1 which agrees with

f · χ · ϕ on the generators of G. This cocycle is given by the following equation:†

ρ(g, u) =
∞∏
i=1

Tg1Tg2 · · · Tgi−1

gi∏
k=0

f · χ · ϕ(ei , T kei ). (9.2)

We note that the infinite product is well defined because it is trivial outside of a finite set
for every given g ∈ G.

† This fact is the cocycle counterpart of the fact that a homomorphism is uniquely determined by the values it
gives to a generating set.
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Proof of Theorem 9.2. Let g ∈ G be an element of order n. We then have

n−1∏
k=0

f · χ · ϕ(g, T kg (x, v)) =
n−1∏
k=0

f̃ (x + (k + 1)αg)

f̃ (x + kαg)
φ(x + kαg , αg) · ϕ(g, v + vkg).

We can break the product on the right-hand side of the equations into three products. That
is,

∏n−1
k=0(f̃ (x + (k + 1)αg)/f̃ (x + kαg)),

∏n−1
k=0 φ(x + kαg , αg) and

∏n−1
k=0 ϕ(g, v +

vkg). We compute each term separately. The first term is a telescoping series and so equals
f̃ (x + nαg)/f̃ (x). Since φ is bilinear and φ(αg , αg) = 1, the second term equals

φ

(
nx +

(
n

2

)
αg , αg

)
= φ(x, nαg).

Finally, since ϕ(g, ·) is a homomorphism, the third term equals ϕ(g, v)n · ϕ(g, vg)(
n
2).

It follows from the definition of ϕ that g 	→ ϕ(g, v) is a homomorphism for every
v ∈ �1 ×�2. Since n divides 2 · (

n
2

)
, this implies that the last term is trivial†. We conclude

that
n−1∏
k=0

f · χ · ϕ(g, T kg (x, v)) = f̃ (x + nαg)

f̃ (x)
φ(x, nαg) = 1.

In other words, f · χ · ϕ is a line cocycle.
We now prove the second property. Since �tf · χ(g, x) = �αgFt (x), one has that

�αhf · χ(g, x) = �αgFαh(x) = �αgf (h, x).

Recall the definition of σ from §9.2. We abuse notation and write σ(g) = (αg , vg), where
vg ∈ �1 ×�2 (note that if g is a generator of any Fp-component of G, then this vg
coincides with vg from §9.2). It is enough to show that

�vhϕ(g, v)�αgχ(h, x) ·�vgϕ(h, v) = 1 (9.3)

for every g, h ∈ G, x ∈ R2 and v ∈ �1 ×�2. Since χ(h, αg) · ϕ(h, vg) is a homomor-
phism in g, we conclude that the map (g, h) 	→ �vhϕ(g, v)�αgχ(h, x) ·�vgϕ(h, v) is
bilinear in g and h. Hence, by linearity, it is enough to check equation (9.3) in the case
where h and g are generators. For simplicity, we denote the order of h and g by ph and
pg , respectively. We begin with the case where h = g. In that case, the claim follows since
χ(h, αh) = 1 and the terms �vhϕ(g, v) and �vgϕ(h, v) cancel each other out. Otherwise,
h �= g and then the right-hand side of equation (9.3 is of order ph and of order pg
simultaneously. Since ph �= pg , the claim in the equation follows.

Let ρ be as in (9.2); then the extension defined by ρ is not Abramov of any order.
Formally, we prove the following result.

THEOREM 9.3. The system X = U ×ρ S
1 is an ergodic system of order < 3 and the

measurable map (x, u) 	→ u is orthogonal to all phase polynomials.

† Note that if n = 2, then n does not divide
(
n
2

)
; however in this case we have that ϕ(g, ·) = 1 immediately from

the definition.
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Proof. First, we claim that the system is ergodic. It is enough to show that ρ is not
(G, U , S1)-cohomologous to a cocycle taking values in some proper subgroup of S1 (see
[46, Corollary 3.8]). Suppose by contradiction that there is an n ∈ N such that ρn is a
(G, U , S1)-coboundary. Then the Conze–Lesigne equation gives

�tρ = λt ·�Ft
for every t ∈ U , where λt : G → S1 is a homomorphism such that λnt is a coboundary.
The cocycle identity implies that λtn is a coboundary. Since U is connected, it is divisible
(Lemma A.15) and so every u ∈ U can be written as tn. Lemma 3.7 then implies that ρ is
cohomologous to constant. This is a contradiction and so X is ergodic.

Now we prove that X is of order < 3; equivalently, we show that ρ is of type < 2. By
the Conze–Lesigne equation with t = x′ · x−1, we have

ρ(x)

ρ(x′)
= λx−x′�Fx−x′(x).

Since the action of G on U is given by a homomorphism, we have that the map
(x, x′) 	→ �Fx−x′(x) is a derivative of G(x, x′) := Fx−x′(x) in U × U and therefore is
a coboundary; hence, (x, x′) 	→ ρ(x)/ρ(x′) is cohomologous to λx−x′ , which is invariant
under the action of G and so is of type < 1. We conclude that ρ is of type < 2. Finally,
since X is connected, there are only phase polynomials of degree < 2 (same proof as
in the claim in Example 1.28). Such phase polynomials are measurable with respect to
the Kronecker system U. In particular, the map (u, x) 	→ x is orthogonal to every phase
polynomial. Therefore, X is not Abramov, as required.

10. Nilpotent systems
The goal of this section is to prove Theorem 1.31. Recall that an ergodic system of order
< 3 takes the form X = Z ×ρ U , where Z and U are compact abelian groups and Z is the
Kronecker factor. Since every compact abelian group U is an inverse limit of Lie groups,
we can assume that U is a product of a torus and a finite group.

Definition 10.1. (Host–Kra group for systems of order < 3) Let X = Z ×ρ U be an
ergodic G-system of order < 3. For every s ∈ Z and a measurable map F : Z → U , we
have a measure-preserving transformation Ss,F (z, u) = (sz, F(z)u) on X. We let G(X)
denote the group of all such transformations with the property that there exists cs : G → U

such that �sρ = cs ·�F .

Equipped with the topology of convergence in measure, Host and Kra [29, Lemma 8.7
and Corollary 5.9] proved that G(X) is a locally compact Polish two-step nilpotent group.
Let p : G(X) → Z denote the projection to the first coordinate Ss,F 	→ s. Observe that if
s = 1, then �F = c1 and so F ∈ P<2(Z, U). In other words, we can identify ker(p) with
P<2(Z, U).

We claim that in order to prove Theorem 1.31, it is enough to show that p is onto. In that
case, Theorem A.6 implies that p is an open map. Let u ∈ U and define Fu : Z → U to be
the constant map Fu(z) = u. It is an immediate application of the definitions that S1,Fu ∈
G(X). Therefore (assuming that p is onto), we have that the group G(X) acts transitively
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on X. Let 	 be the stabilizer of (1, 1) ∈ Z × U and assume further that U is a Lie group (as
mentioned above, using inverse limits to approximate U we can assume that this is always
the case). Direct computation reveals that 	 ∼= Hom(Z, U) as topological groups. Since U
is a Lie group, the latter is a discrete cocompact subgroup of G and X is homeomorphic
to G/	 (see Theorem A.6). Moreover, it is easy to see that for every element g ∈ G,
the transformation Tg : X → X belongs to G(X). This gives rise to a natural G-action
on G(X)/	 by g.(x	) = (Tgx)	. It follows that there is an isomorphism (of G-systems)
X ∼= G/	. This completes the proof of Theorem 1.31 (assuming that p is onto).

Now we prove that p is onto. Equivalently, we show that for every s ∈ Z, we can find
Fs : Z → U such that Ss,Fs ∈ G(X). Recall that the Lie group U is a direct product of a
torus and a finite group. Therefore, it is enough to solve this equation coordinate-wise.

If the coordinate is associated with the torus subgroup of U, we can apply the following
important result of Moore and Schmidt [34].

LEMMA 10.2. (Cocycles of type < 1 are cohomologous to constants) Let X be an ergodic
G-system. Suppose that ρ : G×X → S1 is a cocycle of type < 1. Then there exists a
character c : G → S1 such that ρ is (G, X, S1)-cohomologous to c.

We note that this result fails for cocycles which take values in arbitrary compact abelian
groups (in particular, it fails for cocycles into finite groups).

Proof of Theorem 1.31. From the discussion above, we see that we need to show that for
every s ∈ Z, there exist a measurable map Fs : Z → U and a constant cs : Z → U such
that �sρ = cs ·�Fs .

Let T (U) denote the torus subgroup of U and D(U) the discrete (finite) subgroup.
Then U = T (U)×D(U). Let ρT and ρD be the projections of ρ to T (U) and D(U)
respectively and letXT = Z ×ρT T (U) andXD = Z ×ρD D(U). It is enough to show that
the projections pT : G(XT ) → Z and pD : G(XD) → Z are onto. Indeed, if FT ,s : Z →
T (U) and FD,s : Z → D(U) are such that Ss,FT ,s ∈ G(XT ) and Ss,FD,s ∈ G(XD), then, by
definition, the map Fs(z) = (FT ,s(z), FD,s(z)) satisfies Ss,Fs ∈ G(X).

Let s ∈ Z. Lemma 2.6 implies that �sρT and �sρD are of type < 1. By Lemma 10.2
applied for ρT , we see that �sρT is cohomologous to a constant. Equivalently, pT is onto.
Now we deal with the finite case. The structure theorem of finite abelian groups asserts
that every finite group is a direct product of Cpn for some prime p and n ∈ N. By working
out each coordinate, we may assume that U = Cpn for such p and n. By embedding Cpn
in S1 and applying Lemma 10.2, we see that

�sρD = cs ·�Fs (10.1)

for some constant cs : G → S1 and Fs : Z → S1. Our goal is to replace Fs and cs with
some F ′

s and c′s such that equation (10.1) holds and F ′
s , c

′
s takes values in Cpn .

As a first step we show that ρD is (G, Z, S1)-cohomologous to a phase polynomial of
degree < 2. To do this, we must first eliminate the connected component of Z. Observe
that by the cocycle identity, we have
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�spn ρD = �sρ
pn

D ·
pn−1∏
k=0

�s�skρD .

From equation (10.1), we see that
∏pn−1
k=0 �s�skρD is a coboundary. Moreover, since

ρD takes values in Cpn , the term �sρ
pn

D vanishes and we conclude that �spn ρD is
a coboundary for every s ∈ Z. Let Z0 be the connected component of the identity in
Z. Since connected groups are divisible (Lemma A.15), we conclude that �sρD is a
(G, Z, S1)-coboundary for every s ∈ Z0. By Lemma 3.7, ρD is (G, Z, S1)-cohomologous
to a cocycle ρ′ that is invariant with respect to the action of Z0. Let π�ρ′ be the
push-forward of ρ′ to Z/Z0. By Lemma 2.5, π�ρ′ is of type < 2. Therefore, by
Theorem 1.27, it is cohomologous to a phase polynomial of degree< 2. Lifting everything
back to Z, we conclude that ρ′ and ρD are (G, Z, S1)-cohomologous to a phase polynomial
Q : G× Z → S1 of degree < 2. Moreover, Q is invariant to translations by Z0. We write

ρ = Q ·�F (10.2)

for some F : Z → S1.
Since ρD takes values in Cpn , we have that

1 = Qpn ·�Fpn . (10.3)

By taking the derivative of both sides of the equation above by s ∈ Z, we conclude that
�sF

pn is a phase polynomial of degree < 2. Our next goal is to replace F with a function
F ′ such that F ′/F is a phase polynomial of degree< 3 (and so equation (10.2) holds if we
replace Q with another phase polynomial cocycle of degree< 2) and at the same time that
�sF

′pn is a constant.
We study the phase polynomial Q. It is a fact that every phase polynomial of degree

< 2 is a constant multiple of a homomorphism. Therefore, we can write Q(g, x) = c(g)·
q(g, x), where c : G → S1 and q : G× Z → S1 is a homomorphism in the Z-coordinate.
Since Q is a cocycle,

c(g + g′)q(g + g′, x) = c(g)c(g′)�g′q(g, x) · q(g, x) · q(g′, x).

It follows that q is bilinear in g and x. Let

Z′
p = ker(qp

n

) = {s ∈ Z : q(g, s)p
n = 1 for every g ∈ G}.

Since q is bilinear, Z/Z′
p is isomorphic to a subgroup of Ĝp

n = ∏
p �=q∈P Cq . We can take

the derivative of both sides of equation (10.3) by s ∈ Z′
p. We conclude by the ergodicity of

the Kronecker factor that�sFp
n

is a constant. Therefore, by Corollary A.4, there exists an
open subgroup Z′ ≤ Z which contains Z′

p such that�sFp
n

is a constant for every s ∈ Z′.
By the cocycle identity, we conclude that�sFp

n = χ(s) for some character χ : Z′ → S1.
Lifting χ to a character of Z arbitrarily, we conclude that Fp

n
/χ is a phase polynomial

which is invariant under translations by Z′. Since Z′ is open and Z is compact, the quotient
Z/Z′ is a finite group. Moreover, since Z′ contains Z′

p, we conclude that the order of
Z/Z′ is coprime to p. By Theorem B.9 applied on the finite system Z/Z′, we conclude
that up to constant multiplication Fp

n
/χ takes values in some finite subgroup Cm of S1
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with (p, m) = 1. By rotating F with a pnth root of this constant, we can assume that this
constant is trivial. Since p and m are coprime, we can find an integer l such that l · pn = 1
mod m. We conclude that R := (Fp

n
χ)l is a phase polynomial of degree < 3 and that

Rp
n = Fp

n
/χ . Let Q′ := Q ·�R and F ′ := F/R. Then, as in equation (10.2), we have

ρD = Q′ ·�F ′

and �sF
′pn = χ(s).

Now, by taking the derivative by s ∈ Z on both sides of the equation above, we conclude
that

�sρ = �sQ
′ ·��sF ′.

Observe that c′s := �sQ
′ is a character of G and

c
′pn
s = �sQ

pn ·��sFpn/χ = 1,

where the last equality follows from (10.3) and the fact that ��sχ vanishes. It is left to
change the term �sF . Set F ′

s := �sF
′/φ(s), where φ(s) is a pnth root of χ(s) in S1.

Then, as before, we have that

�sρD = c′s ·�F ′
s ,

but this time c
′pn
s = F

′pn
s = 1. This implies that pD is onto and the proof is now

complete.

11. The limit formula and the Khintchine-type recurrence
In this section, we let �N be any Følner sequence of the group G = ⊕

p∈P Fp. For a
function f : G → C, we write Eg∈�N f (g) for the average (1/|�N |)∑

g∈�N f (g). We
study the limit of averages of the form

Eg∈�N T ng f1T
n
2gf2T

n
3gf3,

where f1, f2, f3 ∈ L∞(X).
The following results for Fωp-systems can be found in [7, Theorem 1.6]; the same proof

holds for
⊕

p∈P Fp.

PROPOSITION 11.1. (The universal characteristic factors are characteristic) If c1, c2, c3 <

minp∈P p, then Z<3(X) is characteristic for the average

lim
N→∞ Eg∈�NT nc1g

f1T
n
c2g
f2T

n
c3g
f3.

Namely, if f1, f2 or f3 are orthogonal to Z<3(X), then the L2-limit is zero.

We note that the existence of the L2-limit is already known for all countable nilpotent
groups (see a proof by Walsh in [43]). Our goal is to prove a formula for the limit in the
special case when the underlying system is a nilpotent system.

We recall from the previous section that every system of order < 3 is an inverse
limit of systems of the form X = Z ×ρ U , where Z is the Kronecker factor and U is a
Lie group. Every compact abelian Lie group is a product of a torus and a finite group.
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In Theorem 1.32, we further assume that 3 < minp∈P p, which implies that the order of
the finite group is odd (this fact will be used later, in particular that U2 = U ). We prove
this below.

PROPOSITION 11.2. Let X = Z ×ρ U be an ergodic G-system of order < 3 and suppose
that 3 < minp∈P p. Then U2 = U .

Proof. Assume by contradiction that U2 � U . Then, by the Pontryagin dual, there exists
a non-trivial character χ ∈ Û with values in C2. By Lemma 2.6, we see that �sχ ◦ ρ
is a cocycle of type < 1 for every s ∈ Z and, by Lemma 10.2, this implies that �sχ ◦
ρ(g, x) = cs,χ (g) ·�gFs,χ (x). Arguing as in the proof of Theorem 1.31 above, we can
assume that cs,χ takes values in C2. However, cs,χ is a character of G and by assumption
2 �∈ P . We conclude that cs,χ = 1 and �sχ ◦ ρ is a coboundary. It follows that χ ◦ ρ is of
type< 1 and that Z ×χ◦ρ C2 is a Kronecker system. This is a contradiction to the maximal
property of the Kronecker factor.

Let 3 < minp∈P p and X = Z ×ρ U be a system of order < 3. By Theorem 1.31, we
can approximate X by nilpotent homogeneous spaces. We study these systems. Assume
that X = G/	, where G is the Host–Kra group of X and 	 a discrete subgroup. Let G2

be the commutator subgroup of G that is the smallest closed group generated by all the
commutators. An easy calculation reveals that the commutator subgroup G2 is isomorphic
to U. In particular, from Proposition 11.2, we conclude that any element in G2 has a square
root. In this case, we have the following formula for the limit of the multiple ergodic
averages.

THEOREM 11.3. (The limit formula) Let p > 3 and let X = G/	 be a G-system of order
< 3, where G is the Host–Kra group. If G2 is a Lie group, then, for all f1, f2, f3 ∈ L∞(X),
we have that for μG-almost all x ∈ G the average

Eg∈�N f1(Tgx) · f2(T2gx) · f3(T3gx)

converges to ∫
X

∫
G2

f1(xy1	)f2(xy
2
1y2	)f3(xy

3
1y

3
2	) dμG2(y2) dμX(y1	),

with the abuse of notation that f (x) = f (x	).

The proof follows the argument of Lesigne [33]. Lesigne’s argument relies on a result of
Green (see [3]) that in the case of connected simply connected nilsystems, the ergodicity
is determined by the ergodicity of the Kronecker factor. We prove a counterpart of Green’s
theorem in our special case (see Proposition 11.5 below), from which we deduce the limit
formula.

11.1. The system (G̃/	̃, Sg,x). Let G/	 be a two-step nilpotent system and assume that
G2 is a compact abelian group. Let G̃ := G × [G, G] and define multiplication on G̃ by
(x1, x2) · (y1, y2) = (x1y1, [x1, y1]x2y2), where [x, y] = x−1y−1xy. For each x ∈ G, let
Sg,x denote the action of G on G̃ by left multiplication with (ag[ag , x], e), where g 	→ ag
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denotes the action of G on G. Finally, let 	̃ = 	 × {e} ≤ G̃. It is easy to see that G̃ is
a locally compact two-step nilpotent group and 	̃ is a discrete cocompact subgroup. We
equip G̃ with the product measure and the quotient G̃/	̃ with the induced Haar measure.

LetAx = {(xy1	, xy2
1y2	, xy3

1y
3
2	) : (y1, y2) ∈ G̃} be a subset of G/	 × G/	 × G/	

with the induced measure and σ -algebra. Then the map Ix(y1, y2) = (xy1, xy2
1y2, xy3

1y
3
2)

defines an isomorphism between (G̃/	̃, Sg,x) and (Ax , (Tg × T2g × T3g)). Let μG be the
Haar measure on G; our goal is to prove that for μG-almost every x ∈ G, the action of Sg,x

is ergodic.

11.2. Proving ergodicity. We first prove the ergodicity on the Kronecker factor.

PROPOSITION 11.4. (Ergodicity on the Kronecker factor) The induced action of Sg,x on
G̃/G̃2	̃ is ergodic for μG-almost every x ∈ G.

Proof. Using Fourier analysis, the action of Sg,x is ergodic if and only if every character
σ : G̃ → S1 that is trivial on G̃2	̃ and satisfies σ((ag[ag , x], e)) = 1 is trivial.

Let σ be such a character; we denote by σ1 : G → S1 and σ2 : G2 → S1 the coordinates
of σ . Namely, σ1(x) := σ(x, e) and σ2(y) = σ(e, y). Direct computation shows that:
(1) σ(x, y) = σ1(x) · σ2(y);
(2) σ1(x1x2) = σ1(x1) · σ1(x2) · σ2([x1, x2]);
(3) σ2 is a character;
(4) for every x = (x1, x2), y = (y1, y2) ∈ G̃, we have [x, y] = ([x1, y1], [x1, y1]2). In

particular, σ1(x
′) = σ2(x

′)−2.
Observe that by property (4), we have that σ((ag[ag , x], e)) = 1 if and only if σ1(ag) =
σ2([ag , x])2.

Since the map (g, y) 	→ σ2([ag , y]) is a bilinear map G× G → S1, it gives rise to a
homomorphism G → Ĝ. Let L ≤ G be the kernel of this homomorphism.

Since ˆ̃G is countable, it is enough to show that the measure of L for every non-trivial
character is zero. Suppose by contradiction that L is of positive measure. Then it is an open
normal subgroup of G. Clearly, L also contains the elements ag for all g ∈ G. Let 	L =
L ∩ 	; then L/	L can be identified with a closed and open subset of G/	 which is also
G-invariant. Ergodicity of G/	 implies that the systems L/	L and G/	 are isomorphic
and the identity map x	L 	→ x	 is the isomorphism. In particular, it follows that the action
of G on L/	L is ergodic.

CLAIM 1. We prove that σ2(x) = 1 for all x ∈ [	L, G] and x ∈ L2.

Proof of claim. From the construction, we see that σ2([ag , x]) = 1 for all g ∈ G and for
all x ∈ L. Let γ ∈ 	L and look at x 	→ σ2([γ , x]). Since γ ∈ 	, this map is trivial for
x ∈ 	; since γ ∈ L, this map is also trivial for x = ag for every g ∈ G and hence by
ergodicity this map is trivial for all x ∈ G. Since σ2 is a character, this proves the first
claim. Now fix y ∈ L. We have just proved that σ2([y, x]) = 1 for all x ∈ 	L; it follows
by the construction of L that the same holds for x = ag for all g ∈ G. Ergodicity implies
that σ2 is trivial on L2, as required.
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CLAIM 2. σ2 is trivial on G2.

Proof of claim. Consider the map ψ : y 	→ σ1(y)/σ2([y, x0]) for all y ∈ L. By property
(3) above and claim 1, this map is G-invariant and a homomorphism of L. Moreover,
since σ is invariant to right multiplication by an element in 	̃, it follows from claim 1
that ψ is also invariant to right multiplication by 	L. The ergodicity of the G-action on
L/	L implies that ψ is trivial. Now, since G2 ⊆ L, we conclude that for every t ∈ G2,
σ1(t) = σ2([t , x0])2 = 1. From property (4) above, this implies that σ2(t

2) = 1. Since p >
3, G2

2 = G2 and the claim follows.

To finish the proof of the proposition, we prove that σ ≡ 1. Just as in claim 2, we see
that σ1 : G → S1 is a homomorphism that is invariant to 	 and to the action of G. Hence,
it is a constant. Since σ = σ1, we conclude that σ is trivial.

PROPOSITION 11.5. (Ergodicity on the Kronecker factor implies ergodicity) Let x be such
that the induced action of Sg,x on G̃/G̃2	̃ is ergodic. Then the original action of Sg,x on
G̃/	̃ is ergodic.

Proof. We proceed as in the proof of Parry [39]. Fix x as in the proposition and let
f : G̃/	̃ → S1 be an invariant function. The group G̃2 is a compact abelian group which
acts on L2(G̃/	). We deduce, using the Peter–Weyl decomposition theorem, that there
is an orthogonal decomposition of f as a sum of eigenfunctions f = ∑

λ fλ, where λ is
a character of G̃2. Since f is invariant, each fλ is an eigenfunction of the G-action. Let
n ∈ G̃. For every λ and every g ∈ G, we have

fλ(ngx) = fλ(gn[n−1, g−1]x) = λ([n−1, g−1])fλ(gnx) = λ([n−1, g−1]) · cgfλ(nx).
Hence,�nfλ is an eigenfunction with respect to the action of G. Direct computation shows
that �u�nfλ = 1 for all u ∈ G̃2 and so �nf can be identified with an eigenfunction with
respect the induced action of Sg,x on the quotient G̃/G̃2	̃. We assume that this factor is
ergodic and so by Lemma 3.5 the group of eigenfunctions modulo constants is discrete.
We conclude that the group

Lλ := {n ∈ G : �nfλ is a constant}
is an open subgroup of G. Moreover, l 	→ �lfλ is a homomorphism from Lλ to S1 and so
it is invariant under [Lλ, Lλ] ≤ G̃2. It is left to show that for every character λ, [Lλ, Lλ] =
G̃2. Fix λ and let L = Lλ. Let L′ = L ∩ G × {e}. By property (4), it is left to prove that
L′

2 = G2. For convenience, we denote bg = ag[ag , x]. It is easy to see that bg ∈ L′. Now
we use the fact that G is the Host–Kra group of the underlying space X. WriteX = Z ×ρ U ,
where Z is the Kronecker factor and U is a Lie group. Since L is open and contains bg
for all g ∈ G, the image of the projection p : L → Z is an invariant open subgroup and
therefore the projection is onto. Fix a cross-section s 	→ s = Ss,fs , where �sσ = cs ·�fs
for some cs : G → U . Then [s, bg] = [s, ag] = S1,cs(g), which we identify as an element
of U. Suppose by contradiction that the closed group generated by these cs(g) for all s ∈ Z
and g ∈ G is a proper subgroup of U. Then there exists a character χ ∈ Û such that χ ◦ ρ
is of type < 1. The maximal property of the Kronecker factor provides a contradiction.
This completes the proof.
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We conclude that the system (G̃/	̃, Sg,x) is ergodic for μG-almost every x ∈ G. Since it
is ergodic, it is automatically uniquely ergodic (see [37, Theorem 5] and [38, §2, Lemma
1]). Therefore, by the mean ergodic theorem, we have that

lim
N→∞ Eg∈�NF(agxy1, a2

gxy
2
1y2, a3

gxy
3
1y

3
2)

=
∫
G/	

∫
G2

F(xy1, xy2
1y2, xy3

1y
3
2) dμG2(y2) dμG/	(y1)

for every continuous function F on (G/	)3 and for all y1, y2 ∈ G. Set y1 = y2 = e

and F(x1, x2, x3) = f (x1) · f (x2) · f (x3). We conclude that Theorem 11.3 holds for
continuous functions. The general case follows by approximating bounded functions by
continuous functions and taking limits.

11.3. Concluding the proof for the Khintchine recurrence. We prove Theorem 1.32
following an argument of Frantzikinakis [15]. Let X be any system; by Proposition 11.1, the
limit of Eg∈�NTgf1T2gf2T3gf3 in L2 is equal to the limit of Eg∈�NTgf̃1T2gf̃2T3gf̃3 if the
latter exists, where f̃i denotes the projection of fi to the factor Z<3(X) for each 1 ≤ i ≤ 3.
Using Theorem 1.31, we can assume by an approximation argument that Z<3(X) is an
extension of the Kronecker factor by a Lie group and that Z<3(X) ∼= G/	, where G2 is a
Lie group. Let A be a set of positive measure, set f = f1 = f2 = f3 = 1A and let ε > 0.
Suppose by contradiction that the set {g ∈ G : μ(A ∩ TgA ∩ T2gA ∩ T3gA) ≥ μ(A)4 − ε}
fails to be syndetic. Then its complement contains a translation of every finite set. In
particular, it must contain a Følner sequence �N . Therefore, for every g ∈ ⋃∞

N=1 �N ,
we have that ∫

X

f · Tgf · T2gf · T3gf dμ < μ(A)4 − ε.

CLAIM. Let Z be the Kronecker factor of X. Let ag ∈ Z Denote the element corresponding

to the action of G on Z and η : Z → R+ be any continuous function. Then the average

Eg∈�N η(ag)Tgf1T2gf2T3gf3

converges to zero in L2 if E(fi |Z<3) = 0 for any 1 ≤ i ≤ 3.

Proof. By approximating η by characters, it is enough to assume that η is a character
of the Kronecker factor. Therefore, η(ag) = �gχ for some character χ ∈ Ẑ. Let f ′

1 :=
f1 · χ and then apply Proposition 11.1 for the average associated with f ′

1, f2, f3. Since χ is
measurable with respect to the Kronecker factor, E(f ′

1 : Z<3) = 0 ⇐⇒ E(f1|Z<3) = 0,
which completes the proof.

We can therefore apply Lemma 11.3 to the twisted average

Eg∈�N η(ag)Tgf1T2gf2T3gf3

and conclude that it converges to∫
X

∫
G2

η(y1)f̃1(xy1)f̃2(xy
2
1y2)f̃3(xy

3
1y

3
2) dmG2(y2) dmX(y1	).
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By taking f1 = f2 = f3 = 1, we conclude that

Eg∈�N η(ag) = 1.

We now consider the average

Eg∈�N η(ag)
∫
X

f0 · Tgf1 · T2gf2 · T3gf3 dmX,

which by the same argument converges to∫
X

∫
X

∫
G2

η(y1)f0(x)f̃1(xy1)f̃2(xy
2
1y2)f̃3(xy

3
1y

3
2) dmG2(y2) dmX(y1	) dmX(x	).

Since η is arbitrary, we can approximate the indicator functions 1B(G2,δ), where B(G2, δ)
denotes the ball of radius δ around all elements of G2. Since translations are continuous in
L2, by taking a limit as δ → 0 the limit will be arbitrarily close to∫

X

∫
G2×G2

f̃ (x)f̃ (xy1)f̃ (xy
2
1y3)f̃ (xy

3
1y

3
2) dmG2×G2(y1, y2) dmX(x	).

We integrate everything to get that this is equal to
∫
X

∫
G2×G2×G2

f̃ (gx)f̃ (gxy1)f̃ (gxy
2
1y2)f̃ (gxy

3
1y

3
2) dmG2×G2×G2(g, x, y2) dmX(y1	).

Since the set {(g, gy1, gy2
1y2, gy3

1y
3
2) : g, y1, y2 ∈ G2} equals the set {(h1, h2, h3, h4) ∈

G4
2 : h1h

3
3 = h4h

3
2}, we can write the above integral as

∫
X

∫
G2

∫
h1h

3
3=h

f̃ (h1x)f̃ (h3x) dλ(h1, h3)
2 dmG2(h) dmX(x	).

By Cauchy–Schwartz and the triangle inequality, this is greater than or equal to

∫
X

( ∫
G2

f̃ (hx) dmG2(h)

)4

dmX(x	) =
( ∫

X

f̃ (x) dmX(x	)

)4

= μ(A)4.

We conclude that

Eg∈�N η(ag)μ(A ∩ TgA ∩ T2gA ∩ T3gA) > μ(A)4 − ε/2

for some η(ag) > 0 with Eg∈�N ag = 1. This contradicts the inequality μ(A ∩ TgA ∩
T2gA ∩ T3gA) < μ(A)4 − ε for all g ∈ ⋃

N∈N �N , as required.

Acknowledgment. I would like to to thank my adviser Prof. Tamar Ziegler for many
helpful discussions and suggestions. I also thank the anonymous referee for many valuable
comments that contributed to the clarity of the paper.

A. Appendix. Topological groups and measurable homomorphisms
In this section, we survey some results about topological groups.
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A.1. Homomorphisms of Polish groups.

Definition A.1. We say that a topological group G is a Polish group if it is separable and
completely metrizable. If G is compact, this is equivalent to the existence of some invariant
metric on G (that is, a metric such that d(x, y) = d(gx, gy)).

Every topological group is a measurable space with respect to the Borel σ -algebra. It
is well known that every locally compact abelian group G admits a unique (up to scalar
multiplication) invariant Borel measure μ. This measure is inner and outer regular and it
assigns finite measure for compact subsets. In particular, in the case where G is compact,
we can normalize so that μ(G) = 1. The existence of such measures leads to many fruitful
corollaries.

PROPOSITION A.2. (Weil [11, Lemma 2.3]) Let G be a locally compact Polish group and
let A ⊆ G be a measurable subset of positive measure. Then A · A−1 contains an open
neighborhood of the identity.

This implies the following useful proposition.

PROPOSITION A.3. Let G be a locally compact Polish abelian group and let H be a Borel
subgroup of at most countable index. Then H is open.

Proof. Let μ be the Haar measure on G. Since H has countable index, there exist
g1, g2, . . . such that G = ⊔∞

i=1 giH . In particular, it follows that

0 < μ(G) =
∞∑
i=1

μ(giH).

Since the measure is invariant, the right-hand side is an infinite sum of μ(H). This is
only possible if the measure of H is positive (note that if G is compact, this also implies
that the sum is finite). Now, by Proposition A.2, we have that H −H contains an open
neighborhood U of the identity. Since H −H ⊆ H , we have that H = ⋃

h∈H hU and so
is open.

We deduce the following result.

COROLLARY A.4. Let G be a locally compact abelian Polish group and let L be a
locally compact abelian group of at most countable cardinality. Then any measurable
homomorphism ϕ : G → L factors through an open subgroup of G.

Proof. The kernel of ϕ is a Borel subgroup of at most countable index. Therefore, the
claim follows from the previous proposition.

Another important corollary of Proposition A.2 is the following automatic continuity
lemma.

LEMMA A.5. (Automatic continuity of measurable homomorphisms [11, Theorem 2.2])
Any measurable homomorphism from a locally compact Polish group into a Polish group
is continuous.
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The following result is a version of the open mapping theorem in Polish groups
[4, Ch. 1].

THEOREM A.6. Let G and H be Polish groups and let p : G → H be a group homomor-
phism that is continuous and onto. Then p is an open map.

It follows from this theorem that G/ ker(p) ∼= H as topological groups. In particular,
we obtain the following result.

COROLLARY A.7. Let H be a closed normal subgroup of the Polish group G. If H and
G/H are locally compact, then G is locally compact. If H and G/H are compact, then G is
compact.

A.2. Totally disconnected groups.

Definition A.8. [27, Exercise E8.6] Let X be a locally compact Hausdorff space. Then the
following are equivalent.
• Every connected component in X is a singleton.
• X has a basis consisting of open and closed sets.
We say that X is totally disconnected if one of the above is satisfied.

In this section, we will be interested in compact (Hausdorff) totally disconnected
groups. These groups are also called profinite groups; in fact, one can show that every
such group is an inverse limit of finite groups (see [36, Proposition 1.1.3]).

PROPOSITION A.9. Let G be a compact Hausdorff totally disconnected group. Let 1 ∈
U ⊆ G be an open neighborhood of the identity; then U contains an open subgroup of G.

The proof of this proposition can be found in [36, Proposition 1.1.3]. As a corollary, we
have the following result.

COROLLARY A.10. (The dual of a totally disconnected group is a torsion group) Let G
be a compact abelian totally disconnected group and let χ : G → S1 be a continuous
character. Then the image of χ is finite.

Proof. Choose an open neighborhood of the identity U in S1 that contains no non-trivial
subgroups. Then χ−1(U) is an open neighborhood of G. Now let H be an open subgroup
such that H ⊆ χ−1(U). It follows that χ(H) is trivial and so χ factors through G/H ,
which is finite.

We note that the other direction also holds, but we do not use this fact here.
Since compact totally disconnected groups are profinite groups, some of the theory

of finite groups can be generalized to these groups. For example, we have the following
decomposition to p-components.

PROPOSITION A.11. (Sylow theorem [27, Corollary 8.8]) A compact abelian group is
totally disconnected if and only if it is a direct product of p-groups.

We also need the following structure theorem for torsion groups (of bounded torsion).

https://doi.org/10.1017/etds.2021.109 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.109


352 O. Shalom

THEOREM A.12. (Structure theorem for abelian groups of bounded torsion [35, Ch. 5,
Theorem 18]) Let G be a compact abelian group and suppose that there exists some n ∈ N

such that gn = 1G for every g ∈ G. Then G is topologically and algebraically isomorphic
to

∏∞
i=1 Cmi , where, for every i, mi is an integer which divides n.

One way to generate totally disconnected groups is to begin with an arbitrary compact
abelian group and quotient it out by its connected component.

LEMMA A.13. Let G be a compact abelian group and let G0 be the connected component
of the identity. Since the multiplication and the inversion maps are continuous, one has
that G0 is a subgroup of G. We have:
• G0 has no non-trivial open subgroups;
• every open subgroup of G contains G0;
• G/G0 equipped with the quotient topology is a totally disconnected compact group.

As a corollary, we have the following result.

PROPOSITION A.14. (Quotient of a profinite group is a profinite group) Let G be a
profinite group and let N be a subgroup of G. Then G/N with the induced topology is
a profinite group.

Proof. Let C denote the connected component of the identity in G/N . Let x ∈ C and
let π : G → G/N be the projection map. Then π−1({x}) is a closed subset of G. If by
contradiction x �= 1, then by Proposition A.9 we have that the complement contains an
open subgroup V. Quotient homomorphisms are open and so, by Lemma A.13, π(V )
contains the connected component of G/N , which is absurd.

We also need the following important fact that connected groups are divisible [27,
Corollary 8.5].

LEMMA A.15. Let G be a compact abelian connected group. Then, for every g ∈ G and
n ∈ N, there exists h ∈ G such that hn = g.

A.3. Lie groups.

Definition A.16. A topological group G is said to be a Lie group if, as a topological
space, it is a finite-dimensional differentiable manifold over R and the multiplication and
inversion maps are smooth.

A compact abelian group is a Lie group if and only if its Pontryagin dual is finitely
generated. The structure theorem for finitely generated abelian groups then implies the
following result.

THEOREM A.17. (Structure theorem for compact abelian Lie groups [40, Theorem 5.2])
A compact abelian group G is a Lie group if and only if there exists n ∈ N such that
G ∼= (S1)n × Ck , where Ck is some finite group with discrete topology.
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Fortunately, a classical result of Gleason and Yamabe asserts, in particular, that all
compact abelian groups can be approximated by compact abelian Lie groups.

THEOREM A.18. [27, Corollary 8.18] Let G be a compact abelian group and let U be a
neighborhood of the identity in G. Then U contains a subgroup N such that G/N is a Lie
group.

It follows from the above (see also [31, Lemma 2.2]) that any compact connected
nilpotent group is abelian.

PROPOSITION A.19. If G is a compact metric connected k-step nilpotent group, then G is
abelian.

B. Appendix. Some results about phase polynomials
In this section, G = ⊕

p∈P Fp for some multiset of primes P.

PROPOSITION B.1. (Values of phase polynomial cocycles) Let X be an ergodic G-system.
Let d ≥ 0 and q : G×X → S1 be a phase polynomial of degree< d that is also a cocycle.
Then, for every g ∈ G, q(g, ·) takes values in Cm, where m is the order of g to the power
of d.

Proof. We prove the proposition by induction on d. If d = 0, then q ≡ 1 and the claim
is trivial. Fix d ≥ 1 and assume inductively that the claim holds for smaller values of d.
Let q : G×X → S1 be a phase polynomial of degree < d and fix g ∈ G of order n. The
cocycle identity implies that

1 = q(ng, x) =
n−1∏
k=0

q(g, Tkgx).

Since q(g, Tkgx) = q(g, x) ·�kgq(g, x), we have that q(g, x)n · ∏n−1
k=0 �kgq(g, x) = 1.

By the induction hypothesis,
∏n−1
k=0 �kgq(g, x) is in Cnd−1 and it follows that q(g, x) ∈

Cnd , as required.

We need the following version of [6, Lemma B.5(i)].

LEMMA B.2. (Vertical derivatives of phase polynomials are phase polynomials of smaller
degree) Let X be an ergodic G-system. Let U be a compact abelian group acting freely
on X by automorphisms. Let P : X → S1 be a phase polynomial of degree < d for some
d ≥ 1. Then �uP is a phase polynomial of degree < d − 1 for every u ∈ U .

Proof. We prove the lemma by induction on d. If d = 1, ergodicity implies that P is a
constant and so �uP = 1, as required. Let d ≥ 2 and assume inductively that the claim
is true for d − 1. Given a phase polynomial P : X → S1 of degree < d, we have that
�P : G×X → S1 is a phase polynomial of degree< d − 1. By the induction hypothesis,
we conclude that �u�P is a phase polynomial of degree < d − 2. As the action of U
commutes with the action of G, we have that ��uP is a phase polynomial of degree
< d − 2. It follows that �uP is a phase polynomial of degree < d − 1 as desired.

Proposition B.1 and Lemma B.2 imply the following result.
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COROLLARY B.3. Let X be an ergodic G-system and U be a compact abelian group
acting freely on X and commuting with the action of G. Suppose that there exists a
measurable map u 	→ fu from U to P<d(X, S1) which satisfies the cocycle identity (that
is, fuv = fuVufv) for all u, v ∈ U . Then there exists an open subgroup V of U such that
fv ∈ P<1(X, S1) for all v ∈ V .

Proof. We prove the claim by induction on d. If d = 1, we can take V = U and the claim
follows. Let d > 1 and assume that the claim is true for smaller values of d. Let u 	→ fu

be a map from U to P<d(X, S1). The cocycle identity implies that fuv = fufv ·�ufv .
Applying Lemma B.2, we have that �ufv ∈ P<d−1(X, S1) and so after quotienting out
P<d−1(X, S1) we have that the map U → P<d(X, S1)/P<d−1(X, S1) sending u to the
equivalent class of fu is a homomorphism. Since d > 1, Lemma 3.5 (separation lemma)
implies that P<d−1(X, S1) has at most countable index in P<d(X, S1). Corollary A.4
implies that the kernel, U ′, is an open subgroup.

We conclude that fu′ ∈ P<d−1(X, S1) for all u′ ∈ U ′ and so the induction hypothesis
implies that there exists an open subgroup V ofU ′ such that fv ∈ P<1(X, S1) for all v ∈ V .
As V is open in U ′ and U ′ is open in U, we have that V is open in U.

We also need the following lemma from [6, Lemma B.5(iii)].

LEMMA B.4. (Composition of polynomials is again polynomial) Let U and V be two
abelian groups and X = Y ×ρ U be an ergodic extension of a G-system Y by a phase
polynomial cocycle ρ : G× Y → U of degree< k for some k ≥ 1. Suppose that p : X →
V is a phase polynomial of degree < d, v1 : X → U , v2 : X → U ,. . .,vj : X → U are
phase polynomials of degree< d1, < d2, . . . , < dj and s : X → U is a phase polynomial
of degree < d ′. Then the function P : X → V given by the formula

p(y, u) = (�v1(y,u) · · · �vj (y,u)p)(y, s(y, u))

is a phase polynomial of degree < Od,j ,d1,...,dj ,d ′,k(1).

The next proposition follows from an argument of Bergelson, Tao and Ziegler; see [7,
Lemma 2.1].

PROPOSITION B.5. (Phase polynomials are invariant under connected components) Let
X be an ergodic G-system of order < k and U be a compact abelian connected group
acting freely on X (not necessarily commuting with the G-action). Let P : G×X → S1

be a phase polynomial of degree < d such that for every g ∈ G, there exists Mg ∈ N such
that P(g, ·) takes at most Mg values. (e.g. if P is a phase polynomial cocycle). Then P is
invariant under the action of U.

Proof. Fix g ∈ G and consider the map u 	→ �uP (g, ·). Since P(g, ·) is a measurable
map X → S1, we have that �uP converges in measure to the constant 1 as u converges
to the identity in U. Since convergence in measure implies convergence in L2, we can
use Lemma 3.5 to conclude that �uP (g, ·) must be almost everywhere constant for u
close to the identity. From the cocycle identity, we have that the subset U ′

g = {u ∈ U :
�uP (g, ·) is a constant} is an open subgroup of U. As U is connected, we conclude that
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U ′
g = U for every g ∈ G. We conclude that for every g ∈ G, there exists a character χg :

U → S1 such that �uP (g, ·) = χg(u) for every u ∈ U . Since U is connected and χg is
continuous, we have that the image of χg is either trivial or is S1. But, the latter contradicts
the assumption that P(g, ·) takes finitely many values. It follows that �uP (g, ·) = 1
for every u ∈ U and g ∈ G. In other words, P is invariant under the action of U, as
required.

Remark B.6. In some cases, the group S1 in the proposition can be replaced by any
compact abelian group using Pontryagin duality. For instance, if P : G×X → V is a
phase polynomial cocycle for some compact abelian group V, then for every χ ∈ V̂ we
have that χ ◦ P : G×X → S1 is a phase polynomial cocycle of the same degree. By
Propositions B.1 and B.5, we have that χ(�uP ) = 1 for every u ∈ U . As the characters
separate points, this would imply that �uP = 1 and hence P is invariant with respect to
the action of U.

In the rest of this section, we work with a totally disconnected system X. We show
that in this case any phase polynomial into S1 takes values in a coset of a finite cyclic
subgroup.

PROPOSITION B.7. (Phase polynomials on totally disconnected systems take finitely many
values) Let X be an ergodic totally disconnected G-system of order < k (see Definition
1.17). Let P : X → S1 be a phase polynomial of degree < d. Then, up to a constant
multiple, P takes values in a finite subgroup of S1.

Proof. We induct on k. If k = 1, then X is trivial. In particular, every function on X is
a constant and the claim follows. Let k ≥ 2 and assume that the claim has already been
proven for k − 1. Let X be as in the proposition; then, by Proposition 1.16, we can write
X = Z<k−1(X)×ρ U .

Consider the map u 	→ �uP . Clearly, u 	→ �uP satisfies the cocycle identity and so
Corollary B.3 implies that there exists an open subgroup V such that �uP ∈ P<1(X, S1)

for every u ∈ V . Ergodicity implies that �uP is a constant in S1. The induced map V →
S1 sending v to the constant �vP is a homomorphism. As V is totally disconnected, the
kernel U ′ is an open subgroup which satisfies �uP = 1 for every u ∈ U ′.

Now let u ∈ U . AsU/U ′ is a finite group, there existsm ∈ N such that um ∈ U ′. We fol-
low the argument in the proof of Corollary B.3, but instead of passing to an open subgroup,
we take a power. As in Corollary B.3, we have that U → P<d−1(X, S1)/P<d−2(X, S1)

sending u to the equivalent class of�uP is a homomorphism. As�umP = 1 for all u ∈ U ,
we conclude that �uPm is a phase polynomial of degree < d − 2. Iterating this process,
we conclude that �uPm

d−1 = 1 for all u ∈ U . In other words, Pm
d−1

is invariant under
U. Viewing Pm

d−1
as a phase polynomial of degree < d on Z<k−1(X) and applying the

induction hypothesis, we see that, up to constant multiplication, Pm
d−1

takes values in
some finite subgroup H of S1. Letting c be an md−1th root of this constant, we have that
P/c takes values in the finite group H, as desired.

As a corollary, we have the following result.
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THEOREM B.8. (Phase polynomials of degree < d on totally disconnected systems take
< Od(1) values on finitely many primes) Let X be an ergodic totally disconnected
G-system of order < k (see Definition 1.17) and let F : X → S1 be a phase polynomial
of degree < d. Then, up to constant multiplication, F takes values in the group Cm, where
m = p

l1
1 · · · · · plnn for some n ∈ N, distinct primes p1, . . . , pn and l1, . . . , ln = Od(1).

Proof. By Proposition B.7, we have that up to constant multiplication F takes values in Cα
for some finite α ∈ N. The derivative q := �F is a phase polynomial of degree < d − 1
which is also a cocycle and it takes values in Cα . Let n ∈ N be such that α < pn, where
pn is the nth prime, and write G = Gn ⊕G′, where Gn = ⊕

p∈P ,p<pn Fp and G′ is its
complement. From Proposition B.1 and the fact that α < pn, we conclude that q(g, ·) =
1 for all g ∈ G′. Let m = ∏n

i=1 p
d−1
i . Proposition B.1 implies that qm = 1 and so, by

ergodicity, Fm is constant. Let c be an mth root for Fm. We conclude that c · F takes
values in Cm, as required.

In the next theorem we will generalize the results above in the case where p ≥ k.

THEOREM B.9. Let X be an ergodic G-system, let F : X → S1 be a phase polynomial of
degree < k and let p be a prime such that p ≥ k. Suppose now that F takes values in Cpm
for some m ∈ N; then up to constant multiplication F takes values in Cp.

Proof. The derivative �F : G×X → Cpm is a phase polynomial of degree < k. Write
G = Gp ⊕G′, where Gp is the p-torsion subgroup of G. By Proposition B.1, it follows
that for every g ∈ G′,�gF takes values inCn for some n coprime to p. As�F takes values
in Cpm , we conclude that �gF = 1 for all g ∈ G′. Now we claim that �gFp = 1 for all
g ∈ Gp (using ergodicity and the cocycle identity, this would imply that Fp is constant).

We argue as in [6, Lemma D.3(i)]. Taking logarithms, it is sufficient to show that if
F : X → Z/pmZ is an (additive) polynomial of degree < k, then pF is a constant.

Let g ∈ Gp; then T
p
g F = F . Write Tg = 1 +�+

g , where �+
g f (x) = f (Tg(x))−

f (x) is the additive derivative. We conclude, using the binomial formula, that∑p

i=0
(
p
i

)
(�+

g )
iF = F . Since F has degree k and k ≤ p, we have that (�+

g )
pF = 0.

Therefore,

p�+
g F +

(
p

2

)
(�+

g )
2F + · · · + p(�+

g )
p−1F = 0,

which we rewrite as(
1 + p − 1

2
�+
g + · · · + (�+

g )
p−2

)
(�+

g )pF = 0.

Inverting the expression in the bracket using Neumann series (and using the fact that
(�+

g )
p−1 annihilates (�+

g )pF ), we conclude that �+
g pF = 0 for any g ∈ Gp. Since

�+
g pF = 0 for every g ∈ G′, it follows from the cocycle identity in g that �+

g pF = 0
for every g ∈ G. Ergodicity implies that pF is a constant, as required.

Remark B.10. We can generalize the result of Theorem B.9. If F : X → S1 is a phase
polynomial of some given degree which takes values in some finite subgroup H of S1,
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we can write H = Cp1
l1 × · · · × CpN lN . Composing F with each of the coordinate maps

π1, . . . , πN yields a polynomial as in the previous theorem and hence if p1, . . . , pN are
sufficiently large, then F takes values in Cp1 × · · · × CpN .

We generalize another result from [6, Lemma D.3].

PROPOSITION B.11. (Line cocycles) Let X be an ergodic G-system. Let F : X → S1 be a
phase polynomial of degree < k and suppose that F takes values in Cn for some n = p1 ·
· · · · pj , where k < p1, p2, . . . , pj . Then, for every g ∈ G, we have

∏n−1
t=0 T

t
gF = 1.

Proof. Write Cn = Cp1 × · · · × Cpj and let πi : Cn → Cpi be the projection map. We
show that

∏n−1
t=0 T

t
gFi = 1, where Fi = πi ◦ F .

First, we decompose G asG = Gpi ⊕G′, whereGpi = {g ∈ G : pig = 0} andG′ is its
complement. Taking logarithms, it is enough to show that every polynomial F : X → R/Z

with nF = 0 satisfies
∑n−1
t=0 T

t
gF = 0.

For every g ∈ G, we have a decomposition as g = gi + g′, where gi ∈ Gpi and g′ ∈ G′.
Since Fi is a phase polynomial taking values in Z/piZ, we conclude by Proposition B.1
that it is invariant under Tg′ . It follows that

∑n−1
t=0 T

t
gF = ∑n−1

t=0 T
t
gi
F . If gi = 0, then∑n−1

t=0 TgF = nF = 0. Otherwise, since �+
g = Tg − 1, using the binomial formula, we

have
pi−1∑
t=0

T tgiFi =
pi−1∑
t=0

(
pi

t + 1

)
(�+

gi
)tFi .

Since F is a phase polynomial of degree < k, direct computation shows that so is
Fi . Repeated application of Lemma B.2 and the fact that k < pi imply that (�+

gi
)pi−1

annihilates Fi . Since pi divides
(
pi
t+1

)
for 0 ≤ t ≤ pi − 1, we conclude that

pi−1∑
t=0

T tgiFi = 0.

As gi is of order pi and pi divides n, we have that
∑n−1
t=0 T

t
gi
Fi is a constant multiple of∑pi−1

t=0 T tgiFi = 0 and hence trivial. Thus, for every 1 ≤ i ≤ j and any g ∈ G, we have
that

n−1∑
t=0

TgFi = 0.

Since this holds for every coordinate, we conclude that

n−1∑
t=0

TgF = 0,

as required.

B.1. Roots of phase polynomials. When the multiset P is unbounded, it is not true that
every

⊕
p∈P Fp-phase polynomial has an nth root that is also a phase polynomial (see
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Example 1.28 and compare with [6, Corollary D.7]). However, when the phase polynomial
takes finitely many values (for example, when the underlying space is totally disconnected),
we can use the tools developed by Bergelson, Tao and Ziegler in [6, Appendix D] to
construct phase polynomial roots.

Let X be an ergodic G-system and P : X → S1 be a phase polynomial (of any degree).
Suppose that there exist a prime p and a natural number n such that P takes values in Cpn .
Write Gp for the p-component of G and G = Gp ⊕G⊥. We see by Proposition B.1 that
P is invariant with respect to the action of G⊥ on X. Let Bp be the σ -algebra of all G⊥
invariant functions and Xp be the factor of X which corresponds to that σ -algebra. It is
easy to see that the induced action of Gp on Xp is ergodic. This construction allows us
to generalize the following results of Bergelson, Tao and Ziegler about (Fωp , X, S1)-phase
polynomials to our settings†.

We begin with the following version of Proposition D.5 from [6]; the proof is identical
and is therefore omitted.

PROPOSITION B.12. Let P : X → Z/pmZ be an (additive) polynomial of degree < d and
let Z/plZ be a cyclic group. Embed {0, 1, . . . , p − 1} into Z/plZ in the obvious manner.
Then, for any 0 ≤ j ≤ m− 1, the map bj (P ) is a polynomial of degree < Ol,d,p,j (1),
where bj : Z/plZ → {0, 1, . . . , p − 1} is the jth digit map.

Just like in [6], this proposition implies that functions of phase polynomials are phase
polynomials. However, in our case we have to add an assumption about the values of the
phase polynomials.

COROLLARY B.13. (Functions of phase polynomials are phase polynomials) Let
ϕ1, . . . , ϕm be m phase polynomials of degree < d for some d , m ≥ 1 with values in
Cpd . Let n ≥ 1 and let F(ϕ1, . . . , ϕm) be some function of ϕ1, . . . , ϕm which takes
values in the cyclic group Cpn . Then F(ϕ1, . . . , ϕm) is a (X, S1) phase polynomial of
degree < Op,d,m,n(1).

In particular, we have the following result.

COROLLARY B.14. (Phase polynomials with finite values have phase polynomial roots)
Let d , n > 1 be integers and p be a prime number. Let X be an ergodic G-system and
P : X → S1 be a phase polynomial of degree < d which takes values in Cpd and let n >
1. Then there exists a phase polynomial � : X → S1 of degree < Od,n,p(1) such that
�n = P .
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