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Abstract
Coherent beam combining (CBC) of laser arrays is increasingly attracting attention for generating free-space structured
light, unlocking greater potential in aspects such as power scaling, editing flexibility, and high-quality light field creation.
However, achieving stable phase locking in a CBC system with massive laser channels still remains a great challenge,
especially in the presence of heavy phase noise. Here, we propose an efficient phase locking method for a laser array with
more than 1000 channels by leveraging a deep convolutional neural network for the first time. The key insight is that, by
elegantly designing the generation strategy of training samples, the learning burden can be dramatically relieved from the
structured data and enables accurate prediction of the phase distribution. We demonstrate our method in a simulated tiled
aperture CBC system with dynamic phase noise and extend it to simultaneously generate OAM beams with a substantial
number of OAM modes.
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1. Introduction

Coherent beam combining (CBC) has been employed as a
powerful technique to surpass the inherent limitations of a
single conventional laser, which has generated significant
interest in industrial manufacturing, medical treatments,
scientific explorations, and other fields in the past decades [1].
More recently, the spotlight has increasingly turned towards
the utilization of CBC systems in the generation of structured
light [2–9], particularly in scenarios that require higher power
and open-environment light manipulation, such as free-space
optical communication [10–13]. Significantly, as the scale of
the laser array expands, it unlocks greater potential in several
key aspects including enhanced output power, increased
editing flexibility, and the ability to generate complex
structured light with high quality, which paves the way for
exploring new frontiers in related optical applications.

In a typical CBC system, sub-beams are combined
coherently by synchronizing the phase of each individual
channel in the laser array, thereby enhancing the combined
power [14–16]. Hindered by pernicious random phase noise
in CBC systems, particularly exacerbated within high-power
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configurations, the primary hurdle becomes the rapid and
precise detection of phases, which is essential to achieve
effective phase locking when the number of channels
escalates. With increasing combining scales and output
power, conventional phase control methods, such as stochastic
parallel gradient descent (SPGD) [17–19], encounter significant
challenges in achieving effective phase control, since the
speed of phase locking cannot keep pace with phase
variation. Chang et al. designed a phase locking module
based on the interferometric technique for a CBC system [20].
However, a reference beam must be integrated and perfectly
aligned with the overall setup to ensure proper functionality,
thereby adding extra complexity to the system. In recent
advances, deep learning (DL) approaches have demonstrated
substantial potential in phase prediction and control, attributed
to their exceptional capabilities in fast non-iterative forward
reasoning, straightforward implementation, and potential
for scaling up laser arrays [21]. By learning the nonlinear
mapping relations between combined far-field intensity
patterns and the corresponding phase distributions through
a prepared dataset, the network can provide accurate phase
predictions from various intensity images. In the last 5 years,
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Figure 1. Experimental setup for implementing the phase control for CBC
based on our deep learning method.

many investigations of DL methods have been presented to
realize tiled aperture CBC systems [22–31]. In 2019, Hou et
al. introduced the supervised learning-based DL method
to CBC for the first time [22]. A well-trained convolutional
neural network (CNN) VGG-16 was utilized to predict the
phase error of the 7-channel and 19-channel CBC systems.
Subsequently in 2020, a 12-channel phase-locked system
based on two-stage phase control was demonstrated for the
generation of vortex beams with orbital angular momentum
(OAM), integrating the DL and SPGD methods [6]. In 2021,
Wang et al. implemented an 81-channel CBC based on a
9×9 beam diffractive optical element (DOE) combiner with
a fully connected network [27]. In 2022, Zuo et al. used
residual networks to perform CBC on different scales (7-61
channels) based on spiral phase modulation [28].

Despite there have been a significant number of studies
on DL-based CBC, which is regarded as a potent method
for scalability [22], the combined scale is still limited to the
order of tens of channels. The upper limit of the number
of channels in a laser array that DL-based methods can
effectively support is still an open question, on which no
consensus has been reached yet. The primary challenge lies
in the fact that as the channel count increases to hundreds
or even thousands, accurately learning phase prediction
from a single complex pattern image becomes exceedingly
difficult [21,22]. The training strategy in previous works would
struggle to learn the mapping in such high-dimensional
spaces and fail to get convergence. Additionally, there has
been limited evaluation on performance under significant
dynamic noise, which is critical for the performance
evaluation on CBC systems.

In this study, we demonstrate the achievement of stable
phase locking in a simulated tiled aperture CBC system with
more than 1000 channels using deep learning for the first
time, to the best of our knowledge. The key observation is
that the random sampling used to generate training data in
previous work is highly difficult for neural networks to learn
the inherent mapping between far-field intensity profiles

and near-filed phase distributions. Instead, we introduce
a novel sampling strategy called ”ladder sampling”, which
can create structured training data and dramatically alleviate
the learning burden for the phase prediction in large-scale
laser arrays. We train a ResNet-50 network to estimate the
phase distribution from the structured data, thus to guide
the phase control of each beam unit under dynamic noise
and make them synchronized. Furthermore, we employ
our phase locking method in a thousand-channel array to
simultaneously generate OAM beams with a substantial
number of 18 modes, highlighting the great potential of our
approach for multi-channel OAM multiplexing in free-space
optical communications.

2. Methods

Figure 1 illustrates the optical configuration for executing the
CNN-based phase locking in a thousand-level CBC system,
forming the basis for the simulated experiments discussed in
this manuscript. The linearly polarized seed laser (SL) with a
wavelength of 1064 nm is amplified by a pre-amplifier (PA)
and split into N components via a 1×N fiber splitter (FS).
Each sub-beam then passes through a phase modulator (PM)
and a series of fiber amplifiers (AMPs). After power scaling,
the N beamlets are emitted from a hexagonally-structured
collimator (CO) array with an adjacent aperture spacing of
25 mm, and divided into two parts by a highly reflective
mirror (HRM1), where one part is used for detection, while
the other serves as the output. Then, after being reflected
by HRM2, the transmitted portion passes through a focusing
lens (FL) with a 20 m focal length and is subsequently
sampled by a beam splitter (BS). The upper path of the
light is utilized to observe the far-field pattern at the focal
plane to verify if efficient CBC is achieved, while the lower
path functions at a position 0.3 m behind the focal plane to
provide inputs to the phase control system, thus breaking
the data collision of the far-field intensity profile at the
focal plane. CCD2 captures the intensity of the combined
beams and the central 224 × 224 pixels of the recorded
pattern are input into the FPGA controller, which employs
our well-trained CNN and provides an accurate prediction
of the current phase distributions, continuously guiding the
PMs to correct the phase errors.

2.1. The design of CNN

The proposed CNN structure (Fig. 2(a)) is based on
the ResNet [32] architecture with modifications: the input
channels of the initial convolutional layer are reduced from
3 to 1 since the input far-field patterns are grayscale intensity
profiles. Furthermore, the output layer uses a Tanh activation
function to map the outputs within the range of [-1, 1], which
limits the output prediction into a particular phase range.
The CNN takes a 224×224 intensity pattern observed at a
non-focal plane as input. And the features utilized for phase
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Figure 2. Details of the constructed CNN. (a) overview architectures of ResNet-18 and ResNet-50. (b) BottleNeck structure of ResNet-50. (c) BasicBlock
structure of ResNet-18.

prediction are effectively extracted by various convolutional
layers at different stages of the model. In detail, the
pattern image is first processed by a convolutional layer
with a 7×7×64 kernel, followed by batch normalization
(BN), Rectified Linear Unit (ReLU) nonlinear activation and
MaxPooling. Subsequently, the feature map undergoes 4
stages comprising multiple residual blocks.

In ResNet-50, each stage consists of residual blocks
designed as “BottleNecks”. A BottleNeck (Fig. 2(b))
is structured with three layers: a 1×1 convolution for
dimensionality reduction, a 3×3 convolution serving as
the core processing unit, and another 1×1 convolution
for dimensionality restoration, all of which are followed
by activation of BN and ReLU. In particular, the input
to each block is combined with its output through a skip
connection, which aids in the direct propagation of gradients
and helps prevent the vanishing gradient issue. The number
of BottleNecks in the four stages is 3, 4, 6, and 3,
respectively, progressively increasing the depth from 64 to
2048 while reducing the spatial dimensions. In contrast,
the lightweight ResNet-18 architecture features 2 residual
blocks per stage, referred to as “BasicBlocks”, which
incorporate skip connections as well. Each BasicBlock
comprises two 3×3 convolution layers followed by BN and
ReLU, as illustrated in Fig. 2(c). And the depths of these
blocks progressively grow from 64 to 512 over the 4 stages.

Finally, a global average pooling layer (Avgpool) is
utilized to condense each unit of the feature map into a single
value, followed by a fully-connected layer (FC) with Tanh
activation to provide the prediction for the current relative
phase distribution.

The cost function for our CNN is characterized by the
mean-square error (MSE) between the predicted output and
the actual label. The MSE for a set of samples is given by

MSE =
1

N

N∑
j=1

∥∥∥∥y(j)output − y
(j)

label

∥∥∥∥2
2
, (1)

where N denotes the batch size and youtput and ylabel
represent the network output and the labeled phases for the
j-th input pattern, respectively. Furthermore, labels are
normalized within [−1,1] by dividing by π to match the
CNN outputs. By optimizing the network parameters based
on the MSE of the network outputs and the corresponding
ground-truth labels via gradient backpropagation, the network
could directly establish a nonlinear mapping between
far-field intensities and sub-beam phases.

2.2. Training data collection based on ladder sampling

In a tiled aperture CBC system, the emission unit of the array
is typically a linearly polarized fundamental Gaussian beam,
and the complex amplitude of the beam array at the source
plane is described by

E(x, y, z = 0;Φ) =
n∑

j=1

A0 · exp
[
−

(x− xj)
2 + (y − yj)

2

w2
0

]

·circ
[ √
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d/2

]
· exp(iϕj),

(2)

where (xj , yj), A0, w0, circ(·), ϕj and d represent the
position of the source, the amplitude, the width of the beam
waist, the circular function, the piston phase, and the aperture
diameter of the j-th beam, respectively. Moreover, (x, y)
indicates the coordinates of the source plane. In accordance
with Kirchhoff diffraction theory, the complex amplitude at
z = L can be described by the Fourier transform under the
paraxial approximation as

E(u, v, z = L;Φ) =
exp
[
ik
2L

(u2 + v2)
]

iλL
· F{

E(x, y, z = 0;Φ) · exp
[
ik

2
(
1

L
− 1

f
)(x2 + y2)

]}
.

(3)

The coordinates of the observation plane are represented
by (u, v), whereas λ, k, f , L, and F (·) correspond to
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Figure 3. Left: Phase distributions of the 20 subsets generated through ladder sampling. Each arc represents a subset. Center: Non-focal-plane, focal-plane
and source-plane visualization in different phase distributions in a 1027-channel laser array. (b1)-(b3) non-focal plane patterns in phase range of ±0.3π,
±0.7π and ±π, respectively. (c1)-(c3) The corresponding intensity profiles at focal-plane. (d1)-(d3) The corresponding near-field phase distributions to the
above far-field patterns. Right: Comparison of ladder sampling and random sampling strategies.

the wavelength, wave vector, focal length, propagation
distance, and the Fourier transform operation, respectively.
Consequently, the intensity profile captured by the CCD is
written as

I(u, v, z = L;Φ) = |E(u, v, z = L;Φ)|2 . (4)

The above CBC model is utilized to acquire a sufficient
number of training samples. And the parameter settings of
our 1027-channel hexagonal CBC system are λ = 1064 nm,
w0 = 10.24 mm, d = 23 mm, and f = 20 m. In CBC
systems, the power in the bucket (PIB) metric evaluates the
combined results by calculating the energy encircled in the
Airy disk with a solid angle of 1.22λ/D, where D is the
diameter of the array. The normalized PIB, or combining
efficiency, is derived by comparing the current PIB to the
ideal PIB.

Driven by the intrinsic characteristics of the Fourier
transform, diverse phase distributions, such as global
phase shift and conjugate inversion, can result in identical
far-field intensity profiles at the focal plane. This attribute
complicates the inverse problem into a one-to-many mapping,
which is not appropriate for network training. Consequently,
we utilize the phases relative to the central beam, to annotate
our dataset, thus removing the influence of global phase
shift. Additionally, all our far-field patterns are generated
at the non-focal plane, situated 0.3 m behind the focal plane,
to eliminate the data collision associated with conjugate
inversion.

In previous DL-based CBC work, the training data
is commonly generated by randomly sampling a phase
distribution for the laser arrays. That means the phase of
each laser channel is a random value independently sampled
from a 2π period. However, we observed that this strategy
suffers from two major problems. First, the variation in PIB
of the training samples is limited to a very narrow range,
usually between 0 and 0.2. For instance, in a 1027-channel
CBC system, the normalized PIB at the focal plane is even

worse with random sampling, and PIB consistently falls
below 0.02. Consequently, there is a noticeable scarcity
of intensity pattern data within the normalized PIB interval
from 0.02 to 1.0, which hinders the network in learning how
to work under these scenarios when the system encounters,
as the network never ”sees” such intensity patterns. Second,
we found that even random sampling could work for CBC
systems with fewer than 100 channels, it relies on ”luckily
seeing” similar local patterns of higher PIB from a vast
quantity of data generated by random sampling. But when
the scale increases to hundreds and thousands, the learning
burden becomes extremely difficult as a similar local pattern
is rarely seen and much more tiny, leading to scarcely
possible detection and recognition.

To guarantee a training dataset with adequate diversity
for training purposes, we introduce a ”ladder sampling”
strategy designed to arrange phase distributions into multiple
designated interval ranges. The patterns generated with our
ladder sampling strategy comprehensively span the entire
normalized PIB range from 0 to 1, greatly improving the
diversity in the dataset. Specifically, by evenly dividing the
2π phase range into 20 uniform incremental intervals, we
create 20 subsets to form the complete dataset (Fig. 3(a)).
For example, the far-field patterns in the first subset are
generated within the phase range of [-π/20, π/20], and
those in the second subset are within [-π/10, π/10]. The
phase distribution range of the sub-beams between each
subset increases uniformly until it spans the entire [−π, π].
By restricting the phase distribution within a certain range
(Figs. 3(d1)- 3(d3)), far-field patterns in various states are
effectively obtained (Figs. 3(b1)- 3(b3), Figs. 3(c1)- 3(c3)).
In addition, the size of the dataset varies on the combining
scale as training at a larger scale typically requires more
samples due to the increased complexity of the combined
patterns. In this study, for a 1027-channel CBC system,
we generated a total of 350K samples for the dataset,
which means that each subset contains 17.5K samples. The
comparison of random and ladder sampling is shown in

Accepted Manuscript 

https://doi.org/10.1017/hpl.2025.10048 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2025.10048


Efficient Phase Locking in Massive Laser Arrays with Deep Learning from Structured Data 5

Figure 4. Phase locking results of 1027-channel CBC system. (a) Normalized PIB variation of the system with dynamic phase noise in open and closed loop.
(b) Phase-locking performances of networks with and without cuDNN and TensorRT accelerations. (Phase noise: 5000 Hz ±0.2 rad)

Fig. 3(e). Detailed analysis is discussed in the next section.

3. Results and Discussion

3.1. Phase locking of a thousand-channel laser array

We train the ResNet-50 with 350K samples for phase
prediction, and generate another 3.5K samples for validation.
During training, with a batch size of 32, the parameters
of our CNN are iteratively updated by backpropagation
using the Adam optimizer, which merges the advantages of
AdaGrad and RMSProp to ensure rapid convergence and
robust generalization. In addition, a learning rate decay
strategy is employed, based on the loss of the validation set,
to guide network convergence. In detail, the initial learning
rate of 0.0001 will be reduced to one-tenth of itself if the loss
of the validation dataset does not decrease over the past five
epochs. Our CNN is built using the PyTorch 3.11 library,
and the training is executed on a single NVIDIA GeForce
RTX 3090 GPU.

After training, we evaluate our phase prediction by
employing a dynamic simulation of a 1027-channel CBC
system, capable of generating phase noise at extremely
high frequencies and dynamically demonstrating the phase
locking mechanism. Starting with a random initial phase
distribution, perturbative phase noise is constantly introduced
to each beam, characterized by user-specified parameters for
frequency and amplitude intervals. The implementation of
phase locking is achieved by compensating for the relative
phase discrepancies perpetually disrupted by stochastic
noise, which requires both precise phase prediction and
rapid corrective action. If the response time of phase
compensation significantly falls behind the change of
dynamic noise, aligning the phase of each component
becomes impossible. To improve the speed of forward
reasoning of our trained ResNet-50, we adopt cuDNN, a
GPU-accelerated library, and TensorRT for FP16 half-precision

calculation, which improves the inference of networks on
NVIDIA GPUs, and significantly reduces the cost of a
single-time phase prediction from 6.80 ms to 0.62 ms.

For systems suffering from dynamic phase noise interference
with a frequency of 5000 Hz and a random amplitude range
of ±0.2 rad, the variation of normalized PIB and 4 typical
corresponding focal-plane patterns are shown in Fig. 4(a) in
both open and closed loop configurations. During the open
loop, the normalized PIB remains low and fluctuates with the
drifting far-field patterns. Conversely, in the closed loop, the
normalized PIB exhibits significant enhancement, sustaining
an average value of 0.94, with negligible changes observed
in the far-field intensity profile.

In addition, we evaluate the performances of our CNN at
varying levels of phase noise to demonstrate the robustness
of our network. And the corresponding results of the average
PIB values are shown in Table 1. It can be observed that the
ideal CBC is almost attained, with a PIB value approaching
1.0 in the low-level phase noise scenario. With an increase
in both frequency and amplitude of the noise, the efficiency
of the combination gradually diminishes. However, it still
upholds a relatively efficient coherent state compared to the
open-loop configuration. Furthermore, Table 2 provides the
root mean square (RMS) values that illustrate the intensity
stability at different levels of phase noise. Specifically, the
RMS stability is obtained by calculating the ratio of the
root-mean-square of the set of PIB deviations to the average
PIB value. PIB deviations refer to the differences between
individual observed PIB values and the mean. The results
demonstrate that our phase locking network has outstanding
performance in intensity stability even under heavy phase
noise.

To demonstrate the necessity of employing cuDNN and
TensorRT for network acceleration, we evaluate the phase
locking performance under various conditions. As shown in
Fig. 4(b), without the application of acceleration techniques,
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Table 1. Average normalized PIB of 1027-channel CBC system with dynamic phase noise of different levels.

Freq(Hz)
Amp(Rad) ±0.1 ±0.2 ±0.3 ±0.4 ±0.5

1000 0.997 0.990 0.979 0.963 0.943
2000 0.994 0.979 0.954 0.920 0.878
5000 0.983 0.942 0.870 0.783 0.678

Table 2. RMS values for the intensity stability of 1027-channel CBC system with dynamic phase noise of different levels.

Freq(Hz)
Amp(Rad) ±0.1 ±0.2 ±0.3 ±0.4 ±0.5

1000 0.15% 0.61% 1.39% 2.49% 3.92%
2000 0.17% 0.67% 1.51% 2.70% 4.22%
5000 0.38% 1.51% 3.39% 6.12% 9.48%

the time cost for a single network response on the GPU is
6.8 ms, resulting in a significantly oscillating phase locking
performance averaging 0.49 in the closed loop configuration.
In contrast, the deployment of the network with cuDNN
and TensorRT in FP16 half-precision calculating reduces
the response time to 0.62 ms. This substantial decrease in
response time effectively mitigates the impact of phase noise
on the system, thereby achieving a more stable phase locking
performance, with the PIB value improving to approximately

Figure 5. Phase locking performances of the DL method and SPGD
algorithms in the 1027-channel CBC system with dynamic phase noise from
real high-power fiber amplifiers.

0.94.
Furthermore, we investigate the network response and

phase locking performance under different acceleration
strategies. As presented in Table 3, it can be seen that
the efficient combination of cuDNN, TensorRT, and FP16
precision inference substantially boosts network inference
performance, consequently improving the resistance of the
system to phase noise and its overall robustness.

To offer another substantial evidence of the advantages of
DL techniques in large-scale CBC systems, we evaluate the
performance of our approach against the SPGD algorithm
in Fig. 5, using the phase noise data collected from a real
high-power fiber amplifier operating under 1 KHz [20]. The
configuration of SPGD algorithms is set according to [17],
with a 100 KHz execution speed, a two-sided perturbation
at an amplitude of 0.05 rad and a gain coefficient of 180.
The evaluation function is calculated as the combined power
within half the size of the central main lobe. It is clear that
our approach significantly surpasses the SPGD algorithm in
terms of phase locking. Specifically, our CNN attains a
nearly optimal phase locking in 0.01 seconds, featuring an
average normalized PIB value of 0.93 in the closed loop. In
contrast, the SPGD algorithm struggles with dynamic phase
noise, causing the normalized PIB to fluctuate and remain
significantly lower, without any notable improvement. In
addition, a separate ResNet-50 is trained using the traditional
random sampling dataset [6], consisting of a total of 3.5
million training patterns, which is ten times greater than

Table 3. Time consumption and phase-locking performance of networks under different acceleration strategies. (Phase noise: 5000 Hz ±0.2 rad).

Acceleration Strategies GPU GPU+cuDNN GPU+cuDNN
+TensorRT

GPU+cuDNN
+TensorRT+FP16

Response Time (ms) 6.80 5.23 1.48 0.62
Normalized PIB 0.491 0.577 0.862 0.942

Table 4. Average normalized PIB of CBC systems with different network structures (Phase noise: 5000 Hz ±0.2 rad).

Network
Channel 127

(10K samples)
397

(100K samples)
1027

(350K samples)
ResNet-18 0.943 0.962 0.552
ResNet-50 0.047 0.928 0.943
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ladder sampling. However, the network struggles to achieve
convergence during the training stage and performs poorly
in the phase locking test. The phase locking results indicate
that the deep learning method with the traditional random
sampling method completely fails in such a massive CBC
system.

3.2. The influence of sample generation

To demonstrate the efficacy of our sample generation
methodology for training data, we present a comparative
analysis of the phase locking performance of a hexagonal
61-channel CBC system, which is subject to random phase
noise of 5000 Hz and ±0.2 rad random phase noise, using the
ResNet-18 framework trained on datasets produced through
different strategies.

In prior studies on DL-based CBC, the phase profiles of
the training samples are conventionally generated through
random sampling, whereby the phase of each individual
sub-beam is independently and randomly sampled from
−π to π. In contrast, we implemented a ladder sampling
methodology in which training data is synthesized by
sampling from multiple intervals that are uniformly partitioned
in the entire 2π phase range, thus producing a diverse array
of far-field patterns. These two generation strategies will
be referred to as random sampling and ladder sampling,
respectively.

We create 4 groups of datasets for each strategy, with
sample numbers of 5K, 10K, 100K, and 200K, respectively.
Specifically, the 2π phase range is divided into 10 intervals
for the ladder sampling strategy in this experiment. The
corresponding variation of the normalized PIB in the closed
loop is presented in Figs. 6(a)- 6(d). Figures 6(e)- 6(h)
illustrate the distribution of normalized PIB for training
samples, indicating the diversity of far-field patterns at
the focal plane. Our method generates samples that
comprehensively span the entire range of the PIB axis from 0
to 1, whereas the random method produces scattered patterns
with low PIB values.

Networks trained using ladder sampling exhibit efficient
CBC performance, with average normalized PIB values
consistently exceeding 0.95. Even with a very small dataset
of 5K samples, our ladder sampling allows the DL method to
reach an average PIB of 0.953, while random sampling can
only offer an average PIB of 0.12 (Figs. 6(a)). Furthermore,
for networks trained with random sampling, effective CBC
can only be achievable with 200K samples, yielding an
average PIB of 0.879, still significantly lower than the
combining efficiency observed when ladder sampling is
applied to a 5K dataset, which is 40 times smaller. This
suggests that models trained on datasets produced by our
method exhibit superior generalization capabilities, despite a
significantly smaller volume of training data. Moreover, our
observations indicate that with our data generation strategy,
the variation in combined PIBs between training with 5K

and 200K samples is approximately 0.01. Furthermore, even
when increasing the training data size from 200K to 300K
samples, the normalized PIB only improves by a mere 0.001.
These results demonstrate that our data generation method is
capable of producing highly diverse far-field patterns with a
very limited amount of data, thereby significantly reducing
the volume of data for effective network training.

As noted previously, random sampling leads to a heavy
missing of patterns associated with higher PIB values. Its
effectiveness highly depends on the fortunate occurrence of
encountering similar local patterns of higher PIB within the
extensive amount of randomly generated data. Here, we also
illustrate this phenomenon in Fig. 7(a1)-Fig. 7(a5) for a brief
demonstration in the same 61-channel laser array setting.
We maintain a constant phase for a beam sub-set within a
hexagonal region on the emission plane, while the phase
outside can vary randomly. As a result, it is evident that
the far-field patterns corresponding to the beams within the
hexagonal area exhibit a similar structure in a local region
of the non-focal plane (Fig. 7(b1)-Fig. 7(b5), highlighted
by white rectangles). This suggests a strong correlation
between the phase distribution of a sub-set of laser sources
and its corresponding local pattern in the non-focal plane.
Thus, CNN is trained to utilize the local information of
these patterns to make accurate predictions regarding the
overall phase distribution on the emission plane. In contrast
to traditional sampling strategies, which require the network
to train on a vast volume of data to generate various local
patterns similar to those across larger PIB ranges, our
approach significantly reduces the data volume requirement.
Specifically, our ladder sampling strategy directly presents
different kinds of intensity structure spanning from PIB 0 to
1, enabling efficiently extraction of useful and universally
valid features. As a result, our sampling demonstrates
substantially improved phase-locking performance with a
much smaller training dataset compared to conventional
methods.

3.3. The influence of CNN architecture

Selecting an appropriate network structure according to
varying combining scales is crucial for achieving effective
CBC. To elucidate the influence of network architecture, we
compare the beam combining outcomes of the 127-channel,
397-channel, and 1027-channel CBC systems utilizing
ResNet-18 and ResNet-50, each trained on the same dataset
corresponding to its scale. The dataset sizes are 10K, 100K,
and 350K, respectively, for the three specified combining
scales. And the respective phase locking results for the two
networks are displayed in Table 4.

Within the 127-channel system, ResNet-50 does not
succeed in achieving phase locking, whereas ResNet-18
attains an average normalized PIB of 0.934. The predominant
cause for this disparity is the limited size of the dataset for
the given task, in conjunction with the deeper architecture
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Figure 6. Phase locking results of 61-channel system with dynamic phase noise under different data generation and volume. (a)-(d) PIB variation in closed
loop with ResNet-18 trained on 5K, 10K, 100K and 200K samples for each generating strategy, respectively. (e)-(h) PIB distributions of the corresponding
training samples for (a)-(d).

Figure 7. Local correlation between far-field patterns and near-field phase distributions. (a1)-(a5) Five near-field phase maps containing locally equal phase
distributions within the hexagonal areas. (b1)-(b5) The corresponding far-field patterns of (a1)-(a5) with similar intensity profiles in the rectangular areas.

of ResNet-50 relative to ResNet-18. This difference has
led to overfitting during the training process. Consequently,
an increase in the volume of training data is necessary for
ResNet-50 to achieve efficient CBC within the 127-element
system.

In particular, in the context of the 397-channel system,
ResNet-18 exhibits a better combining efficiency compared
to ResNet-50. This is attributed to the fact that, on a smaller
scale, both networks are sufficiently powerful to execute
rational phase prediction after being trained on adequate
datasets. However, ResNet-18 comprises fewer layers
than ResNet-50, facilitating a faster forward propagation
process and thus reducing computational time. In the
present experiment, ResNet-18 requires an average of

0.34 ms to complete a single-time phase prediction, while
ResNet-50 requires 0.62 ms. Consequently, the expedited
response of ResNet-18 diminishes the cumulative phase
noise interference to which the system is exposed during
a single-time phase modulation, thereby enhancing the
system’s combining efficiency compared to that achieved
with ResNet-50.

For the 1027-channel system, the results obtained using
ResNet-50 indicate that 350K samples are sufficient for
effective training and demonstrate superior learning capabilities
with more complicated data compared to ResNet-18.
Furthermore, even with an increase in the training samples
to 500K for ResNet-18, the normalized PIB remains within
the range of [0.5, 0.6], thus substantiating that it lacks the
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Figure 8. A thousand-channel CBC system for multi-mode OAM superpositions. (a) Phase distribution of the laser array. (b) The focal pattern of (a). (c)
The variation of far-field mode purities in phase locked and unlocked states. (d) The comparison of far-field OAM spectrums under different states.

learning ability in complex situations of 1027-channel CBC
system.

In summary, for smaller combining scales, deeper models
usually require more training data to avoid overfitting. When
samples are sufficiently diverse, the learning capacity of the
chosen network becomes the main factor that influences
the phase locking performance, especially for large-scale
combining. Networks with deeper structures usually
achieve better performance but with more computational
time consumption, which may degrade the efficiency of
combining. Therefore, it is crucial to choose a suitable
network structure that balances data learning capacity
and phase controlling bandwidth according to different
combining scales.

3.4. Generation of multi-mode OAMs

Structured light with specific spatial intensity and phase
distributions has found widespread applications in various
fields, including particle manipulation, optical communication,
and imaging [3]. Recent studies have indicated that the
generation of specific structured light can be achieved
by introducing particular phase distributions into CBC
systems. This multi-beam combining approach effectively
addresses the challenges associated with traditional methods
of structured light generation, such as low output power and
limited speed in mode switching [33].

However, the number of array beams is a crucial factor
that influences the quality of structured beam generation.
To generate structured light with rich phase variations and
complex structures, it is often necessary to increase the
number of source channels in a laser array. For instance,
in the case of OAM beams, relevant studies have indicated
that to generate a vortex beam with a topological charge of
l, the outermost layer of the array must contain at least 3l
beams [34,35]. Otherwise, a beam of adequate quality cannot
be guaranteed.

In this study, our CNN effectively enables phase control
over a coherent array consisting of thousands of channels,
paving the way for the generation of high-power vortex
beams with large topological charges. Furthermore, the
nested structure of the multi-layer beam arrays offers an
efficient solution for OAM multiplexing in free-space optical
communication [11]. Here, we validate the feasibility of a
large-scale CBC system in the generation of complex vortex
superpositions. Specifically, we employ an array consisting
of 1026 beams arranged in 18 circular layers, with each layer
containing different topological charges (designated as 1 to
18 respectively in Fig. 8(a)) encoded as helical phases to
generate complex superpositions in the far field (Fig. 8(b)).
In detail, the innermost layer contains 6 beams, while the
outermost layer comprises 108 beams, which enables the
generation of vortex beams with topological charges ranging
from -36 to 36 and allows for the flexible implementation of
up to 18 modes of OAM multiplexing.

To illustrate the importance of phase locking in this
application, we present a comparison of the vortex mode
purity in the far field under both phase-locked and unlocked
states, as demonstrated in Fig. 8(c). Mathematically, the
mode purity is quantified by the modulus of the overlap
integral between the received mode and the ideal mode. It
is evident that, in the absence of phase locking, the beam
profile at the receiving plane undergoes severe distortion
due to dynamic phase noise, ultimately leading to complete
dispersion. In contrast, our efficient phase locking system
consistently corrects piston phase errors through the trained
CNN, preserving a stable vortex superposition pattern in
which the purity of the mode remains consistently at an
average of 97.8%.

Furthermore, the far-field OAM spectrums in different
states are shown in Fig. 8(d). In the ideal state, the OAM
spectrum is expected to display a progressively increasing
trend in intensity, corresponding to the far-field pattern that
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includes OAM modes with topological charges spanning
from 1 to 18. However, without efficient phase locking, the
OAM modes responsible for conveying information cannot
be generated correctly and become uncontrollable due to
continuous noise interference. That means the generated
OAM spectrum would follow a randomly fluctuating
distribution, even with unexpected messy modes totally
outside of the topological charges range from 1 to 18,
far away from the pre-designed OAM modes that convey
accurate information. In contrast, employing our phase
locking technique can effectively generate the OAM modes
pretty close to the ideal state, thereby guaranteeing the
accurate encoding for the information to be transmitted.

4. Conclusion

In an effort to answer the number of channels that can be
effectively supported by DL-based methodologies in CBC
systems, we have successfully implemented phase locking
in a laser array comprising over 1000 channels with a deep
CNN for the first time. By leveraging the ladder sampling
strategy to generate training data and GPU-accelerated
technologies, our approach achieves superior performance in
phase locking for CBC systems even under heavy dynamic
phase noise. The impacts of various sampling strategies
for generating training data, along with the evaluation of
different neural networks, are analyzed in detail to provide a
more comprehensive overview for DL-based CBC systems.
Additionally, we illustrate that our effective phase locking
approach in a CBC system allows for the generation of
multi-mode OAM beams, presenting significant potential
for high-power structured light generation.
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