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Abstract. The two main results in this paper concern the regularity of the invariant foliation
of a C0-integrable symplectic twist diffeomorphism of the two-dimensional annulus,
namely that (i) the generating function of such a foliation is C1, and (ii) the foliation is
Hölder with exponent 1

2 . We also characterize foliations by graphs that are straightenable
via a symplectic homeomorphism and prove that every symplectic homeomorphism
that leaves invariant all the leaves of a straightenable foliation has Arnol’d–Liouville
coordinates, in which the dynamics restricted to the leaves is conjugate to a rotation.
We deduce that every Lipschitz integrable symplectic twist diffeomorphisms of the
two-dimensional annulus has Arnol’d–Liouville coordinates and then provide examples of
‘strange’ Lipschitz foliations by smooth curves that cannot be straightened by a symplectic
homeomorphism and cannot be invariant by a symplectic twist diffeomorphism.
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1. Introduction and main results
1.1. Main results. This paper deals with foliations by curves in a two-dimensional
symplectic setting. The questions we raise for such a foliation are as follows.
• When is it (locally or globally) symplectically homeomorphic to the straight foliation?

(This will be defined precisely later.)
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Actions of symplectic homeomorphisms/diffeomorphisms on foliations 795

• What can be said on the foliation when it is invariant by a symplectic twist? (In this
paper, we will say that a foliation is invariant by f if every leaf is (globally) invariant.)

• What can be said on a symplectic dynamics that preserves such a foliation?
Before going into detail, let us explain our motivations.

The first problem in which we were interested is the possible extension of the
Arnol’d–Liouville theorem (see, for example, [6]). This classical theorem concerns
Hamiltonian dynamics associated to a C2 Hamiltonian function endowed with a complete
system of independent commuting C2 integrals. Then there exists an invariant C2 foliation
by Lagrangian submanifolds, and in the neighbourhood of every compact leaf of this
foliation there exist symplectic C1 angle-action coordinates H : (q, p) ∈ U ⊂ M �→
(θ , I ) ∈ U ⊂ Tn × Rn such that at these coordinates:
• the invariant foliation is the straight foliation I = constant;
• the flow is (θ , I ) �→ (θ + t�h(I), I ) where h is a C2 function.
In fact, there are two steps in this result.
• The first step consists in symplectically straightening the foliation via the chart H. The

diffeomorphism H is defined via its generating function S(q, I ). We recall that

H(q, p) = (θ , I ) ⇐⇒ θ = ∂S

∂I
(q, I ) and p = ∂S

∂q
(q, I ).

A priori this generating function S is only C2 as the foliation was and the diffeomor-
phism H is only C1, but because the invariant foliation is C2, we can say a little more:
when I is fixed, � = H−1 is C2 in the θ -variables.

• Then the second step consists in noticing that a symplectic flow that preserves every
leaf of the straight foliation has to be a flow of rotations on every leaf.

In [3], the hypothesis concerning the regularity of the invariant foliation was relaxed and
the invariant foliation was just assumed to be C1. In this case, when the Hamiltonian
satisfies the so-called A-non degeneracy condition (which contains the case of Tonelli
Hamiltonians), the authors proved the existence of a symplectic homeomorphism H
straightening the invariant Lagrangian foliation, such that H−1 is C1 in the θ variable
and such that the flow is written in the chart (θ , I ) �→ (θ + t�h(I), I ) where h is a C1

function.
Here we raise the problem of invariant C0 foliation by invariant C0-Lagrangian tori. In

high dimension, the first problem is to define what is a C0-foliation by Lagrangian tori.
An interesting discussion on this topic is provided in the appendix to [3], but here we
will consider the simplest case: in dimension 2, any foliation by curves can be seen
as Lagrangian. Also we will assume that the foliations that we consider are not too
complicated, because they are (at least locally in C1 charts) foliations by graphs.

The dynamics will be that of symplectic twist diffeomorphisms. Let us give the
definition here; it will be detailed and explained later in the text.

Definition. A symplectic twist diffeomorphism f : A → A is a C1 diffeomorphism such
that:
• f is isotopic to the identity;
• f is symplectic, that is, f ∗ω = ω where ω is the standard symplectic form on A;

https://doi.org/10.1017/etds.2021.158 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.158


796 M.-C. Arnaud and M. Zavidovique

• f has the twist property, that is, if F = (F1, F2) : R2 → R2 is any lift of f, for any
θ̃ ∈ R, the map r ∈ R �→ F1(θ̃ , r) ∈ R is an increasing C1 diffeomorphism from R

onto R.

Even in this setting and for a symplectic twist diffeomorphism of the two-dimensional
annulus A = T × R, there exist results in which the authors are able to prove the existence
of such an invariant continuous foliation by curves that are graphs (see, for example, [5]
or [8]) but not able to say more (e.g. to describe the dynamics or prove that the foliation
is symplectically straightenable). Observe too that the case of a Tonelli Hamiltonian with
two degrees of freedom corresponds to the case of twist maps by using a Poincaré section
close to some invariant torus in an energy surface, and that in this setting also the same
questions are open and relevant (see, for example, [15]).

Definition. A map f : A → A is C0-integrable if f has an invariant C0-foliation by
graphs.

For such a foliation by graphs of θ ∈ T �→ ηc(θ) ∈ R where
∫
T
ηc(θ) = c, we introduce

what we call its generating function, that is, u : A → R defined by

u(θ , c) =
∫ θ

0
(ηc(t)− c) dt .

(This terminology will be better understood when we will introduce the generating
functions of a large class of symplectic homeomorphisms. Let us mention that for a general
foliation, the generating function of the foliation is not necessarily the generating function
of a symplectic homeomorphism. We will later give conditions for this to be true.)

Definition. Let F be a continuous foliation of A into graphs. Then the unique continuous
function u : A → R that is C1 with respect to the T variable such that
• for all c ∈ R, u(0, c) = 0,
• for all c ∈ R, the graph of c + (∂u/∂θ)(·, c) is a leaf of F,
is called the generating function of F.

Our first result proves that in the C0 integrable case of twist diffeomorphisms, there is
more regularity of the generating function giving the foliation than we should expect.

THEOREM 1.1. Let f : A → A be a C1 symplectic twist diffeomorphism. When f is C0

integrable, the generating function u of its invariant foliation is C1.
Moreover, in this case, we have (see the notation π1 at the beginning of §1.2), for all

c ∈ R, that:
• the graph of c + (∂u/∂θ)(·, c) is a leaf of the invariant foliation;
• hc : θ �→ θ + (∂u/∂c)(θ , c) is a semi-conjugacy between the projected dynamics gc :

θ �→ π1 ◦ f (θ , c + (∂u/∂θ)(θ , c)) and a rotation R of T, that is, hc ◦ gc = R ◦ hc.
This allows us to give an example of a foliation of the annulus into smooth graphs

that cannot be invariant by a C0-integrable symplectic twist diffeomorphism. But we will
see in §7 that it can be invariant by an exact symplectic twist homeomorphism that is a
C1-diffeomorphism.

https://doi.org/10.1017/etds.2021.158 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.158


Actions of symplectic homeomorphisms/diffeomorphisms on foliations 797

COROLLARY 1.1. Let ε : R → R be a non-C1 function that is k-Lipschitz for some k < 1.
Then the function

(θ , c) �→ u(θ , c) = ε(c)

2π
sin(2πθ)

is the generating function of a foliation of A into smooth graphs of θ ∈ T �→
c + ε(c) cos(2πθ) that is not invariant by any C0-integrable symplectic twist (C1)

diffeomorphism.

The striking fact is the regularity in c. Indeed, if we have a Ck foliation in graphs for
some k ≥ 1, we can only claim that u and ∂u/∂θ are Ck . So in the C0 case, even the
derivability with respect to c, which is a result of the invariance by a symplectic twist
diffeomorphism, is surprising. Also, the fact that the semi-conjugacy hc continuously
depends on c even at a c where the rotation number is rational is very surprising. At an
irrational rotation number, this is an easy consequence of the uniqueness of the invariant
measure supported on the corresponding leaf, but what happens for a rational rotation
number is more subtle.

Another result for C0-integrable twist diffeomorphisms is that the invariant foliation
is not only C0 but also 1

2 -Hölder. It has been well known since Birkhoff that it is locally
uniformly Lipschitz in the variable θ , and we prove here some regularity with respect to c.

THEOREM 1.2. Let f : A → A be a C1 symplectic twist diffeomorphism that is C0

integrable with generating function u of its invariant foliation. Then on every compact
subset of A, the foliation (θ , c) �→ ηc(θ) = c + (∂u/∂θ)(θ , c) is uniformly 1

2 -Hölder in
the variable c.

In the C0-integrable case, the dynamics restricted to a leaf with a rational rotation
number is completely periodic.

It is an open question whether there can be a Denjoy counter-example when restricted
to a leaf with an irrational rotation number.

With the notation of Theorem 1.1, let us observe that when f : A → A is C0 integrable,
there exists a dense Gδ subset G of R such that for every c ∈ G, the dynamics restricted
to the graph of ηc is minimal. Indeed, the set R of recurrent points is a Gδ set with full
Lebesgue measure, hence R is dense. Hence there exists a dense Gδ subset G1 of R such
that for every c ∈ G1, the set {θ ∈ T, (θ , ηc(θ)) is recurrent} is a dense Gδ subset of T.
Hence, for c ∈ G1, the dynamics restricted to the graph of ηc cannot be Denjoy. If we
remove from G1 the countable set of cs that correspond to a rational rotation number, we
obtain a dense Gδ subset of R such that the dynamics f|Graph(c+(∂u/∂θ)(·,c)) is minimal.

We will give some conditions that imply that the dynamics restricted to a leaf cannot be
Denjoy.

Before this, we need to explain the notion of straightenable foliation.

Notation. We will work in some open subsetsU,V of either A or R2, on which we have
global symplectic coordinates that we denote by (θ , r) or (θ , c). Moreover, we will assume
that:
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• V = {(θ , r); θ ∈ (α, β) and a(θ) < r < b(θ)} or V = A where a, b are continuous
functions defined on [α, β] and 0 ∈ (α, β);

• U = {(x, c); c ∈ (c−, c+) and d(c) < x < e(c)} orU = A where d , e are continuous
functions defined on [c−, c+].

With this notation, ∂+U = [d(c+), e(c+)] × {c+} (respectively, ∂−U = [d(c−), e(c−)] ×
{c−}) is the upper (respectively, lower) boundary of U and ∂+V = {(t , b(t)); t ∈ [α, β]}
(respectively, ∂−V = {(t , a(t)); t ∈ [α, β]}) is the upper (respectively, lower) boundary
ofV.

Whenever U appears, the hypotheses will have as a consequence that U (respectively,
U) will be homeomorphic to V (respectively, V) and foliated by horizontal lines. In
particular,U will always be homeomorphic to a disc or to an annulus. Firstly, we introduce
the notion of exact symplectic homeomorphism, which is a particular case of the notion
of symplectic homeomorphism that is due to Oh and Müller [18]. Their notion coincides
in this two-dimensional setting with that of orientation- and Lebesgue measure-preserving
homeomorphisms.

Definition. An exact symplectic homeomorphism from A onto A is a homeomorphism
that is the limit for the C0 compact-open topology of a sequence of exact symplectic
diffeomorphisms. (We recall that a diffeomorphism f : A → A is exact symplectic if the
1-form f ∗(rdθ)− rdθ is exact.)

A homeomorphism φ : U→ V is exact symplectic if there is a sequence (φn)n∈N of
exact symplectic diffeomorphisms φn : U ↪→ V such that the sequence (φn) converges to
φ for the C0 compact-open topology.

Remark.

• In R2, every 1-form is exact and then the notions of symplectic homeomorphism and
exact symplectic homeomorphism coincide.

• Let us recall that a symplectic diffeomorphism f of A that is isotopic to the identity
is exact symplectic if and only if for every essential (an essential curve is a simple
closed curve that is not homotopic to a point) curve γ of the annulus, the algebraic
area between γ and f (γ ) is zero.

A remarkable tool can be associated to the exact symplectic homeomorphisms that map
the standard horizontal foliation onto a foliation that is transverse to the vertical one. This
is called a generating function.

THEOREM 1.3. (And definition) Recall that U, V are open subsets of either A or R2.
Moreover, V = {(θ , r); θ ∈ (α, β) and a(θ) < r < b(θ)} or V = A where a, b are con-
tinuous functions and 0 ∈ (α, β) and U = {(x, c); c ∈ (c−, c+) and d(c) < x < e(c)} or
U = A where d , e are continuous functions. We use the notation

W = {(θ , c); there exists (x, c) ∈ U and there exists (θ , r) ∈ V} = I × J .

ThenW = (α, β)× (c−, c+) orW = A.
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Let � : U→ V be an exact symplectic homeomorphism that maps the standard
horizontal foliation onto a foliation F that is transverse to the vertical one and that
preserves the orientation of the leaves (here we mean the orientation projected on the
horizontal foliation). Assume that � extends to a homeomorphism � : U→ V and that
�(∂±U) = ∂±V (this implies that the endpoints of the leaves of F are not in ∂±V and
then that all the leaves of F are graphs above (α, β)).

Then there exists a C1 function u :W→ R such that

�(x, c) = (θ , r) ⇐⇒ x = θ + ∂u

∂c
(θ , c) and r = c + ∂u

∂θ
(θ , c).

In particular, when defined, every map θ �→ θ + (∂u/∂c)(θ , c) is injective and every set
{(θ , c + (∂u/∂θ)(θ , c)); θ ∈ I } is a leaf of the image of the standard horizontal foliation
(where I = T or I = (α, β)).

The function u is called a generating function for �.
Conversely, we consider a C0-foliation of V into graphs ηc : T → R or ηc :

(α, β) → R for c ∈ J and assume that there exists a C1 map u :W→ R such that:
• u(0, c) = 0 for all c ∈ J ;
• the graph of θ �→ c + (∂u/∂θ)(θ , c) defines a leaf of the original foliation;
• for all c ∈ J , the map θ �→ θ + (∂u/∂c)(θ , c) is increasing.
Then

�(x, c) = (θ , r) ⇐⇒ x = θ + ∂u

∂c
(θ , c) and r = c + ∂u

∂θ
(θ , c)

defines an exact symplectic homeomorphism from U onto V that maps the standard
horizontal foliation onto the original foliation.

COROLLARY 1.2. The foliation given in Corollary 1.1 cannot be straightened via an exact
symplectic homeomorphism that preserves the horizontal orientation of the leaves.

With some extra hypothesis and work we also obtain the following result.

COROLLARY 1.3. Assuming that the function ε is not derivable on a dense set, the
foliation given in Corollary 1.1 cannot be locally straightened via an exact symplectic
homeomorphism that preserves the horizontal orientation of the leaves.

Remarks.

(1) The formulas of Theorem 1.3 can be also written as

�

(
θ + ∂u

∂c
(θ , c), c

)
=

(
θ , c + ∂u

∂θ
(θ , c)

)
.

(2) Observe that Theorem 1.1 gives us a C1 function u, but not the injectivity of θ �→
θ + (∂u/∂c)(θ , c). This is why a priori the maps hc are not conjugacies, but only
semi-conjugacies and in this case the restricted dynamics may be Denjoy.

We will now give a condition that implies that a foliation is straightenable by an exact
symplectic homeomorphism.
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Definition.
• A foliation by graphs a �→ ηa is a Lipschitz foliation if (θ , a) �→ (θ , ηa(θ)) is a

homeomorphism that is locally bi-Lipschitz.
• If f has an invariant Lipschitz foliation, f is Lipschitz integrable.

The following proposition is a consequence of Theorem 1.3 and results of Minguzzi on
the mixed derivative [16].

PROPOSITION 1.1. Let u : A → R be the generating function of a continuous foliation of
A into graphs. We assume that u is C1. Then the two following assertions are equivalent.
(1) The foliation is Lipschitz.
(2) We have:

• ∂u/∂θ is locally Lipschitz continuous;
• ∂u/∂c is uniformly Lipschitz continuous in the variable θ on any compact

set of cs;
• for every compact subset K ⊂ A, there exist two constants k+ > k− > −1 such

that k+ ≥ ∂2u/∂θ∂c ≥ k− Lebesgue almost everywhere in K.
In this case, u is the generating function of an exact symplectic homeomorphism
� : A → A that maps the standard foliation onto the invariant one.

Observe that Corollary 1.2 gives an example of a Lipschitz foliation by smooth curves
that is not straightenable via a symplectic homeomorphism. Hence the hypothesis that u is
C1 is crucial in Proposition 1.1.

Definition.
• A map a �→ ηa defines a Ck foliation if (θ , a) �→ (θ , ηa(θ)) is a Ck diffeomorphism.

If f has an invariant Ck foliation, f is Ck integrable.
• Following [11], a map a �→ ηa defines a Ck lamination if (θ , a) �→ (θ , ηa(θ)) is a

homeomorphism, every ηa is Ck and the map a �→ ηa is continuous when Ck(T, R)
is endowed with the Ck topology.

COROLLARY 1.4. Let k ≥ 1 and r �→ fr be a Ck-foliation in graphs. Then there exists a
Ck−1 exact symplectic diffeomorphism (a C0 diffeomorphism is a homeomorphism) � :
(θ , r) �→ (h(θ , r), η(h(θ , r), r)) such that for each r ∈ R, the set {(θ , η(θ , r)), θ ∈ T} is
a leaf of the foliation.

When a symplectic homeomorphism preserves a symplectic foliation that is symplec-
tically straightenable, the dynamics is very simple. Let us introduce the following notion
before explaining this point.

Definition. If f : A → A is a symplectic homeomorphism, we call C0 Arnol’d–Liouville
coordinates a symplectic homeomorphism � : A → A such that the standard foliation by
graphs T × {c} is invariant by �−1 ◦ f ◦� and

�−1 ◦ f ◦�(x, c) = (x + ρ(c), c)

for some (continuous) function ρ : R → R.
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PROPOSITION 1.2. Let f : A → A be a symplectic homeomorphism that preserves (each
leaf of) a C0-foliation F. If the foliation is symplectically straightenable (by � : A → A

that maps the standard foliation F0 to F = �(F0)), then the homeomorphism � provides
C0 Arnol’d–Liouville coordinates.

COROLLARY 1.5. A symplectic twist diffeomorphism f : A → A is C0-integrable with
the dynamics on each leaf conjugate to a rotation if and only if the invariant foliation is
exact symplectically homeomorphic to the standard foliation. In this case, f admits global
C0 Arnol’d–Liouville coordinates.

In the case where the invariant foliation by a symplectic twist diffeomorphism is
Lipschitz, we are in the case of Proposition 1.2 and so for every leaf, the restricted
dynamics is not Denjoy.

COROLLARY 1.6. Let f : A → A be a symplectic twist diffeomorphism that is Lipschitz
integrable. We denote by u the generating function of its invariant foliation. Then u is
the generating function of an exact symplectic homeomorphism � : A → A that maps the
standard foliation onto the invariant one such that

for all (x, c) ∈ A, �−1 ◦ f ◦�(x, c) = (x + ρ(c), c),

where ρ : R → R is an increasing bi-Lipschitz homeomorphism.
Moreover, the invariant foliation is a C1 lamination and � admits a partial derivative

with respect to θ . The projected dynamics gc restricted to every leaf is C1 conjugate
to a rotation via the C1 diffeomorphism hc = IdT + (∂u/∂c)(·, c) : T → T such that
hc ◦ gc = R ◦ hc.

Corollary 1.6 provides some C0 Arnol’d–Liouville coordinates. A similar statement for
Tonelli Hamiltonians is proved in [3], without the fact that the conjugation is C1.

1.2. Some notation and definitions. We will use the following notation.

Notation.

• T = R/Z is the circle and A = T × R is the annulus; π : R → T is the usual
projection.

• The universal covering of the annulus is denoted by p : R2 → A.
• The corresponding projections are π1 : (θ , r) ∈ A �→ θ ∈ T and π2 : (θ , r) ∈ A �→

r ∈ R; we denote also the corresponding projections of the universal covering by π1,
π2 : R2 → R.

• The Liouville 1-form is defined on A as being λ = π2dπ1 = rdθ ; then A is endowed
with the symplectic form ω = −dλ.

Let us recall the definition of a symplectic twist diffeomorphism.

Definition. A symplectic twist diffeomorphism f : A → A is a C1 diffeomorphism such
that:
• f is isotopic to the identity;
• f is symplectic, that is, f ∗ω = ω;
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• f has the twist property, that is, F = (F1, F2) : R2 → R2 is any lift of f ;
• for any θ̃ ∈ R, the map r ∈ R �→ F1(θ̃ , r) ∈ R is an increasing C1 diffeomorphism

from R onto R.

1.3. Content of the different sections. The main tools that we will use are tools of
ergodic theory and symplectic (continuous or differentiable) dynamics, in particular
symplectic twist maps and Green bundles. The rest of the paper is organized as follows.
• Section 2 contains the proof of Theorem 1.1. After recalling some generalities about

symplectic twist diffeomorphisms, we consider the case of rational curves by using
some ergodic theory. Then we prove the regularity of u also by using ergodic theory.

• Section 3 contains the proof of Theorem 1.2.
• Section 4 contains the proof of Theorem 1.3.
• Section 5 contains the proofs of Proposition 1.1 and Corollary 1.4.
• Section 6 contains the proofs of Proposition 1.2, Corollaries 1.5 and 1.6.
• Section 7 introduces a strange foliation, provides the proofs of Corollaries 1.1 and

1.2 and an example of an exact symplectic twist map that leaves the strange foliation
invariant.

• Appendix A contains an example of a foliation by graphs that is the inverse image of
the standard foliation by a symplectic map but not by a symplectic homeomorphism.
Appendix B recalls some results about Green bundles.

2. Proof of Theorem 1.1
We assume that f : A → A is a Ck symplectic twist diffeomorphism (with k ≥ 1) that has
a continuous invariant foliation by continuous graphs with generating function denoted
by u. We write ηc = c + (∂u/∂θ)(·, c) and we recall that Birkhoff’s theorem (see [4, 7,
10]) implies that all the ηc are Lipschitz.

Notation. For every c ∈ R, we will denote by gc : T → T the restricted-projected dynam-
ics to the graph of ηc, that is,

gc(θ) = π1 ◦ f (θ , ηc(θ)).

2.1. Some generalities.

Notation.

• In R2 we denote by B(x, r) the open disc for the usual Euclidean distance with centre
x and radius r.

• We denote by Rα : T → T the rotation Rα(θ) = θ + α.
• If E is a finite set, then �(E) is the number of elements it contains.
• We denote by �·� : R → Z the integer part.

We fix a lift F : R2 → R2 of f. We denote by η̃c : R → R a lift of ηc. We denote by ρ
the function that maps c ∈ R to the rotation number ρ(c) ∈ R of the restriction of F to the
graph of η̃c.

The map ρ is then an increasing homeomorphism.
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When the foliation is bi-Lipschitz, we will prove that ρ is a bi-Lipschitz homeomor-
phism (see Proposition 6.1). We recall a well-known result concerning the link between
invariant measures and semi-conjugacies for orientation-preserving homeomorphisms
of T.

PROPOSITION 2.1. Let g : T → T be an orientation-preserving homeomorphism. Assume
that μ is a non-atomic Borel invariant probability measure by g. Then, if the rotation
number ρ of g is irrational or g is C0 conjugate to a rotation, the map h : T → T defined
by h(θ) = ∫ θ

0 dμ is a semi-conjugacy between g and the rotation of angle ρ, that is,

h(g(θ)) = h(θ)+ ρ.

Proof. Let μ̃ be the pullback measure of μ to R and let g̃ : R → R be a lift of g to R.
Then we have, for every � ∈ [0, 1] lift of θ ∈ T,

μ̃([0, �]) = μ̃([g̃(0), g̃(�)]) = μ̃c([�g̃(0)�, g̃(�)])− μ̃([�g̃(0)�, g̃(0)]),

where �g̃(0)� is the integer part of g̃(0). This implies

h(θ) = h(g(θ))− μ̃([0, g(0)]) = h(g(θ))− r̂ .

(Recall that if f : T → T is an orientation-preserving homeomorphism then either ρ(f )
is irrational, f is semi-conjugate (by h) to the rotation Rρ(f ) and the only invariant
measure is the pullback of the Lebesgue measure by h; or ρ(f ) is rational and the
ergodic invariant measures are supported on periodic orbits. When ρ(f ) is irrational or
when f is C0 conjugate to a rotation and ρ(f ) ∈ [0, 1[, then for any invariant measure μ
and x ∈ T, μ([x, f (x)[) = ρ(f ).) Moreover, as we assumed that μ is non-atomic, h is
continuous.

Remarks.

(1) Conversely, if h is a (non-decreasing) semi-conjugacy such that h ◦ g = h+ ρ, then
μ([0, θ ]) = h(θ)− h(0) defines a g-invariant Borel probability measure.

(2) When ρ is irrational, it is well known that the Borel invariant probability measure μ
is unique and that the semi-conjugacy h is unique up to a constant.

Notation. When ρ(c) is irrational, we will denote by hc the semi-conjugacy such that
hc(0) = 0.

Before entering the core of the proof, let us mention a useful fact about iterates of
C0-integrable symplectic twist diffeomorphisms.

PROPOSITION 2.2. Let f : A → A be a C0-integrable C1 symplectic twist diffeomor-
phism. Then so is f n for all n > 0.

This is specific to the integrable case: in general, an iterated twist diffeomorphism is
not a twist diffeomorphism, as can be seen in the neighborhood of an elliptic fixed point.

Proof. We argue by induction on n > 0. The initialization being trivial, let us assume
the result true for some n > 0. Let F : R2 → R2 be a lift of f. For any c ∈ R, using the
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notation given at the beginning of §2, we have

for all θ ∈ T, for all m > 0, f m(θ , ηc(θ)) = (gmc (θ), ηc ◦ gmc (θ)).
Observe that if f m satisfies the twist condition and c1 < c2 are two real numbers, denoting
by ∼ the lifts of the considered functions, then we have

g̃mc1
(t) = π1 ◦ Fm(t , ηc1(t)) < π1 ◦ Fm(t , ηc2(t)) = g̃mc2

(t)

and limt→±∞ g̃c1(t) = ±∞.
Let c1 < c2 and t ∈ R. We obtain that

π1(F
n+1(t , ηc2(t)))− π1(F

n+1(t , ηc1(t)))

= g̃c2 ◦ g̃nc2
(t)− g̃c1 ◦ g̃nc1

(t) > g̃c2 ◦ g̃nc1
(t)− g̃c1 ◦ g̃nc1

(t),

where we have used the induction hypothesis, g̃nc2
(t) > g̃nc1

(t), and the fact that g̃c2 is
increasing. It follows that c �→ π1(F

n+1(t , ηc(t))) is an increasing diffeomorphism onto
its image. Observe also that this inequality implies that

lim
c2→+∞ π1(F

n+1(t , ηc2(t))) = +∞

because limc2→+∞ g̃c2(s) = +∞. Moreover,

π1(F
n+1(t , ηc2(t)))− π1(F

n+1(t , ηc1(t)))

= g̃c2 ◦ g̃nc2
(t)− g̃c1 ◦ g̃nc1

(t) ≤ g̃c2 ◦ g̃nc2
(t)− g̃c1 ◦ g̃nc2

(t)

implies that limc1→−∞ π1(F
n+1(t , ηc1(t))) = −∞ because limc1→−∞ g̃c1(s) = −∞. So

finally c �→ π1(F
n+1(t , ηc(t))) is an increasing diffeomorphism onto R.

2.2. Differentiability and conjugacy along rational curves. It is proved in [1] that for
every r = p/q ∈ Q, ηc = ηρ−1(r) is Ck and the restriction of f to the graph �c of ηc is
completely periodic: f q|�c = Id�c . Moreover, along these particular curves, the two Green
bundles (see Appendix B for definition and results) are equal:

G−(θ , ηc(θ)) = G+(θ , ηc(θ)).

THEOREM 2.1.

• Along every leaf �c such that ρ(c) ∈ Q, the derivative ∂ηc(θ)/∂c = 1 + (∂2u/∂c∂θ)

exists, is positive and Ck−1 depends on θ .
• For any c such that ρ(c) is rational, the Borel probability measure μc on T of density

∂ηc/∂c is invariant by gc and, for θ ∈ [0, 1], the equality

hc(θ) = μc([0, θ ]) =
∫ θ

0

∂ηc

∂c
(t) dt

defines a conjugacy between gc and the rotation with angle ρ(c).
• Then the map c ∈ R �→ μc is continuous for the weak* topology on measures and

c ∈ R �→ hc is continuous for the uniform C0 topology. Thus (θ , c) �→ hc(θ) is
continuous.
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Remarks.

(1) Observe that because c �→ ηc is increasing, we know that for Lebesgue almost
every (θ , c) ∈ A, the derivative ∂ηc(θ)/∂c exists (see [12]). But our theorem says
something different.

(2) Because of the continuous dependence on θ along the rational curve, we obtain that
∂ηc(θ)/∂c restricted to every rational curve is bounded (this is clear when we assume
that the foliation is Lipschitz but not if the foliation is just continuous).

Proof of the first point of Theorem 2.1. We fix A ∈ R such that ρ(A) = p/q ∈ Q.
Replacing f by f q , we can assume that ρ(A) ∈ Z. Observe that because of the
C0-integrability of f, f q is also aCk symplectic twist diffeomorphism that isC0-integrable
with the same invariant foliation (Proposition 2.2).

We define GA : A → A by

GA(θ , r) = (θ , r + ηA(θ)). (1)

Then G−1
A ◦ f q ◦GA is also a C0-integrable Ck symplectic twist diffeomorphism and

T × {0} is filled with fixed points.
We finally have to prove our theorem in this case and we use the notation f instead of

G−1
A ◦ f q ◦GA. We can assume that ρ(A) = 0 instead of ρ(A) ∈ Z.
If ε > 0 is arbitrarily small, because of the semi-continuity of the two Green bundles

G− = R(1, s−) and G+ = R(1, s+), we have that for any point x = (θ , r) sufficiently
close to T × {0}: max{|s−(x)|, |s+(x)|} < ε is small.

Now we fix c small and consider for every θ ∈ T the small triangular domain T(θ) that
is delimited by the following three curves:
• the graph of ηc;
• the verticalVθ = {θ} × R;
• the image f (Vθ ) of the vertical at θ .

To be more precise, T(θ) is ‘semi-open’ in the following sense; it contains its entire
boundary except for the image f (Vθ ) of the vertical at θ .

We assume that c > 0. The case c < 0 is similar.
As the slope of ηc is almost 0 (because between the slope of the two Green bundles; see

Proposition B.1) and the slope of the side of the triangle that is in f (Vθ ) is almost 1/s(θ)
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where s(θ) > 0 is the torsion that is defined by

Df (θ , 0) =
(

1 s(θ)

0 1

)
, (2)

the area of this triangle is

λ(T(θ)) = 1
2 (ηc(θ))

2(s(θ)+ ε(θ , c)), (3)

where

uniformly for θ ∈ T, lim
c→0

ε(θ , c) = 0.

Let λ be the Lebesgue measure restricted to the invariant sub-annulus

Ac =
⋃
θ∈T

{θ} × [0, ηc(θ)].

Being symplectic, f preserves λ. Moreover, every ergodic measure μ for f with support in
Ac is supported on one curve �A with A ∈ [0, c]. But f|�A is semi-conjugate to a rotation
with an angle ρ(A) that is in [0, 1[. Hence every interval in �A that is between some
(θ , ηA(θ)) and f (θ , ηA(θ)) has the same μ-measure, which is just given by the rotation
number ρ(A) ∈ [0, 1] on the graph of ηA. This implies that θ �→ μ(T(θ)) is constant.
Hence for every θ , θ ′ ∈ T and for every ergodic measure μ with support in Ac, we have
μ(T(θ)) = μ(T(θ ′)).

We now use the ergodic decomposition of invariant measures (see, for example, [14])
applied to the Lebesgue measure restricted to Ac. Let δx be the notation for the Dirac
measure at x. For every a ∈ A, we denote limn→∞(1/n)

∑n−1
k=1 δf n(a) by λa (such a

limit exists and is ergodic as all Birkhoff averages converge to an ergodic measure
for orientation-preserving circle homeomorphisms). Then we have λ = ∫

Acλadλ(a).
Denoting the rotation number of a point a ∈ A by R(a), we deduce that,

for all θ , θ ′ ∈ T, λ(T(θ)) = λ(T(θ ′)) =
∫
Ac
R(a) dλ(a). (4)

This last inequality is again a consequence of the fact that for all a ∈ Ac, λa(T(θ)) = R(a)
as explained above.

We deduce from equation (3) that

uniformly for θ , θ ′ ∈ T, lim
c→0

ηc(θ
′)

ηc(θ)
=

√
s(θ)

s(θ ′)
.

Integrating with respect to θ ′ and recalling that
∫
T
ηc = c, we deduce that uniformly in θ ,

we have

lim
c→0

c

ηc(θ)
= √

s(θ)

∫
T

dt√
s(t)

.

This implies that

∂ηc(θ)

∂c |c=0
=

(∫
T

dt√
s(t)

)−1 1√
s(θ)

, (5)
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and even

ηc(θ) = c

(∫
T

dt√
s(t)

)−1( 1√
s(θ)

+ ε(θ , c)
)

, (6)

where

uniformly for θ ∈ T, lim
c→0

ε(θ , c) = 0.

Observe that ∂ηc/∂c = (
∫
T
(dt/

√
s(t)))−1(1/

√
s(·)) is a Ck−1 function of θ . This

proves the first point of Theorem 2.1. �

Proof of the second point of Theorem 2.1. We deduce from the first point that for any c such
that ρ(c) is rational, the function ∂ηc/∂c is continuous and positive. Moreover, its integral
on T is 1. Hence ∂ηc/∂c is the density of a Borel probability measure that is equivalent to
Lebesgue. We now introduce some notation.

Notation. If c < c′, we denote by �c,c′ the normalized Lebesgue measure between the
graph of ηc and the graph of ηc′ , that is, the Lebesgue measure divided by the area between
the graph of ηc and the graph of ηc′ .

Then f preserves �c,c′ . Observe that for any measurable I ⊂ T, we have

�c,c′({(θ , r); θ ∈ I , r ∈ [ηc(θ), ηc′(θ)]}) = 1
c − c′

∫
I

(ηc(θ)− ηc′(θ)) dθ . (7)

LEMMA 2.1. If ρ(c) is rational, then limc′→c �c,c′ is a measure supported on the graph of
ηc whose projected measure μc has density ∂ηc/∂c with respect to the Lebesgue measure
of T. Hence if hc(θ) = ∫ θ

0 (∂ηc/∂c)(t) dt , we have

hc ◦ π1 ◦ f (θ , ηc(θ)) = hc(θ)+ ρ(c).

Proof. Using equation (6), we can take the limit in equation (7), or more precisely for any
ψ ∈ C0(A, R) in∫

ψ(θ , r) d�c,c′(θ , r) =
∫
T

1
c − c′

(∫ ηc(θ)

ηc′ (θ)
ψ(θ , r) dr

)
dθ ,

and obtain that the limit is an invariant measure supported in the graph of ηc whose
projected measure μc has a density with respect to Lebesgue (hence has no atoms) that
is equal to ∂ηc/∂c. Moreover, by [1] (this fact was recalled at the beginning of §2.2), gc is
C0 conjugate to a rotation. We then use Proposition 2.1 to conclude that hc is the desired
conjugacy.

Proof of the third point of Theorem 2.1. We notice that when ρ(c) is irrational, there is only
one invariant Borel probability measure that is supported on the graph of ηc. This implies
the continuity of the map c �→ μc at such a c. Let us look at what happens when ρ(c) is
rational.
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PROPOSITION 2.3. For every c0 ∈ R such that ρ(c0) is rational, for every θ ∈ [0, 1], we
have

lim
c→c0

μc([0, θ ]) = μc0([0, θ ])

and the limit is uniform in θ .

Together with the continuity of hc0 , this implies the continuity of (θ , c) �→ hc(θ) at
(θ , c0).

Proof. In this proof, we will use different functions εi(τ , c) and, uniformly in τ , all these
functions will satisfy

lim
c→0

εi(τ , c) = 0.

As in the proof of the first point of Theorem 2.1, we can assume that ηc0 = 0 (and then
c0 = 0) and ρ(0) = 0.

We fix ε > 0. Because of the continuity of ρ, we can choose α such that if |c| < α, then
|ρ(c)| < ε.

Let us introduce the notation Nc = �1/ρ(c)� for c �= 0. Let us assume that c > 0 and
θ ∈ (0, 1]. We also denote by g̃c : R → R the lift of gc such that g̃c(0) ∈ [0, 1) and by
Mc(θ),

Mc(θ) = �{j ∈ N; g̃jc (0) ∈ [0, θ ]}.
Hence, Mc(θ) is the number of points of the orbit of 0 under g̃c that belong to [0, θ ].
Observe that Mc(θ) is non-decreasing with respect to θ .

As ηc > 0, any primitive Nc of ηc is increasing, hence Mc(θ) is also the number of
g̃k(0) such that Nc(g̃k(0)) belongs to [Nc(0), Nc(θ)], that is,

Mc(θ) = �

{
j ∈ N;

∫ g̃
j
c (0)

0
ηc(t) dt ≤

∫ θ

0
ηc(t) dt

}
= sup

{
j ∈ N;

∫ g̃
j
c (0)

0
ηc(t) dt ≤

∫ θ

0
ηc(t) dt

}
. (8)

Note that Mc(1) = Nc because gc has rotation number ρ(c) and that we have, for all
θ ∈ (0, 1], Mc(θ) ≤ Nc as Mc is non-decreasing. We also have

μc([0, θ ]) =
Mc(θ)−1∑
j=0

μc([g̃
j
c (0), g̃

j+1
c (0)[)+ μc([g̃Mc(θ)(0), θ ])

and thus μc([0, θ ]) = Mc(θ)ρ(c)+�ρ(c) with � ∈ [0, 1] because [g̃Mc(θ)(0), θ ] ⊂
[g̃Mc(θ)(0), g̃Mc(θ)+1(0)].

Hence

μc([0, θ ]) ∈ [Mc(θ)ρ(c), Mc(θ)ρ(c)+ ρ(c)] ⊂
[
Mc(θ)

Nc + 1
,
Mc(θ)+ 1

Nc

]
. (9)
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Hence to estimate the measure μc([0, θ ]) we need a good estimate of the number of j such
that g̃jc (0) belongs to [0, θ ]. We have proved in equation (6) that

ηc(τ ) =
(∫

T

dt√
s(t)

)−1
c(1 + ε0(τ , c))√

s(τ )
. (10)

We deduce from equation (2) that g̃c(τ ) = τ + (s(τ )+ ε1(τ , c))ηc(τ ) where, uni-
formly in τ , we have limc→0 ε1(τ , c) = 0 and then, by equation (10),∫ g̃c(τ )

τ

ηc(t) dt = ηc(τ )
2(s(τ )+ ε2(τ , c)) = c2(1 + ε3(τ , c))(∫

T
(dt/

√
s(t))

)2 . (11)

This says that the area that is delimited by the zero section, the graph of ηc and the vertical
lines betweenVτ andVg̃c(τ ) is almost constant (that is, does not depend much on τ ).

We deduce from equation (8) that∫ g̃
Mc(θ)
c (0)

0
ηc(t) dt ≤

∫ θ

0
ηc(t) dt <

∫ g̃
Mc(θ)+1
c (0)

0
ηc(t) dt .

Hence

Mc(θ)−1∑
j=0

∫ g̃j+1(0)

g̃j (0)
ηc(t) dt ≤

∫ θ

0
ηc(t) dt ≤

Mc(θ)∑
j=0

∫ g̃j+1(0)

g̃j (0)
ηc(t) dt .

Using equation (11), we deduce that

Mc(θ)
c2(1 + ε4(θ , c))(∫
T
(dt/

√
s(t))

)2 ≤ c(1 + ε5(θ , c))∫
T
(dt/

√
s(t))

∫ θ

0

dt√
s(t)

< (Mc(θ)+ 1)
c2(1 + ε6(θ , c))(∫
T
(dt/

√
s(t))

)2 ,

and then

Mc(θ) =
⌊

1
c

((∫
T

du√
s(u)

)(∫ θ

0

dt√
s(t)

)
+ ε7(θ , c)

)⌋
. (12)

This implies that

Nc = Mc(1) =
⌊

1
c

((∫
T

dt√
s(t)

)2

+ ε8(1, c)
)⌋

, (13)

and by equations (9), (12) and (13),

μc([0, θ ]) = Mc(θ)

Nc
+ ε9(θ , c) =

∫ θ
0 (dt/

√
s(t))∫

T
(dt/

√
s(t))

+ ε10(θ , c) = μ0([0, θ ])+ ε11(θ , c).

(14)

As none of the measures μc has atoms, this implies that c �→ μc and all the maps c �→
μc([0, θ ]) = hc(θ) are continuous. As every map hc is non-decreasing in the variable θ , we
deduce from the Dini–Polyá theorem [19, Exercise 13.b, p. 167] that c �→ hc is continuous
for the C0 uniform topology.
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Remark. If ρ(A) = p/q, then we proved that

(∂ηc(θ)/∂c)|c=A=
(∫

T

dt√
sq(t , ηA(t))

)−1( 1√
sq(θ , ηA(θ))

)
,

where

Df q(x) =
(
aq(x) sq(x)

cq(x) dq(x)

)
.

Indeed, the term sq(t , ηc(t)) does not change when we conjugate by the map GA where
GA(θ , r) = (θ , r + ηA(θ)) as we did in §2.2.

This gives for the conjugacy

hA(θ) = μA([0, θ ]) =
(∫

T

dt√
sq(t , ηA(t))

)−1 ∫ θ

0

1√
sq(t , ηA(t))

dt .

Observe that this Ck depends on θ .
Observe too that equation (6) can be rewritten as

ηc(θ) = ηA(θ)+ (c − A)

[(∫
T

dt√
sq(t , ηA(t))

)−1 1√
sq(θ , ηA(θ))

+ ε(θ , c)
]

, (15)

where

uniformly for θ ∈ T, lim
c→A

ε(θ , c) = 0.

Observe that the formula does not give any continuous dependence of hc or ∂ηc/∂c in the
c variable, because q can become very large when c changes.

2.3. Generating function and regularity. To finish the proof of Theorem 1.1, we have to
prove that u admits a derivative with respect to c everywhere and that

for all θ ∈ T, for all c ∈ R, hc(θ) = θ + ∂u

∂c
(θ , c).

Because we proved that (θ , c) �→ hc(θ) is continuous, we will deduce that u is C1.
Observe that for every θ , the map c �→ u(θ , c)+ cθ is increasing because every

c �→ ηc(θ) is increasing.
Let us restate Theorem 1.1 with the new notation.

THEOREM 2.2. The map u is C1. Moreover, in this case, we have the following
statements.
• The graph of c + (∂u/∂θ)(·, c) is a leaf of the invariant foliation.
• θ �→ θ + (∂u/∂c)(θ , c) is the semi-conjugacy hc between gc and Rρ(c) given in

Theorem 2.1. We have hc ◦ gc = hc + ρ(c).

Proof. The first point is a consequence of the definition of u.
Then u(·, c) and ∂u/∂θ = ηc − c continuously depend on (θ , c).
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Observe that with the notation (7), we have

�c,c′({(θ , r); θ ∈ [θ1, θ2], r ∈ [ηc(θ), ηc′(θ)]})
= 1
c′ − c

((u(θ2, c′)− u(θ1, c′))− (u(θ2, c)− u(θ1, c)))+ (θ2 − θ1).

Moreover, if ρ(c0) ∈ Q, we deduce from Lemma 2.1 that u(·, c) admits a derivative with
respect to c at c0,

∂u

∂c
(θ , c0) = lim

c→c0

1
c − c0

((u(θ , c)− u(0, c))− (u(θ , c0)− u(0, c0))),

that is given by

∂u

∂c
(θ , c0) = μc0([0, θ ])− θ = hc0(θ)− θ

and this derivative continuously depends on θ .
Assume now that ρ(c0) is irrational and let c tend to c0. Every limit point of�c,c0 when

c tends to c0 is a Borel probability measure that is invariant by f and supported on the
graph of ηc0 . As there exists only one such measure, whose projection was denoted by μc0 ,
we deduce that

π1∗( lim
c→c0

�c,c0) = μc0 .

As μc0 has no atom, we have, for all θ0 ∈ [0, 1),

hc0(θ0) = μc0([0, θ0]) = lim
c→c0

�c0,c({(θ , r); θ ∈ [0, θ0], r ∈ [ηc0(θ), ηc(θ)]})

= lim
c→c0

1
c − c0

((u(θ0, c)− u(0, c))− (u(θ0, c0)− u(0, c0)))+ θ0

= ∂u

∂c
(θ0, c0)+ θ0.

Let us explain the above equality. If ε > 0, as μc0 has no atoms, there exist two
continuous functions χ± such that χ− ≤ χ[0,θ ] ≤ χ+ and

∫
T
(χ+ − χ−) dμc0 < ε. Set-

ting νc = π1∗(�c,c0), we have
∫
T
χ− dνc ≤ νc([0, θ ]) ≤ ∫

T
χ+ dνc. As

∫
T
χ± dνc →∫

T
χ± dμc0 when c → c0, we conclude that |νc([0, θ ])− μc0([0, θ ])| < 2ε for c close

to c0.
Hence u admits a derivative with respect to c and

hc0(θ) = μc0([0, θ ]) = θ + ∂u

∂c
(θ , c0).

Because of Theorem 2.1, (θ , c) �→ (∂u/∂c)(θ , c) = hc(θ)− θ is continuous. As the
two partial derivatives ∂u/∂θ and ∂u/∂c are continuous in (θ , c), we conclude that u
is C1. This finishes the proof of Theorem 1.1.

3. Proof of Theorem 1.2
We assume that f : A → A is a C0 integrable symplectic twist diffeomorphism with gen-
erating function u for its invariant foliation and use the notation ηc(θ) = c + (∂u/∂θ)(θ , c).
We also denote the projected dynamics on the graph of ηc by g̃c(θ) = π1 ◦ F(θ , ηc(θ))
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where we fix a lift F : R2 → R2 of f. We work on the compact set

K = {(θ , ηc(θ)); θ ∈ T, c ∈ [c1, c2]}.
Replacing F by F + (0, p) for some integer p ∈ N, we can assume that the rotation number
R(x) of every x ∈ K is positive. We denote U = {(θ , ηc(θ)); θ ∈ T, c ∈ (c1, c2)}. Being
C1, u is C-Lipschitz on K for some constant C > 0. Using the notation of Appendix B, we
recall that

for all x ∈ A, for all n ∈ N, s−n(x) < s−(n+1) < s−(x) ≤ s+(x) < sn+1(x) < sn(x)

(16)

and that all the maps sk are continuous. Hence there exist b > a > 0 and r ∈ (0, 1) such
that

for all x, y ∈ K , d(x, y) < r ⇒ 0 < a ≤ s1(x)− s2(y) < s1(x)− s−1(y) ≤ b. (17)

We deduce that,

for all x, y ∈ K , d(x, y) < r ⇒ 0 < a ≤ s1(x)− s+(y) < s1(x)− s−(y) ≤ b.

Working in R2, we consider for any c, c′ ∈ (c1, c2) such that c < c′ the domain D(θ)
whose boundary is the union of:
• the small piece V of the vertical {θ} × R that is between ηc and ηc′ ;
• the arc F(V ); and
• pieces of ηc and ηc′ that are between V and F(V ).

Using the same method as in §2.2 for the rational curve case (that is, the decomposition
of Lebesgue measure into ergodic measures), we see that the area ofD(θ) does not depend
on θ .

We then cut D(θ) into three subsets.
• If p = �g̃c(θ)− θ�, D1(θ) is the domain that is between V, V + p and the graphs of

ηc and ηc′ . Observe that p = �R(θ , ηc(θ))� = �ρ(c)� does not depend on θ (recall
that when restricted to the graph of ηc, either f is periodic and all points have the same
period, or f has no periodic orbit).

• D2(θ) is the domain between V + p, the vertical V ∗ at F(θ , ηc(θ)) and the graphs of
ηc and ηc′ .

• D3(θ) is the triangular domain between V ∗, F(V ) and ηc′ .
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Then the area of D1(θ) is p(c′ − c) and does not depend on θ .
The area of D2(θ) is∫ g̃c(θ)

θ+p

((
c′ + ∂u

∂θ
(t , c′)

)
−

(
c + ∂u

∂θ
(t , c)

))
dt ,

a positive number equal to

(c′ − c)(g̃c(θ)− θ − p)+ u(g̃c(θ), c′)− u(g̃c(θ), c)+ u(θ + p, c)− u(θ + p, c′).

We recall that u is C Lipschitz on K and that g̃c(θ)− θ − p ∈ (0, 1). We deduce that the
area of D2(θ) belongs to

(0, (2C + 1)(c′ − c)).

We want now to estimate the area of the triangleD3(θ). This triangle has three (curved)
sides:
• the vertical side V ∗ whose length is equal to ηc′(g̃c(θ))− ηc(g̃c(θ));
• the side F(V ) with slope at x ∈ F(V ) equal to s1(x);
• the side H supported in ηc′ that is Lipschitz with tangent cone at x that is contained in

[s−(x), s+(x)] ⊂ [s−1(x), s2(x)].
Because of the continuity of the foliation, there exists ν > 0 such that if c1 ≤ c ≤ c′ ≤ c2

and c′ − c < ν, then the length of every piece of vertical V between ηc and ηc′ is less than
r (recall that r was chosen to satisfy Formula (17)) and the same is true for F(V ) because
of the uniform continuity of F on the strip between ηc1 and ηc2 . Without loss of generality,
we assume furthermore that ν < 1. Using the fact that the tangent cone to the graph of ηc′
is between the two Green bundles (see Appendix B) and equation (16), we deduce that if
c′ − c ∈ [0, ν), then D3(θ)

• is contained in a true triangle with vertical side equal to V ∗, upper side with slope
equal to maxx∈H s2(x) and slope of lower side equal to minx∈F(V ) s1(x), and

• contains a true triangle with vertical side equal to V ∗, upper side with slope equal to
minx∈H s−1(x) and slope of lower side equal to maxx∈F(V ) s1(x);

Observe that when the triangle is a true triangle, its horizontal height has length
δ/S − T where δ is the length of the vertical side, T is the slope of the side coming from
the upper point of the vertical side and S is the slope of the side coming from the lower
point of the vertical side. The area is then δ2/2(S − T )
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These remarks and equation (17) imply that the area of D3(θ) belongs to the interval[
(ηc′(g̃c(θ))− ηc(g̃c(θ)))

2

2b
,
(ηc′(g̃c(θ))− ηc(g̃c(θ)))

2

2a

]
.

Finally, the sum A(θ) of the area of D2(θ) and D3(θ) does not depend on θ and, recalling
we are assuming c′ − c < ν < 1:
• at a point (which always exists because

∫
T
(ηc − ηc′) = c − c′) such that ηc′(g̃c(θ))−

ηc(g̃c(θ)) = c′ − c, we have

A(θ) ∈
[
(c′ − c)2

2b
,
(c′ − c)2

2a
+ (2C + 1)(c′ − c)

]
⊂

[
(c′ − c)2

2b
,
(
(2C + 1)+ 1

2a

)
(c′ − c)

]
;

• at every point, we have

A(θ) ≥ area(D3(θ)) ≥ (ηc′(g̃c(θ))− ηc(g̃c(θ)))
2

2b
;

This implies that for c1 ≤ c ≤ c′ ≤ c2 such that c′ − c < ν, we have

for all θ ∈ R,
(ηc′(θ)− ηc(θ))

2

2b
≤

(
(2C + 1)+ 1

2a

)
(c′ − c),

so

for all θ ∈ R, ηc′(θ)− ηc(θ) ≤
√

2b
(
(2C + 1)+ 1

2a

)
(c′ − c).

Hence we obtain on the compact K a uniform local constant of Hölder, and this implies
that ηc is uniformly 1

2 -Hölder in the variable c on K.

4. Proof of Theorem 1.3
We recall thatU,V are open subsets of either A or R2 and that:
• V = {(θ , r); θ ∈ (α, β) and a(θ) < r < b(θ)} or V = A where a, b are continuous

functions defined on [α, β] and that 0 ∈ (α, β);
• U = {(x, c); c ∈ (c−, c+) and d(c) < x < e(c)} orU = A where d , e are continuous

functions defined on [c−, c+].
With this notation, ∂+U = [d(c+), e(c+)] × {c+} (respectively, ∂−U = [d(c−), e(c−)] ×
{c−}) is the upper (respectively, lower) boundary of U and ∂+V = {(t , b(t)); t ∈ [α, β]}
(respectively, ∂−V = {(t , a(t)); t ∈ [α, β]}) is the upper (respectively, lower) boundary
ofV.

We use the notation

W = {(θ , c); there exists (x, c) ∈ U and there exists (θ , r) ∈ V} = I × J .

ThenW = (α, β)× (c−, c+) orW = A.
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Let us consider a C0-foliation F ofV = {(θ , r); θ ∈ (α, β) and ηc−(θ) < r < ηc+(θ)}
orV = A into graphs: (θ , c) ∈W �→ (θ , ηc(θ)) (whenV = A,W = A and in the other
casesW = (α, β)× (c−, c+)). WhenV = A we insist that

∫
T
ηc = c for all c ∈ R. Then

there exists a continuous function u :W→ R that admits a continuous derivative with
respect to θ such that ηc(θ) = c + (∂u/∂θ)(θ , c) and u(0, c) = 0, a function that we called
generating function of the foliation whenV = A.

4.1. Proof of the first implication. Let � : U→ V be an exact symplectic homeomor-
phism that maps the standard horizontal foliation onto a foliation F that is transverse to the
vertical one and that preserves the orientation of the leaves. (WhenV = A, the exactness
condition implies that � maps the circle T × {c} to the graph of ηc. In the other cases,
as the domains are simply connected, the exactness condition is empty.) Assume that �
extends to a homeomorphism� : U→ V and that�(∂±U) = ∂±V. Then the endpoints
of the leaves of F are not in ∂±V. As the foliation F is transverse to the ‘vertical’ foliation
G0 into π−1

1 ({θ}) for θ ∈ π1(V), all the leaves of F are graphs above (α, β).
Another result of the transversality of F and the vertical foliation G0 is that the foliation

G = �−1(G0) is a foliation of U that is transverse to the standard (‘horizontal’) foliation
F0 = �−1(F). This means precisely that the foliation G is a foliation by graphs of maps
ζθ : I = π2(U) → π1(U). Hence there exists a continuous function v :W→ R that
admits a continuous derivative with respect to r such that the foliation G is the foliation by
graphs �−1(π−1

1 ({θ})) of ζθ : r �→ θ + (∂v/∂r)(θ , r). Observe that by definition of ζθ ,
we have�(ζθ (c), c) = (θ , ηc(θ)). As a result, every map θ �→ ζθ (c) is a homeomorphism
onto its image.

We now use the preservation of the area. We fix θ1 < θ2 in π1(V) and c1 < c2 in π2(U)
such that the domain D1 delimited by the horizontals π−1

2 ({c1}), π−1
2 ({c2}), the graph of

c ∈ [c1, c2] �→ ζθ1(c) and the graph of c ∈ [c1, c2] �→ ζθ2(c) is contained in U. Because
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� is a symplectic homeomorphism, � preserves the area and so D1 and �(D1) have the
same area. Observe that �(D1) is the domain delimited by the graphs of ηc1 , ηc2 and the
verticals π−1

1 ({θ1}) and π−1
1 ({θ2}). This can be written∫ c2

c1

((
θ2 + ∂v

∂c
(θ2, c)

)
−

(
θ1 + ∂v

∂c
(θ1, c)

))
dc

=
∫ θ2

θ1

((
c2 + ∂u

∂θ
(θ , c2)

)
−

(
c1 + ∂u

∂θ
(θ , c1)

))
dθ .

It follows that

u(θ2, c2)− u(θ1, c2)− u(θ2, c1)+ u(θ1, c1)

= v(θ2, c2)− v(θ2, c1)− v(θ1, c2)+ v(θ1, c1).

Evaluating for θ1 = 0 we find

u(θ2, c2)− u(θ2, c1) = v(θ2, c2)− v(θ2, c1)− v(0, c2)+ v(0, c1).

Finally, as v admits a continuous partial derivative with respect to c, we conclude that
(∂u/∂c)(θ , c) = (∂v/∂c)(θ , c)− (∂v/∂c)(0, c) exists and is continuous. Hence u is C1.
Moreover, every map θ �→ θ + (∂u/∂c)(θ , c) = ζc(θ)− (∂v/∂c)(0, c) is a homeomor-
phism onto its image and we have established the first implication.

4.2. Proof of the second implication. We assume that there exists aC1 map u :W→ R

such that:
• u(0, c) = 0 for all c ∈ I where I = (c−, c+) or I = R;
• ηc(θ) = c + (∂u/∂θ)(θ , c) for all (θ , c) ∈W;
• for all c ∈ I , the map hc : θ �→ θ + (∂u/∂c)(θ , c) is increasing.
Then we can define a unique homeomorphism � by

�

(
θ + ∂u

∂c
(θ , c), c

)
=

(
θ , c + ∂u

∂θ
(θ , c)

)
.

We first prove the result when U = A. Let v : R2 → R+ be the C∞ function with
support in B(0, 1) defined by v(θ , c) = a exp((1 − ‖(θ , c)‖)−2) for (θ , c) ∈ B(0, 1) and
where a is such that

∫
v = 1. We denote by vε the function vε(x) = (1/ε2)v(x/ε).

For every ε > 0, we define

Uε(θ , c) = (u ∗ vε)(θ , c), (18)

where we recall the convolution formula

u ∗ v(x) =
∫
u(x − y)v(y) dy.

Then when ε tends to 0, the functions Uε tend to U in the C1 compact-open topology.
Moreover, Uε is 1-periodic in θ and smooth. Observe that for every θ , the function c �→
c + (∂u/∂θ)(θ , c) is increasing. We deduce that the convolution c �→ c + (∂Uε/∂θ)(θ , c)
is a C∞ diffeomorphism as it is a mean of C∞ diffeomorphisms thanks to Lemma 4.1.
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Finally, the maps Fε : (θ , c) �→ (θ , c + (∂Uε/∂θ)(θ , c)) define C∞ foliations that con-
verge to the initial foliation F0 : (θ , c) �→ (θ , c + (∂u/∂θ)(θ , c)) for the C0 compact-open
topology when ε tends to 0.

Observe that the hc : θ �→ θ + (∂u/∂c)(θ , c) are assumed to be increasing. We deduce
that the maps Gε : (θ , c) �→ (θ + (∂Uε/∂c)(θ , c), c) are C∞ diffeomorphisms of A that
converge for the C0 compact-open topology to G0 : (θ , c) �→ (θ + (∂u/∂c)(θ , c), c).

Finally, the maps Hε = Fε ◦G−1
ε are C∞ diffeomorphisms of A that converge for

the C0 compact-open topology to F0 ◦G−1
0 = �. Moreover, because they are defined via

generating functions Uε in the classical sense, we know that the diffeomorphisms Hε are
all exact symplectic.

This means precisely that � is an exact symplectic homeomorphism.
We now deal with the local case when U �= A. The computation from the first

implication (with u = v) shows that � is area preserving. We conclude with the next
proposition.

PROPOSITION 4.1. Let ψ : U→ V be a homeomorphism that preserves the Lebesgue
measure λ. Then there exists a sequenceψn : U→ V of area-preserving diffeomorphisms
that converges to ψ for the compact-open topology.

Proof. As U and V are bounded and simply connected they are diffeomorphic.
Let φ0 : V→ U be a diffeomorphism. As φ0∗λ(U) = λ(V) = λ(U) (because ψ

preserves λ) we can apply [9, Theorem 1] to obtain a diffeomorphism φ1 : U→ U
such that φ1∗(φ0∗λ) = λ.

Let S ⊂ R3 be a two-dimensional Euclidean sphere that has same total Lebesgue area
as U. We denote by λS the Lebesgue area on S. Let N ∈ S be a point. As S \ {N} is
diffeomorphic to U, arguing as before, and again using [9] yields a diffeomorphism φ2 :
U→ S \ {N} such that φ2∗λ = λS .

Set � = φ2 ◦ φ1 ◦ φ0 ◦ ψ ◦ φ−1
2 , a homeomorphism of S \ {N} that preserves λS . It

extends to a homeomorphism �̃ of S by setting �̃(N) = N that still preserves λS .
We may now apply a classical dynamical systems result to approximate �̃ by

area-preserving diffeomorphisms (�̃n)n>0 of S ([17]; see also [13] for a simpler proof
adapted from an idea of Sikorav). Up to composing by rotations of S (that preserve λS)
we may assume furthermore that �̃n(N) = N for all n > 0. Therefore by restriction, they
give rise to (�n)n>0 that are diffeomorphisms of S \ {N} that uniformly converge to �.

Finally, setting ψn = φ−1
0 ◦ φ−1

1 ◦ φ−1
2 �n ◦ φ2 yields a family (ψn)n>0 of area-

preserving diffeomorphisms that converge to ψ for the compact–open topology.

LEMMA 4.1. Let f : R → R be a non-negative, non-trivial, smooth, compactly supported
in [−M , M] and even function such that f ′ ≤ 0 on [0, +∞). Then:
• if g : R → R is an increasing function, f ∗ g is an increasing C∞ diffeomorphism

onto its image; if, moreover, g is a homeomorphism of R, then f ∗ g is a C∞
diffeomorphism of R;

• if g : [a −M , b +M] → R is an increasing function, we can define f ∗ g : [a, b] →
R that is an increasing C∞ diffeomorphism onto its image.
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Proof. We only prove the first point, the second one being very similar. As f is smooth
and compactly supported, f ∗ g is well defined and smooth. As f is even, f ′ is odd. Just
notice that

(f ∗ g)′(x) =
∫
R

f ′(y)g(x − y) dy =
∫ +∞

0
f ′(y)(g(x − y)− g(x + y)) dy.

Then f ∗ g is an increasing diffeomorphism onto its image as g(x − y)− g(x + y) < 0
and f ′(y) ≤ 0 and f ′ is not the zero function.

Let us now assume that limx→+∞ g(x) = +∞. We will prove that limx→+∞ f ∗
g(x) = +∞. Let M > 0 such that the support of f is included in [−M , M]. Let A > 0
and B ∈ R such that A < g(x) as soon as x > B. Then if x > M + B,

f ∗ g(x) =
∫ M

−M
f (y)g(x − y) dy > A

∫
R

f (y) dy.

This proves our result as
∫
R
f (y) dy > 0.

5. Proof of Proposition 1.1 and Corollary 1.4
5.1. Proof of Proposition 1.1: bi-Lipschitz foliations with C1 generating functions are
straightenable. Let u : A → R be the C1 generating function of a continuous foliation
of A into graphs. We recall the following result due to Minguzzi [16].

THEOREM. (Minguzzi) Let � be an open subset of R2 and let f ∈ C1(�, R). Then the
following conditions are equivalent:
(1) for every x, the partial derivative (∂f /∂x)(x, ·) is locally Lipschitz, locally uniformly

with respect to x;
(2) for every y, the partial derivative (∂f /∂y)(·, y) is locally Lipschitz, locally uniformly

with respect to y.
If they hold true, then on a subset E ⊂ � with full Lebesgue measure in�, ∂2f /∂x∂y and
∂2f /∂y∂x exist and are equal.

5.1.1. Proof of the first implication. We assume that the invariant foliation is K-Lipschitz
on a compact K = {(θ , ηc(θ)); θ ∈ T, c ∈ [a, b]}, which means

for all θ ∈ T, for all c1, c2 ∈ [a, b],
|c1 − c2|
K

≤ |ηc1(θ)− ηc2(θ)| ≤ K|c1 − c2|.
(19)

As ηc(θ) = c + (∂u/∂θ)(θ , c), this means that (∂u/∂θ)(θ , ·) is locally Lipschitz, locally
uniformly with respect to θ . Hence, by Minguzzi’s theorem, for every c ∈ (a, b),
(∂u/∂c)(·, c) is locally Lipschitz, locally uniformly with respect to c, and at almost
all (θ , c) ∈ T × (a, b) we have that ∂2u/∂c∂θ and ∂2u/∂θ∂c exist and are equal and
uniformly bounded.

Hence hc = IdT + (∂u/∂c)(·, c) is locally uniformly Lipschitz and because of Inequal-
ity (19), we have Lebesgue almost everywhere

∂2u

∂θ∂c
(θ , c) = ∂2u

∂c∂θ
(θ , c) = ∂η

∂c
(θ0, c0)− 1 ∈

[
− 1 + 1

K
, −1 +K

]
= [k−, k+]. (20)
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This implies that hc(θ) = θ + (∂u/∂c)(θ , c) defines a (1/K , K)-bi-Lipschitz homeo-
morphism of T for almost every c ∈ [a, b] and then for all c ∈ [a, b] by continuity.
By Theorem 1.3, we deduce that u is the generating function of an exact symplectic
homeomorphism � : A → A that maps the invariant foliation onto the standard one.

5.1.2. Proof of the second implication. We assume that the map u is C1 with ∂u/∂θ
locally Lipschitz continuous and ∂u/∂c uniformly Lipschitz in the variable θ on any com-
pact set of cs, and there exist two constants k+ > k− > −1 such that (∂2u/∂θ∂c)(θ , c) ∈
[k−, k+] almost everywhere. Because ∂u/∂c is uniformly Lipschitz in the variable θ on any
compact set of cs, we can apply the Minguzzi theorem and equation (20) which implies
that the foliation is bi-Lipschitz.

5.2. Proof of Corollary 1.4. Let k ≥ 1 and r �→ fr be a Ck-foliation in graphs and let
u be its generating function. As k ≥ 1, the foliation is Lipschitz when restricted to every
compact set. Hence we can use Proposition 1.1. In this case, u is the generating function
of an exact symplectic homeomorphism � : A → A that maps the standard foliation onto
the invariant one and we have

�

(
θ + ∂u

∂c
(θ , c), c

)
=

(
θ , c + ∂u

∂θ
(θ , c)

)
.

Moreover, u is Ck , hence F0(θ , c) = (θ , c + (∂u/∂θ)(θ , c)) defines a Ck−1 homeomor-
phism that is locally bi-Lipschitz, hence a Ck−1 diffeomorphism.

Also hc(θ) = θ + (∂u/∂c)(θ , c) is Ck−1 in (θ , c). Observe that every hc is a
bi-Lipschitz homeomorphism that is Ck−1, hence G0 : (θ , c) �→ (hc(θ), c) is also a Ck−1

diffeomorphism and then � = F0 ◦G−1
0 is a Ck−1 symplectic diffeomorphism (where a

C0-diffeomorphism is a homeomorphism).

6. More results on symplectic homeomorphisms that are C0-integrable
6.1. Proof of Proposition 1.2. Let f : A → A be an exact symplectic homeomorphism.
We assume that f has an invariant foliation F into C0 graphs that is symplectically
homeomorphic (by �−1 : A → A) to the standard foliation F0 = �−1(F). Then the
standard foliation is invariant by the exact symplectic homeomorphism g = �−1 ◦ f ◦�.
Hence we have

g(θ , r) = (g1(θ , r), r).

As g is area preserving, for every θ ∈ [0, 1] and every r1 < r2, the area of [0, θ ] × [r1, r2]
is equal to the area of g([0, θ ] × [r1, r2]), that is,

θ(r2 − r1) =
∫ r2

r1

(g1(θ , r)− g1(0, r)) dr .

Dividing by r2 − r1 and taking the limit when r2 tends to r1, we obtain

g1(θ , r1) = θ + g(0, r1).

This proves the proposition for ρ = g1(0, ·).

https://doi.org/10.1017/etds.2021.158 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.158


820 M.-C. Arnaud and M. Zavidovique

6.2. Proof of Corollary 1.5. The ‘if’ part is obvious by Proposition 1.2.
Let us prove the ‘only if’ part, that is, we assume f isC0-integrable with the dynamics on

each leaf conjugate to a rotation. We denote by u : A → R the map given by Theorem 1.1
and which enjoys the properties of Theorem 2.1. Hence hc : θ �→ θ + (∂u/∂c)(θ , c) is a
semi-conjugation between the projected dynamics gc : θ �→ π1 ◦ f (θ , c + (∂u/∂θ)(θ , c))
and the rotation Rρ(c) of T and is even a conjugation when ρ(c) is rational.

If ρ(c) is irrational, it follows from the hypothesis that gc is conjugate to a rotation. As
the dynamics is minimal, there is up to constants a unique (semi)-conjugacy and then hc is
a true conjugation. We then conclude by using Theorem 1.3.

6.3. Proof of Corollary 1.6.

6.3.1. Arnol’d–Liouville coordinates for f. Let f : A → A be a symplectic twist diffeo-
morphism that is Lipschitz integrable with generating function u of its invariant foliation.

By Theorem 1.1 and Proposition 1.1, u is the generating function of an exact symplectic
homeomorphism � : A → A that maps the standard foliation onto the invariant one,
and for every compact subset K ⊂ A there exist two constants k+ > k− > −1 such that
∂2u/∂θ∂c ∈ [k−, k+] Lebesgue almost everywhere in K.

By Proposition 1.2, we have

for all (x, c) ∈ A, �−1 ◦ f ◦�(x, c) = (x + ρ(c), c),

where ρ : R → R is continuous. Moreover, because of the twist condition, ρ is an
increasing homeomorphism of R.

6.3.2. Proof that ρ : R → R is a bi-Lipschitz homeomorphism.
PROPOSITION 6.1. Assume that a C1 symplectic twist diffeomorphism f : A → A has an
invariant locally Lipschitz continuous foliation by graphs c ∈ R �→ ηc ∈ C0(T, R). Then
the map ρ : c ∈ R �→ ρ(c) is a locally bi-Lipschitz homeomorphism.

We will use the following lemma.

LEMMA 6.1. Let f , g : R → R be lifts of homeomorphisms of T that preserve orientation
(implying f (· + 1) = f (·)+ 1 and g(· + 1) = g(·)+ 1). Assume that:
• either f or g is conjugate to a translation tα : x �→ x + α by a homeomorphism h that

is a lift of a homeomorphism of T that preserves orientation;
• h and h−1 are K-Lipschitz.
Then:
(1) if there exists d > 0 such that f < g + d , then ρ(f ) ≤ ρ(g)+Kd;
(2) if there exists d > 0 such that f + d < g then ρ(f )+ d/K ≤ ρ(g).

Proof. Let us say that h ◦ g ◦ h−1 = tα , hence ρ(g) = α (the proof when f is conjugate to
a translation is the same).

(1) By hypothesis, f ◦ h−1 < g ◦ h−1 + d . Using that h is increasing and K-Lipschitz,
it follows that for all x ∈ R,

h ◦ f ◦ h−1(x) < h(g ◦ h−1(x)+ d) ≤ h ◦ g ◦ h−1(x)+Kd = x + α +Kd.
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Finally, as ρ(f ) = ρ(h ◦ f ◦ h−1), we conclude that

ρ(f ) ≤ α +Kd = ρ(g)+Kd.

(2) By hypothesis, f ◦ h−1 + d < g ◦ h−1. Using that h is increasing, it follows that

for all x ∈ R, h(f ◦ h−1(x)+ d) < h ◦ g ◦ h−1(x) = x + α.

Because h−1 is K-Lipschitz and increasing, observe that

d = h−1(h(f ◦ h−1(x)+ d))− h−1(h ◦ f ◦ h−1(x))

≤ K(h(f ◦ h−1(x)+ d)− h ◦ f ◦ h−1(x)).

Then

h ◦ f ◦ h−1(x) ≤ h(f ◦ h−1(x)+ d)− d

K
< x + α − d

K
.

Hence ρ(f )+ d/K ≤ ρ(g).

Proof of Proposition 6.1. The proof is now a direct application of the previous lemma.
Indeed, we have seen that when the foliation is K-Lipschitz, if c varies in a compact set
K, the dynamics gc are all conjugate to rotations. We have, moreover, proven there exists
a constant K̃ such that the conjugating functions hc may be chosen equi-bi-Lipschitz (for
c ∈ K) of constant K̃ .

We denote the minimum and maximum torsions on K by

bmin = min
x∈K

∂f1

∂θ
(x) and bmax = max

x∈K
∂f1

∂θ
(x).

For c1 < c2 in [a, b], we have

g̃c2(θ)− g̃c1(θ) = F1(θ , ηc2(θ))− F1(θ , ηc1(θ))

and so

g̃c2(θ)− g̃c1(θ) ∈ [bmin(ηc2(θ)− ηc1(θ)), bmax(ηc2(θ)− ηc1(θ))]

and

g̃c2(θ)− g̃c1(θ) ∈
[
bmin

K
(c2 − c1), K .bmax(c2 − c1)

]
.

We deduce from Lemma 6.1 that

K .K̃ .bmax(c2 − c1) ≥ ρ(gc2)− ρ(gc1) ≥ bmin

K .K̃
(c2 − c1).

6.3.3. Proof of theC1 regularity. Here we prove that� : A → A isC1 in the θ variable,
that the invariant foliation is a C1 lamination and that the dynamics restricted to every leaf
is C1 conjugate to a rotation.

Let us fix c. Then hc = IdT + (∂u/∂c)(·, c) is a bi-Lipschitz homeomorphism of T by
Proposition 1.1. Then [1, Corollary 4] tells us that ηc is in fact C1 (and the two Green
bundles coincide along its graphs) and that hc is a C1 diffeomorphism.

https://doi.org/10.1017/etds.2021.158 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.158


822 M.-C. Arnaud and M. Zavidovique

Hence all the points of A are recurrent. Moreover, as the two Green bundles are equal
everywhere, they are continuous. Because they coincide with the tangent space to the
foliation, the foliation is a C1 lamination. This is equivalent to the continuity (in the two
variables) of ∂2u/∂θ2.

As �(�, c) = (h−1
c (�), ηc ◦ h−1

c (�)), we deduce that � is C1 in the θ -direction.

Remark. We do not know if ∂2u/∂θ∂c is continuous, and then if c �→ hc is continuous
for the C1 topology.

7. A strange foliation
We consider the foliation of A by the graphs of ηc(θ) = c + ε(c) cos(2πθ) where ε
is a contraction (k-Lipschitz with k < 1) that is not everywhere differentiable. It is a
bi-Lipschitz foliation with smooth leaves. Indeed, for all c < c′ and θ ,

(1 − k)(c′ − c) ≤ |c + ε(c) cos(2πθ)− c′ − ε(c′) cos(2πθ)| ≤ (1 + k)(c′ − c).

Observe that the generating function of this foliation is given by

u(θ , c) = ε(c)

2π
sin(2πθ).

7.1. Proof of Corollaries 1.1–1.3. As u is not C1, we deduce from Theorems 1.1 and 1.3
that this foliation cannot be globally straightenable by a symplectic homeomorphism and
also that it cannot be invariant by a symplectic twist diffeomorphism.

Proof of Corollary 1.3. We now work in R2 and assume by contradiction that there are
two open setsU andV as in Theorem 1.3, and a symplectic homeomorphism� : U→ V
that maps the horizontal lines of U to the leaves of the foliation in V preserving the
orientation of the leaves. Let us denote (c−, c+) = π2(U) and J ⊂ R such that V =
{(θ , ηc(θ)), θ ∈ (α, β), c ∈ J }. By hypothesis, there exists an increasing homeomorphism
h : (c−, c+) → J such that if c ∈ (c−, c+), the horizontal line R × {c} ∩U is mapped to
the leaf of the foliation {(θ , ηh(c)(θ)), θ ∈ (α, β)} by �.

Returning to the generating function, if c ∈ (c−, c+) we have u(0, c) = 0 and c +
(∂u/∂θ)(c, θ) = ηh(c)(θ) from which we deduce that

for all (θ , c) ∈W, u(θ , c) = θ(h(c)− c)+ ε ◦ h(c)

2π
sin(2πθ).

Now let θ1, θ2 ∈ (α, β) such that the matrix

A =
(
θ1 sin(2πθ1)/2π
θ2 sin(2πθ2)/2π

)
is invertible. It follows that

for all c ∈ (c−, c+),
(

h(c)

ε ◦ h(c)

)
= A−1

(
u(θ1, c)+ θ1c

u(θ2, c)+ θ2c

)
.

As by Theorem 1.3 the function u is C1, we deduce that h and ε ◦ h are C1 functions.
It follows that h′ must vanish at all points c such that ε is not differentiable at h(c).
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As such points are dense, we conclude that h is constant which contradicts it being a
homeomorphism onto its image.

7.2. An exact symplectic twist map that leaves the strange foliation invariant. Let us
prove, however, that this foliation, for a simple choice of ε, can be invariant by a certain
C1 exact symplectic (weakly) twist map as defined below.

Definition. An exact symplectic homeomorphism f : A → A has the weak twist property
if when F = (F1, F2) : R2 → R2 is any lift of f, for any θ̃ ∈ R, the map r ∈ R �→
F1(θ̃ , r) ∈ R is an increasing homeomorphism from R onto R.

Let us now assume that ε is a C2 function away from c = 0 and that at 0 it has left and
right derivatives up to order 2. For the sake of simplicity, let us assume also that ε(0) = 0
so that T × {0} is a leaf of the foliation and that ε restricted to [0, +∞) (respectively,
(−∞, 0]) is the restriction of a C2 periodic function.

The proof of Theorem 1.4 gives us two C1 functions

�± : (θ , r) �→ (h±(θ , r), η(h±(θ , r), r))

where �+ is a C1 exact symplectic diffeomorphism of A+ = T × [0, +∞) to itself (up
to the boundary) and�− is a C1 exact symplectic diffeomorphism of A− = T × (−∞, 0]
to itself (up to the boundary). Note that here �+ and �− do not coincide on T × {0}.
explaining why the foliation is not straightenable.

Let ρ : R → R be an increasing, C1 homeomorphism such that ρ(0) = ρ′(0) = 0. We
denote fρ : (θ , r) �→ (θ + ρ(r), r). The function f = �± ◦ fρ ◦ (�±)−1 is well defined
on A; it is the identity on T × {0}. It is clearly an area-preserving homeomorphism that is
C1 away from T × {0}.

If r > 0 and θ ∈ T, let us set (�, R) = �+(θ , r). Then one finds that

Df (�, R) = D�+(θ + ρ(r), r) ·Dfρ(θ , r) ·D�+(θ , r)−1

= D�+(θ + ρ(r), r) ·
(

1 ρ′(r)
0 1

)
·D�+(θ , r)−1.

It follows from the properties on �+ and ρ(0) = ρ′(0) = 0 that as R → 0, Df (�, R)
uniformly converges to the identity. As the same holds for R < 0, we deduce that f is in
fact C1 with a differential on T × {0} being identity.

It remains to choose ρ in such a way that the map obtained is a twist map. We
construct it on [0, +∞). The twist condition we aim at is: for every � ∈ R, the map r �→
h+((h+

r )
−1(�)+ ρ(r), r) is an increasing homeomorphism of R where h+

r = h+(·, r).
After computation, if we denote h+(θr , r) = �, the derivative of the above function is

the following for r > 0 (the inequality is our goal):

∂h+

∂r
(θr + ρ(r), r)−

(
∂h+

∂θ
(θr , r)

)−1
∂h+

∂θ
(θr + ρ(r), r)

∂h+

∂r
(θr , r)

+ ∂h+

∂θ
(θr + ρ(r), r)ρ′(r) > 0.
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The first line above is smaller in absolute value than M1ρ(r) where (recall that by
hypothesis, all the functions at play are continuous periodic, hence bounded)

M1 =
∥∥∥∥∂2h+

∂r∂θ

∥∥∥∥∞
+

∥∥∥∥(
∂h+

∂θ

)−1∥∥∥∥∞
.
∥∥∥∥∂2h+

∂θ2

∥∥∥∥∞

∥∥∥∥∂h+

∂r

∥∥∥∥∞
.

On the other hand, the second line is greater than M2ρ
′(r), where we set M2 =

min(∂h+/∂θ) > 0. If ρ(t) = t2eMt with M = 2M1/M2, then we have ρ(0) = ρ′(0) = 0
and ρ′(t) > (M1/M2)ρ(t) which implies the twist condition.

Acknowledgements. The authors are grateful to Philippe Bolle for insightful discussions
that helped clarify and simplify some proofs in this work. They thank Sobhan Seyfaddini
for his insight on symplectic homeomorphisms. The authors thank the anonymous
referees. Their careful reading helped to remove some unclear formulations and misleading
notation. M. Zavidovique was financed by a bursary PEPS from CNRS.

A. Appendix. Foliation by graphs that is the inverse image of the standard foliation by a
symplectic map but not by a symplectic homeomorphism
We will use two special functions:
• γ : T → R, a C∞ function such that γ ′

[1/2−ε,1/2+ε] = −1 and γ ′
T\[1/2−ε,1/2+ε] > −1;

• ζ : R → R, a C∞ function that is increasing, such that ζ ′(0) = 1 and ζ ′
R\{0} < 1 with

lim±∞ ζ ′ = 1
2 .

The function u(θ , c) = ζ(c)γ (θ) defines the foliation in graphs of

ηc = c + ∂u

∂θ
= c + ζ(c)γ ′.

The derivative with respect to c of ηc(θ) is then (∂ηc/∂c)(θ) = 1 + ζ ′(c)γ ′(θ) which is
non-negative, vanishes only for (θ , c) ∈ [ 1

2 − ε, 1
2 + ε] × {0} and is greater that 1

3 close to
±∞. Hence every map c ∈ R �→ ηc(θ) ∈ R is a homeomorphism and we indeed have a
C0 foliation.

Let us introduce hc(θ) = θ + (∂u/∂c)(θ) = θ + γ (θ)ζ ′(c). Its derivative is 1 +
ζ ′(c)γ ′(θ) that is non negative and vanishes only if (θ , c) ∈ [ 1

2 − ε, 1
2 + ε] × {0}. Hence

h0 is not a homeomorphism but all the other hc are homeomorphisms.
We deduce from Theorem 1.3 that this foliation is not symplectically homeomorphic to

the standard one.
We will now prove that the map defined by H(θ , ηc(θ)) = (hc(θ), c) is a symplectic

map, the limit (for the C0 topology) of a sequence of symplectic diffeomorphisms.
Let γn : T → R be a sequence of C∞ maps that converges to γ in C1 topology and sat-

isfies γ ′
n > −1. Let (ζn) be a sequence ofC∞ diffeomorphisms of R thatC1 converges to ζ

and satisfies ζ ′
n < 1. We introduce un(θ , c) = γn(θ)ζn(c). Then ηc,n(θ) = c + ζn(c)γ

′
n(θ)

defines a smooth foliation, hc,n(θ) = θ + γn(θ)ζ
′
n(c) is a smooth diffeomorphism of T and

Kn(θ , c) = ((hc,n)
−1(θ), ηc,n((hc,n)−1(θ)))
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is a symplectic smooth diffeomorphism that maps the standard foliation to the foliations
by the graphs of (ηc,n)c∈R.

If Hn = K−1
n , observe that Hn = Gn ◦ F−1

n where:
• Fn(θ , c) = (θ , c + (∂un/∂θ)(θ , c)) converges uniformly to F(θ , c) = (θ , c +

(∂u/∂θ)(θ , c));
• Gn(θ , c) = (θ + (∂un/∂c)(θ , c), c) converges uniformly to G(θ , c) = (θ +

(∂u/∂c)(θ , c), c).
Finally, Hn = Gn ◦ F−1

n converges uniformly to H = G ◦ F−1.

B. Appendix. Green bundles
Here we recall the theory of Green bundles. More details and proofs can be found in [1, 2].
We fix a lift F of a symplectic twist diffeomorphism f.

Notation.

• V (x) = {0} × R ⊂ TxR
2, and for k �= 0 we set Gk(x) = DFk(F−kx)V (f−kx).

• The slope of Gk (when defined) is denoted by sk:

Gk(x) = {(δθ , sk(x)δθ); δθ ∈ R}.
• If γ is a real Lipschitz function defined on T or R, then

γ ′+(x) = lim sup
y,z→x
y �=z

γ (y)− γ (z)

y − z
and γ ′−(t) = lim inf

y,z→x
y �=z

γ (y)− γ (z)

y − z
.

Then:
(1) if the orbit of x ∈ R2 is minimizing (see [1, 2] for the definition; the only thing

needed here is that an orbit that is contained in an invariant curve that is a graph is
minimizing), we have

for all n ≥ 1, s−n(x) < s−n−1(x) < sn+1(x) < sn(x);

(2) in this case, the two Green bundles at x areG+(x), G−(x) ⊂ Tx(R
2) with slopes s−,

s+ where s+(x) = limn→+∞ sn(x) and s−(x) = limn→+∞ s−n(x);
(3) the two Green bundles are invariant under Df : Df (G±) = G± ◦ f ;
(4) we have s+ ≥ s−;
(5) the map s− is lower semi-continuous and the map s+ is upper semi-continuous;
(6) hence {G− = G+} is aGδ subset of the set of points whose orbit is minimizing (this

last set is a closed set) and s− = s+ is continuous at every point of this set.
Let us focus on the case of an invariant curve that is the graph of γ : T → R. Then we

have the following propositions.

PROPOSITION B.1. Assume that the graph of a function γ ∈ C0(T, R) is invariant by F.
Then the orbit of any point contained in the graph of γ is minimizing and we have

for all θ ∈ T, s−(θ , γ (θ)) ≤ γ ′−(θ) ≤ γ ′+(θ) ≤ s+(θ , γ (θ)).
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PROPOSITION B.2. (Dynamical criterion) Assume that x has its orbit that is minimizing
and that is contained in some strip R × [−K , K] (for example, x is in some invariant
graph) and that v ∈ TxR2\{0}. Then:
• if lim infn→+∞|D(π ◦ Fn)(x)v| < +∞, then v ∈ G−(x);
• if lim infn→+∞|D(π ◦ F−n)(x)v| < +∞, then v ∈ G+(x).

In particular, if the dynamics restricted to some invariant graph is totally periodic, then
along this graph we have G− = G+ and the graph is C1. The C1 property can also be
proved by using the implicit functions theorem.
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