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Direct numerical simulations of temporally developing mixing layers have been performed
to investigate the effects of compressibility on statistics and structures near the interfaces
of high- and low-speed large-scale structures (LSSs), covering a range of convective Mach
numbers from Mc = 0.2 to 1.8 and Taylor Reynolds numbers up to 290. The interfaces of
LSSs are directly defined by the isosurface of zero fluctuating streamwise velocity. The
characteristic velocity jump at the interfaces grows rapidly in the transition stage and then
decreases until reaching a gradual self-similar stage. The evolution of velocity jump is
evidently delayed as the convective Mach number increases. The interface layer is formed
by the shearing motion of neighbouring LSSs. A small vortical motion characterized by the
Kolmogorov scale is induced in the interface layer by shear-dominated outer regions. The
strengths of outer shearing motion and central vortical motion are greater at the leading
edge, but smaller at the trailing edge, which is also reflected in a larger velocity jump
at the leading edge. As the convective Mach number increases, the small-scale vortical
structure is obviously suppressed by compressibility. At high convective Mach number
Mc = 1.8, the compressive shear-dominated outer regions are linked with a sheet-like
structure passing through the centre of the expansion region corresponding to a small-scale
vortical structure. The compressibility and shearing strength near the interface are highly
dependent on the interface orientation.
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1. Introduction

One of the essential characteristics of turbulence is an increasing scale separation between
the integral and small scales of the flow as the Reynolds number increases (Shen &
Warhaft 2000; Smits, McKeon & Marusic 2011; Lee & Moser 2019). In wall-bounded
turbulent flow, high- and low-speed large-scale structures (LSSs) residing in the log-law
layer have been extensively studied in the last two decades (Ganapathisubramani et al.
2005; Marusic, Mathis & Hutchins 2010; Smits et al. 2011; Jiménez 2018), and they have
been shown to carry a significant fraction of turbulent kinetic energy and Reynolds shear
stress and evidently interact with the small-scale structures near the wall. These LSSs in a
fluctuating velocity field are found to be equivalent to uniform momentum zones (UMZs),
regions of relatively similar streamwise velocity with coherence in the streamwise and
wall-normal directions (Adrian, Meinhart & Tonkins 2000; Saxton-Fox & McKeon 2017;
Gul, Elsinga & Westerweel 2020). Recently, a notable model for LSSs presented by
Saxton-Fox & McKeon (2017) has demonstrated a capacity to reproduce the presence of
UMZs within the instantaneous streamwise velocity field of turbulent boundary layers. In
the turbulent mixing layers, the existence of streamwise elongated high- and low-speed
LSSs were also confirmed in stably stratified shear layers by Watanabe et al. (2019) and
Watanabe & Nagata (2021) and in compressible turbulent mixing layers by Messersmith
& Dutton (1996), Pirozzoli et al. (2015) and Wang, Wang & Chen (2022), due to the strong
stabilizing effects of stable density stratification and compressibility, respectively. These
LSSs highly resemble turbulent structures found in wall turbulence.

As Reynolds number increases, the large energy-containing scales and small dissipative
scales become increasingly separated (Pope 2000). In wall turbulence, the quasistreamwise
vortices and near-wall streaks are dominant in the near wall region characterized by the
viscous length scale (Robinson 1991; Smits et al. 2011; Jiménez 2013). Far away from
the wall or in the outer layer, a large proportion of small-scale structures reside in the
near vicinity of UMZ edges, while they are sparse within the UMZs which accounts for
a significantly larger volume fraction (Adrian et al. 2000; Eisma et al. 2015; De Silva
et al. 2017). The interaction between large- and small-scale structures also occurs near the
interfaces of the high- and low-speed LSSs, which is prevalent in wall-bounded turbulence,
due to the superposition and amplitude-modulation effects (Marusic et al. 2010; Mathis,
Hutchins & Marusic 2011; Agostini & Leschziner 2014). In compressible turbulent mixing
layers, Wang et al. (2022) found that the small-scale vortical structures have an apparent
preference for clustering near the top of the large-scale low-speed regions, which is directly
associated with high-shearing motions near the upper portion of the low-speed structures.

In the present work, we focus our attention on the interfaces of high- and low-speed
LSSs within the turbulent region of compressible turbulent mixing layers, which have not
received significant attention to date, particularly at high levels of compressibility. The
interfaces of UMZs have been investigated as internal shear layers (ISLs) with intense
vorticity associated with strong jumps of several flow statistics, including turbulent shear
stress, streamwise and wall-normal velocities, and have been studied widely (Meinhart
& Adrian 1995; Kwon et al. 2014; de Silva, Hutchins & Marusic 2016; Fan et al. 2019;
Chen, Chung & Wan 2020). The turbulent/non-turbulent interface (TNTI), separating
the turbulent region from the irrotational region, is considered as the outer edge of the
UMZs (De Silva et al. 2017; Fan et al. 2019). The ISLs exhibit velocity jump, scaling
of thickness and vortical structures, similar to TNTI in both turbulent boundary layers
(Eisma et al. 2015; De Silva et al. 2017) and free shear turbulence (Fiscaletti, Buxton &
Attili 2021; Hayashi, Watanabe & Nagata 2021), since they are dominated by the smallest
vortical structures characterized by the Kolmogorov length scale. According to several
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Interfaces of large-scale structures

experimental and numerical investigations, the thickness of the ISLs is nearly equal to 10
times the Kolmogorov length scale η, and the streamwise velocity jump across the layer is
proportional to Kolmogorov velocity uη (De Silva et al. 2017; Gul et al. 2020; Watanabe,
Tanaka & Nagata 2020; Hayashi et al. 2021). When normalized by the Kolmogorov
scales, the characteristics of the ISLs exhibit consistent behaviour across various types
of turbulence, including homogeneous isotropic turbulence, free shear turbulence and
wall-bounded turbulence. This indicates that the ISL may be an important general feature
of turbulence. (Elsinga & Marusic 2010; Ishihara, Kaneda & Hunt 2013; Elsinga et al.
2017; Fiscaletti et al. 2021; Hayashi et al. 2021; Heisel et al. 2021). The presence of mean
shear leads to the persistence of coherent structures and imparts a preferential direction of
the small-scale shear layers, which is a distinct feature of both free shear and wall-bounded
turbulence (Fiscaletti et al. 2021; Heisel et al. 2021).

As part of the edge of UMZs, the ISLs are usually detected by two different techniques,
including histograms of the instantaneous streamwise velocity (Adrian et al. 2000; Fan
et al. 2019) and triple decomposition of vorticity (Kolář 2007). The former approach
relies on the histogram of the instantaneous streamwise velocity determined over a
wall-normal–streamwise plane at a certain spanwise position, while the latter relies on
distinguishing the shear through the velocity gradient tensor. Based on the time-averaged
quantities, the high- and low-speed LSSs can be detected by the premultiplied energy
spectra (Kim & Adrian 1999; Monty et al. 2009; Watanabe & Nagata 2021), the two-point
correlation of the fluctuating streamwise velocity (Ganapathisubramani et al. 2005; Monty
et al. 2007; Wang et al. 2022) and proper orthogonal decomposition (Baltzer, Adrian & Wu
2013; Pirozzoli et al. 2015). In the instantaneous flow field, individual high- and low-speed
LSSs are extracted as the isosurfaces of the fluctuating streamwise velocity that exceed a
threshold value (Dennis & Nickels 2011; Lee et al. 2014; Deng et al. 2018). A smoothing
filter needs to be adopted to exclude any small-scale features. However, the interfaces of
the high- and low-speed LSSs have rarely been identified and analysed in the fluctuating
flow field.

Compared with the extensive works for analysing the TNTI and ISL in incompressible
turbulence, fewer works have been done for compressible flows. In compressible mixing
layers, Rossmann, Mungal & Hanson (2002) and Zhou, He & Shen (2012) suggested
that three-dimensional shocklets are formed at TNTI, namely the boundary of the large
structures acting as bluff bodies embedded in supersonic flow when the convective Mach
number is higher than 0.7. Jahanbakhshi & Madnia (2016) found that the percentage of
the compressed regions on the TNTI decreases as the convective Mach number increases,
resulting in a reduction of the average entrained mass flux and the surface area of the
TNTI. The conditional average of dilatation reported by Nagata, Watanabe & Nagata
(2018) showed that a fluid expansion occurs at TNTI on average and is accompanied
by a strong compression on the turbulent side. Furthermore, they found that the fluid
compression at the leading edge of TNTI is stronger than at the trailing edge of TNTI.
Compressibility also changes the local flow topology near the TNTI in compressible
mixing layers (Vaghefi & Madnia 2015). Recently, Zhang, Watanabe & Nagata (2018)
studied the TNTI in supersonic temporally evolving turbulent boundary layers at incoming
Mach number 1.6. They showed that the compressibility effects are almost negligible for
the entrainment near the TNTI because of the low level of compressibility in the outer
region of the turbulent boundary layer. To the best of the authors’ knowledge, the study of
the compressibility at the internal interfaces in compressible turbulent mixing layers has
never been done.
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The purpose of this paper is to explore the compressibility effects on the internal
interfaces of LSSs in the turbulent mixing layers at various Mach numbers. The interfaces
of two neighbouring high- and low-speed LSSs are directly defined as the isosurface of
the velocity fluctuation u′ = 0. The general properties of the interface are provided to
examine the rationality of this definition. The turbulent structures and compressibility
near the interfaces of LSSs are investigated through conditionally averaging the turbulent
flow fields. Meanwhile, the effect of interface orientation is analysed to gain a better
understanding of the interaction between large- and small-scale structures. The paper is
organized as follows. A brief description of the direct numerical simulation (DNS) of
compressible turbulent mixing layers is provided in § 2. In § 3, we then provide in detail
our results. Finally, conclusions are drawn in § 4.

2. Direct numerical simulation of compressible mixing layers

The DNS data of a temporally evolving compressible mixing layer for three convective
Mach numbers are obtained by solving the unsteady, three-dimensional, compressible
Navier–Stokes equations in the non-dimensional conservative form. In this section, a brief
description of the numerical simulations is presented. Figure 1 is a schematic of the flow
configuration considered in the present work. The coordinate system x, y and z refers to
the streamwise, vertical and spanwise directions, respectively, and u, v and w denote the
instantaneous velocity components in the corresponding directions. The computational
domain with lengths Lx × Ly × Lz = 314δ0

θ × 314δ0
θ × 157δ0

θ in the streamwise, vertical
and spanwise directions is discretized uniformly with the number of grid points equal
to Nx × Ny × Nz = 1024 × 1024 × 512, where δ0

θ is the initial momentum thickness
(Vreman, Sandham & Luo 1996). Boundary conditions are periodic in the homogeneous
streamwise and spanwise directions. To allow periodic configuration in the vertical
direction, the mean streamwise velocity is initialized by a hyperbolic tangent profile with
two shear layers (one is located at the middle and the other at the boundary of transverse
direction),

ũ = 1
2
�U

[
tanh

(
y

2Cδδ0
θ

)
− tanh

(
y + Ly/2

2Cδδ0
θ

)
+ tanh

(
y − Ly/2

2Cδδ0
θ

)]
, (2.1)

where ũ is the Favre average of streamwise velocity, and Cδ is an adjustment constant that is
determined by the initial momentum thickness δ0

θ (Vaghefi 2014; Vaghefi & Madnia 2015;
Wang et al. 2022). The mean vertical and spanwise velocities are set to zero. The initial
temperature is obtained from the Busemann–Crocco relationship (Ragab & Wu 1989).
The pressure field is uniform. The density field is acquired from the ideal gas equation of
state. A numerical diffusion zone (red-dashed rectangles in figure 1) is applied near the
vertical boundary, which can reduce the intensity of possible disturbances at the vertical
boundary such that there is a negligible effect on the mixing layer (Reckinger, Livescu &
Vasilyev 2016). In order to accelerate the transition to turbulence, a spatially correlated
perturbation velocity field obtained by the digital filter method (Klein, Sadiki & Janicka
2003) is superposed on mean velocities. The filtering length is chosen as the vorticity
thickness, computed by δω = �U/(dũ/dy)max, in each direction.

The numerical simulation has been performed for three different convective Mach
numbers, Mc = 0.2, 0.8, 1.8, using a high-order hybrid numerical scheme proposed by
Wang et al. (2010). The convective Mach number is defined as Mc = �U/(2c∞), where
�U is the free stream velocity difference across the shear layer and c∞ is the speed
of sound in the free stream, respectively. Several key non-dimensional flow parameters
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Figure 1. Schematic of the temporally evolving shear layer. The black solid curve represents the mean velocity
profile, while the contour map displays the instantaneous temperature in the x–y plane. The red-dashed
rectangles denote the boundaries of the sponge layers at the vertical boundary.

Case Mc τ Mt Reθ Reλ Reω δθ /δω Θrms ωrms η/�x lx/Lx lz/Lz

M02 0.2 τ0 = 625 0.10 3768 266 19 960 0.189 0.014 11.575 0.42 0.24 0.12
τf = 875 0.09 4798 292 25 166 0.191 0.013 12.414 0.46 0.28 0.14

M08 0.8 τ0 = 750 0.34 2990 202 17 230 0.176 0.158 9.771 0.49 0.32 0.08
τf = 1250 0.31 4546 236 26 028 0.175 0.150 10.858 0.56 0.49 0.10

M18 1.8 τ0 = 1250 0.65 3036 200 21 158 0.142 1.027 7.867 0.86 0.36 0.14
τf = 2250 0.57 5232 234 38 094 0.136 0.906 9.292 1.05 0.60 0.17

Table 1. Simulation parameters at the beginning (τ = τ0) and end (τ = τf ) of the self-similar period. The
values of Mt, Reλ, K, ω, Θrms, η, lx and lz are obtained at y = 0.

corresponding to the self-similar period at the centreline are presented in table 1. The
self-similar period is carefully determined by analysing the time evolution of the mean
velocity, Reynolds stresses and integrated transfer terms of turbulent kinetic energy. The
resulting time duration of the self-similar period is from τ0 to τf . The statistics are
functions of normalized time τ = t�U/δ0

θ . The turbulent Mach number Mt = √
2K/c

ranges from 0.1 to 0.6, where K is the turbulent kinetic energy and c is the average speed
of sound. The lowest turbulent Mach number case corresponds to a nearly incompressible
condition, while the highest turbulent Mach number case almost approaches the strongest
compressibility effects, as reported in the literature of numerical simulations (Pantano
& Sarkar 2002; Arun et al. 2019; Wang et al. 2022), to the best of our knowledge. The
Reynolds numbers based on the momentum thickness Reθ , the vorticity thickness Reω and
the Taylor microscale Reλ are defined as

Reθ = ρ∞�Uδθ
μ∞

, Reω = ρ∞�Uδω
μ∞

, Reλ = 2K

√
5ρ
με
, (2.2a–c)
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respectively, where ε is the turbulent kinetic energy dissipation rate per unit mass, and μ is
the viscosity coefficient. The initial momentum thickness Reynolds number is Reθ = 320.
The integral length scales in the streamwise direction (lx) and spanwise direction (lz) are
sufficiently small compared with the length of the computational domain, ensuring that the
self-similar growth of LSSs is not confined. In terms of the local Kolmogorov length scale
η = (μ3/(ρ3ε))1/4, the resolution parameter η/�x is in the range 0.42 � η/�x � 1.05 at
the centreline, where �x is the grid length in each direction, indicating that the resolution
of the present simulations is fine enough to resolve the smallest scales in the flow, as given
in table 1. The statistics are obtained by plane averaging along the homogeneous x and
z directions and ensemble averaging of repeated simulations. The Reynolds average of a
variable φ is denoted by 〈φ〉, while the Reynolds fluctuations are denoted as φ′ = φ − 〈φ〉.
It can be observed that, under the same initial Reynolds number, the Taylor microscale Reλ
decreases with an increase in the convective Mach number during the self-similar stage of
the mixing layer. The root-mean-square (r.m.s.) value of vorticity and velocity divergence

are computed by ωrms =
√

〈ω2
1 + ω2

2 + ω2
3〉 and Θrms =

√
〈Θ2〉, where ωi is vorticity

component andΘ = ∂u′
k/∂xk. They are normalized by (�U/δω). As the convective Mach

number increases, the r.m.s. dilatation,Θrms, evidently increases, while the r.m.s. vorticity
magnitude, ωrms, decreases, indicating that the small-scale energy is inhibited at a high
dilatation level. A detailed description and a comprehensive validation of the DNS can be
found in previous work by Wang et al. (2022).

3. Numerical results

3.1. Characteristic scales of turbulence
In a turbulent mixing layer, the large-scale Kelvin–Helmholtz rollers and high- and
low-speed structures are the largest coherent features which scale with the thickness of
the mixing layer (Rogers & Moser 1994; Balaras, Piomelli & Wallace 2001; Mungal 1995;
Pirozzoli et al. 2015; Wang et al. 2022). The momentum thickness (δθ ) and vorticity
thickness (δω) are most commonly used to describe the thickness of the mixing layer.
The former is defined as

δθ = 1
ρ∞�U2

∫ +∞

−∞
〈ρ〉 (�U/2 − ũ) (�U/2 + ũ) dy. (3.1)

The vorticity thickness is defined as δω = �U/(d〈u〉/dy)max (Vreman et al. 1996). In the
self-similar periods, the two mixing layer thicknesses grow linearly with time (Rogers &
Moser 1994; Pantano & Sarkar 2002; Wang et al. 2022).

Figure 2 shows the ratio of the momentum thickness to the vorticity thickness for
cases with convective Mach numbers Mc = 0.2, 0.8, 1.8. In the self-similar periods, the
thickness ratio δθ/δω is nearly constant with time and decreases from 0.19 to 0.14 as
the convective Mach number increases from 0.2 to 1.8. It has been found that the mean
streamwise velocity profiles at different convective Mach numbers collapse very well when
scaled with the free stream velocity difference �U and vorticity thickness δω, and hence
the vorticity thickness is used as an estimate of the integral scale of the mixing layer in the
present work (Baltzer & Livescu 2020; Wang et al. 2022).

According to Kolmogorov’s turbulence theory (Kolmogorov 1941), the characteristic
length scale of the smallest turbulent structures is given by the Kolmogorov length scale η,
and the corresponding characteristic velocity is the Kolmogorov velocity uη = (με/ρ)1/4.
In figure 3(a), we plot the time evolution of the Kolmogorov length η which is normalized
by the vorticity thickness δω at Mc = 0.2, 0.8 and 1.8. The normalized Kolmogorov
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Figure 2. Time evolution of the thickness ratio δθ /δω at Mc = 0.2, 0.8 and 1.8. The vertical line segments
mark the self-similar periods.
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0.04
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Mc = 0.8

Mc = 1.8
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u η
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U

η
/δ

ω

t�U/δθ0

(a) (b)

Figure 3. Time evolution of (a) the normalized Kolmogorov length η/δω and (b) normalized Kolmogorov
velocity uη/�U at Mc = 0.2, 0.8 and 1.8. The length η, and velocity uη are evaluated at the centreline of the
mixing layer. The vertical line segments mark the self-similar periods.

length η/δω decreases exponentially with time in the self-similar periods, indicating an
increasing scale separation between the small and integral scales of the turbulent mixing
layer. As the convective Mach number increases, η/δω evidently increases, demonstrating
that the compressibility suppresses the small-scale structures, and thus decreases the scale
separation. As shown in figure 3(b), the normalized Kolmogorov velocity uη/�U also
decreases with time, while it slightly depends on the convective Mach number.

3.2. General properties of interfaces of LSSs
Figure 4 shows a two-dimensional schematic of high- and low-speed LSSs and small
vortical structures near their interfaces. The shapes of high- and low-speed LSSs are
reconstructed from the two-point correlations of fluctuating streamwise velocity reported
by Wang et al. (2022). For ISL, edges of UMZs and TNTI, several identification
approaches have been proposed to detect the location of these interfaces (Adrian et al.
2000; Kolář 2007; Fan et al. 2019). In the present work, we find that the isosurfaces of
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x
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z

y
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δω

δω

u′ > 0

v′ < 0

u′ > 0

v′ < 0

u′ > 0

v′ < 0
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v′ < 0

u′ < 0

v′ > 0

u′ < 0

ωy < 0 ωy > 0

ωz < 0 ωz > 0

v′ > 0

(a)

(b)

Figure 4. Schematic of the high- and low-speed LSSs and small vortical structures near their interfaces in the
(a) x–y and (b) z–y planes. The red and blue regions indicate the high- and low-speed LSSs, respectively. The
red bold dashed line represents the interfaces superposed with small-scale vortices. The red arrow indicates
the normal vector of the interface directed into low-speed region. The black circle with arrow indicates the
small-scale vortex.

u′ = 0 provide a full three-dimensional description of the interfaces of two neighbouring
high- and low-speed LSSs in a fluctuating velocity field. In this section, we report several
general properties of the interfaces.

In figure 5(a), we plot five randomly selected streamwise velocity profiles. The
instantaneous streamwise velocity u/�U in the vertical direction (y) presents a step-like
profile with sharp changes in momentum indicating the existence of UMZs (highlighted in
black-dashed ellipsoids), similar to that in turbulent boundary layers (De Silva et al. 2017).
In contrast, there is no evidence of UMZs in the profile of the fluctuating streamwise
velocity u′/�U which is constantly being used to signify the large-scale turbulent
structures in turbulent shear flows, including turbulent boundary layer, jet and mixing layer
(Lee et al. 2014; Samie, Lavoie & Pollard 2021; Wang et al. 2022). The corresponding
profiles of the velocity gradient are shown in figure 5(b). We can find that the vertical
gradients of the instantaneous streamwise velocity u/�U and fluctuating streamwise
velocity u′/�U almost overlap with each other. The magnitudes of the velocity gradients
of u/�U and u′/�U in high shear regions are much higher than (several times greater
than) the maximum gradient of mean streamwise velocity. It is evident that the magnitude
of positive gradients of the instantaneous and fluctuating streamwise velocity significantly
exceeds that of negative velocity gradients. This is consistent with the observed behaviour
of streamwise velocity gradients in turbulent boundary layers (De Silva et al. 2017) and
mixing layers (Fiscaletti et al. 2021).

We present instantaneous visualizations of the spanwise vorticity ωz in figure 6(a,b),
the vertical vorticity ωy in figure 6(c,d) and the streamwise vorticity ωx in figure 6(e, f )
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Figure 5. (a) Comparison between the vertical profiles of instantaneous streamwise velocity u/�U (red),
fluctuating streamwise velocity u′/�U (green) and mean streamwise velocity 〈u〉/�U (blue) at five equally
spaced streamwise location from a snapshot for Mc = 1.8 at τ = 1750, and (b) the corresponding profiles of
the vertical gradients of them.

at Mc = 0.2 and 1.8. Here, the contour lines of u′/�U = −0.1 and 0.1 are overlaid to
display the high- and low-speed large-scale regions, instead of u′/�U = 0.0, in order
to give a qualitative impression of the velocity gradient which can be visualized by the
distance between the two contour lines. The high shear regions (high-velocity gradients)
are visualized by the colour contours of vorticity components. At Mc = 0.2, the contour
lines of u′/�U = −0.1 and 0.1 obviously extend into the free stream, with characteristic
sizes of the order of mixing layer thickness, which indicates the potential perturbations
produced by the turbulence within the mixing layer. This observation is consistent with
the previous study of a weakly compressible mixing layer by Almagro, Garciá-Villalba &
Flores (2017). It is convenient to utilize the TNTI as the outer edge of LSSs instead of the
outer parts of the contour lines of u′/�U = 0, similar to the outer edge of UMZs (De Silva
et al. 2017; Fan et al. 2019). Only the interfaces of LSSs within the turbulent region are
studied in the following. At Mc = 0.2, the contour lines of u′/�U = −0.1 and 0.1 almost
overlap with each other in the turbulent region, while there exists an evident separation
between them at Mc = 1.8, indicating the decrease of velocity gradient at points with
u′/�U = 0 as the convective Mach number increases. A significant proportion of the high
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Figure 6. Instantaneous visualization of contour lines of u′/�U = −0.1 and 0.1 at (a,c,e) Mc = 0.2 and
(b,d, f ) Mc = 1.8, overlaid on colour contours of (a,b) spanwise vorticity ωz in x–y plane, (c,d) vertical vorticity
ωy in x–z plane and (e, f ) streamwise vorticity ωx in y–z plane.

shear regions (high vorticity) is concentrated in the near vicinity of the interfaces of LSSs,
which is more obvious in figure 6(b,d, f ) for higher convective Mach number Mc = 1.8.
At low convective Mach number Mc = 0.2, the contour lines are complicated and tortuous
with a concentration of small fragments, while they appear to be smoother and have
fewer small structures at a higher convective Mach number Mc = 1.8, indicating that the
interfaces become stable as the convective Mach number increases. This stabilizing effect
of compressibility on interfaces of LSSs resembles the behaviour of interfaces of UMZs
with decreasing Reynolds number found by De Silva et al. (2017) in turbulent boundary
layers. Meanwhile, we can see that the high shear regions are intermittently distributed
on the continuous interfaces detected as isocontours of fluctuating streamwise velocity u′.
This is consistent with previous studies on edges of the UMZs in wall-bounded (De Silva
et al. 2017; Gul et al. 2020) and free shear turbulence (Fiscaletti et al. 2021).

In order to quantitatively illustrate the correlation between interfaces of LSSs
(zero-u′ isosurfaces) and high vorticity regions, we plot the joint probability density
function ( p.d.f.) of the normalized vorticity components ωi/ωrms and the normalized
fluctuating streamwise velocity u′/�U at convective Mach numbers Mc = 0.2 in
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Figure 7. Isocontour lines of (a) log10 p.d.f. (ωi,u′) at Mc = 0.2 and (b) log10 p.d.f. (ωz,u′) for three different
convective Mach numbers Mc = 0.2, 0.8 and 1.8. Four contour lines at −1,−2,−3 and −4 are shown.

figure 7(a). It is found that the maximum of the p.d.f. for high values of ωi/ωrms tends
to appear at u′/�U ≈ 0. The joint p.d.f.s of (ωx/ωrms, u′/�U) and (ωy/ωrms, u′/�U)
are almost symmetric with respect to the line ωx = 0 and ωy = 0, respectively. However,
the joint p.d.f. of (ωz/ωrms,u′/�U) is slightly negatively skewed (where ωz = ∂v/∂x −
∂u/∂y), indicating that the positive vertical gradient of the streamwise velocity occurs
more frequently than the negative one, which is consistent with the observation in
figure 5(b). As the convective Mach number increases from 0.2 to 1.8, the joint p.d.f.
of (ωz/ωrms,u′/�U) significantly decreases along the abscissa, as shown in figure 7(b),
indicating the stabilizing effect of compressibility on small-scale vortical structures in
the turbulent mixing layer. The joint p.d.f.s of (ωx/ωrms,u′/�U) and (ωy/ωrms,u′/�U)
at different convective Mach numbers resemble that of (ωz/ωrms,u′/�U) and are omitted
here for the sake of brevity. The joint p.d.f. and visualization in figure 6 confirm that
the interfaces of LSSs can be detected by zero-u′ isosurfaces within the mixing layer. As
previously mentioned, the UMZs and high- and low-speed LSSs arise from the observation
of large-scale motions in different reference frames. The UMZs are typically observed
in the laboratory frame within the instantaneous velocity field, whereas the LSSs are
derived from the Reynolds-decomposed or fluctuating velocity field (de Silva et al. 2016;
Saxton-Fox & McKeon 2017; Gul et al. 2020; Heisel et al. 2021). The connection between
the interfaces of UMZs and those of high- and low-speed LSSs remains an open question,
and a preliminary analysis is offered in the Appendix A.

The orientation of the interfaces of LSSs can be distinguished by its unit normal vector
defined as n = −∇u′/|∇u′|, and its three components are equal to cos(ψi), where ψi
(i = x, y and z) is the interface angle between the normal unit vector and three coordinate
axes x, y and z, respectively. The unit normal vector of the interface is indicated by
red arrows in figure 4. Figure 8 shows the p.d.f.s of the cosine of interface angles
for low-speed LSSs, namely p.d.f. of cos(ψx), cos(ψy) and cos(ψz), at three different
convective Mach numbers Mc = 0.2, 0.8 and 1.8. The p.d.f. of cos(ψx) shows two peaks
near cos(ψx) = ±0.1. The p.d.f. also shows a bimodal distribution with peaks at −0.98
and 0.92 for cos(ψy), and −0.95 and 0.95 for cos(ψz). These results indicate that most
interfaces are approximately parallel to the streamwise direction, which is in accordance
with the fact that LSSs are highly elongated in the streamwise direction. The most probable
orientation of the interfaces is approximately 12◦ with respect to horizontal for the peak
of p.d.f. at cos(ψy) = −0.98, and 23◦ for the peak of p.d.f. at cos(ψy) = 0.92. The
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Figure 8. The p.d.f. of the cosines of the angle between (a) the x-axis, (b) the y-axis, (c) the z-axis and the
normal unit vector of the interfaces of LSSs at three different convective Mach numbers Mc = 0.2, 0.8 and
1.8.

most probable orientation of 12◦ is in good agreement with the average orientation of
10◦–15◦ for the ISL reported in turbulent boundary layers (Squire 2016; Heisel et al.
2021), which is crucial information for understanding these turbulent structures and holds
significant importance for turbulence modelling. It is interesting to note that the peak of
p.d.f. at cos(ψy) = −0.98 is clearly higher than the peak at cos(ψy) = 0.92, indicating a
preferential orientation of the interfaces of LSSs in the negative vertical direction. A much
weaker preferential orientation also can be found in the p.d.f. of cos(ψx). In addition,
we find that the percentage of interfaces characterized by cos(ψy) < 0, oriented in the
negative y-direction, is approximately 55 % of the total interfaces. In the incompressible
mixing layer, Fiscaletti et al. (2021) reported that ISLs with ∂u/∂y > 0 (equivalent to
cos(ψy) < 0) are found between 60 % and 70 %. It should be pointed out that the ISLs are
only part of the overall interfaces (de Silva et al. 2016; Gul et al. 2020; Heisel et al. 2021).
These results show the inhomogeneity of the interfaces of LSSs. The p.d.f.s of cos(ψz)
are completely symmetric with respect to the line cos(ψz) = 0, as shown in figure 8(c),
since it is statistically homogeneous in the z-direction. The two peaks for all three p.d.f.s of
interface orientation angle increase slightly with increasing convective Mach number from
0.2 to 1.8, especially for cos(ψx). The observations are consistent with the previous result
that the large-scale high- and low-speed structures in the mixing layers are significantly
streamwise elongated to have a smaller inclination angle at a higher convective Mach
number (Wang et al. 2022).
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−3 and −4 are shown.
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To highlight the correlation between interface orientation and the three vorticity
components, the joint p.d.f. of the normalized vorticity componentsωj/ωrms and the cosine
of the orientation angle cos(ψi) for low-speed LSSs is plotted in figure 9 for Mc = 1.8 at
τ = 1750. We can find that the spanwise and vertical vorticity components are highly
dependent on the interface orientation, as shown in figures 9( f ) and 9(h). As can be
seen from figure 9( f ), the positive and negative intense spanwise vorticities are largely
concentrated in the first and third quadrants of the cos(ψy)–ωz plane, respectively, with two
clear peaks around the most probable orientations of cos(ψy) ≈ ±1. Since the statistics
presented here are solely based on the low-speed LSS, it is reasonable to conjecture that the
negative and positive spanwise vorticities mainly result from shear between the high- and
low-speed LSSs located above and below it, respectively, as shown by a schematic of the
high- and low-speed LSSs in figure 4(a). The joint p.d.f. of (cos(ψz), ωy/ωrms) is shown
in figure 9(h), and the high probability regions of positive and negative vertical vorticities
fall in the second and fourth quadrants of cos(ψz)–ωy plane, with two peaks around the
most probable orientations of cos(ψz) ≈ ±1. Similarly, we can expect that the negative
and positive vertical vorticities mainly result from shear between the high- and low-speed
LSSs located on the left- and right-hand side of it in the spanwise direction, respectively,
as shown in figure 4(b). It is noteworthy that the joint p.d.f.s of (cos(ψi), ωz/ωrms) are
distinctly asymmetric concerning the line ωz/ωrms = 0 and skewed towards the negative
side, suggesting a clear preference for negative spanwise vorticity. At convective Mach
numbers Mc = 0.2, 0.8, the joint p.d.f.s show similar behaviour and are not reproduced
here for brevity. The interface orientation has a very modest effect on the intensity of
the streamwise vorticity component, as shown in figures 9(a), 9(d) and 9(g). At all three
convective Mach numbers, the joint p.d.f.s are almost unchanged with time during the
self-similar region of the mixing layer.

In figure 10, we plot the average of normalized vorticity components ωi/ωrms
conditioned on the cosine of interface orientation cos(ψj) for low-speed LSSs. Only
the results at Mc = 1.8 and τ = 1750 are illustrated in figure 10 since the conditionally
averaged vorticity components are similar at all three convective Mach numbers. We
find that the conditionally averaged vorticity components are nearly independent of the
interface orientation concerning the streamwise direction cos(ψx), due to the cancellation
between positive and negative vorticity, which is also presented in figure 9(a–c). As shown
in figure 10(b), the conditionally averaged spanwise vorticity 〈ωz/ωrms| cos(ψy)〉 rapidly
increases up to 1 as cos(ψy) increases from 0.5 to 1, and decreases to −1 as cos(ψy)
decreases from −0.5 to −1. The other two vorticity components 〈ωx/ωrms| cos(ψy)〉 and
〈ωy/ωrms| cos(ψy)〉 are almost independent of cos(ψy). From figure 10(c), it is interesting
to find that 〈ωy/ωrms| cos(ψz)〉 decreases linearly from 0.75 to −0.75 as cos(ψz) increases
from −1 to 1. The streamwise vorticity 〈ωx/ωrms| cos(ψz)〉 is also a linear function
of cos(ψz) and is much smaller than the vertical vorticity. Here, 〈ωz/ωrms| cos(ψz)〉 is
small and always negative. Considering the dynamics of high- and low-speed LSSs and
the definition of vorticity, one can expect that the large value of vorticity components
ωz = ∂v/∂x − ∂u/∂y and ωy = ∂u/∂z − ∂w/∂x are caused by the vertical shear (see
figure 4a) and the lateral shear (see figure 4b) of the adjacent LSSs, respectively.

3.3. Conditionally averaged velocity
The above results show that isosurfaces of u′ = 0 are suitable for representing the
interfaces of high- and low-speed LSSs in the fluctuating velocity field. In order to obtain
conditional statistics with respect to the distance from the interface, an interface coordinate
(ξ ) is introduced with its origin located at the interface, as indicated by red arrows in
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Figure 10. Average of normalized vorticity components ωi/ωrms conditioned on the cosine of interface
orientation cos(ψj) at Mc = 1.8 and at τ = 1750.

figure 4. The interface coordinate ξ is set to be parallel to the unit normal vector defined as
n = −∇u′/|∇u′|, where ξ > 0 directs into the low-speed region. Since the interface is a
continuous three-dimensional surface, the unit normal vector can point along any direction
within the three-dimensional space. The value of a flow variable in the interface coordinate
ξ is calculated from its neighbouring points in computational coordinates using trilinear
interpolation. We denote the conditional average statistics in the interface coordinate by
〈 · 〉I . Only the interfaces of low-speed LSS within the turbulent region are studied in the
present paper. An isoline of the r.m.s. vorticity magnitude ωrms = 0.01�U/δ0

θ is selected
as the nominal threshold to identify the TNTI (Jahanbakhshi & Madnia 2016; Watanabe,
Zhang & Nagata 2018; Wang et al. 2022).

Figure 11 shows the conditionally averaged profiles of the streamwise velocity across
the internal interfaces of LSSs at different non-dimensional times τ = t�U/δ0

θ . We can
observe a sharp rise of streamwise velocity across a thin thickness, which is similar to that
observed at the edges of UMZs and the TNTI (Chauhan, Philip & Marusic 2014; de Silva
et al. 2016; Nagata et al. 2018). These conditionally averaged profiles of the streamwise
velocity exhibit large positive and negative peaks, and their magnitudes decrease linearly
with the distance from the centre of the interface layer at the far-field region. There is a
mild overshoot of conditionally averaged streamwise velocity near the interface, especially
at lower convective Mach number Mc = 0.2. It can be seen that the velocity jump at the
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Figure 11. Conditionally averaged streamwise velocity profiles in the near vicinity of all detected internal
interfaces at three times inside the transition stage and three times inside the self-similar stage of the mixing
layer: (a) Mc = 0.2; (b) Mc = 0.8; (c) Mc = 1.8. The red solid lines correspond to profile at the initial field.

interfaces grows rapidly with time, and reaches a maximum value in the transition stage at
τ = 125 for low and moderate convective Mach numbers of Mc = 0.2 and 0.8, while at a
later time of τ = 250 for Mc = 1.8. Then, the conditionally averaged streamwise velocity
decreases until reaching a gradual development stage in the self-similar period. The
evolution process of interfaces at Mc = 0.2 and 0.8 during the transition stage is evidently
faster than that at Mc = 1.8, consistent with the overall behaviour of the development of
the mixing layers.

Figure 12 shows the conditionally averaged streamwise velocity normalized by
Kolmogorov velocity uη as a function of ξ/η at Mc = 0.2, 0.8 and 1.8 in the self-similar
period. In this figure, uη and η are the values computed at the centreline. The profiles
show a fairly good collapse around the centre of the interface when normalized by the
Kolmogorov scales, but they start to slightly deviate from each other in the far-field region.
This result indicates that the internal interfaces of LSSs are dominated by the smallest
structures characterized by the Kolmogorov length scale.

The thickness of the ISL is typically estimated by projecting linear fits to the regions
above and below the sharp velocity change on the profile of the conditionally averaged
streamwise velocity, assuming the internal shear layer is a mixing layer (De Silva et al.
2017; Chen et al. 2020; Fiscaletti et al. 2021). The thickness can also simply be estimated
as the distance between the negative and positive peaks of the streamwise velocity, giving
rise to a slightly larger thickness than the former method (Eisma et al. 2015; Hayashi
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Figure 12. Conditionally averaged streamwise velocity profiles at different times in the self-similar period
for (a) Mc = 0.2, (b) Mc = 0.8 and (c) Mc = 1.8. Profiles are normalized by the Kolmogorov length η and
velocity uη.

et al. 2021; Heisel et al. 2021). Using the first method, the thickness of the interfaces
within the mixing layer is found to be between 8η to 9η, which is consistent with the
typical internal shear layer thickness of 10η observed in the turbulent free-shear flows
by Fiscaletti et al. (2021) and in the outer region of the turbulent boundary layer by
Eisma et al. (2015). The velocity jump, or velocity difference between the negative and
positive peaks of the streamwise velocity is approximately 6uη. The thickness and velocity
jump are nearly independent of the convective Mach numbers, indicating the similarity of
small-scale flow structures. We note that the conditional statistics are weakly dependent
on momentum thickness Reynolds numbers Reθ increasing from 3768 to 4798 at Mc = 0.2
and from 3036 to 5232 at Mc = 1.8, therefore, an even wider Re range would be necessary
to fully examine the appropriate characteristic scales in the future.

Figure 13 depicts the conditionally averaged streamwise velocity normalized by�U as a
function of ξ/δω at Mc = 0.2, 0.8 and 1.8. It is shown that the profiles collapse in a thinner
layer around the centre of the interface, while they start to deviate from each other around
the peaks. The velocity difference is approximately 0.1�U and decreases with time or
with an increase in the Reynolds number, which is in agreement with the results reported
by Fiscaletti et al. (2021) in turbulent free-shear flows. This result can be explained by
the increasing scale separation as the Reynolds number increases with time; that is, the
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Figure 13. Conditionally averaged streamwise velocity profiles at different times in the self-similar period for
(a) Mc = 0.2, (b) Mc = 0.8 and (c) Mc = 1.8. Profiles are normalized by the vorticity thickness δω and the
velocity difference across the shear layer �U.

Kolmogorov velocity uη/�U dominating the interfaces decreases with time, as shown in
figure 3(b). For a mixing layer, the maximum velocity gradient is generally used to define
its vorticity thickness as δω = �U/(d〈u〉/dy)max. When normalized by the �U and δω,
the maximum gradient of the mean streamwise velocity (d〈u〉/dy)max for the mixing layer
is approximately 1 and located at the centreline (Wang et al. 2022). From figure 13, we
can see that the normalized maximum gradient of the conditionally averaged streamwise
velocity decreases from −7 to −5 as the convective Mach number increases from 0.2 to
1.8. This result suggests that the velocity gradient at the interfaces is almost one order
of magnitude larger than that of the mean streamwise velocity, confirming the qualitative
conclusion shown in figure 5(b). Another important result is that, under integral scales δω
and �U, the maximum gradient of the conditionally averaged streamwise velocity at the
interfaces of LSSs is significantly suppressed by compressibility, and the relative reduction
of the maximum gradient can reach up to 40 % for Mc = 1.8.

Noting that the referenced existing studies in this section, including Eisma et al. (2015)
and Fiscaletti et al. (2021), calculate the velocity jump based on the average distribution of
instantaneous velocity obtained at the internal shear layer (as the interface of UMZs). In
contrast, our velocity jump is determined by the average fluctuating velocity at the interface
of LSSs. Although the two velocity jumps exhibit some degree of agreement, noticeable
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Figure 14. Conditionally averaged streamwise velocity at different edges for (a) Mc = 0.2, (b) Mc = 0.8 and
(c) Mc = 1.8. The enlarged views near the centre are shown in the insets.

differences exist in the average of fluctuating velocities at the interface of UMZs and the
interface of LSSs, as shown in the Appendix A.

3.4. Effect of interface orientation
In § 3.2, we found that the orientation angle has an obvious influence on the shear strength
(vorticity). The conditional statistics are computed separately for the leading, trailing
and side edges to investigate the dependence on the interface orientation. The leading
and trailing edges are defined as cos(ψy) < −0.5 and cos(ψy) > 0.5, respectively. These
definitions are based on the value of the interface angle (ψy), instead ofψx used in previous
works on TNTI, taking into account that the LSSs are highly elongated in the streamwise
direction like a baguette. Similarly, the side edge is defined as | cos(ψz)| > 0.5, where
the absolute value of the angle is considered because of homogeneity in the spanwise
direction. It is worth noting that the selection of the interface angle criterion cos(ψc) = 0.5
is similar to the works of Zhang, Watanabe & Nagata (2019) and is a critical value beyond
which the magnitude of conditionally averaged spanwise vorticity 〈ωz/ωrms| cos(ψy)〉
rapidly increases, as shown in figure 10. The sensitivity of the results to the interface
angle criterion cos(ψc) will be discussed in the following.

The influence of the orientation angle on the conditionally averaged streamwise velocity
is shown in figure 14. The distance from the interface is normalized by the vorticity
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Figure 15. Conditionally averaged vertical velocity at different edges for (a) Mc = 0.2, (b) Mc = 0.8 and
(c) Mc = 1.8.

thickness of the mixing layer δω. It is clearly seen that velocity jump strongly depends
on the interface orientation. The magnitude of the streamwise velocity jump is greater
at the leading edge than that at the entire edge, but smaller at the trailing edge. At the
side edge, the streamwise velocity is slightly larger than that of the entire edge. The peak
position of the profile weakly depends on the interface orientation, and the overshoot is
more obvious at the trailing edge. A zoomed-in view of the same area of the interface
layer is provided for all three convective Mach numbers. The interface orientation effect
appears more clearly in the zoomed-in insets of figure 14, indicating that the magnitude
of the velocity gradients at the leading edge is significantly higher than that at the trailing
edge. On the other hand, the zoomed region of figure 14 reveals that the velocity gradient
at different interface orientations decreases as the convective Mach number increases from
Mc = 0.2 to 1.8.

The conditionally averaged profiles of the vertical velocity at different interface
orientations are presented in figure 15. The vertical velocity is found to have a stronger
dependence on the interface orientation and unexpectedly changes sign near the trailing
edge. Near the leading edge and side edge, the vertical velocity is negatively correlated
with the streamwise velocity, which is consistent with the scenario of Q2 events (defined
by 〈u′〉I < 0 and 〈v′〉I > 0) on the low-speed side (ξ > 0) and Q4 events (defined by
〈u′〉I > 0 and 〈v′〉I < 0 ) on the high-speed side (ξ < 0). The Q2 and Q4 events contribute
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Figure 16. Conditionally averaged vertical velocity at the trailing edge identified using different values of
interface angle criterion at (a) Mc = 0.2, (b) Mc = 0.8 and (c) Mc = 1.8, compared with (d) that at the leading
edge at Mc = 1.8. The legend is the same for all plots.

significantly to the negative Reynolds shear stress and the positive turbulence production
(Wallace 2016; Arun et al. 2019; Wang et al. 2022). The vertical velocity at the trailing
edge is smaller than that at the leading and side edges, inferring a degree of stabilizing
of the interface here. At Mc = 0.2 and 0.8, the vertical velocity near the trailing edge is
positive in the high-speed region (ξ < 0) and negative in the low-speed region (ξ > 0),
which is inconsistent with Q2 and Q4 events, while it changes sign away from the centre
of the interface. At a high convective Mach number Mc = 1.8, it is interesting to observe
that the vertical velocity at the trailing edge has a plateau between ξ/δω = −0.01 and 0.01.

Figure 16(a–c) shows the conditionally averaged profiles of vertical velocity at the
trailing edge identified using different values of interface angle criterion | cos(ψc)| = 0.2,
0.5 and 0.8. We can find that the vertical velocity at the trailing edge is very sensitive
to the values of interface angle criterion ψc. At the small interface angle criterion with
| cos(ψc)| = 0.2, the trailing edge vertical velocity is positive in the low-speed region,
and it presents a clear jump at high convective Mach number Mc = 1.8. As the interface
angle criterion increases to | cos(ψc)| = 0.8, the trailing edge vertical velocity tends to be
negative in the low-speed region, and the maximum jump occurs at low convective Mach
number Mc = 0.2. This scenario is consistent with the signature of Q1 events (defined
by 〈u′〉I > 0 and 〈v′〉I > 0) on the high-speed side (ξ < 0) and Q3 events (defined by
〈u′〉I < 0 and 〈v′〉I < 0 ) on the low-speed side (ξ > 0). The Q1 and Q3 events contribute
to the positive Reynolds shear stress and the negative turbulence production (Wallace
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2016; Arun et al. 2019; Wang et al. 2022). The conditionally averaged vertical velocity
at the leading edge at Mc = 1.8 is displayed in figure 16(d) for comparison. The profiles
are almost coincident for different interface angle criteria. The streamwise velocity for
the three interface orientations is insensitive to the choice of the interface angle criterion
ψc and is not reproduced here for brevity. The mechanism behind this phenomenon will
be further revealed in the next section based on the analysis of small-scale turbulent
structures near the interface. Based on the above results, it can be suggested that, on
average, the downward high-speed LSS (with 〈u′〉I > 0 and 〈v′〉I < 0) impinges on the
upward low-speed LSS (with 〈u′〉I < 0 and 〈v′〉I > 0) at the leading edge, such that the
high-speed structure rides over the low-speed structure, as illustrated in figure 4(a). Similar
to the analysis by Eisma et al. (2015) on boundary layers, this compression process at the
leading edge implies that vorticity stretching occurs in the spanwise (z) direction over
this interface, which maintains a higher velocity jump and a sharp interface. While at the
trailing edge, the downward high-speed LSS deviates from the upward low-speed LSS
on average, indicating extensive strain in the x–y plane. This results in a weaker velocity
jump or shear. This speculative explanation will be verified by the analysis of turbulent
structures near the interface in the next section.

3.5. Small-scale structures
We now focus on the small-scale structures near the interface which have been found to
be dominated by the Kolmogorov scale. Figure 17 compares the conditional average of
the r.m.s. vorticity magnitude ωrms near the leading, side and trailing edges at convective
Mach numbers Mc = 0.2, 0.8 and 1.8. The r.m.s. vorticity magnitude ωrms is normalized
by (�U/δω). The distance from the interface, ξ , is normalized by the centreline η on
the top horizontal axis and by δω on the bottom horizontal axis. The normalized r.m.s.
vorticity magnitude 〈ωrms〉I/(�U/δω) is almost uniform far from the interface and begins
to increase rapidly towards the centre of the interface. There is a significant dependence on
the interface orientation. In the velocity jump region, 〈ωrms〉I/(�U/δω) is smallest near
the trailing edge and largest near the leading edge, consistent with the effect of interface
orientation on the velocity jump shown in figure 14. On the contrary, 〈ωrms〉I/(�U/δω) is
smallest near the leading edge and largest near the trailing edge outside the velocity jump
region. Compared with the entire edge, the r.m.s. vorticity magnitude is amplified at the
leading edge and attenuated at the trailing edge. As the convective Mach number increases,
〈ωrms〉I/(�U/δω) decreases rapidly at the three interface orientations, indicating that
the small-scale vortical structures are suppressed significantly by compressibility at the
interface.

More details on the small-scale structures have been investigated using the second
invariant of velocity gradient tensor, namely the Q-criterion, proposed by Hunt, Wray
& Moin (1988). This technique was originally developed for incompressible flow and is
applicable to compressible flow when the second invariant is obtained for the deviatoric
part of velocity gradient tensor (Kolář 2009), Q = 1/2(ΩijΩij − SijSij), where Ω and S
are the antisymmetric and symmetric components of the deviatoric part of the velocity
gradient tensor, respectively. According to the definition, a positive value of Q indicates
that the flow is locally dominated by vortex motion, and a negative value indicates
regions dominated by shear strain. Figure 18 shows the conditionally averaged profiles
of Q at different interface orientations, where Q is normalized by (�U/δω)2. We can
find that there is a sharp drop in 〈Q〉I/(�U/δω)2 as the distance from the interface
increases. This implies that the interface is dominated by vortex motion with 〈Q〉I > 0
in a small range. Near the leading and side edges, the vortex-dominated region is flanked
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Figure 17. Conditional average of the r.m.s. vorticity magnitude ωrms at different edges at (a) Mc = 0.2,
(b) Mc = 0.8 and (c) Mc = 1.8.

by strain-dominated regions with two negative peaks located at ξ/η ≈ ±7. While at the
trailing edge, 〈Q〉I/(�U/δω)2 is always positive and two smaller positive peaks appear at
ξ/η ≈ ±12. As the convective Mach number increases, the magnitude of 〈Q〉I/(�U/δω)2
decreases dramatically at the three interface orientations, which is similar to the behaviour
of the r.m.s. vorticity magnitude in figure 17. The observations from figures 17 and 18
confirm that the small-scale vortices are intermittently distributed and clustered to the
interfaces of LSSs. Furthermore, they suggest that the effect of compressibility on the
mixing layer is more pronounced at the interfaces of LSSs. In other words, compressibility
stabilizes the interfaces of LSSs, providing valuable insights into the compressibility
suppression mechanism.

To obtain a more complete picture of the small-scale turbulent structures, the
two-dimensional average velocity field is calculated with conditional averaging of the
velocity field around points on the leading or trailing edges of low-speed LSSs. The
conditional averaging is performed in a rectangular subregion with local coordinates
(rx, ry, rz) along the coordinate system (x, y, z) used in the simulation and the origin
located at the sampling point (rx = 0, ry = 0, rz = 0) in the flow. Figure 19 shows the
velocity vector of average flow and contours of 〈Q〉I/(�U/δω)2 in the rx–ry plane
conditioned on the leading and trailing edges at Mc = 0.2 and 1.8, superimposed with the
corresponding streamlines. For the leading edge, the averaged flow exhibits a shear layer
pattern with two parallel flows inclined at an angle of approximately 45◦ with respect to
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Figure 18. Conditionally averaged second invariant of velocity gradient tensor Q at different edges for
(a) Mc = 0.2, (b) Mc = 0.8 and (c) Mc = 1.8.

the streamwise direction. A region with large positive 〈Q〉I has an elliptical shape with its
major axis along the interface and minor axis perpendicular to the interface. Two regions
with negative 〈Q〉I appear above and below the region of positive 〈Q〉I region. As shown
by the streamlines in figures 19(a) and 19(c), a vortical motion is formed at the centre
of the shear layer, extending a large distance in the streamwise direction, indicating the
effect of large-scale motions on the shear layer. The flow patterns at the leading edge are
very similar to each other for low and high convective Mach numbers Mc = 0.2 and 1.8.
A similar average flow pattern has been observed around ISLs in homogeneous isotropic
turbulence (Watanabe et al. 2020) and turbulent planar jets (Hayashi et al. 2021), as well as
around TNTIs in turbulent planar jets (Elsinga & da Silva 2019). Interestingly, figures 19(b)
and 19(d) show that, for the trailing edge, the vortical motion centred at the interface
becomes weaker, since the flow away from the interface is dominated by large-scale
rotation characterized by large-scale circular streamlines, instead of parallel shear flow,
particularly at low convective Mach number Mc = 0.2. This result clearly shows that the
high- and low-speed LSSs depart from each other at the trailing edge. Meanwhile, there are
two saddle point flow patterns along the interface at rx/δω = ±0.15 and ±0.2 for Mc = 0.2
and 1.8, respectively.

Elsinga & Marusic (2010) investigated the universality of small-scale turbulence by
evaluating the average flow pattern in the eigenframe defined by the eigenvectors of
the rate of the strain tensor. They found very similar average flows around the vorticity
vector in different turbulent flows, including turbulent boundary layer, turbulent channel
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Figure 19. Velocity vector of average flow and contours of 〈Q〉I/(�U/δω)2 in the rx–ry plane conditioned on
the (a,c) leading and (b,d) trailing edges at (a,b) Mc = 0.2 and (c,d) Mc = 1.8. The corresponding streamlines
are displayed with black bold solid lines. The red bold solid line represents the 〈u′〉I = 0 line. The blue arrow
indicates the normal vector of the interface directed into low-speed region. The contour cutoff level is −0.02
to 0.1.

flow and homogenous isotropic turbulence. Their average flows are also quite similar to
those in figures 19(a) and 19(c). The shearing in the rx–ry plane is composed of two
velocity gradients ∂u/∂y and ∂v/∂x. It can result from either a pure strain (a saddle
point flow pattern) or a layered shear flow with a single non-zero velocity gradient, see
figure 3 of Elsinga & Marusic (2010). The flow pattern is a combination of pure strain and
layered shear. Furthermore, the layered shear flow has the potential to develop secondary
Kelvin–Helmholtz instability, resulting in secondary Kelvin–Helmholtz vortices (Smyth
2003; Fritts et al. 2022). The secondary Kelvin–Helmholtz vortices can be observed
in the instantaneous flow visualizations in figure 6. As shown in figure 19, the layered
shear dominates the average flow pattern near the leading edge with a secondary
Kelvin–Helmholtz vortex located at the centre, while the dominance is weakened near
the trailing edge due to the lower level of shear (see figure 14).

In the topological methodology introduced by Chong, Perry & Cantwell (1990), the
small-scale structures of the velocity gradient tensor are examined through an analysis of
its invariants. Detailed background information regarding the topological methodology is
available in Chong et al. (1990), Cantwell (1992) and Ooi et al. (1999). As demonstrated
by Fiscaletti et al. (2021), the intense shear layers in a spatially developing mixing are
primarily governed by a ‘stable-focus/stretching’ flow topology. As shown in figure 19,
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Figure 20. Velocity vector of average flow and contours of 〈v′〉I/�U in the rx–ry plane conditioned on the
trailing edge identified with different values of interface angle criterion: (a) | cos(ψc)| = 0.2; (b) | cos(ψc)| =
0.5; (c) | cos(ψc)| = 0.8 at Mc = 1.8. The red bold solid line represents the 〈u′〉 = 0 line. The blue arrow
indicates the normal vector of the interface directed into low-speed region.

the streamline pattern of the average flow at the leading edge is consistent with the
flow topology referred to as ‘stable-focus/stretching’, signifying the dominance of vortex
stretching in the spanwise (z) direction. This is consistent with the result of Fiscaletti
et al. (2021). On the other hand, the streamline pattern at the trailing edge corresponds to
the flow topology termed ‘unstable-focus/compressing’, indicating the presence of vortex
compression in the spanwise (z) direction. These results corroborate our analysis of the
effect of interface orientation in § 3.4.

Based on the understanding of turbulent structures near the interface, we try to explain
the sensitivity of vertical velocity on the interface orientation, as observed in figures 15
and 16. We plot the contours of 〈v′〉I/�U in the rx–ry plane conditioned on the trailing
edge identified with different values of interface angle criterion ψc in figure 20. The
results are only shown for Mc = 1.8 because they are qualitatively similar for different
convective Mach numbers. The preceding results have shown that the spanwise vorticity
ωz = ∂v/∂x − ∂u/∂y is strongly correlated with the interface orientation cos(ψy), as
shown in figure 10. On average, the larger the | cos(ψc)|, the larger the magnitude of
spanwise vorticity ωz, and the stronger the shear at the interface. As seen in figure 20, the
conditionally averaged field of vertical velocity is featured by two regions with different
scales. One is the large-scale positive 〈v′〉I region on the low-speed side and negative 〈v′〉I
region on the high-speed side far away from the interface (red solid line), which become
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Figure 21. Conditionally averaged velocity divergence at different edges for (a) Mc = 0.2, (b) Mc = 0.8 and
(c) Mc = 1.8.

smaller as the interface angle criterion | cos(ψc)| increases. The other one is a small-scale
〈v′〉I region induced by the vortical structure at the origin, which is magnified as | cos(ψc)|
increases. The latter dominates the average flow near the trailing edge at | cos(ψc)| = 0.8,
which generates the Q1 events (〈u′〉I > 0 and 〈v′〉I > 0) and Q3 events (〈u′〉I < 0 and
〈v′〉I < 0).

The above results confirm the explanation in § 3.4 that the downward high-speed LSS
impacts the upward low-speed LSS at the leading edge and they depart from each other
at the trailing edge, then resulting in a higher shear at the leading edge and a weaker
shear at the trailing edge, respectively. What is of great importance is that the explanation
is consistent with the phenomenon of large-scale amplitude modulation of the small-scale
structures in turbulent boundary layers (Marusic et al. 2010; Mathis et al. 2011; Agostini &
Leschziner 2014) and mixing layer (Wang et al. 2022): the small-scale vortical structures
are amplified at the top of low-speed LSS, which is directly associated with high-shearing
motions, and the small-scale fluctuations are attenuated beneath the low-speed LSS.

3.6. Compressibility
For compressible flow, the velocity divergence Θ serves as an excellent indicator of the
local compressibility. Figure 21 shows the conditionally averaged velocity divergence 〈Θ〉I
at different interface orientations for three Mach number cases, where 〈Θ〉I is normalized
by �U/δω. At low and moderate convective Mach numbers Mc = 0.2, 0.8, a gentle
positive peak can be found within the interface layer at three interface orientations, which
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Figure 22. Velocity vector of the average flow and contours of 〈Θ〉I/(�U/δω) in the rx–ry plane conditioned
on the (a,c) leading and (b,d) trailing edges at (a,b) Mc = 0.2 and (c,d) Mc = 1.8. The red bold solid line
represents the 〈u′〉I = 0 line. The blue arrow indicates the normal vector of the interface directed into the
low-speed region.

indicates that a fluid expansion is induced by the vortical structures. The peak value at
Mc = 0.8 is nearly 10 times larger than the value at Mc = 0.2. The velocity divergence
〈Θ〉I is smallest near the trailing edge and largest near the leading edge, similar to the
behaviour of rotation strength (positive 〈Q〉I) at the trailing and leading edges, as shown in
figure 18. At high turbulent Mach number Mc = 1.8, the velocity divergence 〈Θ〉I exhibits
two positive peaks near the leading and side edges at ξ/η ≈ ±3. Between the two peaks,
the fluid is slightly compressed at the leading edge, which is qualitatively similar to that
observed near the TNTIs (Rossmann et al. 2002; Zhou et al. 2012; Nagata et al. 2018).
A larger positive peak of 〈Θ〉I is observed near the trailing edge compared with the leading
edge. Away from the interface, the velocity divergence 〈Θ〉I is mildly negative, indicating
that the LSSs are compressive at Mc = 1.8.

Figure 22 shows the velocity vector of average flow and contours of the normalized
velocity divergence 〈Θ〉I/(�U/δω) in the rx–ry plane conditioned on the leading and
trailing edges at Mc = 0.2 and 1.8. At Mc = 0.2, there are no negative levels of the contour
for 〈Θ〉I near the interface, implying that the flow is expansive on average near the leading
and trailing edges. Close to the leading edge, the positive region of 〈Θ〉I has a similar
shape to the small-scale vortical structure, while the positive regions mainly reside in
shear-dominated regions near the trailing edge, as shown in figures 22(a) and 22(b). Due to
the lack of samples, the results are not statistically stable far away from the interface with
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regard to LSSs. At a higher convective Mach number Mc = 1.8, a narrow compression
region passes through the centre of a small-scale vortical structure with an inclination
angle of 45◦ with respect to the interface and links two strong compression motions in
the shear-dominated regions away from the leading edge. There are two expansion regions
on both sides of the shock-like compression region. Moreover, we observe that expansion
motion dominates the average flow near the trailing edge at Mc = 1.8.

4. Conclusion

We have performed the DNS of a temporal compressible shear layer to study the
compressibility effects on the statistics and structures of interfaces of LSSs at the
convective Mach numbers Mc ranging from 0.2 to 1.8. The three-dimensional interfaces
of LSSs are defined by the isosurface of the zero fluctuating streamwise velocity. The
interfacial layers are characterized by a strong concentration of vorticity similar to the
interfaces of UMZs detected in instantaneous streamwise velocity. The shear strength is
highly dependent on the orientation angle of the interface. The magnitude of averaged
spanwise vorticity ωz/ωrms, conditioned on the interface angle cos(ψy), rapidly increases
when | cos(ψy)| > 0.5, while the streamwise and vertical vorticity components, ωx/ωrms
and ωy/ωrms are almost independent of cos(ψy). The conditional average of ωy/ωrms
decreases linearly with cos(ψz). To explore the effect of interface orientation, the interface
is divided into leading and trailing edges based on the value of the interface angle cos(ψy)
and side edge on cos(ψz).

The small-scale structures and compressibility are investigated by employing a
conditional average of the flow field depending on the distance from the interface. The
results confirm the presence of sharp jumps of streamwise velocity within the interface
layer of LSSs. We observe that the velocity jump grows rapidly in the transition stage
and then decreases until reaching a self-similar stage. The evolution process of interfaces
at Mc = 0.2 and 0.8 is evidently faster than that at Mc = 1.8, indicating an analogous
suppression of mixing layer growth rate due to compressibility. In the self-similar stage,
the conditional average of streamwise velocity shows a fairly good collapse near the
interface layer when normalized by the Kolmogorov length η and velocity uη, confirming
that the interface layers are dominated by the smallest vortical structures characterized by
the Kolmogorov scale.

The mean flow around the interface demonstrates a shear layer pattern with
shear-dominated outer regions and an induced small-scale vortical motion at the centre of
the interface layer. At the leading edge, the downward high-speed LSS impacts the upward
low-speed LSS, resulting in stronger outer shearing motion and central vortical motion
(larger velocity jump). At the trailing edge, the high- and low-speed LSSs depart from each
other, resulting in weaker shear (smaller velocity jump). In other words, the small-scale
vortical structures are promoted at the leading edge and are attenuated at the trailing edge
of low-speed LSS. As the convective Mach number increases, the small-scale structures
are obviously suppressed by compressibility at all interface orientations. Near the trailing
edge, the vertical velocity induced by strong central vortical motion is comparable to the
vertical velocity of LSSs, resulting in Q1 and Q3 events when the swirling strength is
strong.

The conditionally averaged velocity divergence is always positive due to the centrifugal
effect of small-scale vortical structures near the interface at Mc = 0.2 and 0.8. At higher
convective Mach number Mc = 1.8, a narrow compression region passes through the
centre of a small-scale vortical structure and links two strong compression motions in
the shear-dominated regions near the leading edge, while expansion motion dominates the

981 A6-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

55
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.55


X. Wang, J. Guo, J. Wang and S. Chen

average flow near the trailing edge. It implies that the compressibility is highly dependent
on the interface orientation.
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Appendix A. Conditionally averaged velocity at the ISLs

In this section, the interfaces of UMZs are identified and compared with the interfaces
of LSSs. In order to detect the ISLs which have been considered as the interface of
UMZs (Eisma et al. 2015; de Silva et al. 2016; Montemuro et al. 2020), the triple
decomposition method proposed by Kolář (2007) is applied. The details of the algorithms
of the triple decomposition can be referred to previous references (Kolář 2007; Nagata
et al. 2020; Fiscaletti et al. 2021). According to this method, the velocity gradient tensor
is decomposed into three parts,

�u = (�u)rr + (�u)sh + (�u)el, (A1)

where rr, sh and el denote the rigid-body rotation, shear and elongation components
of the velocity gradient tensor, respectively. From the obtained shear component of the
velocity gradient tensor (�u)sh, the vorticity associated with the shear contribution, ωsh,
was calculated. From the definition, ω � ωsh, where ω is the vorticity associated with the
velocity gradient tensor. The following threshold is applied to identify the ISLs:

ωsh > K〈ωsh〉y=0, (A2)

where 〈ωsh〉y=0 is the maximum mean shear vorticity occurring at the centreline of the
mixing layer. The constant value of K = 1.5 is chosen to identify the intense shear
layers (Fiscaletti et al. 2021). Inside the ISLs, the local maximum of ωsh along the
vertical direction is identified as the centre point of these internal shear layers. We plot
the joint p.d.f.s between ω/ωrms and ωsh/ω in figure 23 for Mc = 0.2 and 1.8. A large
probability occurs at ωsh/ω ≈ 1 when ω/ωrms < 1. A smaller ωsh/ω is more frequently
observed for a larger ω/ωrms, which attenuates as the convective Mach number increases.
At ω/ωrms ≈ 0.05, the joint p.d.f. become larger, especially at Mc = 1.8, which may be
caused by the existence of TNTI in the mixing layer.

To examine conditionally averaged statistical properties in the near vicinity of these
ISLs, a local frame of reference along the vertical direction at each centre point y = yi
is employed. The subscript i indicates quantities computed within this local coordinate
system. This procedure of conditional averaging closely follows the methodology outlined
by Fiscaletti et al. (2021) and De Silva et al. (2017). The conditional average statistics near
ISLs are denoted by 〈 · 〉i. It is worth noting that the local coordinate system used at the
interfaces of LSSs is set to be parallel to its unit normal vector defined as n = −∇u′/|∇u′|.
The comparability between these conditional averages is supported by the fact that both
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Figure 23. Isocontours of log10 p.d.f. (ω/ωrms, ωsh/ω) for Mc = 0.2 at τ = 750 and for Mc = 1.8 at
τ = 1750.
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Figure 24. (a) Conditionally averaged profiles of the streamwise velocity in the near vicinity of all detected
ISLs. Conditionally averaged profiles of the streamwise velocity characterized by (b) positive and (c) negative
values of ∂u′/∂y.

the ISLs and interfaces of LSSs are oriented orthogonal to the mean shear of the flow, as
shown in Fiscaletti et al. (2021), De Silva et al. (2017) and present results in § 3.2.

The conditionally averaged profiles of the instantaneous streamwise velocity (u) across
the ISLs are presented in figure 24 at Mc = 0.2 and Reλ ≈ 280 and at Mc = 1.8 and
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Figure 25. Comparison of the conditionally averaged profiles of the fluctuating streamwise velocity u′
(a) across the ISLs with ∂u′/∂y > 0 and the leading edge of interfaces of LSSs and (b) across the ISLs with
∂u′/∂y < 0 and the trailing edge of interfaces of LSSs at Mc = 1.8.

Reλ ≈ 215, compared with the results reported by Fiscaletti et al. (2021) in a spatially
developing incompressible mixing layer at Reλ ≈ 200, 250 and 275. We can observe
that, in temporally developing mixing layers, the total conditional velocity profiles, and
the profiles characterized by ∂u′/∂y > 0 or ∂u′/∂y < 0 are symmetric. The lower parts
(with 〈y − yi〉i < 0) of these profiles agree well with those in the spatially developing
mixing layer from Fiscaletti et al. (2021), where these profiles are asymmetric. This
observation validates the accurate identification of ISLs using the triple decomposition
method. Interestingly, the conditionally averaged instantaneous streamwise velocity (u)
at the ISLs is more sensitive to the Reynolds number Reλ or convective Mach number
Mc than the fluctuating streamwise velocity (u′) at the interfaces of LSSs (as shown in
figures 13 and 14), implying that the statistical characteristics at the interface of LSSs are
more universal.

A comparison of the conditionally averaged profiles of the fluctuating streamwise
velocity (u′) across the ISLs (〈u′〉i/�U) and across the interfaces of LSSs (〈u′〉I/�U)
is displayed in figure 25 at Mc = 1.8. We observe that both the conditionally averaged
profiles of 〈u′〉i/�U and 〈u′〉I/�U exhibit characteristics of the velocity jump, with the
former showing significantly smaller magnitudes than the latter. The positive and negative
peaks of 〈u′〉i/�U occur at a smaller separation than those of 〈u′〉I/�U, especially in
figure 25(b). The value of 〈u′〉i/�U decreases rapidly with increasing distance from the
centre of the ISL, and there is a change in sign. The pronounced difference between
〈u′〉i/�U and 〈u′〉I/�U is unexpected. This may be attributed to the influence of LSSs
persisting at their interfaces, leading to a stronger correlation in velocity. At the interfaces
of LSSs, there exists both rigid-body rotation and shear, while ISL only encompass regions
of intense shear, lacking the contribution of rigid-body rotation to velocity gradients.
Further investigation is required to analyse the differences and connections between the
interfaces of LSSs and those of UMZs.
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