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Abstract
Generation of science-ready data from processed data products is one of the major challenges in next-generation radio continuum surveys
with the Square Kilometre Array (SKA) and its precursors, due to the expected data volume and the need to achieve a high degree of
automated processing. Source extraction, characterization, and classification are the major stages involved in this process. In this work we
focus on the classification of compact radio sources in the Galactic plane using both radio and infrared images as inputs. To this aim, we
produced a curated dataset of ∼20 000 images of compact sources of different astronomical classes, obtained from past radio and infrared
surveys, and novel radio data from pilot surveys carried out with the Australian SKA Pathfinder. Radio spectral index information was also
obtained for a subset of the data. We then trained two different classifiers on the produced dataset. The first model uses gradient-boosted
decision trees and is trained on a set of pre-computed features derived from the data, which include radio-infrared colour indices and
the radio spectral index. The second model is trained directly on multi-channel images, employing convolutional neural networks. Using
a completely supervised procedure, we obtained a high classification accuracy (F1-score > 90%) for separating Galactic objects from the
extragalactic background. Individual class discrimination performances, ranging from 60% to 75%, increased by 10% when adding far-
infrared and spectral index information, with extragalactic objects, PNe and HII regions identified with higher accuracies. The implemented
tools and trained models were publicly released andmade available to the radioastronomical community for future application on new radio
data.
Keywords:Galactic radio sources; radio source catalogs; infrared sources; classification; astronomy image processing; convolutional neural
networks
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1. Introduction

The Square Kilometre Array (SKA) (Dewdney et al. 2016) will
open a golden era in radio astronomy due to its anticipated sensi-
tivity, frequency coverage, and angular resolution. While the SKA
is currently in the construction phase, SKA precursor telescopes
have already started their planned survey programs, delivering
valuable scientific results even during the commissioning phase.
Among them, the Evolutionary Map of the Universe (EMU)
program (Norris et al. 2011) of the Australian SKA Pathfinder
(ASKAP, Johnston et al. 2008; Hotan et al. 2021) will survey ∼75%
of the sky at ∼940 MHz with an angular resolution of 10′′ and
a target rms of 15 µJy/beam. As EMU is expected to detect ∼50
million sources, the cataloguing process will require a significant
degree of automation and knowledge extraction compared to
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previous surveys. Source finding is a major stage involved in such
post-processing of observations.

In the last years, several developments were made within the
SKA precursor community, and new tools were produced to
improve compact source extraction and measurement capabilities
(e.g. completeness, reliability, positional, and flux density accu-
racy) and processing speed, also employing parallel computing
methodologies (e.g. see Riggi et al. 2019 and references therein).
Fewer efforts, however, has been spent on source classification,
particularly for Galactic science targets, as almost all source find-
ers do not provide any information (e.g. labels or tags) on the
extracted source class identity. The implication for Galactic plane
observations is that, after taking out source classifications made
through automated cross-matching to previously classified objects
(e.g.∼5% in the Scorpio field in Riggi et al. 2021a), the vast major-
ity of the catalogued sources are unclassified. Of these, more than
90% are typically single-island and single-component sources.a

aBy ‘island’ we denote a group of 4-connected pixels in the analysed map having bright-
ness above a threshold (typically 2.5−3.0 σrms), located around a seed pixel with brightness
above a detection threshold (typically 5 σrms). An island can include multiple source
‘components’, each typically modelled with a 2D Gaussian distribution.

c© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia.
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From the number of previously classified objects, it is reasonable
to expect that the majority of unknown sources are extragalactic
(radio galaxies, quasars) and HII regions, with a smaller frac-
tionb of Planetary Nebulae (PNe) and pulsars, and an even smaller
fraction (<10%) of radio stars of different types and evolution
stage (e.g. including evolved massive stars like Luminous Blue
Variables or Wolf-Rayet), or even completely new or unexpected
classes of objects. Classification tools could therefore significantly
increase the number of known sources in the Galaxy, or at least
guide science groups in proposing follow-up multi-wavelength
observations for selected source samples. Machine learning, in
general, and specifically deep learning techniques, have proven to
be very powerful for this kind of analysis. We summarise here the
developments made on radio source classification in recent works.

Most of the contributions focused on galaxy morphology clas-
sification for extragalactic science cases. For example, Aniyan &
Thorat (2017) employed convolutional neural networks (CNNs)
for classification of Fanaroff–Riley (FR) type I and type II (Fanaro_
& Riley 1974), and bent-tailed radio galaxies, using images from
the Very Large Array (VLA) FIRSTc survey. Similar analysis
were conducted using CNNs (Lukic et al. 2018; Wu et al. 2019;
Maslej-Krešňáková et al. 2021; Rustige et al. 2023) or capsule net-
works (Lukic et al. 2019) on FIRSTd and LOFAR (Low Frequency
Array) images (Alegre et al. 2022). Sadeghi et al. (2021) stud-
ied morphological-based classification of FRI/FRII radio galaxies
with support vectormachine (SVM) (Cortes &Vapnik 1995)mod-
els, using computed Zernike moments of source images from the
FIRST survey. Radio galaxy morphology was also studied using
semi-supervised (Slijepcevic et al. 2022) and unsupervised learn-
ing methods, for example employing Kohonen maps (Polsterer
2016; Gupta et al. 2022; Galvin et al. 2020) or K-means clustering
algorithm applied to compressed features learnt by convolutional
autoencoders and Self-Organising Maps (SOMs) (Ralph et al.
2019).

Various works used ML techniques to target Galactic science
objectives, such as the identification of Galactic objects or selected
object classes from the dominant background of extragalac-
tic sources, or the discovery of anomalous/unexpected objects.
Among them, Akras et al. (2019) employed decision trees for clas-
sifying PNe against mimics (HII regions, stars, YSO) using near-
and mid-infrared colours. Awang Iskandar et al. (2020) tested sev-
eral deep network architectures to identify PNe from rejected PNe
listed in the HASHe and Pan-STARRSf databases, using infrared
(WISEg) and optical (IPHAS,h VPHAS+,i SHSj/SSSk) images.
Anderson et al. (2012) considered mid- and far-infrared colours,
providing diagnostic selection criteria for discriminating PNe and
HII regions. Morello et al. (2018) also considered near-infrared
(2MASSl) colours to identify newWolf-Rayet star candidates from

bPNe and pulsars are, respectively, ∼60 and 30% less numerous than HII regions
according to existing catalogue counts (see Section 3.1 and catalogue references therein).

cFIRST: Faint Images of the Radio Sky at Twenty-cm (Becker et al. 1995)
dThe Radio Galaxy Zoo (RGZ) DR1 dataset (Banfield et al. 2015) is ∼99% made up by

FIRST survey images.
eHASH: Hong Kong/AAO/Strasbourg H-alpha (Parker et al. 2016).
fPan-STARRS: Panoramic Survey Telescope and Rapid Response System (Flewelling

et al. 2010).
gWISE: Wide-Field Infrared Survey Explorer (Wright et al. 2010).
hIPHAS: INT Photometric Hα Survey of the Northern Galactic Plane (Drew et al. 2005).
iVPHAS+: VST/OmegaCAM Photometric Hα Survey (Drew et al. 2014).
jSHS: SuperCOSMOS Halpha Survey (Parker et al. 2005).
kSSS: SuperCOSMOS Sky Survey (Hambly et al. 2001).
lIRAC: Infrared Array Camera (Fazio et al. 2004).

other stellar populations contaminants (Young Stellar Objects
(YSOs), asymptotic giant branch (AGB) candidates, Be/M−S type
stars), using variants of the k-nearest neighbours algorithm. None
of these studies, however, included radio data in their analysis
or had the radio domain as their primary target. In this con-
text, various ML applications were instead primarily developed
for classification of radio sources in the Galactic plane. Among
them, Liu et al. (2019) used radio data from different surveys
(MGPS,m MAGPIS,n NVSS,o CGPSp) to train a deep CNN to iden-
tify Supernova Remnants (SNRs) from non-SNRs (e.g. regions
surrounding the SNRs in their analysis). Several studies (Bates
et al. 2012; Lyon et al. 2016; Tan et al. 2018) employed machine
learning methodologies to classify pulsars from non-pulsars or to
filter pulsar candidates. We also recently provided some contribu-
tions in this field. In Riggi et al. (2023) we have applied the Mask
R-CNN object detection framework to detect and classify com-
pact point-source, extended radio galaxies, and imaging artefacts,
making use of radio data from the FIRST, Scorpio ATCAq(Umana
et al. 2015a) and ASKAP EMU pilot surveys. In Riggi et al.
(2021a) we have trained a decision tree to identify Galactic-like
sources from extragalactic ones on the basis of their radio-infrared
colours. The classifier was also applied to a set of 284 unclassified
sources selected in the ASKAP SCORPIO survey field, highlight-
ing potential Galactic objects for future studies. This analysis was
however limited by the size and reliability of the dataset used
for model training, mostly based on past low-resolution Galactic
plane surveys.

In this work, wemade significant steps further, building amuch
larger and curated dataset of different Galactic and extragalactic
compact objects, including previous and newest radio data in the
Galactic plane, combined with mid- and far-infrared data, and
measuring the radio spectral index for a portion of them. Such
a dataset will be used as a reference for performing classification
studies with different machine learning methodologies in a series
of planned papers. The scope of this first paper, besides present-
ing the dataset, is firstly to explore and select suitable parame-
ters for source classification, from more traditional science-aware
features (e.g. radio-infrared colours, spectral indices), to more
abstract features automatically learnt in convolutional neural net-
work architectures. Secondly, we would like to build and test a
supervised learning model able to predict a classification label
for an input set of unknown sources, from the considered set of
class categories, providing also the relative membership score. As
a final goal, we aim to deliver the trained model and the classi-
fication tool/service to end users, supporting SKA and precursor
science projects planned in the Galactic plane (e.g. production of
added-value catalogues from pipeline catalogue products, source
selection for follow-up analysis, and so forth). In future papers
we will focus on testing unsupervised techniques for cluster search
and anomaly detection on the same dataset.

This paper is organised as follows. In Section 2 we describe
the observational radio data and supplementary surveys used to
create our compact source image dataset. The source classes con-
sidered for the analysis, the methodology followed to prepare
the dataset, and summary dataset information, are reported in

mMGPS: Molonglo Galactic Plane Survey (Murphy et al. 2007).
nMAGPIS: Multi-Array Galactic Plane Imaging Survey (Helfand et al. 2006).
oNVSS: NRAO VLA Sky Survey (Condon et al. 1998).
pCGPS: Canadian Galactic Plane Survey (Taylor et al. 2003).
qATCA: Australia Telescope Compact Array.
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Section 3. In Section 4 we describe the techniques explored
to extract a set of sensitive features for classification from the
produced dataset. The results of our classification analysis are
reported in Section 5. Details on the analysis pipeline and the
implemented tool are provided in Section 6. In Section 7, we sum-
marised our findings, and highlighted future steps and analysis
that are planned to be done with the produced dataset.

2. Observational data

2.1. ASKAP radio surveys

We searched for sources of different classes in ASKAP pilot survey
observations, carried out both far and towards the Galactic plane.
Details are reported in the following sections.

2.1.1. ASKAP EMU pilot survey data

The ASKAP-EMU survey (Norris et al. 2011) started observations
at the end of 2022. This work makes use of different radio contin-
uum maps that were produced with the ASKAP telescope during
the commissioning and science preparation activities for EMU:

• Early Science data: The SCORPIO field was the only region
observed in the Galactic plane by ASKAP at multiple radio
frequencies during the Early Science and pilot 1 phase. First
observations, done in 2018 with 15 antennas at 912 MHz,
and covering ∼40 square degrees centred on (l,b) = (343.5◦,
0.75◦), were described in Umana et al. (2021) along with data
reduction, while scientific results on compact sources were
presented in Riggi et al. (2021a).

As the array was nearly completed, new observations of the
same region were carried out with 30 antennas in band 1 (900
MHz), 2 (1 250 MHz), and 3 (1 550 MHz), each with a 288 MHz
bandwidth, thus providing a much better sensitivity and an almost
full frequency coverage from 0.75 to 1.7 GHz when combining all
observations. Observation configuration and data reduction were
described in more detail in Ingallinera et al. (2022). Final data
productsr include a total intensity map at the reference frequency
of 1 243 MHz and 5 sub-band maps (reference frequencies: 871,
1 015, 1 356, 1 480, 1 615 MHz).

The synthesised beam of the total intensity maps is 9.4′′×7.7′′
at a position angle of 84◦. The background rms noise in regions far
from the Galactic plane and point-sources was found of the order
of 50 µJy/beam.

• Pilot data: When the array was completed, a pilot survey pro-
gram was undertaken within EMU. In Phase 1, the survey covered
∼270 deg2 of the Dark Energy Survey area, reaching an angu-
lar resolution of 11′′−18′′ and ∼30 µJy/beam noise rms at 944
MHz (Norris et al. 2021). Observations towards the Galactic plane
were carried out in Phase 2. They consist of 5 tiles, each covering
∼40 deg2. Their coordinate centers and corresponding obser-
vation scheduling blocks are reported in Table 1. The achieved
angular resolution of the total intensity maps varies from 14′′ to
20′′, and the noise rms is of the order of 200 µJy/beam far from
the Galactic plane and from regions of diffuse emission.

rThese data still have a parametrised primary beam correction in the three bands, affect-
ing flux density measurement by ∼10% (Riggi et al. 2021a), as precise measurements of
the beam shape became available afterwards at pilot 1 phase (Norris et al. 2021).

Table 1.Centres of the ASKAP EMU pilot phase 2 images used in this work.
Each image covers an area of ∼40 deg2. Column (1) indicates the observation
scheduling blocks.

SB Right ascension (J2000) Declination (J2000)

(hh:mm:ss.ss) (dd:mm:ss.ss)

28280 16:50:44.24 −41:47:22.93
32043 16:45:03.28 −46:28:26.90
32145 17:18:08.79 −41:52:51.98
32526 17:15:03.15 −46:28:53.52
33284 15:53:57.03 −55:41:52.77

2.1.2. The Rapid ASKAP Continuum Survey

The RACS survey (McConnell et al. 2020) is the first large area sur-
vey carried out at 887.5 MHz with ASKAP. It reached an angular
resolution of 15′′−25′′, a rms sensitivity of 0.2−0.4 mJy/beam, and
source positional accuracy better than 1′′, delivering a catalogue of
2 123 638 sources, 95% complete above 3 mJy (Hale et al. 2021).s

2.2. Previous radio surveys

We also searched for sources in the following previous radio sur-
veys carried out between 1.4 and 5 GHz. Some of them cover a
large portion of the Galactic plane in the first quadrant. Details are
reported below:

• The HI/OH/Recombination line survey of the Milky Way:
THOR (Wang et al. 2018) is a Galactic plane survey (14.0◦
< l < 67.4◦, |b| < 1.25◦) carried out with the VLA in
C-configuration at 1.42 GHz. Observations achieved an angu-
lar resolution of 10′′−25′′ with a noise rms of 0.3−1.0
mJy/beam.t

• The Global view on Star formation in the Milky Way:
GLOSTAR (Brunthaler et al. 2021; Medina et al. 2019) is a
Galactic plane survey (28◦ < l < 36◦, |b| < 1◦) carried out with
the VLA in B and D configuration at 4−8 GHz. The integrated
map has a resolution of 18′′ and a sensitivity of ∼60−150
µJy/beam at the effective frequency of 5.8 GHz.u

• Multi-Array Galactic Plane Imaging Survey: MAGPIS
(Helfand et al. 2006) is a Galactic plane survey (5◦ < l <
48.5◦, |b| < 0.8◦) carried out with the VLA in B, C, and D
configurations at 1.4 GHz. Observations achieved an angular
resolution of 6′′ with a noise rms of 0.3 mJy/beam.v

• The Coordinated Radio and Infrared Survey for High-Mass
Star Formation: CORNISH (Hoare et al. 2012; Purcell 2013)
is a Galactic plane survey (10◦ < l<65◦, |b| <1.1◦) carried
out with the VLA in B and BnA configurations at 5 GHz.
Observations achieved an angular resolution of 1.5′′ with a
noise rms of 0.4 mJy/beam.w

sImage products are publicly available through the CSIROASKAP Science Data Archive
(CASDA) at https://data.csiro.au/domain/casdaObservation.

tTHOR data products are available at https://www2.mpia-hd.mpg.de/thor/DATA/
www/.

uGLOSTAR data products are available at https://glostar.mpifr-bonn.mpg.de/glostar/
image_server.

vMAGPIS data products can be downloaded from the public cutout web interface
https://third.ucllnl.org/cgi-bin/gpscutout.

wCORNISH data products can be retrieved from the public cutout web interface
https://cornish.leeds.ac.uk/public/img_server.php.
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• Faint Images of the Radio Sky at Twenty cm (FIRST) survey:
The FIRST survey (Becker et al. 1995) is a large area (∼10 500
deg2, ∼80% covering the north Galactic cap) carried out at
1.4 GHz with the NRAO VLA. It reached an angular resolu-
tion of ∼5.4′′, a rms sensitivity of 0.15 mJy/beam, and source
positional accuracy better than 1′′, delivering a catalogue of
946 432 sources in its latest version (Helfand, White, & Becker
2015), 95% complete above 2 mJy.x

2.3. Supplementary infrared data

In this study, we complemented the radio observations with mid-
and far-infrared data from the following surveys:

• AllWISE (Cutri et al. 2013): This WISE survey is fully cover-
ing the Galactic plane in four bands at 3.4 µm (W1), 4.6 µm
(W2), 12 µm (W3), and 22 µm (W4). The angular resolu-
tions are 6.1′′, 6.4′′, 6.5′′, and 12′′ and the 5σ flux sensitivities
for point sources are 0.08, 0.11, 1, and 6 mJy, respectively.

• GLIMPSE (Galactic Legacy Infrared MidPlane Survey
Extraordinaire) 8.0 µm surveys (Churchwell et al. 2009) of
the Spitzer Space Telescope (Werner et al. 2004): GLIMPSE (I,
II) fully covers this Galactic coordinate range: 0◦ < l < 65◦,
295◦ < l < 360◦, |b| ≤1y. The angular resolution is 2′′ and the
5σ flux sensitivity ∼0.4 mJy.

• Hi-GAL (Herschel infrared Galactic plane Survey) 70µm sur-
vey (Molinari et al. 2016) of the Herschel Space Observatory
(Pilbratt et al. 2010): The survey covers |l| ≤60◦, |b| ≤1◦,
with an angular resolution of ∼8.5′′ and a 1σ flux sensitivity
∼20 MJy/sr.

3. Generating training/testing datasets

3.1. Compact source sample

To build our dataset, we searched for compact sources in the
available radio data (Section 2), using the following selection
criteria:

1. Isolated single-island point-sources or slightly resolved
sources. We assumed an upper threshold of 10× synthesized
beam sizez;

2. No diffuse, extended or complex radio morphologies, e.g. no
child point-sources or inner filaments inside source contour;

3. Source position cross-matching to known or candidate
objects in reference catalogues, within a match radius equal
to the synthesised beam size;

4. Source island clearly distinguishable from the background,
e.g. peak flux larger than 3σ and number of island pixels
larger than 6;

5. Source island not located at radio map borders.

xFIRST data products are publicly available at ftp://archive.stsci.edu/pub/vla_first/data.
or can be retrieved from the cutout web service interface https://third.ucllnl.org/cgi-bin/
firstcutout.

yThe exact sky coverage of all GLIPSE surveys (including GLIMPSE-3D) is summarized
at https://irsa.ipac.caltech.edu/data/SPITZER/GLIMPSE/overview.html.

zThe average size of sources (e.g. HII regions or PNe) in the dataset is∼2.5× synthesised
beam size.

Table 2. Reference catalogues considered for searching radio stars in our
dataset.

Reference Nentries Type

Wendker (1995) 1 128 mostly M-type stars

Benaglia (2010) 65 O−B2 stars with wind radio
emission

Kimball et al. (2009)∗ 112 ∼75% late-type stars (K−M)

Rosslowe & Crowther (2015)# 667 Wolf-Rayet (WR) stars

Richardson & Mehner (2018) 88## Luminous Blue Variables

Wachter et al. (2010) 71 Spitzer massive stars with

circumstellar shells, including

early and late-type stars,

16 LBVs candidates and 6 WRs

Leto et al. (2021) 50 magnetic chemically

Shultz et al. (2022) peculiar (MCP) radio stars

Liu et al. (2007) 187 Low-mass X-ray binaries

in the Galaxy, LMC, and SMC,

4th ed.†

Liu et al. (2006) 114 High-mass X-ray binaries

in the Galaxy, 4th ed. ‡
∗ As the authors stated, this sample is expected to be contaminated by optically faint radio
quasars, with only few tens of candidates expected to be truly radio stars.
# http://pacrowther.staff.shef.ac.uk/WRcat/index.php
## Counts include 60 Galactic LBVs and extragalactic LBVs from the Local Group (LMC, SMC).
† https://heasarc.gsfc.nasa.gov/W3Browse/all/lmxbcat.html
‡ https://heasarc.gsfc.nasa.gov/w3browse/all/hmxbcat.html

We considered possible associations to these classes of
astrophysical objects (Galactic or Extragalactic), having a compact
radiomorphology (as defined above), inmost of the cases (e.g. pul-
sars or radio stars), or in a considerable fraction of cases (e.g. HII
regions, PNe) compared to more extended morphologies:

• Radio stars:We included in this class stars of different spectral
types and evolution stages, including late stages, like Wolf-
Rayet (WR) stars or Luminous Blue Variables (LBVs), and
X-ray binaries (hereafter abbreviated as XBs for brevity). The
sensitivity of existing telescopes has been the major limita-
tion in radio star searches, as the emission is rather faint,
often below the mJy level. Furthermore, a limited angular
resolution, e.g. above 1′′ (Helfand et al. 1999), makes cross-
matching with densely populated optical catalogues ineffec-
tive. In fact, the number of reported radio stars is rather
low, and no comprehensive catalogue, including all possi-
ble stellar types, is currently available. To build a sufficiently
large dataset, we considered different reference catalogues of
known and candidate radio stars, to be cross-matched with
available radio data. References are reported in Table 2.

• HII regions: We have used the WISE Catalogue of Galactic
HII regions (Anderson et al. 2014; Makai 2017), as a reference
for searching HII region associations in our radio data. The
catalogue is actively updated online.aa The version used for

aahttp://astro.phys.wvu.edu/wise/.
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this work (v2.2) contains 8 412 entries, ∼10% of them with
measured radio flux information reported at 20−21 cm.

• Planetary Nebulae (PNe): We have used the Hong
Kong/AAO/Strasbourg H-alpha (HASH) Planetary Nebula
Database (Parker et al. 2016), representing the largest compi-
lation to date, as a reference for searching PNe in our radio
data. The HASH catalogue is actively updated online.bb The
version used for this work contains 5 591 entries, ∼24% of
them with measured radio flux density reported at 20 cm or
36 cm.

• Young Stellar Objects (YSOs): We carried out a search for
possible associations to confirmed YSOs in our radio data,
using the SIMBAD databasecc as a reference. No distinction
is made among possible evolution or mass classes of YSOs. In
the search, we discarded all matches found to compact radio
sources, previously labelled as HII regions and PNe.

• Pulsars: We have searched for pulsar matches in our radio
data, using the ATNF Pulsar Cataloguedd (Manchester et al.
2005) as a reference. The version used (version 1.63) for this
work contains 2 800 entries, 67% of them with measured
radio flux density reported at 21 cm.

• Active Galactic Nuclei: For our analysis, we considered a cat-
alogue of radio galaxies and quasars obtained by Kimball &
Ivezić (2008) through cross-matching of different radio sur-
veys (FIRST, primarily) with optical data from the Sloan
Digital Sky Survey (SDSS) (York et al. 2000), providing source
spectroscopic classification (‘GALAXY’, ‘QSO’) (see Bolton
et al. 2012 for details). After applying the criteria given by
Kimball & Ivezić (2008) to select compact and unresolved
sources, we selected 7 967 radio galaxies (RG), and 5 994
QSOs. By visual inspection, we removed residual extended
sources passing the selection cuts, and sources found with
incorrect/unclear position reported in the catalogue, as com-
pared to FIRST images. The final selected sample includes:
6 646 radio galaxies and 5 213 QSOs.

A brief description of physical properties for each of these
source classes is reported in Appendix A. As we expect these
types to be the most abundant classes of compact sources found
in Galactic plane observations, we did not consider other rarer
classes. Actually, star-forming galaxies (SFG) are expected to
become dominant over AGNs at sub-mJy flux levels (<100 µJy)
(Mancuso et al. 2017) but their counts should be very small in
FIRST/ASKAP-RACS surveys, given their sensitivities. This is,
however, not the case for future ASKAP-EMU observations, so
future studies should aim to incorporate SFGs in our dataset, once
reference labelled catalogues become available within EMU.

Sources detected in our considered radio maps are reported in
Tables 3 and 4. The resulting dataset is not expected to be com-
pletely free of spurious associations, due to the cross-matching
procedure and to possible object misclassifications affecting the
reference catalogues. Indeed, one of the goal of this and future
studies is to make these unlikely classifications discoverable by
means of both supervised and unsupervised techniques. The
uncertainty associated with the automated cross-matching proce-
dure was evaluated on the ASKAP data by comparing the observed

bbhttp://202.189.117.101:8999/gpne/dbMainPage.php.
cchttps://simbad.unistra.fr/simbad/.
ddhttps://www.atnf.csiro.au/research/pulsar/psrcat/.

Table 3. Summary information on the compact source data extracted fromprevi-
ous radio surveys (FIRST, THOR, GLOSTAR, MAGPIS, CORNISH). Columns (3) and
(4) are the average radio source angular size and its standard deviation in arc-
sec. Column (5) lists the number of sources from previous radio surveys for each
considered class or sub-class in columns (1) and (2) with available Mid-Infrared
data (3.4 µm, 4.6 µm, 12 µm, 22 µm) from AllWISE survey. Column (6) lists the
number of radio sources with available Mid-Infrared data (3.4µm, 4.6µm, 8µm,
12µm, 22µm) fromAllWISE and GLIMPSE surveys, and Far-Infrared data (70µm)
fromHi-GAL survey. Column (7) reports the number of radio sourceswith average
spectral index information available (see text). Columns (8) and (9) reports how
many sources listed in columns (5) and (6), respectively, also have a measured
spectral index.

CLASS SUBCLASS 〈R〉 (′′) σR (′′) nMIR nMIR+FIR nα nα+MIR nα+MIR+FIR

(1) (2) (3) (4) (5) (6) (7) (8) (9)

HII 22.1 12.6 2 295 2 257 1 214 1 178 1 168

PN 18.2 7.1 1 411 1 214 783 782 718

PULSAR 10.8 2.9 645 534 221 221 57

YSO 10.6 4.1 552 501 215 204 71

WR 10.1 3.9 51 47 7 7 6

LBV 20.7 11.3 25 24 11 10 10

STAR XB 12.5 4.9 14 9 7 7 6

OTHER 9.7 6.1 348 217 89 88 74

ALL 438 297 114 112 96

RG 15.2 4.4 6 920 264 1 285 1 285 134

QSO 18.6 4.8 5 136 0 1 045 1 045 0

ALL 17 397 5 013 4 877 4 827 2 244

Table 4. Summary information on the compact source data extracted from dif-
ferent ASKAP radio surveys (RACS, EMU pilot). See Table 3 caption for column
description.

CLASS SUBCLASS 〈R〉 (′′) σR (′′) nMIR nMIR+FIR nα nα+MIR nα+MIR+FIR

(1) (2) (3) (4) (5) (6) (7) (8) (9)

HII 26.8 13.9 369 364 57 56 55

PN 27.0 8.7 174 45 33 33 10

PULSAR 18.5 6.6 166 72 11 11 9

YSO 12.4 4.1 37 30 17 16 15

WR 14.5 3.9 11 7 1 1 1

LBV 23.1 10.4 3 3 0 0 0

STAR XB 12.5 1.7 2 0 0 0 0

OTHER 14.2 3.6 7 1 2 2 0

ALL 23 11 3 3 1

RG 22.3 6.0 1 892 0 0 0 0

QSO 26.1 7.7 1 343 0 0 0 0

ALL 4 004 522 121 119 90

HII regions matches (i.e. the most densely populated reference
catalogue) against the expected number of matches purely aris-
ing by chance. Following Riggi et al. (2021a), Mauch & Sadler
(2007), Ching et al. (2017), the latter was estimated by averaging
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(a)

(e) (f) (g)

(b) (c) (d)

Figure 1. Template source (G324.161+00.264, HII region) from the dataset, observed in 7-bands (3.4µm, 4.6µm, 8 µm, 12 µm, 22 µm, 70µm, and ASKAP radio 944 MHz), shown
in left to right panels, respectively.

the number of matches found with multiple random catalogues in
which the measured source positions were uniformly randomised
inside the radio map. We found that less than 3% of the selected
matches are spurious. For each class, the obtained matches were
all validated by visual inspection to reduce the number of spurious
associations.

3.2. Image dataset preparation

Using the scutout tool,ee we extracted postage-stamp images
around each compact source detected in reference radio maps
listed in Section 2. Additionally, source cutouts were extracted
from the supplementary infrared survey maps described in
Section 2.3. Cutout raw size was set to 10× the source
radius rs.ff The image cutout set for each source, includ-
ing the radio plus a configurable number of infrared bands
(3.4 µm, 4.6 µm, 8 µm, 12 µm, 22 µm, 70µm), were
all re-processed (e.g. re-gridding/re-projection, re-scaling, crop-
ping) to bring them to the same pixel size, sky coordi-
nate system, resolution, flux density units (Jy/pixel), and final
image size (2.5×rs). Final images have a different size in

eehttps://github.com/SKA-INAF/scutout.
ffrs was computed as the radius of the circle circumscribed to the source bounding box

obtained from source segmentation mask.

pixels, depending on the source size radius rs. In the analysis
reported in Section 5.2, all source images will be resized to a
common size in pixels.

As the 8µm and far-infrared surveys only cover the Galactic
plane, in contrast to the full WISE sky coverage, we considered
two possible radio-infrared combinations when making the image
cutouts, denoted throughout the paper as follows:

• 5-bands (or radio+MIRgg) dataset: comprising radio, 3.4, 4.6,
12, and 22 µm images;

• 7-bands (or radio+MIR+FIRhh) dataset: comprising radio,
3.4, 4.6, 8, 12, 22, and 70 µm images.

In Fig. 1 we report the image data for a sample source
(G324.161+00.264 HII region) detected in 7 different channels.
Infrared (3.4µm, 4.6µm, 8µm, 12µm, 22µm, 70µm) and radio
(ASKAP) data are shown in left to right panels, respectively.

The number of available images finally selected in previous
radio surveys (FIRST, THOR, GLOSTAR, MAGPIS, CORNISH)
and in ASKAP surveys is reported for each source class in Tables 3
and 4, respectively. Columns (5) and (6) report the number of
sources detected in radio, for which MIR and FIR images are

ggMid-Infrared.
hhFar-Infrared.
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available.ii Overall, ∼17 400 radio sources are available in the
first dataset with MIR (5-bands) information, ∼30% of them with
also FIR information (7-bands). Extragalactic sources are almost
completely missing in our 7-bands dataset, due to the limited
coverage of far-infrared surveys. A major consequence is that,
unfortunately, galactic-extragalactic source separation studies can
be carried out only with the 5-bands dataset. On the other hand,
this is, to the best of our knowledge, the largest radio data com-
pilation simultaneously including different classes of Galactic and
extragalactic compact objects, suitable for machine-learning and
other algorithmic studies.

4. Feature extraction and data exploration

In this section, we describe the methods used to process our
dataset and extract parameters suitable for data inspection and
source classification.

4.1. Infrared-radio color parameters

Colour indices ci,j are defined as the magnitude difference between
measured fluxes Fi and Fj in band i and j where λj > λi (Nikutta
et al. 2014), e.g. ci,j = log10 (Fj/Fi). We considered these radio-
infrared colour indices (cradio,3.4µm, cradio,4.6µm, cradio,8µm, cradio,12µm,
cradio,22µm, cradio,70µm), in which source fluxes F were computed for
each band as follows:

• Compute background level B and noise rms σrms frommedian
and standard deviation of 3σ -clipped pixel flux distribution;

• Find local maxima (or peaks) in image;
• Extract sources with a flood-fill algorithm, assuming a 5σ and

2.5σ seed and merge detection thresholds, respectively, with
respect to previously computed background. Further, require
at least one peak detected inside extracted source aperture;

• Compute flux information by standard aperture photometry,
i.e. F = ∑N

i Fi −N × B, where Fi and N are the flux of i-th
pixel and number of pixels in source aperture, respectively.

Besides colour indices, we also computed these additional
parameters for radio-infrared band combinations (radio, j with
j = [3.4 µm, 4.6 µm, 8 µm, 12 µm, 22 µm, 70 µm]) to quantify
the likelihood of source cross-match association:

• IoUradio,j: Intersection-Over-Union (IoU) between source
islands detected in radio and infrared band j. IoU is computed
as:

IoU= noverlap
nunion

where noverlap is the number of pixels that overlap in radio and
infrared islands, while nunion is the number of pixels of island
union. IoU is set to 0 if no source is detected in band j;

• SSIMradio,j: Average Structural Similarity (SSIM, Wang et al.
2004) computed between source image in radio and infrared
band j. SSIM metric is computed on various image windows
and measures the perceptual difference between two images.
For two windows x and y of size K ×K, SSIM is computed
asjj:

iiAvailability of MIR or FIR images does not imply that the source is actually detected in
that infrared bands.

jjThe SSIM implementation of the scikit-image library (Van der Walt 2014) was used.

Table 5. Summary of extracted color features used for classification analysis. See
Section 4.1 for details.

Dataset Feature ID Description

5-band F1, . . ., F4 cradio,j (j= 12, 22, 3.4, 4.6µm)

(radio+MIR) F5,. . ., F8 IoUradio,j (j= 12, 22, 3.4, 4.6µm)

F9,. . ., F12 SSIMradio,j (j= 12, 22, 3.4, 4.6µm)

7-band F1,. . ., F6 cradio,j (j= 12, 22, 3.4, 4.6, 8, 70µm)

(radio+MIR+FIR) F7,. . ., F12 IoUradio,j (j= 12, 22, 3.4, 4.6, 8, 70µm)

F13,. . ., F18 SSIMradio,j (j= 12, 22, 3.4, 4.6, 8, 70µm)

SSIMx,y = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ 2

x + σ 2
y + c2)

(1)

where µx/σx, µy/σy are the pixel sample mean/variance of x
and y, respectively, and σxy is their covariance. c1 and c2 are
constant values used to stabilise the ratio. SSIM index close
to 1 indicates high similarity, while negative or close to zero
indices denote a high discrepancy.

Overall, 12 (18) parameters are selected for classification anal-
ysis with the 5-band (7-band) dataset (see feature summary
Table 5). In Figs. B1 and B2 we explored the degree of correlation
among the extracted features, reporting the Pearson correlation
coefficient r for each class in both the 5-band and 7-band datasets,
respectively. In general, we observe a moderate correlation trend
(r = 0.5-0.7) for many variables in all classes. The strongest corre-
lation (r > 0.8) is found between radio-3.4 µm and radio-4.6 µm
colors, but also among SSIM and IoU parameters computed for
these infrared bands. For galactic classes, the correlation becomes
more important also among 12 and 22 µm parameters. Given the
computed 2-tailed p-values, we conclude that these correlations
are significant at the 1% confidence level.

In Table 6 we report the fraction of sources detected in each
infrared band (according to the above criteria) having a minimum
overlap (IoU > 0) with the radio source. These counts include
possible spurious detections. On the other hand, missed counts
may include IR sources failing to pass the applied detection cri-
teria. In Fig. 2 we report scatter plots of (cradio,3.4µm, cradio,22µm),
(cradio,8µm, cradio,70µm) colour indices obtained for sources simul-
taneously detected (IoU > 0) in both bands over the entire
dataset. As can be seen, extragalactic objects tend to cluster on
the bottom left region of near- and mid-infrared colour space.
Unfortunately, no data for extragalactic sources are available at
8 and 70 µm in our dataset, where a larger separation is found
among classes of Galactic sources, compared to other colour
parameters.

4.2. Radio spectral indices

We computed the radio spectral index α (F ∝ να) of sources in our
dataset using the T-T plot method (Turtle et al. 1962), e.g. taking
the slope of a linear regression of pixel flux densities for source
images at two different radio frequencies. This method enables
a measurement of the spectral index that is less dependent on
the zero level of each image, under the hypothesis of background
isotropy and constant α. These conditions are holding since we are
considering compact sources and regions of size comparable with
the synthesised beam of the instrument.
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Table 6. Percentage of radio sources potentially detected (e.g. IoU > 0) in each
infrared band.

Class 3.4µm 4.6µm 8µm 12µm 22µm 70µm

(%) (%) (%) (%) (%) (%)

HII 37.6 49.2 63.0 58.1 64.5 67.7

PN 17.0 21.5 28.5 45.1 55.3 47.5

PULSAR 4.8 4.2 1.7 0.7 0.4 0.5

YSO 19.5 26.8 36.4 30.4 32.9 38.9

STAR 35.6 34.9 26.3 18.2 19.1 14.0

RG 86.5 83.6 7.6 37.1 21.1 0.0

QSO 69.9 75.6 − 60.3 36.4 −

ALL 64.2 66.6 41.4 45.4 33.2 47.0
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Figure 2. Scatter plots of representative infrared/radio colour indices computed over
the entire dataset for imageswith detected sources in both the radio and infrared chan-
nels (IoUs > 0). Radio flux densities are obtained at different frequencies ranging from
0.912 GHz (ASKAP Early Science survey data) to 5.8 GHz (GLOSTAR). See Section 2 for
details on survey frequencies.

A subset of our survey data (THOR, ASKAP pilot, GLOSTAR)
provide sub-band data that can be used for T-T spectral fit. For
VLA FIRST data, instead, we resorted to use data from the ASKAP
RACS survey to obtain an estimate of the radio spectral index.
It is worth to note that such two-point spectral index estimate
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Figure 3. Radio spectral indicesmeasured for different source classes with the T-T plot
method. Spectral indices for RG and QSO sources were computed using RACS-FIRST
radio frequencies (887.5–1 400 MHz). Indices for the remaining Galactic classes were
computed fromsurvey selected sub-bands (when available), i.e. 871–1 480MHz (ASKAP
Scorpio), 1 060–1 440 MHz (THOR), 4 240–4 670 MHz (GLOSTAR).

is not accurate for sources having a curved spectrum, not well
described by a power-law model. Indeed, some classes of sources,
such as PN (Hajduk et al. 2018) or UC HII regions (Yang et al.
2021), could present a turnover frequency in the frequency range
(0.8–5 GHz). The frequency coverage of our in-band survey
data is, however, rather limited (e.g. 0.87–1.6 GHz for ASKAP)
to expect a reliable measurement of any spectral turnovers.
Nevertheless, we inspected the ASKAP dataset to search for possi-
ble departures from the power-law assumption, by fitting ASKAP
source SEDs with different curved spectrum models (e.g. free-
free, synchrotron with free-free absorption, see Tingay & de Kool
2003). We found only 5 sources (out of 190 sources with flux mea-
surement available in all five ASKAP sub-bands) that can be fitted
(χ̃ 2 < 5) with a curved model.

In Fig. 3 we report the obtained spectral indices for different
source classes in our dataset. To select more reliable measure-
ments, we selected sources for which the spectral regression cor-
relation coefficient was larger than 0.9. The number of sources
per class with measured spectral index (and infrared data) have
been reported in Tables 3 and 4 (columns 7–9). The obtained
values follow expectations (e.g. see Appendix A) or previous mea-
surements for some source classes. For example, pulsars have the
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steepest radio spectrum, while HII regions and PNe have predom-
inantly flatter radio spectra (α ∼0), with a significantly smaller
fraction peaking around α = 1. The observed spectral indices of
radio galaxies and quasars peak around −0.9, in general agree-
ment with the −0.95 value reported by Randall et al. (2012)
(Fig. 8) in the frequency range 0.843–2.3 GHz, but slightly steeper
than conventional value 〈α〉 = −0.7 (Condon et al. 2002; Best et al.
2005) ormeasured averages reported at different frequency ranges,
e.g. 〈α〉 = −0.79 (0.147–1.4 GHz) (de Gasperin et al. 2018) or 〈α〉
= −0.71 (1.4–3.0 GHz) (Gordon et al. 2021). This comparison is
only indicative as the measured average spectral indices are known
to steepen (from −0.7 to −1) with increasing flux densities, and
vary with other parameters such as the size of the source or the flux
density threshold (e.g. see de Gasperin et al. 2018 and references
therein).

Considering the large synthesised beams, it is worth to note
that for some radio star types (e.g. LBVs) we could be actu-
ally measuring a composite spectral index of the point-source
(typically α ∼0.6) and the surrounding nebula (which could be
α < 0). This may represent a potential source of misclassification of
radio stars when incorporating the spectral index information in
the classification analysis (Section 5.1.4). We also note the absence
of radio stars with spectral indices in the range [0.2−0.3], where
we would expect about 4 counts. This is not understood at present
and should be investigated in the future with an extended source
sample.

5. Source classification analysis

We used the dataset described in Section 3 to perform classifica-
tion studies with supervised learning algorithms. We carried out
two different analysis. The first one, reported in Section 5.1, uses
the set of conventional features (color indices, spectral indices)
extracted from the dataset, as described in Section 4, and gradient-
boosted decision trees as classifier method. A second analysis,
reported in Section 5.2, employs convolutional neural networks
for automated feature extraction and source image classification.

The entire dataset, including data from all radio surveys, was
split into three ‘mixed’ survey subsets (train, validation, test sets),
containing 55%/15%/30% of the original data, respectively. Five
train/validation/test splits were randomly generated to estimate
the model performance uncertainties. We also produced addi-
tional data splits with exclusively ASKAP data in the test set,
and previous radio surveys in train and validation sets (with a
70%/30% data proportion). These samples were used to estimate
how the classifier performs on a specific survey, when trained on a
mixture of completely different surveys.

In both analysis, wemade use of the followingmetrics,kk widely
adopted in multi-class classification problems, to estimate the
achieved classification performances:

• Recall (R): Fraction of sources of a given class that were cor-
rectly classified by the model out of all sources labelled in that
class, computed as:

R= TP
TP + FN

• Precision (P): Fraction of sources correctly classified as
belonging to a specific class, out of all sources the model

kkMore details at https://scikit-learn.org/stable/modules/model_evaluation.html.

predicted to belong to that class, computed as:

P = TP
TP + FP

• F1-score: the harmonic mean of precision and recall:

F1-score= 2× P ×R
P +R (2)

where TP, FP, FN are the number of true positives, false
positives, and false negatives, respectively. These metrics were
computed for each source class individually, and cumulatively
over all dataset. In the latter case, individual class metrics were
first weighted by the number of sources present for each class to
account for class unbalance, and then averaged.

5.1. LightGBM classification

5.1.1. Model training

We trained a LightGBMll (Ke et al. 2017) classifier over the pro-
duced 5-band and 7-band dataset splits (‘mixed’ surveys sets
and non-ASKAP survey sets), using the set of feature parame-
ters described in Section 4 as inputs. LightGBM is a distributed
and high-performance gradient boosting framework based on
decision tree algorithm, widely adopted for classification tasks as
known to reach comparable (or even better) performances on
tabular data with considerably lower training times and mem-
ory usage with respect to other popular libraries (e.g. XGBoost).
The most important algorithm hyperparameters controlling the
model accuracy and overfitting are: max_depth, num_leaves,
min_data_in_leaf, num_iterations.mm

To select suitable hyperparameter values, we performed sev-
eral training runs in which we varied max_depth values in the
[2,12] range, and num_leaves≤2max_depth, observing the result-
ing model F1-score on the test set. For each training run, we
used early stopping on validation data to select the optimal
num_iterations parameter (typically found <100 in all per-
formed runs). For a given tree depth choice, we also scanned
different values of min_data_in_leaf from 5 to 100.

Classification results achieved over the available feature sub-
sets and dataset splits are summarised in Fig. 4 and Table 7, and
discussed with more details in the following paragraphs.

In Figs. B3, B4, B5 and B6, we inspected the relative importance
of each feature provided to trained LightGBM classifiers, finding
that radio-infrared colour indices are always ranked among the
top most sensitive features, along with the radio spectral index,
while morphological parameters (radio-infrared IoUs) are ranked
last.

5.1.2. Results on radio+MIR data
In Table 7 (rows 1-3, columns 2, 3), we report the F1-score metric
of the trained LightGBM model, obtained on the 5-band ‘mixed’

llhttps://lightgbm.readthedocs.io/en/latest/index.html.
mmmax_depth is the maximum depth of each decision tree, typically chosen in the

range [2,12], as very deep/shallow trees are more likely to overfit/underfit the training
data. max_depth has to be optimised in combination with the num_leaves parameter,
controlling the number of decision leaves in a single tree, with optimal num_leaves val-
ues lying below the limit 2max_depth . min_data_in_leaf specifies the minimum number
of sources that fit the decision criteria in a leaf, allowing to control the model overfitting.
Suitable values are typically assumed on the basis of the training sample size. Finally, the
num_iterations is the number of boosting iterations performed, often interpreted as
the ‘number of trees’ used.
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Table 7. Average F1-score metrics achieved by the LightGBM trained classifier for binary classification of Galactic and Extragalactic source
groups and for multiclass classification, computed over five ‘mixed’ survey test sets (labelled as ‘mixed’) and pure ASKAP test sets (labelled
as ‘askap’). Metrics were not reported if less than 10 sources are available in the test set. Column groups (2-3) and (6-7) report the results
obtained over the 5-band (radio+MIR) datasets without and with the spectral index (α) information, respectively. Results in column groups
(4-5) and (8-9) are relative to the 7-band (radio+MIR+FIR) dataset. Parameters for binary (multiclass) models were set to: num_leaves = 2
(32), min_data_in_leaf = 20 (20), max_depth = 1 (5).

F1-score (%)

MIR MIR+FIR MIR+α MIR+FIR+α

mixed askap mixed askap mixed askap mixed askap

(2) (3) (4) (5) (6) (7) (8) (9)

GAL 95.2±0.1 95.8±0.1 97.9±0.1 − 96.7±0.1 − 98.1±0.2 −
EGAL 98.1±0.1 98.9±0.1 40.4±4.1 − 96.2±0.1 − 52.8±2.8 −
ALL 97.2±0.1 98.3±0.1 95.3±0.4 − 96.4±0.1 − 95.9±0.4 −

PN 64.1±0.5 56.3±0.5 70.9±0.6 66.9±0.6 73.2±0.8 77.8±1.3 78.9±0.5 70.8±2.5
HII 81.6±0.3 80.0±0.4 86.9±0.2 91.3±0.3 86.5±0.5 86.7±0.7 91.7±0.3 93.0±0.6
PULSAR 64.2±0.3 70.2±1.0 63.7±1.0 76.0±0.9 81.9±1.4 81.5±2.5 81.9±0.8 80.6±4.2
YSO 22.4±0.7 17.8±0.6 19.4±2.1 28.5±2.9 23.9±1.7 32.0±4.9 30.9±2.7 23.0±5.3
STAR 22.8±1.4 32.4±2.8 32.8±3.1 − 19.8±2.2 − 28.3±5.8 −
RG 87.1±0.3 87.7±0.2 53.9±2.1 − 81.9±0.6 − 56.5±2.5 −
QSO 85.7±0.4 84.1±0.2 − − 83.0±0.5 − − −
ALL 80.3±0.3 82.7±0.1 69.9±0.5 82.2±0.4 78.1±0.4 76.1±1.3 78.4±0.7 78.1±0.5
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Figure 4. Average F1-score metric achieved by the LightGBM trained classifier for
binary classification of Galactic and Extragalactic source groups and for multiclass
classification, computed over five ‘mixed’ survey test sets (labelled as ‘mixed’ and
shown with filled markers) and pure ASKAP test sets (labelled as ‘askap’ and shown
with openmarkers). The error bars are the F1-score standard deviations obtained over
the five test sets. Results obtained over the 5-band (radio+MIR) datasets without and
with the spectral index (α) information are, respectively, shown with black dots and
green triangles, while results obtained over the 7-band (radio+MIR+FIR) datasets are,
respectively, shown with red squares and blue inverted triangles.

and ‘askap’ test datasets, for classifying sources into two groups:
Galactic (i.e. including target object classes of interest for Galactic
science studies, such as PNe, HII regions, pulsars, YSO, and stars),
and Extragalactic (i.e. including radio galaxies and quasars). The
model is able to identify sources belonging to the two groups with
very high accuracy (above 90%), with a relatively shallow tree con-
figuration (max_depth = 1 or 2), even when presented with data
observed with a completely different survey (ASKAP) with respect
to those used in the training sample. As the Galactic-Extragalactic
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Figure 5. Confusionmatrix of the trained LightGBM classifier obtained over the 5-band
(radio+MIR) pure ASKAP test datasets.

discrimination analysis can only be done using this dataset, due
to the existing survey coverage and catalogue availability, this is a
remarkable and encouraging result (e.g. there is no strong need for
additional multi-wavelength data).

Discrimination of individual source classes was also studied.
A deeper model (max_depth = 5) was found to provide the
best performances in the parameter scan. Classification metrics
obtained over both ‘mixed’ and ‘askap’ test set are reported in
Table 7 (rows 4-11, columns 2, 3), while the source confusion
matrix obtained over the ‘mixed’ survey test sets is plotted in Fig.
5. In this case, extragalactic sources (radio galaxies, QSO) can be
identified with∼85% accuracy, with a rate of misclassified sources
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of the order of 15%, almost entirely in the direction of the other
extragalactic source category (e.g. QSO→galaxy, and vice versa).
PNe, HII regions and pulsars are the best classified sources within
the Galactic group. Lowest misclassification rates towards other
classes are obtained for HII regions, found below 15%. PNe are
more likely (38%) to be misclassified as HII regions. As reported
in previous studies (Anderson et al. 2012), we expect that a better
discrimination power between the two types can be achieved by
employing far-infrared and 8 µm data (see next paragraph). Poor
classification results are obtained on the radio stars and YSO sam-
ples, with F1-scores ranging from 20% to 30%. YSOs are largely
(∼66%) misclassified as HII regions or PNe. This is somewhat
expected, as a fraction of SIMBAD objects classified as YSO (used
as a reference for building the training sample) were also found
listed in the WISE HII region and HASH PN catalogues. Future
data releases shall therefore focus on assessing the reliability of our
YSO candidates, removing the identification ambiguities before
repeating the classification analysis. The same labelling issue is
also potentially affecting the radio star classification. Poor results
on some Galactic class may be therefore not only due to the lim-
ited training sample, but also ascribed to the reliability of original
source classification present in the literature.

In Fig. 6 (top panel) we reported the F1 classification score
for all classes in the 5-band ASKAP test dataset as a function of
the computed radio source signal-to-noise ratio (SNR). The over-
all classification performance is mostly flat over the SNR range,
while individual classes do show some dependency on the SNR,
e.g. F1-score is increasing with SNR for PNe/QSOs and decreasing
for pulsars/radio galaxies. As shown in Fig. 6 (bottom panel), the
observed trends for each class seem to correlate with the number
of corresponding images available in each SNR bin.

5.1.3. Results on radio+MIR+FIR data
In Table 7 (columns 4, 5) we report the F1-score metric of the
trained LightGBM model, obtained on the 7-band ‘mixed’ and
‘askap’ test datasets. Only 5 Galactic classes are available in the lat-
ter case, but we did not report classification metrics for the ‘STAR’
class, as less than 10 sources are available in the test set. Inclusion
of 8 and 70 µm data lead to a slight improvement (5–10%) in
classification for most classes, except for pulsars that are infrared-
quiet at these bands. Misclassification rates, shown in Fig. 7, also
improved considerably for HII regions and PNe, e.g. the fraction
of PNe misclassified as HII regions decreased by ∼20% compared
to the 5-band analysis, highlighting how the far-infrared informa-
tion is crucial for separation of certain Galactic classes. Although a
slight improvement is also seen on radio star and YSO identifica-
tion, the limitations highlighted in the previous paragraph prevent
to eventually obtain an effective classification of both types.

5.1.4. Results with radio spectral index information

In Table 7 (columns 6–9) we reported the classification results
obtained on the 5-band and 7-band ‘mixed’ survey and pure
ASKAP test datasets, after including the radio spectral index
α as an additional input feature. A clear increase in perfor-
mance was obtained for PNe, HII regions, and pulsars, while no
sensible improvements were observed on the remaining classes.
Unfortunately, the training and test samples are very limited in
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Figure 6. Top: F1-score of the LightGBM classifier as a function of radio source signal-
to-noise (SNR) obtained over the 5-band (radio+MIR) dataset. Bottom: Fraction of
source images available in the 5-band dataset as a function of SNR.
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Figure 7. Confusion matrix of the trained LightGBM classifier obtained over 7-band
(radio+MIR+FIR) pure ASKAP test datasets.
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Figure 8. Confusion matrix of the trained CNN custom_v1 classifier obtained over 5-
band (radio+MIR) pure ASKAP test datasets.

size for some classes, e.g. less than 70 (40) radio stars in the 5-band
(7-band) datasets, and therefore their corresponding metrics may
not be precisely estimated.

5.2. CNN classification

In this section we explored the capabilities of supervised classifi-
cation models, such as CNNs, that automatically extract features
directly from images, e.g. they do not require the extra image pro-
cessing applied in Section 4.1. More importantly, contrarily to the
previous analysis, a CNN classifier is less tied to the source com-
pact morphology assumption, and would be thus also potentially
suited for extended source classification.

5.2.1. Model training

We considered two alternative CNN architectures: a custom shal-
low network with only two convolutional layer blocks, and a
standard deep ResNet18 architecture. Network configurations are
reported in Table 8. We trained six custom model configura-
tions (denoted as custom_v1, custom_v2,. . ., custom_v6) on
our data, varying the convolutional or dense layer structure (e.g.
number of filters, kernel or stride size, etc). Columns (2) and (3)
report the network backbone and classification head structure,
following this notation:

• 16C3BnP2-32C3BnP2-32-16: indicate a network with two
convolutional layer blocks and two dense layers with 32 and
16 neurons, respectively. Convolution blocks (C) have 16 and
32 3×3 filters, respectively, each followed by batch normal-
isation (Bn)nn and max pooling (P) layersoo using 2×2 filter
and stride 2;

nnBatch normalisation layers normalise their inputs by subtracting the batch mean and
dividing by the batch standard deviation. They are often inserted in CNN architectures to
reduce the internal covariate shift and improve network stability during training.

ooPooling layers reduce the spatial dimension of the inputs, by applying a pooling
operation (e.g. maximum or average) to a set of values in a small region of the input vol-
ume. They are commonly used to increase the receptive field of the network, reduce its
computational cost, and improve its performance.

• 16C3-32C5S2-16: indicate a network with two convolu-
tional layer blocks and a single dense layer with 16 neurons.
The first convolution block has 16 3×3 filters (no max pool-
ing layer), while the second one has 32 5×5 filters using
stride 2.

All configurations were trained (Adam optimiser, learning rate
η = 5×10−4, batch_size = 64) over five multiple train/validation/
test dataset splits until overfitting is detected on the validation
set (typically after 300 epochs). Classification metrics are finally
computed over the test sets. In Fig. B7 we report the classifica-
tion F1-score obtained as a function of the training epoch with
a representative model (custom_v1) over train (blue graph) and
validation (red (graph) 5-band datasets. Shaded areas correspond
to the minimum and maximum F1-scores found in different
training runs.

To avoid learning features from other nearby sources, we
masked pixels not belonging to the source in all input images.
Masks for each source were obtained from the radio channel in
an automated way using CAESAR source finder (Riggi et al. 2016,
2019), refined manually (if not accurate enough), and eventually
enlarged using a morphological dilation transform.pp The result-
ing masks were finally applied to radio and infrared channels to
produce masked image dataqq that are provided as CNN inputs.

Different image pre-processing stages were applied to the
masked input data during the training and inference stages:

1. Channel max scaling: For each source, we scaled each chan-
nel by the maximum pixel value among all channels for
that source. This step is introduced to preserve the original
radio/infrared flux ratios (very sensitive to the source type)
and remove the flux density degeneracy, e.g. two identical
sources (e.g. same class and radio/infrared ratios) with just an
absolute flux density offset will be treated as the same input
by the classifier.

2. Augmentation: we randomly applied a series of transfor-
mations to input cutout channels, including horizontal and
vertical flipping, and [–90◦, 90◦] rotation. This step is only
applied during training to improve the model generalisation
capabilities;

3. Resizing: Finally, we resized all image cutouts in the dataset
to the same size in pixels (64×64 pixels by default), as the
first convolutional layer of the network requires tensor of the
same shape in input;

Results are reported in the following paragraphs only for the
5-band dataset, as the 7-band and spectral index datasets are too
limited in size for training a deep network.

5.2.2. Results on radio+MIR data
Classifications scores obtained by trained CNN classifiers on
‘mixed’ survey test datasets, reported in Table 8 (column 4),
are rather comparable (within 1%) across shallow and deep
model configurations and training runs. A larger kernel size (5×5
pixels, custom_v3 model) slightly improved (∼1%) the results,

ppAs we expect the environment surrounding the source can provide valuable infor-
mation for classification purposes, the source mask was enlarged using a morphological
dilation transform with configurable kernel size (21 pixels by default).

qqMasked input data are included in the dataset under version control along with
unmasked images.
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Table 8. Average F1-scoremetrics achieved by trained CNNmodels formulticlass
classification, computed over five ‘mixed’ survey 5-band (radio+MIR) test sets.
Model Backbone Head F1-score (%)

custom_v1 16C3P2-32C3P2 16 80.7±0.3
custom_v2 16C3-32C5S2 16 80.5±0.8
custom_v3 16C5P2-32C5P2 16 81.3±0.2
custom_v4 32C3P2-64C3P2 32 80.2±0.5
custom_v5 16C3BnP2-32C3BnP2 16 78.8±0.1
custom_v6 16C3P2-32C3P2 32-16 81.3±0.4
resnet18 ResNet18 16 80.1±1.1

Table 9. Average F1-score metrics achieved by trained shallow and deep CNN
models for source multiclass classification, computed over five ‘mixed; sur-
vey 5-band (radio+MIR) test sets (labelled as ‘mixed’) and pure ASKAP 5-band
(radio+MIR) test sets (labelled as ‘askap’).

F1-score (%)

custom_v1 resnet18

mixed askap mixed askap

(2) (3) (4) (5)

PN 68.3±2.3 67.2±2.0 74.6±0.8 66.9±0.1
HII 86.2±0.9 90.5±0.8 88.8±0.6 92.6±1.1
PULSAR 64.0±1.4 63.1±1.2 71.6±0.6 52.4±2.4
YSO 41.0±2.2 40.6±2.4 52.1±1.3 49.0±2.1
STAR 38.8±2.7 52.4±1.4 41.0±1.3 37.5±3.2
RG 85.6±0.3 84.1±1.2 84.2±0.4 85.3±1.2
QSO 83.3±0.8 77.8±1.8 78.6±2.7 81.9±0.9
ALL 80.7±0.3 80.4±1.0 80.1±1.1 82.0±0.8

while batch normalisation layers (custom_v5 model) produce a
∼2% decrease in performance. In Table 9 we report the classi-
fication scores obtained with the resnet18 model and a rep-
resentative shallow model (custom_v1) trained on ‘mixed’ sur-
vey data over both ‘mixed’ survey and pure ASKAP test sets.
Misclassification rates obtained on pure ASKAP test sets are
reported in Fig. 8 for the custom_v1 model. Overall, we con-
clude that the achievedmetrics are comparable to those foundwith
the LightGBM classifier (Table 7, columns 2, 3). We also observe
that, with regard to the individual classes, the CNN classifiers tend
to better classify Galactic sources (∼10% improvement in scores
and misclassification rates for some classes) with a correspond-
ing performance drop on the extragalactic source group. Despite
the already noted dataset limitations, we believe that this analy-
sis represent a first valuable baseline for future studies aiming to
explore other image-based classifiers and optimised normalisation
strategies for multi-wavelength data.

6. sclassifier: A radio source classifier tool

We developed a tool, dubbed sclassifier,rr for performing radio
source classification using the dataset and the methods adopted
in this work. An end-to-end pipeline was implemented, allowing
users to obtain source classification information (e.g. predicted
class labels and probabilities) and supplementary products (source

rrhttps://github.com/SKA-INAF/sclassifier.

image cutouts, feature data tables) from a radio continuum 2D
map (FITS format) and a source catalogue (DS9 polygon regions)
supplied as inputs. Additional algorithms and models (e.g. con-
volutional autoencoders, outlier finder, clustering, etc) were also
implemented and will be presented in a future work focusing on
an unsupervised analysis of the dataset.

sclassifier is developed in python (3.x), and based on several
libraries for astronomical data analysis and image processing –
Astropy (Astropy Collaboration et al. 2013, 2018, 2022), Montage
(Jacob et al. 2010), OpenCV (Bradski 2000) – and machine learn-
ing – TensorFlow (Abadi et al. 2016), Keras (Chollet et al. 2015),
scikit-learn (Pedregosa et al. 2011). As some stages, e.g. source
cutout provision, regridding/reprojection, are quite computation-
ally intensive for large catalogues, we parallelised them using the
mpi4py library (Dalcin et al. 2005), splitting the computation for
all sources across multiple computing nodes.

7. Summary

In this work, we carried out a supervised classification analy-
sis of compact radio sources over a large annotated dataset of
∼20 000 Galactic and Extragalactic objects, extracted from novel
ASKAP radio observations and previous radio and infrared sur-
veys. We trained two different classifiers on the produced data.
The first uses the LightGBM gradient-boosting framework and is
trained on a set of pre-computed features derived from the multi-
wavelength data, including the radio-infrared colour indices and
the radio spectral index. The second model uses convolutional
neural networks and is trained directly on multi-channel images.

The LightGBM classifier achieved very high performances
(above 90%) for the identification of Galactic objects against
sources belonging to the extragalactic group, using only radio and
mid-infrared data. Classification metrics largely vary among indi-
vidual source classes. Extragalactic objects (radio galaxies, QSO)
are best classified, with F1-scores exceeding 85%. PNe, HII regions,
and pulsars are the second group of best classified objects, with F1-
scores ranging from 60% to 75%. Poor performances are obtained
on radio star group and YSOs, due to the limited sample size,
object spectral type heterogeneity, and unreliable classification
information reported in the reference catalogues. We also tested
how the classification performances changed for Galactic objects
when including additional infrared band data (8 µm, 70 µm) and
the radio spectral index information in the analysis. We obtained
a significant boost in performance (∼10%) for PNe, HII regions,
and pulsars.

CNN classifier was only trained on 5-band (radio+MIR) data
due to the limited number of images available in the FIR band.
The classification metrics achieved by trained shallow and deep
network architectures are overall comparable to LightGBM, with
better classifications observed on the Galactic source group at the
expense of the extragalactic source group.

The obtained results motivate further analysis to be done
to improve overall source classification results and tackle some
reported limitations, before applying the method on unclassi-
fied ASKAP sources. Firstly, test data sample size can be slightly
increased once new ASKAP observations towards the Galactic
plane will be completed. This would increase the reliability of the
reported classification metrics for some classes. Secondly, anal-
ysis should be repeated with a revised YSO and star reference
catalogue, as the ones used in this work may contain spurious
association to HII regions or extragalactic objects, that could
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partly explain the misclassification rates obtained. In this con-
text, we foresee to carry out a completely unsupervised analysis
of the dataset to detect possible label anomalies and perform new
classification studies.

As commented in Section 3.1, our training set does not contain
star-forming galaxies, expected to contribute with a non-negligible
fraction (∼25%) in EMU survey data, and therefore our current
classifier could potentially misclassify them as Galactic sources, if
their radio-infrared colors are similar. Luckily, there are ongoing
studies within EMU, aiming to produce a curated sample of SFGs
from EMU pilot observations, that would allow us to extend the
training dataset, study SFG color parameter distribution and re-
train our classifiers.

On a longer term, we also would like to extend our dataset
with additional complementary data (e.g. optical, Hα or radio
polarisation information), that could potentially lead to improved
classification results.

In this work, we produced a python-based tool, enabling users
to run source classification on their new data. The implemented
methods are rather general-purpose, allowing for the future to
include additional image wavelength data, or to perform a sim-
ilar analysis on extended sources. We plan to integrate it in the
list of source analysis applications supported in the caesar-rest ser-
vice,ss developed within the CIRASA (Collaborative and Integrated
platform for Radio Astronomical Source Analysis) project (Riggi
et al. 2021b) to enable SKA Galactic science teams or high-
level service API to run source analysis tasks (source extraction,
classification, cross-matching, etc) over an http interface. This ser-
vice is currently deployed on the European Open Science Cloud
(EOSC) prototype, setup for the H2020 NEANIAS (Novel EOSC
Services for Emerging Atmosphere, Underwater & Space Challenges)
projecttt (Sciacca et al. 2021).
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A. Source class physical properties

A.1. Young Stellar Objects (YSOs)

Young Stellar Objects (YSOs) denote the early stages of star devel-
opment, e.g. protostars and pre-main sequence stars. They have
been classified into different classes (0, I, II, III), depending on
their evolution phase (Gómez de Castro 2013). Class 0 objects are
characterised by an embedded central core, surrounded by a larger
(not visible yet) accreting envelope, typically observed through
far-infrared and millimetre wavelength emission from the dust.
Class I objects denote the late mass accretion phase, in which
the central core grows, a flattened circumstellar accretion disk
develops, and the protostar also expels matter via bipolar jets and
outflows. Typically, their SEDs rise in the far- and mid-infrared
range (αIR >0.3). In Class II objects, the majority of the circum-
stellar material is found in a disk of gas and dust. Flatter infrared
spectral indices are typically observed in this stage. In Class III
objects, the gas has been cleared out, the young planetary disk is
formed, and the stellar atmosphere is recognisable. The emission
from the disk becomes now negligible, and the SED is dominated
by the pure stellar photosphere contribution (αIR < −1.6).

YSOs are observed in the radio continuum, mainly through
thermal free-free emission from ionised regions in their compo-
nents (disks, winds, coronae, and jets), specially in massive YSOs.
For low mass YSOs, however, the emission is thought to be driven
by outflow processes that shock the surrounding material causing
the required gas ionisation (Anglada et al. 1998). The radio spec-
tral indices α are expected in the range −0.1 < α < 1.1, depending
on the evolution phase and emissionmechanism (Scaife 2012). For
example, in collimated outflows, typical of early protostar stages
(Class 0, I), a radio spectral index α ∼0.25 is favoured, while,
for standard conical jets, spectral indices around 0.6 are expected
(Reynolds 1986; Anglada et al. 1998). Non-thermal emission can
be found around more developed pre-main sequence stages (Class
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II, III), like T Tauri stars, and may partially contribute to the very
negative indices observed in some YSOs (Ainsworth et al. 2012).

A.2. Radio stars

Thermal and non-thermal radio emission has been detected so
far from stars of different types and evolution stages across the
entire Hertzsprung-Russell (H-R) diagram, among themmagnetic
stars, early-type stars (e.g. O-B) with winds and strong mass loss,
later stages like Wolf-Rayet (WR) stars and LBVs, binaries (also
bright in X-rays), and ultra cool-dwarfs (Güdel 2002; Matthews
2013). Thermal free-free emission, as in the stellar wind emis-
sion, originates from stellar outflows and chromospheres. Stars
with spherically symmetric, isothermal, and stationary outflows
are expected to have a radio spectrum Sν ∝ να (α = 0.6) (Panagia
& Felli 1975), although spectral indices deviating from the canonic
value may be obtained when variating the wind parameters (e.g.
electron densities, velocity gradients, mass loss rate). Non-thermal
gyrosynchrotron and synchrotron emission is generated in flares
and also found in stars with magnetic activity and colliding winds
in binaries. Negative spectral indices (α <0) are expected in this
case (Umana et al. 2015b). The stable non-thermal radio emis-
sion from the MCP stars is instead expected with an almost flat
spectrum (Leto et al. 2021) and partially polarised, with the circu-
larly polarised emission increasing as the radio frequency increases
(Leto et al. 2020). In stars with high radio brightness temperatures,
coherent emission mechanisms, like plasma radiation or electron
cyclotron maser emission (Trigilio et al. 2000), are also operating.

A.3. Hii regions

regions HII regions are discrete ionised clouds surrounding young
and massive hot stars (type O-B), thus enabling to trace mas-
sive star formation across the entire Galaxy, particularly in their
youngest and compact stages, known as hyper-compact HII
(HCHII, diameter ≤ 0.05 pc) and ultra-compact HII (UCHII,
diameter ≤ 0.1 pc) regions (Kurtz et al. 2005). They are detected
through their bright radio and infrared emission. The observed
radio continuum spectrum can be described by a standard thermal
free-free model assuming an optically thin regime above ∼1 GHz,
with spectral indices α ∼ −0.1, and an optically thick scenario at
lower frequencies (e.g. below a turnover frequency), leading to
increased spectral indices (α ∼2) due to self-absorption mecha-
nisms. Younger HII regions with higher density typically remain
optically thick at higher frequencies, with a positive spectral index
and turnover at ν ∼5 GHz for UCHII and ν ∼ 10÷ 100 GHz for
HCHII (Yang et al. 2019, 2021).

The infrared emission comes from different dust populations
(Robitaille et al. 2012), mostly located in the photodissociation
regions, e.g. polycyclic aromatic hydrocarbons (PAHs) at 8 and
12 µm, small and large grains at 22–24 µm and above 70 µm,
respectively.

A.4. Planetary nebulae

Planetary nebulae are shells of ionised gas, ejected from central
hot stars of low to intermediate mass (∼1−8 M�) at the end of

their asymptotic giant branch (AGB) phase. A more precise defi-
nition, and a summary of their observational characteristics, were
presented in Frew & Parker (2010).

Radio continuum radiation (thermal free–free) is observed
from the nebula shell, due to the gas ionised by the ultra-violet
radiation produced by the central star (Kwok 2000). Typical radio
spectral indices observed range from ∼ −0.1 in an optically thin
regime, to positive indices, up to ∼2 (Pottasch 1984), for for opti-
cally thick PNe. Infrared emission is due to cool dust (T∼100–
200 K) material surrounding the ionised region, peaking at ∼20
µm for most PNe. Polycyclic aromatic hydrocarbon (PAH) emis-
sion at 8 µm from the photodissociation region (PDR) sur-
rounding the ionised gas, can also be present in more compact
objects.

A.5. Pulsars

Pulsars are highly magnetised rotating neutron stars, emitting
beams of radiation from their magnetic poles, observed as they
point towards Earth, with periods ranging from milliseconds to
seconds. The radio emission shows a high degree of linear polar-
isation, and a small fraction of circular polarisation. Pulsars are
known to have steep flux-density spectra, with observed aver-
age spectral indices around −1.8±0.2 (Maron 2000), in some
cases (∼10%) described by double power-laws with spectral breaks
around 1 GHz. The emission is thought to be due to coherent pro-
cesses, but its origin and generation mechanism is still debated
(Beskin et al. 2015; Beskin 2018; Melrose et al. 2021).

A.6. Active Galactic Nuclei

Active Galactic Nuclei (AGN) of different radio-loud (RL) and
radio-quiet (RQ) types (e.g. RL/RQ quasars, FR I/FR II/Seyfert
radio galaxies, blazars) dominate the observed counts of contin-
uum radio sources above the mJy level, the latter type repre-
senting ∼90% of all AGNs. In the unification schema (Urry &
Padovani 1995), much of their observational properties (e.g. radio
components, multi-wavelength spectral features) arise from the
orientation of the accretion disk and the observer’s line-of-sight.

The radio emission at cm wavelengths, explained as syn-
chrotron radiation from GeV electrons, has a relatively steep
spectrum for extended regions (jets, lobes) with α ∼ −0.7, while
compact regions have flatter or inverted spectra (α ≥ −0.5), result-
ing from the superposition of multiple self-absorbed components.
The latter scenario is observed in core-dominated sources, such as
blazars or FSRQs. On the other hand, Gigahertz-Peaked Spectrum
(GPS) and Compact Steep Spectrum (CSS) compact sources, with
their observed steep spectra and well-defined spectral turnovers
(around 1 GHz for GPS sources, and 100 MHz for CSS), are a
notable exception. They are believed to be young objects even-
tually evolving into more extended radio objects of type FR I/II,
and overall they represent a considerable fraction (around 10%
for GPS, and 30% for CSS) of the bright compact radio source
population (O’Dea 1998; O’Dea & Saikia 2021; Sadler 2016). A
high degree of linear polarisation (up to 30%) is also observed,
particularly in extended components.
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B. Supplementary plots

(a) (b)

(c) (d)

Figure B1. Pearson correlation coefficient matrix computed over for the 5-band color feature sets (see Table 5).
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(e) (f)

(g)

Figure B1. Continued
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(a) (b)

(c) (d)

(e)

Figure B2. Pearson correlation coefficient matrix computed over for the 7-band color feature set (see Table 5).
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Figure B3. Feature importance for LightGBM classifier trained on 5 bands (MIR+FIR) data.
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Figure B4. Feature importance for LightGBM classifier trained on 5 bands (MIR+FIR)+ α data.
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Figure B5. Feature importance for LightGBM classifier trained on 7 bands (MIR+FIR) data.
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Figure B6. Feature importance for LightGBM classifier trained on 7 bands (MIR+FIR)+ α data.
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Figure B7. F1-score of CNN classifier (custom_v1 model) computed as a function
of the training epoch over five ‘mixed’ survey 5-bands (MIR+FIR) train (blue graph)
and validation (red graph) datasets. Shaded areas correspond to the range of mini-
mum and maximum F1-scores obtained in different training runs, each with different
train/validation/test data splits.
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