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1. Introduction. Bullett and Macdonald [1] have used power series to simplify the
statement and proof of the Adem relations for Steenrod cohomology operations. In this
paper I give a similar treatment of May’s generalized Adem relations [4, §4] and of the
Nishida relations ([6], [2, 1.1.1(9)], [5, 3.1(7)]). Both sets of relations apply to Dyer-
Lashof operations in E,, spaces such as infinite loop spaces ([3], [2, I.1]) and in H,, ring
spectra ([5, §3)).

The results on the Adem relations are very similar to those of [1], and the proof
mostly comes from [4]. The surprising result of this paper is that the Adem and Nishida
relations can be expressed by virtually the same formulae ((2a) and (5a), (2¢) and (5b)
below). My proof of the Nishida relations is designed to explain this, and is a bit simpler
than the original proof.

Throughout the paper we work modulo p, where p is a prime number.

2. Statement of the Adem relations. Recall that in [4] May constructs operations in
the homology of certain modulo p chain complexes. There are operations P; for all p and
BP, for odd p, where i is any integer. The degree of P, is i if p=2 or 2i(p—1) if p is odd,
and the degree of BP; is 2i(p—1)— 1. The Dyer-Lashof operations denoted Q' and BQ"
are special cases of the P, and BP, and the Steenrod cohomology operations denoted P
(or Sq' if p=2) and BP! are special cases of the P_; and BP_; (a qth cohomology group
being regarded as a (—q)th homology group).

We consider complexes for which all the operations are defined and the Adem
relations hold: Adem objects of 4(p,®) in the terminology of [4]. Let u and v be
indeterminates commuting with each other and with anything else that occurs, and put

t=v(l—u"tv)P?, s=u(l—v WP 1= uPv Pt = uPo~™ P VA —ulo)r . (1)
For any z, write

P(z)=Yz'P, PBP(2)=) z'8P;

(all summations are over the integers, and terms usually regarded as undefined are to be
taken as zero). The Adem relations can then be written: for all p,

P(u)P(t) = P(v)P(s), (2a)

and for odd p,
BP(u)P(t) = BP(v)P(s), (2b)
P(u)BP(t)=(1-u"'v)BP()P(s)+ u"vP(v)BP(s), (2¢)
BP(u)BP(t) = u™'vBP(v)BP(s). (2d)

The usual Adem relations are derived in Section 5, and (2a)—(2d) are proved in Section 7.
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Remark 1. In the applications mentioned above, BP; is the composite of P, with a
Bockstein B satisfying 82=0, so that (2a) implies (2b) and (2c¢) implies (2d). But this is
not true in general (despite the notation), which is why (2b) and (2d) are stated
separately.

RemARKk 2. To get formulae for cohomology operations, write P*(z)=Y z'P", etc.
(P*(z) is denoted P(z) in [1]). Since P is an example of P_,, the relations (2a)—(12d) imply
P*u HP*(t™")=P*( " )P*(s7"),
etc. These relations are not the same as in [1], but are equivalent, as is shown in [1, §4] for

p=2.

3. Statement of the Nishida relations. The Nishida relations apply to the homology
of an E, space or H, ring spectrum. They link the Dyer-Lashof operations Q', the
Bockstein B8, and the duals P of the Steenrod cohomology operations. With u, v, s and ¢
as in (1) and with the obvious meanings for Q(z) and Px(z) they say: for all p,

Py(u™)Q(v) = Q(t)Py(s™"), (3a)
and for odd p,
Pe(u™H)BOW) = (1—u"'0) ' [BOQ(t)Px(s ") — u " vQ(t) Px(s HB]. (3b)

These can be rewritten to look like the Adem relations (2a) and (2¢) if one uses the
conjugate cohomology operations cP’ defined by

Y (PHP =1 if k=0,

i+j=k
0 if k#0.
This definition can be written ¢P*(z)P*(z) =1 with the obvious notation, and dualization
yields
cPy(z) = Py(z)7 1. 4)

So (3a) is equivalent to: for all p,
cPy(u™)Q(t) = Q(v)cPy(s™). (5a)
Substitution of (3a) in (3b) yields
Px(u™)BQ(v) = (1-u'0) '[BQ(1)Px(s™") — u'wPx(u~ ") Q(v)B],
which by (4) is similarly equivalent to: for odd p,
cP(u™)BQ(1) = (1 - u™'v)BQ(v)cPy(s™") + u™ vQ(v)BcPy(s ™). (5b)

The usual Nishida relations will be derived from (3a)—-(3b) in Section 6 and (5a)-(5b)
will be proved from (2a) and (2¢) in Section 8.
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4. The Cartan formulae. For completeness we note that the Cartan formulae

P.(x®y)= Y Px®Py

i+j=k
[4, 2.7] are obviously equivalent to
P(2)(x®y) = P(z)x @ P(2)y,
and similarly for other Cartan formulae. One, which will be used in Section 8, is
cPy(2)(x®y) = cPy(z)x @ cPy(2)y. (6)

5. Derivation of the usual Adem relations. The usual Adem relations [4, 4.7] are:
for all p, .
fi-b)(p—-1)-1
Pan = Z (_ 1)a+l((l )(p ) )Pa+b—i1)i7
i ip—a
and for odd p,

((i=b)(p-1)—
e R [
: f(i—b 1 i-b)(p—1)—-1
PP, =Y (—1)‘”‘((' lp)f" ))BPa+., LEONG 1)“*'((' ,-p)fpa B i )Pm_iB -
fi-b)p—~-1 -1
gp.6p, =~ -1i(" ip)f"a 7 )6p.s P

RemaRrk. The binomial coefficients are defined by

n(n—-1)...(n—-k+1),

px if k>0,

n !

(k>_ 1 if k=0,
0 if k<o,

regardless of the sign of n. With these conventions, the relations are true for all a and b.

The relations are derived from (2a)-(2d) respectively by the method of [1, §3]:
express the right hand sides of (2a)-(2d) as power series in u, v, t by putting s = uPv™"t
{(see (1)), then express them as power series in u and ¢t by putting

-k(p—-1)—-1
vr = Z (__ 1)k—r( (p ) )ur—ktk (7)
k k =-r
(which is true modulo p and will be proved below), and finally equate the coefficients of

u°t®.

Proof of (7). Put V=u"'v, T=u""t; then (7) is equivalent to

g ()
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But (1) gives
T=V(1-V)y
which modulo p gives
dT=(1-V)*2 4V,
SO
\'4 =Z (%Eso VT ! dT)T" = Z <‘r/is0 Vrkel(1 - yytke-nl dV)Tk

k k

-per-(H )

as required.

6. Derivation of the usual Nishida relations. The usual Nishida relations ([6], [2,
1.1.1(9)], [5, 3.1(7)]) are: for all p,

; -—m)(p—1 -
PxQ" = Z (‘1)M+'((n )(; ))Q"_'"+'P;1=,
and for odd D,
fn—m)(p—-1)—1 -
PRBQ" =Y (—1)'"“((" ”)(p iv : )BQ"'"‘*'P#
f(n—m)(p—-1)—-1 .
= 4 E (_1)m+l<(n’ )(Z) 1) >Qn—m+xP;kB'

They are easily derived from (3a)—(3b) respectively: express the right hand sides of
(3a)—(3b) as power series in u, v and (1—u~'v) by (1), then express them as power series
in u and v by the binomial theorem, and finally equate the coefficients of u™"v".

7. Proof of the Adem relations (2a)—(2d). This is based on May’s proof [4, §4]; we
shall show that (2a)—(2d) are linear combinations of equations derived in that proof. First
we recall some notation and the definition of the operations. Throughout this section x is
a homology class of degree gq. If p is odd, then we write

m=3ip-1), v(2r)=(-1), v(2r+1)=(-1)Ym! (8a)
where r is any integer. Modulo p we have (p—1)!=-1 (Wilson’s theorem), so
(m1)?=(-1)™*", (8b)

For all p and for i=0, let ¢; be the standard generator of H,(Z/p; Z/p)=Z/p as in [4,
1.2]; for i <0, let ¢; be 0. Let 6 be the structure map inducing the operations and put

Dx = 04(e; ®x°). 9)
The definition [4, 2.2] of the operations then amounts to: for p =2,
D;.x =P, (10a)
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and for odd p,
D(2i—q)(p—l)x =(- 1)iV(Q)_1PiX, Dgi-gyp-n-1%X = (- 1)iV(Q)_1 BP:x. (10b)

Next we quote the necessary equations from [4, 4]. They are equations (e), (g) and (i)
of the proof of [4, 4.7), and say: for p=2,

s—k -1
z ( k )Dr+2k—st—kx = Z <r l )Ds+21— r—1X5 (1161)
K 1
for odd p and for e=0 or 1,
s—k(p—1)
I TCR W T SOV SR
" r—Il(p—1)
= Z (—1)l+q v(2r)< f )DZS+(2!p—2r)(p—1)—ED2'—21(p-1)x (11b)
1
and
am s—k(p—1)-1
¥ (= Dkramy (25— 1)( (pk ) )D2r+(2kp—23+1)(p—l)—eDZS—Zk(p—l)—lx
K

m r=Iip-1)
=(1-¢g) Z (- 1)l+q V(2")( I )Dzs+(2zp—2r)(p—1)—1D2r—21(p—1)x
]

r—l(p—-1)—-1
—Z (_ 1)‘1/(2"_ 1)( P ] )D23+(2!p—2r+1)(p—1)—eD2r—2l(p—l)—1x‘ (116)
t

Finally we prove (2a)~-(2d) by forming linear combinations of (11a)-(11c). First take
p=2.Putr=a—gq, s=b—q in (11a), multiply both sides by u®v®, and sum over a and b
to get

b—k- a—-1-
2 ( 0 ")u“v"Da_b+2ka-k_qx =2 ( | ")u“v"D_a+b+2.Da_,_qx. (12)
a,bk a,b,l

Change the summation variables on the left hand side to i, j, k, where i=a+k+gq,

j = b—k. The left hand side becomes
) (1 ; q)“i—k_qUHkDi—(qﬂ)Di—qx-
ik
By the binomial theorem and (10a), this is
Z u " (1+u""v) PPx
18]

(note that deg D;_,x =deg Px = q +j). By (1) therefore (since we are working modulo 2),
the left hand side of (12) is (u+v) *P(u)P(t)x. Similarly the right hand side is
(u+v) "P(v)P(s)x. So (12) implies (2a), for p =2, as required.

Next take p to be odd. The calculations are similar, but more complicated. First put
r=a(p—1)—gm, s=b(p—1)—qgm in (11b) and (11c), multiply both sides by (—=1)***u®v?,
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and sum over a and b to get equations analogous to (12). Transform the left hand sides as
for p =2, using the change of variables i = a +k +gm, j=b—k, and eliminating the v(d)
by (8a). Transform the right hand sides in a similar manner. After using (8b) to eliminate
{(m"? one obtains
(=1)%(v—u) "B *P(u)P(t)x = (—1)(v —u)™™™B"P(v) P(s)x
and
(=D —u)™ " (1-u""'v)"'B°P(u)BP(t)x
=(1-€e)(-1)%v—u)""BP(v)P(s)x
—(=1)%v—u)" " (1-v"'u)"'B°P(v)BP(s)x.
Multiply these equations by (—1)*(v — )™ and (—1)*(v — u)™ (1 — u~'v), respectively. The
first equation gives (2a) for e =0 and (2b) for £ =1, and the second gives (2¢) for ¢ =0
and (2d) for € =1. This completes the proof.

8. Proof of the Nishida relations (5a)-(5b). The proof uses the formally similar
Adem relations (2a) and (2¢). To be precise, it uses the Adem relations for cohomology
operations (Section 2, Remark 2) dualized and conjugated. Since the dual of the

Bockstein is the Bockstein (up to sign) and the conjugate ¢ of the Bockstein is — B, these

relations are: for all p, CP*(u_‘)cP*(t_‘)= cP*(v")cP*(s“‘), (13a)
and for odd p,

cPy{tBcPy(t™) = (1= u™'0)BcPy(v ™) cPy(s™) + u " ucPs (v ") BcPy(s™"). (13b)

The idea of the proof is to express the Q' in terms of the cPl, which is essentially

done in [4, 9.1}, and so reduce (5a) and (5b) to (13a) and (13b). To express the Q' in

terms of the cPlk, we proceed as follows. Let X be the E,, space or H.,, ring spectrum we
are considering. We have a composite map

0d:BZ/pX X — X,

where BZ/p is the classifying space of Z/p (so that H(BZ/p; Z/p) = Hi(Z/p; Z[p)), 0 is
the structure map defining the operations Q' =P, by (9), (10a), (10b) and d is the
“diagonal” map whose effect in homology is described by [4, 9.1]. Let x € H(X;Z/p).
From [4, 9.1] we obtain the equations: for p=2,

Oxds(e, ®x) = X Ox(erare—s ®(Px)?), (14a)
and for odd p, ‘
Bseds(€2,0-1y® %) = (5) Y. (—=1)%0s(e 2+ 21p—5)p— 1y D (PEX)P). (14b)
Write *
Y zie, if p=2,
e(z)=4_ (15)

Z'eyp-n if p is odd.
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We now claim that, for all p,
Oxdx(e(~2)®@x) = Q(z)Py(z 7 x. (16)

Indeed one can prove this by applying (15) to the left hand side, then (14a)—(14b), then
(9), then (10a)-(10b) (note that P, is Q' in the present application, and that deg Pgx is
s—iif p=2or s—2i(p—1) if p is odd), and finally (8a). Since cPy(z ') = Pyx(z™") ™" (by
(4)), (16) gives: for all p

Q(z)x = 04dy(e(—2) R cPy(z7")x). 17

Equation (17) expresses the Q' in terms of the cPk. To proceed further, we need the
values of the Steenrod operations in Hy(Z/p; Z/p). These are well-known: from [4, proof
of 4.6, equations (c) and (d)] and from [4, 1.2(2)] we find: for p=2,

r—k
Pie,=(" e
%6, k €r—k
and for odd p,

Bezrp-1) = €2e(p-1)-1>

(r=k)(p—1)
P;em.(p_l) = ( k €20 —k)(p—1)s
(r=k)}p-1-1
Pierp-11= ( i €2~ k)(p—1)~1-

With e(z) as in (15), these equations combined with the binomial theorem give: for all p,

Py(u™Ne(-v)=e(-1),
and for odd p,
Py(u™)Be(-v)=(1~u""v)"'Be(-1),
where t=v(1—u"'v)*"! as in (1). Inverting Pg(u~") by (4) gives: for all p,

cPy(u™e(—1) = e(-v), (18a)
and for odd p,

cPye(u™)Be(—t)=(1—u""'v)Be(-v). (18b)
We can now prove (5a). For all p, (17) gives
cPe(u™ Q) x = cPy(u™")0xdy(e(—t) @ cPy(t™")x).

But 4dy commutes with cPy(u™"), since it is induced by a map 6d, so the right hand side
is
05 dxCPy(u")(e(— ) D cPy(t™1)x).

Apply the Cartan formula (6), then (18a) and the Adem relation (13a), to get
B4ds(e(—0)R cPy(v ") cPy(s x).
By (17) this is Q(v)cPyg(s™")x, as required. This completes the proof of (5a).
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Similarly we can prove (5b). Here p is odd. By (17)
cPy(u™)BQ()x = cPy(u™")BOsdy(e(= 1) D cPy(t™")x).
Now 8 commutes with 6,dy just as cPy(u"") does, and B is a derivation, so the right hand
side is
04 dscPs (™) (Be(—1) Q@ cPy(t Nx + e(—1) @ BcPy(t™)x).

Apply (6), then (18a)—(18b) and (13a)—(13b), to get

(1— u"'0)04d(Be(—0) R cPs(v ) cPy(s ) x + e(—0) Q@ BcPy(v™ ") cPy(s V)x)

+ u"'005dy(e(—v) R cPy(v ™) BcPy(s ™) x).

Since B is a derivation commuting with 6ydy, this is

(1—u""0)BOsds(e(—0) R cPy(v™ ) cPy(s ™) x) + u~ 1004 ds(e(—v) R cPy(v™ 1) BcPy(s ™) x),
and by (17) this is

(1—u"'0)BQW)CPx(s™x +u""vQ(V)BcPy(s™")x,

as required. This completes the proof.
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