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1. Introduction

Nonlinear boundary value problems (NBVPs) for elliptic partial differential equa-
tions (PDEs) are widely studied due to the great mathematical interest in
themselves and their applications in various areas of science. For example, they arise
in the modelling of nonlinear diffusion phenomena and in the theory of nuclear and
chemical reactors (see e.g. [2, 15, 30]). This class of problems has been addressed
through different techniques and approaches, such as variational, penalty, and
maximum principle-based methods that have prominent historical roles (see e.g.
[27, 42, 45]).

In the present work, we are concerned with a class of NBVPs for elliptic equations
with singular boundary potentials and nonlinear derivative terms in the half-space
Rn

+. More precisely, we consider the following nonhomogeneous elliptic problem:{
−Δu = K1(∂βu)ρ1 , in Rn

+

∂ηu = V (x′)u + K2u
ρ2 + f(x′), in Rn−1

, (1.1)

where n � 3, ρ1, ρ2 � 2, u = u(x′, xn) with x′ ∈ Rn−1 and xn > 0, ∂η = ∂/∂η, η
is the normal unit outward vector on ∂Rn

+ = Rn−1, K1, K2 are constants, 0 � β <
2/ρ1, and the fractional derivative ∂β is defined via the Fourier transform on the
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(n − 1)-first variables as

(∂βu)∧(ξ′, xn) = (2π|ξ′|)β(û)(ξ′, xn). (1.2)

The case β = 0 corresponds to the power-type nonlinearity uρ1 . Moreover, we can
treat doubly supercritical variational cases such as ρ1 > 2∗ − 1 and ρ2 > 2∗ − 1.
However, due to technical issues in our approach, the powers ρ1, ρ2 have to be
positive integers as well as they and the order β of the derivative present a certain
relation between them. The boundary potentials V and forcing terms f can be
singular such as critical multipolar potentials and Radon measures, respectively.

Our intent is to analyse problem (1.1) via a different approach based on
localization-in-frequency arguments and the Littlewood–Paley decomposition. To
handle the influences of different frequency bands on each of the terms of (1.1),
especially on those coming from singular potentials and forces, we consider a
frequency-based setting, namely the Fourier–Besov space FBs

p,∞ (FB-space, for
short), whose elements h are such that ĥ ∈ L1

loc(R
n) and present the control in

frequency:

‖Δ̂jh ‖Lp(Rn)� C2−sj , for all j ∈ Z,

where the Littlewood–Paley operator Δj works as a filter in the frequency domain
with corresponding passband Aj = {ξ ∈ Rn; 2j−1 � |ξ| � 2j+1}. The parameters
s ∈ R and p ∈ [1, ∞] stand for the regularity and integrability indexes of the space,
respectively. For more details, see (2.8) and (2.9) in § 2.2. This kind of framework,
as well as some of its extensions, has been successfully employed in the analysis of
the well-posedness of parabolic problems, see e.g. [1, 40] and references therein.

Varying the levels of regularity and integrability, we are able to cover singular
classes of boundary potentials V and forcing terms f as well as obtain properties
for solutions such as axial symmetry, positivity, and homogeneity. Of particular
interest, we have the critical boundary potential V (x′) = C |x′|−1 as well as its
multipolar versions (even infinitely many poles):

V (x′) =
l∑

j=1

λj

|x′ − xj | and V (x′) =
l∑

j=1

(x′ − xj) · dj

|x′ − xj |2 , (1.3)

where xj ∈ ∂Rn
+ are the poles, dj ∈ ∂Rn

+ are constant vectors, λj are real con-
stants, j = 1, . . . , l, and l ∈ N ∪ {∞}. Indeed, for 0 < σ < n − 1 and 1 � p � ∞,
a simple computation yields that the potentials |x′|−σ and x′ |x′|−(σ+1) belong to
FBn−1−((n−1)/p)−σ

p,∞ (Rn−1) as well as their translations and (for σ = 1) those in
(1.3). These critical potentials can be regarded as boundary versions of the so-
called Hardy-type potentials in the whole space Rn. The latter has been the object
of study in a number of works mainly by combining variational methods, Hardy-
type inequalities, and Sobolev spaces (see e.g. [17, 18] and references therein). For
a study via a contraction argument and a sum of weighted L∞-spaces, see [21].

In what follows, we review some works on NBVPs. Chipot et al. [13] described
the non-trivial and non-negative solutions of the NBVP −Δu = auρ1 in Rn

+ and
∂ηu = buρ2 on Rn−1 with n � 3, a, b � 0, ρ1 = (n + 2)/(n − 2) and ρ2 = n/(n − 2).
For a � 0 and b = 1, the existence part was extended by [14] to the case ρ1 �
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(n + 2)/(n − 2) and ρ2 � n/(n − 2). Harada [39] analysed the same problem with
a = 0 (Laplace equation), b = 1, and ρ2 > n/(n − 2) obtaining results on xn-
axial symmetry and asymptotic expansion for positive solutions. For a = 0, b = 1,
and 1 < ρ2 < n/(n − 2), Hu [28] proved the non-existence of non-negative clas-
sical solutions. By means of a variational approach and the method of invariant
sets, Liu and Liu [31] studied the existence of positive solutions and sign-
changing solutions for the Laplace equation in Rn

+ with the nonlinear boundary
condition ∂ηu = λV (x′)u + g(u), where the potential V ∈ L∞(Rn−1), 0 � V � 1,
lim|x′|→∞ V (x′) = 1, λ is a negative parameter, and g is superlinear at zero and
asymptotically linear at infinity. Linked to the self-similarity problem for the semi-
linear heat equation in Rn

+, the authors of [20, 22] analysed the elliptic PDE
with drift −Δu = (1/2)x · ∇u + cu + g1(u) in Rn

+ with ∂ηu = g2(u) on Rn−1 by
employing variational techniques along with weighted Sobolev spaces. See also
[23, 47] for further related results on NBVPs in the half-space and/or bounded
domains.

In another branch of research, we have the study of boundary value problems
(BVPs) with singular data which have been a subject of great interest to ellip-
tic PDEs community, see e.g. [3, 33] and references therein. As a matter of fact,
there exists a rich literature about the analysis of such problems with measure
as forcing terms and boundary data. By employing comparison principles, mono-
tonicity arguments, Kato inequality, weak compactness in weighted L1-spaces, or
suitable capacity-based characterizations, we would like to mention the works [4–6,
9, 11, 12, 25, 26, 34, 35, 37, 48], where the reader can find results on solv-
ability and qualitative properties for BVPs of coercive type in smooth bounded
domains Ω of Rn (see also the book [33] for a nice review). Gmira and Véron
[25] considered the problem −Δu + g(u) = 0 in Ω with u = f on ∂Ω, where the
boundary data f is a measure and g : R →R is a continuous nondecreasing func-
tion such that

∫ ∞
1

(|g(s)| + |g(−s)|)s−(2n/(n−1))ds < ∞. They proved existence of a
unique solution u ∈ L1(Ω) such that ρ(x)g(u) ∈ L1(Ω) where ρ(x) = d(x, ∂Ω). For
related results involving the nonlinearity g(s) = s |s|ρ−1 and positive measures f , see
[34, 35]. Brézis and Ponce [4] studied the same problem for a bounded measure
f and g : R →R being a continuous nondecreasing function satisfying g(s) = 0 for
s � 0. They developed a programme in the spirit of [5, 6] by introducing a concept
of reduced measure f∗ and showing that f∗ is the largest measure such that f∗ � f
and the problem has L1(Ω)-solution with boundary data f∗ (good measure), among
other properties. In the case of boundary nonlinearities, Boukarabila and Véron [9]
showed the solvability of the NBVP −Δu = 0 in Ω with ∂ηu + g(u) = f on ∂Ω, for
Radon measures f and g : R →R a continuous nondecreasing function satisfying
g(0) = 0 and an integral subcritical condition. In the case of problems involving
potentials V and Radon measures f , we highlight [48] where the authors studied
nonnegative L1(Ω)-solutions and reduced measure for the BVP −Δu + V u = 0 in
Ω with ∂ηu = f on ∂Ω by means of an approach with capacity depending on the
locally bounded potential V � 0 (then, it can be singular near ∂Ω), the Poisson
kernel and the first positive eigenfunction of −Δ in W 1,2

0 (Ω). For results on semi-
linear problems considering an interplay between measure data and Hardy-type
potentials, see [11, 12, 26, 37].
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In [3], Amann and Quittner considered the doubly nonlinear problem −Δu = g1

(x, u) + εf1 in Ω with ∂ηu = g2(x, u) + εf2 on ∂Ω in the noncoercive case (i.e.
gi(x, z) nondecreasing in z), where f1, f2 are finite Radon measures and ε > 0.
Among others, they obtained existence and multiplicity results by assuming suit-
able smallness conditions on ε and employing a mix of sub-super solution method,
Sobolev–Slobodeckij spaces, and techniques of fixed points in ordered Banach
spaces. In [7], Bidaut-Véron et al. treated the problem −Δu = g(u, ∇u) in Rn

+

with the Dirichlet condition u = εf on Rn−1, where n � 3 and f is a finite Radon
measure. For g(u, ∇u) = uρ with ρ > 1, they proved existence of positive solution
for small ε > 0, as well as some sharp pointwise estimates of the solutions, by
assuming suitable conditions involving the Riesz capacity on Rn−1 and employing
some ideas by Kalton and Verbitsky [29] who developed an extensive study about
a class of integral equations with measure data. The authors of [7] also analysed
the case of smooth bounded domains Ω (see [8] for related results) as well as the
mixed gradient-power case g(u, ∇u) = uρ1 |∇u|ρ2 , where ρ1, ρ2 � 0, ρ1 + ρ2 > 1,
and ρ2 < 2, both considering small boundary data εf .

In [10], the authors considered a class of weighted L∞-spaces in Fourier vari-
ables, namely the pseudomeasure spaces PMa in the half-space Rn

+, and obtained
results on solvability and regularity for (1.1) with β = 0 (nonlinearity independent
of derivatives) and Robin boundary conditions by means of suitable weighted-type
estimates and convolution properties of homogeneous functions. Their approach
in PMa is also based on Fourier analysis and employs an integral formulation
similar to ours, nevertheless without using localization arguments and the Little-
wood–Paley decomposition as in the case of FBs

p,∞-spaces. Moreover, we have that
PMa ⊂ FBs

p,∞ for s = a − n/p and 1 � p < ∞, and then our results allow more
singular potentials and forcing terms. For a Fourier analysis approach and an appli-
cation of the PMa-framework in the study of elliptic problems in the whole space
Rn with nonlinear derivative terms, see [19]. In this context, difficulties related to
the trace and boundary terms are not present in the integral formulation of the prob-
lem, and handling the Fourier transform is relatively simpler as the transform can be
applied to the whole Rn and not just to some components of x = (x1, x2, . . . , xn).

In [41], Quittner and Reichel addressed the problem −Δu = 0 in Ω with
∂ηu + u = g(x, u) on ∂Ω, where n � 3 and Ω ⊂ Rn is a bounded domain. Consider-
ing the growth condition |g(x, s)| � (1 + |s|p) for some p ∈ (1, (n − 1)/(n − 2)), and
developing suitable a priori estimates, they proved that all positive very weak solu-
tion belongs to L∞(Ω) (see also [46] for related results). In addition, they provided
examples showing that p̄ = (n − 1)/(n − 2) is a sharp critical exponent. In fact, for
n = 3, 4, some exponents p > p̄ and g(x, u) = up + f with some f ∈ L∞(∂Ω), they
constructed two unbounded very weak solutions blowing-up at a prescribed point
on ∂Ω, where Ω is taken within a half-space and with a flat boundary piece. In turn,
Merker and Rakotoson [36] analysed very weak solutions of the Poisson equation
−Δu = h in a bounded domain Ω for singular forcing terms h and singular Neumann
boundary conditions, by means of a framework based on Lorentz-spaces Lp,q(Ω),
with p ∈ (1, ∞) and q ∈ [1, ∞), and an approach relying on a suitable duality for-
mulation for the BVP. They proved an existence and uniqueness result covering
the following classes of forces: (i) h ∈ L1(Ω) with ∂nu = (− ∫

Ω
hdx)δx0 and (ii)
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non-integrable h with h · |x − x0| ∈ L1(Ω) and x0 ∈ ∂Ω. Moreover, a generalization
for finite Radon measures μ in place of δx0 was also discussed by them.

We analyse the unique solvability of (1.1) in a setting based on Fourier–Besov
spaces FBs

p,∞ in which localization-in-frequency arguments play a key role (see
theorem 3.2). Moreover, the regularity of solutions is investigated with the help of
Fourier–Sobolev spaces which naturally provide further decay in Fourier variables
for them (see theorem 3.5). Due to the scaling analysis, the power ρ2 is connected
to ρ1 and β via the relation (see (3.13))

(ρ2 − ρ1)γ = ρ1β − 1 with γ =
2 − ρ1β

ρ1 − 1
. (1.4)

So, we can think that ρ1 and β are free and determine ρ2. Or, alternatively, that
ρ1 and ρ2 are free and determine β. However, in the case K2 = 0, BVP (1.1) does
not depend on ρ2 and then we no longer have condition (1.4), and thus ρ1 and
β are free from each other (except for natural conditions involving the parameter
ranges). Assuming that V and f are radially symmetric in Rn−1, we show that the
obtained solutions are xn-axial symmetric (see theorem 3.7). Our solvability result
can also be adapted to the case of (1.1) with Robin boundary conditions in place of
the Neumann one (see remark 3.1). With a slight modification in statements and
proofs, our results work well for (1.1) with an additional forcing term h acting within
the domain Rn

+, namely considering −Δu = K1(∂βu)ρ1 + h as the first equation in
(1.1) (see remark 3.3(iii)).

In comparison with previous works, we are treating an NBVP in the half-space
Rn

+ with singular boundary potentials as (1.3) (see remark 3.4(i)) and a nonlin-
earity involving a fractional derivative. The solvability theory is developed via a
contraction argument in a new setting for the context of elliptic PDEs providing
new classes of solutions, potentials, and forcing terms. Moreover, it covers cases
of variational supercritical powers on the boundary and (when β = 0) within the
domain. Note that the results are new even for other relevant subcases of the model
problem (1.1) such as the simpler one β = 0, K1 = 1, V = 0, and K2 = 0, that is,
−Δu = uρ1 in Rn

+ with ∂ηu = f on Rn−1. Another feature is that FBs
p,∞-spaces lack

of good compactness properties and they are non-reflexive (consequently, neither
uniformly convex nor q-convex spaces), making it very difficult to employ capacity
approaches, variational techniques, Leray–Schauder theory, among others, and thus
motivating an analysis based on a non-topological fixed point argument.

In view of the strict continuous inclusions (see property (2.11) in § 2.2)

FBs+(n/p1)∞,∞ ⊂ FBs+((n/p1)−(n/p2))
p2,∞ ⊂ FBs

p1,∞ ⊂ FBs−(n−(n/p1))
1,∞ , (1.5)

where s ∈ R and 1 � p1 � p2 � ∞, we can feel the breadth of the family of spaces
FBs

p,∞, especially for negative regularity indexes s. By Hausdorff–Young inequality
and (1.5), we can see that Ḣs ⊂ FBs

2,∞ ⊂ FBs
p,∞ for 1 � p � 2 and s ∈ R, where

Ḣs stands for the homogeneous Sobolev spaces. Also, denoting the space of finite
Radon measures in Rn by M = M(Rn) and taking s = −(n/p1) in (1.5), we arrive
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at

M ⊂ FB0
∞,∞ ⊂ FB−n/p1

p1,∞ ⊂ FB−n
1,∞, (1.6)

which allows us to cover measure data by considering the space FBs
p,∞ with

s = −(n/p) and 1 � p � ∞ (see remark 3.4(ii)). Moreover, if f ∈ M with supp(f)
contained in a set of Hausdorff dimension s ∈ [0, n), it follows that |f̂(ξ)| � |ξ|−s/2

and f ∈ FBs/2
∞,∞ (see [38, p. 40]). By considering suitable indexes, we point out that

smallness conditions involving FBs
p,∞-norms allow us to consider some functions

with large Lp and Hs-norms, as well as large Radon measures.
This paper is organized as follows. Section 2 is devoted to some preliminaries by

recalling basic notations of Fourier analysis as well as reviewing basic definitions
and properties on Littlewood–Paley decomposition, Fourier–Sobolev spaces, and
Fourier–Besov spaces. In § 3, we state our results on solvability, regularity, and
symmetry for (1.1). The purpose of § 4 is to develop key estimates for the terms of
the integral formulation associated with (1.1). In § 5, with the estimates in hand,
we show the proofs of our results.

2. Preliminaries

2.1. Basic definitions and notations

In this section, we collect some notations that will be used throughout this paper.
We denote the Schwartz space of rapidly decreasing smooth functions on Rn by
S = S(Rn) and its dual, the space of tempered distributions, by S ′ = S ′(Rn). In
both of them, the Fourier transform of f is an isomorphism and denoted by f̂(ξ) or
F(f). For its inverse, we use the notation f∨(ξ) or F−1(f). In the case of S, their
actions can be represented in an integral form by

f̂(ξ) =
∫

Rn

e−2πix·ξf(x)dx and f̌(ξ) = f̂(−ξ), ∀ξ ∈ Rn. (2.1)

Also, the operators in (2.1) in the S ′-setting are defined via the pair duality between
S ′ and S.

For p ∈ [1, ∞] and the Lebesgue measure μ on Rn, we denote by Lp(Rn) = Lp

(Rn, dμ) the usual Lp-space endowed with the norm ‖·‖p. In the case of the counting
measure μ, we have the sequence Lebesgue space with p-summability lp = lp(Zn).

Consider the Fourier–Sobolev space

H1,s = H1,s(Rn) = {f ∈ S ′; ‖f‖H1,s = ‖(1 + |ξ|s)f̂(ξ)‖1 < ∞}, (2.2)

which is a Banach space with the norm ‖·‖H1,s . We have the following basic
properties:

(i) For a constant C > 0, we have the Hölder-type inequality

‖u1u2 . . . um‖H1,s � C ‖u1‖H1,s ‖u2‖H1,s . . . ‖um‖H1,s . (2.3)

(ii) The continuous inclusion H1,s ⊂ H1,t holds true for s � t.
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Now, for each m ∈ N we define the space Cm
0 (Rn) as the space of functions u such

that ∂αu is continuous and goes to zero as |x| → ∞, for all multi-index α ∈ Nn such
that |α| = α1 + · · · + αn � m.

Finally, for z, w ∈ C with Re(z), Re(w) > 0, we recall the Gamma and Beta
functions

Γ(z) =
∫ +∞

0

tz−1e−tdt and B(z, w) =
∫ 1

0

tz−1(1 − t)w−1dt, (2.4)

respectively, which verify the relation B(z, w) = Γ(z)Γ(w)/Γ(z + w).

2.2. Fourier–Besov spaces

Let φ ∈ S(Rn) satisfy the following properties

0 � φ̂(ξ) � 1, ∀ξ ∈ Rn, supp(φ̂(ξ)) ⊂ {ξ ∈ Rn; 2−1 � |ξ| � 2}, (2.5)

and
∑

j∈Z
φ̂j = 1, ∀ξ ∈ Rn, where φj(x) = 2jnφ(2jx). For each k ∈ Z, the dyadic

k-block Δk and the low-frequency operator Sk are defined as

Δkf = φk ∗ f and Skf =
k∑

j=−∞
Δjf, for all f ∈ S ′.

Let P stands for the set of all polynomials. For f ∈ S ′/P, we have the Little-
wood–Paley decomposition

f =
∑
j∈Z

Δjf. (2.6)

Moreover, for f, g S ′/P, the Bony paraproduct is given by

fg =
∑
j∈Z

Sj−3fΔjg +
∑
j∈Z

Sj−3gΔjf +
∑

j,k∈Z

∑
|j−k|�2

ΔkfΔjg. (2.7)

For s ∈ R and 1 � p, q � ∞, the homogeneous Fourier–Besov space (FB-spaces),
denoted by FBs

p,q, is the set of all f ∈ S ′/P such that f̂ ∈ L1
loc(R

n) and the norm

‖f‖FBs
p,q

:=
∥∥∥∥{

2sj ‖ φ̂j f̂ ‖Lp(Rn)

}
j∈Z

∥∥∥∥
lq(Z)

< ∞. (2.8)

The pair (FBs
p,q, ‖ · ‖FBs

p,q
) is a Banach space.

In what follows, we define the functional setting that will be employed in
the study of BVP (1.1). For s ∈ R, 1 � p, q, r � ∞, and d > 0, we consider the
space Lr

dFBs
p,q = Lr

dFBs
p,q(R

n
+) of all Bochner measurable functions u : (0, ∞) −→
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FBs
p,q(R

n−1) such that the norm ‖·‖Lr
dFBs

p,q
is finite, where

‖u‖Lr
dFBs

p,q
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝∑
j∈Z

2sjq ‖ xd
n ‖ φ̂j û(ξ′, xn) ‖Lp(Rn−1)‖q

Lr(0,∞)

⎞⎠1/q

, if q < ∞,

sup
j∈Z

2sj ‖ xd
n ‖ φ̂j û(ξ′, xn) ‖Lp(Rn−1)‖Lr(0,∞), if q = ∞.

(2.9)

In the sequel, we recall a Bernstein-type inequality in Fourier variables which is
useful for carrying out estimates in the spaces FBs

p,q(R
n) and Lr

dFBs
p,q(R

n
+). For

1 � p1 � p2 � ∞, a multi-index α of nonnegative real numbers, j ∈ Z, R > 0 and
supp(f̂) ⊂ {ξ ∈ Rn; |ξ| � R2j}, we have that

‖ξαf̂‖p1 � C2j|α|+j(n/p2−n/p1)‖f̂‖p2 , (2.10)

where C > 0 is a constant independent of n, α, j, p1, p2, ξ, and f . Estimate (2.10)
yields the continuous inclusion

FBs2
p2,q(R

n) ⊂ FBs1
p1,q(R

n), (2.11)

where 1 � p1, p2, q � ∞ and s1, s2 ∈ R satisfy p1 < p2 and n/p1 + s1 = n/p2 + s2.
The proposition below contains an useful scaling property for the norms of the

spaces FBs
p,q(R

n) and Lr
dFBs

p,q(R
n
+).

Proposition 2.1 (see [1, 40]). Let 1 � p, q � ∞, s ∈ R, and d > 0.

(i) For u ∈ FBs
p,q(R

n), consider the rescaling uλ = λγu(λ·). If

s + γ − n +
n

p
= 0, (2.12)

then

‖u ‖FBs
p,q

�‖ uλ ‖FBs
p,q

�‖ u ‖FBs
p,q

.

(ii) For u ∈ Lr
dFBs

p,q(R
n
+), consider the rescaling uλ = λγu(λ·). If

s + γ − (n − 1) +
(n − 1)

p
− d − 1

r
= 0, (2.13)

then

‖u ‖Lr
dFBs

p,q
�‖ uλ ‖Lr

dFBs
p,q

�‖ u ‖Lr
dFBs

p,q
.
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3. Results

Proceeding formally, we can apply the Fourier transform in the n − 1 first variables
in (1.1) in order to get{

−∂2
xnxn

û(ξ′, xn) + 4π2|ξ′|2(û)(ξ′, xn) = [ ̂K1(∂βu)ρ1 ], for ξ′ ∈ Rn−1, xn > 0,

∂xn
û(ξ′, 0) = [V̂ u](ξ′) + [K̂2uρ2 ](ξ′) + f̂(ξ′), for ξ′ ∈ Rn−1.

(3.1)

Note that above we are identifying ξ′ = (ξ′, 0) ∈ Rn−1. Solving (3.1) with respect
to the xn-variable, we arrive at the following integral equation in Fourier variables:

û(ξ′, xn) =
∫ ∞

0

G(ξ′, xn, t)[ ̂K1(∂βu)ρ1 ](ξ′, t)dt

+ G(ξ′, xn, 0)[(V̂ u)(ξ′) + (K̂2uρ2)(ξ′) + f̂(ξ′)], (3.2)

where

G(ξ′, x, t) =
e−2π|ξ′||x+t| + e−2π|ξ′||x−t|

4π|ξ′| , for ξ′ ∈ Rn−1/{0}, x � 0, and t � 0,

(3.3)

is the Green function associated with problem (3.1) (see [43] for more details).

Remark 3.1. Replacing the Neumann boundary condition in (3.1) with the Robin
condition

∂u

∂η
+ λu = V (x′)u + K2u

ρ2 + f(x′),

and proceeding analogously to the above, we obtain the integral formulation (3.2)
with the Green function

G̃(ξ′, x, t) =
(2π|ξ′| + λ)e−2π|ξ′||x+t| + (2π|ξ′| − λ)e−2π|ξ′||x−t|

(8π2|ξ′|2 + λ|ξ′|) , (3.4)

instead of (3.4). For both cases, we have the pointwise estimate

|G(ξ′, x, t)| � 1
2π|ξ′|e

−2π|ξ′||x−t| and |G̃(ξ′, x, t)| � 1
2π|ξ′|e

−2π|ξ′||x−t|. (3.5)

We can see from the integral equation (3.2) that it is necessary to evaluate the
boundary values on ∂Rn

+. However, since we are going to work with spaces of rough
functions without a trace notion, we need to consider a functional setting that
carries information on u both within Rn

+ and on the boundary of the domain ∂Rn
+.

In this way, writing u1 = u|
R

n
+

and u2 = u|∂R
n
+

, equation (3.2) can be equivalently
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rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

û1(ξ′, xn) =
∫ ∞

0

G(ξ′, xn, t)( ̂K1(∂βu1)ρ1)(ξ′, t)dt

+ G(ξ′, xn, 0)[(V̂ u2)(ξ′) + (K̂2u
ρ2
2 )(ξ′) + f̂(ξ′)]

û2(ξ′) =
∫ ∞

0

G(ξ′, 0, t)( ̂K1(∂βu1)ρ1)(ξ′, t)dt

+ G(ξ′, 0, 0)[(V̂ u2)(ξ′) + (K̂2u
ρ2
2 )(ξ′) + f̂(ξ′)]

(3.6)

Naturally, in a setting with enough regularity for u, note that u2 should be the
trace of u1 in ∂Rn

+. This follows directly from the uniqueness of solution for the
problem that will be obtained in theorem 3.2 (see more below).

To handle (3.6), we define the following operators in Fourier variables:
I(u1, u2) = (I1(u1), I2(u1)) with

Î1(u1) =
∫ ∞

0

G(ξ′, xn, t)(K1(∂βu1)ρ1)∧(ξ′, t)dt

and Î2(u1) =
∫ ∞

0

G(ξ′, 0, t)(K1(∂βu1)ρ1)∧(ξ′, t)dt;
(3.7)

N(u1, u2) = (N1(u2), N2(u2)) with

N̂1(u2) = G(ξ′, xn, 0)(V u2)∧(ξ′) and N̂2(u2) = G(ξ′, 0, 0)(V u2)∧(ξ′); (3.8)

T (u1, u2) = (T1(u2), T2(u2)) with

T̂1(u2) = G(ξ′, xn, 0)(K2u
ρ2
2 )∧(ξ′) and T̂2(u2) = G(ξ′, 0, 0)(K2u

ρ2
2 )∧(ξ′); (3.9)

L(f) = (L1(f), L2(f)) with

L̂1(u1) = G(ξ′, xn, 0)f̂(ξ′) and L̂2(u2) = G(ξ′, 0, 0)f̂(ξ′). (3.10)

Then, we can express (3.6) through the formulation

u = I(u) + N(u) + T (u) + L(f), (3.11)

where u = (u1, u2). If u satisfies equation (3.11), we say that u is an integral solution
for (1.1).

In what follows, we carry out a scaling analysis to find suitable indexes for the
corresponding FB-spaces of u, V, f . For that purpose and just a moment, consider
V and f homogeneous distributions of degree h1 and h2, respectively. Also, denote
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uλ(x) = λγu(λx) and assume that

γ = ρ1(γ + β) − 2 = γ − h1 − 1 = ρ2γ − 1 = −h2 − 1, (3.12)

or equivalently

γ =
2 − ρ1β

ρ1 − 1
, h1 = −1, h2 =

ρ1(β − 1) − 1
ρ1 − 1

, (ρ2 − ρ1)γ = ρ1β − 1. (3.13)

Making a scaling analysis, we have that uλ verifies (3.11) if so does u. Thus, we
have the scaling map

u → uλ. (3.14)

A space of tempered distribution is said to be critical for (3.11) when it is invariant
under (3.14).

Let us point out that the scaling map carries structural information about the
BVP, showing the degree of homogeneity preserved by it. Thus, studying the BVP in
spaces (with the correct indexes) that preserve such homogeneity (critical spaces), in
principle, should provide a good environment for estimating the terms of its integral
formulation via tools such as Fourier transform, product estimates, estimates for
potential operators, among others. This way, a suitable balance is obtained between
the two sides of the needed estimates for the operators of the integral formulation;
in our case the operators I(·), N(·), T (·), and L(·) in (3.11). These aspects are
even more prominent in the case of homogeneous versions of spaces such as the
homogeneous Sobolev spaces, the homogeneous Besov spaces, the homogeneous
Fourier–Besov spaces, as is our case in question. They are also relevant in the case
where the space of original variables is invariant by homotheties x → λx (λ > 0),
such as Rn or the half-space Rn

+, in which certain embeddings and estimates work
well only for exact indexes or a precise relation between them.

Next, we define the functional setting where we are going to analyse (3.11). For
n � 3, 1 � p � ∞, s1, s2 ∈ R, 1 � p � ∞, and d > 0 satisfying the relation

s1 − d +
(n − 1)

p
= s2 +

(n − 1)
p

= (n − 1) − γ, (3.15)

we consider

X = X s1,s2
p,d = L∞

d FBs1
p,∞(Rn

+) ×FBs2
p,∞(Rn−1), (3.16)

endowed with the norm:

‖(u1, u2)‖X = ‖u1‖L∞
d FBs1

p1,∞ + ‖u2‖FBs2
p2,∞ . (3.17)

Note that in view of (3.13) and (3.15), we have that X is a critical space for (3.11),
namely

‖(u1, u2)‖X � ‖(λγu1(λx), λγu2(λx))‖X .

Furthermore, for ρ1, ρ2 � 2 integers and β � 0, define the regularity indexes s̃ and
s as

s̃ = (n − 1) − n − 1
p

− 1 and s = (n − 1) − (n − 1)
p

− 1 − 2 − ρ1β

ρ1 − 1
. (3.18)
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Theorem 3.2. Let n � 3, ρ1, ρ2 � 2 integers with ρ2 � (ρ1 + 1)/2, 1 � p � ∞,
s1, s2, s̃, s ∈ R, d > 0, and 0 � β < 2/ρ1. Assume the scaling relations (3.13),
(3.15), and (3.18). Suppose also the conditions

d < min
{

1
ρ1 − 1

,
2 − β

ρ1 − 1

}
, s1 > 2 − (ρ1 − 1)d, and s2 > 2 − ρ1d. (3.19)

Then, there are ε > 0 and δ1, δ2 > 0 such that equation (3.11) has a unique solu-
tion u = (u1, u2) satisfying ‖u‖X � ε provided that f ∈ FBs

p,∞ and V ∈ FBs̃
p,∞

with ‖f‖FBs
p,∞

� δ1 and ‖V ‖FBs̃
p,∞

� δ2. Furthermore, the solution u depends
continuously on f and V .

Remark 3.3.

(i) (Lipschitz dependence on f, V ) In fact, the proof of theorem 3.2 gives that
the data-solution map (f, V ) → u = (u1, u2) is Lipschitz continuous. More
precisely, if u = (u1, u2) and w = (w1, w2) ∈ BX are solutions of (3.11) corre-
sponding to the pairs (V, f) and (Ṽ , f̃), respectively, then we have positive
constants η, ζ independent of V, Ṽ , f, f̃ , u, w such that

‖u − w‖X � η ‖ V − Ṽ ‖FBs̃
p,∞ +ζ ‖ f − f̃ ‖FBs

p,∞ (3.20)

(ii) Note that the conditions in theorem 3.2 are non-empty. As a matter of fact,
it follows from (3.13) that β = (2ρ2 − ρ1 − 1)/(ρ2 − 1). For ρ2 > (ρ1 + 1)/2, it
follows that 0 < β < 2/ρ1. Then, we can take d > 0 satisfying (ρ1 + 1)d < 1
and d < (2 − β)/(ρ1 − 1). Also, consider n, p such that

(n − 1)
(

1 − 1
p

)
> ρ1

(
2 − β

ρ1 − 1
− d

)
.

Now, for γ as in (3.13), we can choose s1 and s2 such that (3.15) and (3.19)
hold true. The case β = 0 is similar but we need to consider an odd integer
ρ1 � 3, because ρ2 = (ρ1 + 1)/2.

(iii) With suitable adaptations in theorem 3.2, we could treat problem (1.1) with the
first equation being −Δu = K1(∂βu)ρ1 + h, that is, with an additional forcing
term h. For example, we need to assume h ∈ FBs3

p,∞ with s3 = n − 2 − γ − n/p
and ‖h‖FBs3

p,∞ � δ3, for some small δ3 > 0.

(iv) From a more general viewpoint, formulation (3.11) can be interpreted within
the perspective of nonlinearly perturbed linear problems. This broad class
of problems has attracted the attention of several authors; see, for example
[16, 24, 32] and references therein.

Remark 3.4.

(i) (Singular potentials) Theorem 3.2 covers potentials V as in (1.3) which are
homogeneous of degree −1. In fact, for potentials homogeneous of degree −σ,
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by proposition 2.1(i) we have that V ∈ FBs̃
p,∞ with s̃ = n − 1 − ((n − 1)/p) − σ

that corresponds to the index s̃ in (3.18) when σ = 1.

(ii) (Measures as forcing terms) We can consider f as a Radon measure by taking
s = −(n − 1)/p. In this case, using (3.18) we have (n − 1) − γ = 1 and then it
follows from (3.15) that the indexes s1, s2 should satisfy

s1 − d = s2 = 1 − (n − 1)
p

. (3.21)

Therefore, in order to have the conditions on s1 and s2 in (3.19), we need to
assume

d >
1
ρ1

+
n − 1
pρ1

and
n − 1

p
< min

{
1

ρ1 − 1
,
1 + ρ1 − βρ1

ρ1 − 1

}
(3.22)

which is compatible with the other conditions in theorem 3.2. For example, in
the case p = ∞, condition (3.22) reduces to the simple one d > 1/ρ1.

To analyse the regularity of solutions for (3.11), we need to consider another
functional setting which is a suitable half-space version of the Fourier–Sobolev space
H1,s(Rn) defined in (2.2). Let H1,s

d = H1,s
d (Rn

+) be the Banach space of all Bochner
measurable functions u : (0, ∞) −→ H1,s(Rn−1) such that the norm ‖·‖H1,s

d
is finite,

where

‖f‖H1,s
d

= ess sup
xn>0

xd
n

∥∥∥(1 + | · |s)f̂(xn, ·)
∥∥∥

1
. (3.23)

Consider the Banach space H1,s
d = H1,s

d × H1,s with the norm

‖(u1, u2)‖H1,s
d

= ‖u1‖H1,s
d

+ ‖u2‖H1,s . (3.24)

We have the following result.

Theorem 3.5. Under the same hypotheses of theorem 3.2, let s ∈ R and suppose
further that ρ1 � 4, ρ2 < ρ1, d < min{1/(ρ1 + 1), (2 − ρ1β)/(ρ1 − 1), (1 − β)/ρ1},
and s � β.

There exist δ1, δ2 > 0 such that, if f ∈ FBs
p,∞ ∩ H1,s and V ∈ FBs̃

p,∞ ∩ H1,s

satisfy

‖f‖FBs
p,∞∩H1,s � δ1 and ‖V ‖FBs̃

p,∞∩H1,s � δ2,

then the solution u = (u1, u2) of (3.11) obtained in theorem 3.2 belongs to X ∩
H1,s

d . Moreover, we have that u1(·, xn) ∈ C

s�
0 (Rn−1), for each xn > 0, and u2 ∈

C

s�
0 (Rn−1), where 
·� stands for the greatest integer function.

Remark 3.6. For index s large enough in theorem 3.5, we obtain a solution u for
equation (3.11) smooth w.r.t. the variables x′ = (x1, . . . , xn−1).

In the next result, we present a result on axial symmetry of solutions.
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Theorem 3.7. Under the hypotheses of theorem 3.2. Assume further that V and f
are radially symmetric in Rn−1. Let u = (u1, u2) be the solution of (3.11) obtained
in theorem 3.2 corresponding to V and f . Then, u is invariant under rotations
around the axis

−−→
Oxn, that is, u1 is invariant under rotations around

−−→
Oxn and the

trace component u2 is radially symmetric in Rn−1.

4. Estimates for the terms of formulation (3.11)

The purpose of this section is to develop the key estimates for the operators
L(f), I(u), T (u), and N(u) defined in (3.7)–(3.10).

4.1. Estimates in spaces of FB-type

Consider the Banach spaces

Y = L∞
d FBs1

p,∞(Rn
+) and Z = FBs2

p,∞(Rn−1), (4.1)

with the respective norms ‖u1‖Y = ‖u1‖L∞
d FBs1

p,∞ and ‖u2‖Z = ‖u2‖FBs2
p,∞ . Note

that Z is a trace space and the space X in theorem 3.2 can be expressed as
X = Y × Z.

To deal with the product operator and nonlinearities in Y and Z, we need to
work with some decompositions in frequency variables. For that, let w, v ∈ S ′/P
and 1 � p � ∞. Recalling Bony’s paraproduct formula, we have that

wv =
∑
k∈Z

Sk−3vΔkw +
∑
k∈Z

Sk−3wΔkv +
∑

l,k∈Z

∑
|l−k|�2

ΔlwΔkv

=: A1 + A2 + A3.

Then, for each j ∈ Z, it follows that

‖φ̂j(ŵv) ‖p� ‖φ̂jÂ1 ‖p +‖φ̂jÂ2 ‖p +‖φ̂jÂ3 ‖p .

Using that supp( ̂Sk−3vΔkw) ⊂ {ξ′ ∈ Rn−1; 2k−2 � |ξ′| � 2k+2} (similarly for the
parcels of Â2) and

supp

⎛⎝ ∑
|l−k|�2

φ̂lŵ ∗ φ̂kv̂

⎞⎠ ⊂ {ξ′ ∈ Rn−1; 0 < |ξ′| < 2l+4},

we can decompose

‖ φ̂j(ŵv) ‖p �
∑

|k−j|�3

k−3∑
l=−∞

‖ φ̂lv̂ ∗ φ̂kŵ ‖p +
∑

|k−j|�3

k−3∑
l=−∞

‖ φ̂lŵ ∗ φ̂kv̂ ‖p

+
∑

|j−l|<5

∑
|k−l|�2

‖ φ̂lŵ ∗ φ̂kv̂ ‖p +
∞∑

l=j−3

∑
|k−l|�2

‖ φ̂lŵ ∗ φ̂kv̂ ‖p

=: B1 + B2 + B3 + B4. (4.2)
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Proceeding similarly to the above for the product zvw, we arrive at

‖ φ̂j(ẑvw) ‖p �
∑

|k−j|�3

k−3∑
l=−∞

‖ φ̂lẑ ∗ φ̂kv̂w ‖p +
∑

|k−j|�3

k−3∑
l=−∞

‖ φ̂lv̂w ∗ φ̂kẑ ‖p

+
∑

|j−l|<5

∑
|k−l|�2

‖ φ̂lẑ ∗ φ̂kv̂w ‖p +
∞∑

l=j−3

∑
|k−l|�2

‖ φ̂lẑ ∗ φ̂kv̂w ‖p

=: D1 + D2 + D3 + D4. (4.3)

Moreover, we can estimate the parcel D1 as follows:

D1 =
∑

|k−j|�3

k−3∑
l=−∞

‖ φ̂lẑ ∗ φ̂kv̂w ‖p

�
∑

|k−j|�3

k−3∑
l=−∞

‖ φ̂lẑ ‖1

⎛⎝ ∑
|m−k|�3

m−3∑
η=−∞

‖ φ̂ηŵ ∗ φ̂mv̂ ‖p

+
∑

|m−k|�3

m−3∑
η=−∞

‖ φ̂η v̂ ∗ φ̂mŵ ‖p +
∑

|k−m|<5

∑
|m−η|�2

‖ φ̂ηŵ ∗ φ̂mv̂ ‖p

+
∞∑

m=k−3

∑
|η−m|�2

‖ φ̂ηŵ ∗ φ̂mv̂ ‖p

⎞⎠
=: D1

1 + D2
1 + D3

1 + D4
1. (4.4)

In the same way, for D2, D3, D4 we obtain the estimates

Di � D1
i + D2

i + D3
i + D4

i , for i = 2, 3, 4,

where the parcels Dj
i are as in (4.4) with the natural small modifications.

First, we treat the operators L1(·) and L2(·).

Lemma 4.1. Let s1, s2 ∈ R, 1 � p � ∞, ρ1 � 2, β � 0, d > 0 satisfy (3.15) with
γ = (2 − ρ1β)/(ρ1 − 1). Consider s ∈ R as in (3.18). Then, there exists a constant
C > 0 such that

‖L1(f)‖Y � C ‖f‖FBs
p,∞

and ‖L2(f)‖Z � C ‖f‖FBs
p,∞

, (4.5)

for all f ∈ FBs
p,∞(Rn−1).
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Proof. For each j ∈ Z, using that s1 − 1 − d = s2 − 1 = s, we can estimate

2s1jxd
n ‖ φ̂jG(ξ′, xn, 0)f̂ ‖p � C2s1jxd

n ‖ φ̂j
1

2π|ξ′|e
−2π|ξ′||xn|f̂ ‖p

� C2(s1−1)jxd
ne−2π|2jxn| ‖ φ̂j f̂ ‖p

= C2(s1−1−d)j(2jxn)de−2π|2jxn| ‖ φ̂j f̂ ‖p

� C2sj ‖ φ̂j f̂ ‖p (4.6)

and

2s2j ‖ φ̂jG(ξ′, 0, 0)f̂ ‖p� C2(s2−1)j ‖ φ̂j f̂ ‖p= C2sj ‖ φ̂j f̂ ‖p . (4.7)

The estimates in (4.5) follows by taking the supremum over xn > 0 and j ∈ Z in
(4.6) and the supremum over j ∈ Z in (4.7). �

The lemma below contains estimates for the operator I1(u) defined in (3.7).

Lemma 4.2. Let s1 ∈ R, 1 � p � ∞, ρ1 � 2 integer, β � 0, and let d > 0 be such
that

d < min
{

1
ρ1 − 1

,
2 − β

ρ1 − 1

}
, s1 > 2 − (ρ1 − 1)d

and

s1 − d +
n − 1

p
= (n − 1) − 2 − ρ1β

ρ1 − 1
. (4.8)

Then, there exists a constant C > 0 such that

‖I1(u1) − I1(w1)‖Y � C ‖u1 − w1‖Y
ρ1−1∑
i=0

‖u1‖ρ1−1−i
Y ‖w1‖i

Y , (4.9)

for all u1, w1 ∈ Y.

Proof. Assume initially that ρ1 = 2. For each j ∈ Z, in view of (3.5), we have that

2s1j ‖ φ̂j(ξ′)
∫ ∞

0

G(ξ′, xn, t)[K1((∂βu1)2)∧(ξ′, t) − K1((∂βw1)2)∧(ξ′, t)]dt ‖p

� C2(s1−1)j

∫ ∞

0

e−2π2j |xn−t| ‖ φ̂j(ξ′)[∂β(u1 − w1)∂β(u1 + w1)]∧(ξ′, t) ‖p dt.

(4.10)

Taking w = ∂β(u1 − w1)(·, t) and v = ∂β(u1 + w1)(·, t), and using (4.2), we
obtain that

R.H.S. of (4.10) � C2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|(B1 + B2 + B3 + B4)dt. (4.11)

In what follows, we separately treat the parcels in (4.11). For the parcel with B1,
in view of (4.8) with ρ1 = 2, employing Young inequality in Lp and Bernstein-type
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inequality (2.10), we have that

2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|B1dt

� C2(s1−1)j

∫ ∞

0

e−2π2j |xn−t| ∑
|k−j|�3

k−3∑
l=−∞

2[(n−1)−((n−1)/p)+β−s1]l

× 2s1l ‖ φ̂l(u1 − w1)∧(ξ′, t) ‖p 2kβ ‖ φ̂k(u1 + w1)∧(ξ′, t) ‖p dt

� C ‖ u1 − w1 ‖L∞
d FBs1

p,∞

∫ ∞

0

t−2de−2π2j |xn−t|dt
∑

|k−j|�3

2(s1−1)j2k[2−d]

× sup
t>0

td ‖ φ̂k(u1 + w1)∧(·, t) ‖p,

because (n − 1) − ((n − 1)/p) + β − s1 = (2 − 2β) − d + β. Using now that
e−2π2j |xn−t|(2π2j ||xn − t|)M < 1 with M < 1, it follows that

∫ ∞

0

t−2de−2π2j |xn−t|dt

� C2−jM

(∫ xn

0

t−2d(|xn − t|)−Mdt +
∫ ∞

xn

t−2d(|xn − t|)−Mdt

)
= 2−jMx1−M−2d

n (B(1 − 2d, 1 − M) + B(2d + M − 1, 1 − M))

� C2−jMx1−M−2d
n ,

where B(·, ·) is the beta function (see (2.4)) and we use the change of variables
t = xns and t = xn/w. Here, we need 1 − 2d > 0, 1 − M > 0, and 2d + M − 1 > 0
for the convergence of B. So, taking M + 2d − 1 = d, we arrive at

2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|B1dt � C ‖u1 −w1‖L∞
d FBs1

p,∞ x−d
n

∑
|k−j|�3

2(s1−1−M)(j−k)2s1k

× sup
t>0

td ‖ φ̂k(u1 + w1)∧(·, t) ‖p,

since s1 − 1 − M + 2 − d = s1. For B2, B3, and B4, proceeding analogously to
above, we have respectively that

2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|B2dt

� C2(s1−1)j

∫ ∞

0

e−2π2j |xn−t| ∑
|k−j|�3

k−3∑
l=−∞

2[(n−1)−((n−1)/p)+β−s1]l
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× 2s1l ‖ φ̂l(u1 + w1)∧(ξ′, t) ‖p 2kβ ‖ φ̂k(u1 − w1)∧(ξ′, t) ‖p dt

� C ‖u1 + w1‖L∞
d FBs1

p,∞ x−d
n

∑
|k−j|�3

2(s1−1−M)(j−k)2s1k

× sup
t>0

td ‖ φ̂k(u1 − w1)∧(·, t) ‖p,

2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|B3dt

� C2(s1−1)j

∫ ∞

0

e−2π2j |xn−t| ∑
|l−j|<5

∑
|k−l|�2

2[(n−1)−((n−1)/p)+β−s1]k

× 2s1k ‖ φ̂k(u1 − w1)∧(ξ′, t) ‖p 2lβ ‖ φ̂l(u1 + w1)∧(ξ′, t) ‖p dt

� C ‖ u1 − w1 ‖L∞
d FBs1

p,∞ x−d
n

∑
|l−j|<5

2(s1−1−M)(j−l)2s1l

× sup
t>0

td ‖ φ̂l(u1 + w1)∧(·, t) ‖p,

and

2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|B4dt

� C2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|
∞∑

l=j−3

∑
|k−l|�2

2[(n−1)−((n−1)/p)+β−s1]k

× 2s1k ‖ φ̂k(u1 − w1)∧(ξ′, t) ‖p 2lβ ‖ φ̂l(u1 + w1)∧(ξ′, t) ‖p dt

� C ‖u1 − w1‖L∞
d FBs1

p,∞ x−d
n

∞∑
l=j−3

2(s1−1−M)(j−l)2s1l

× sup
t>0

td ‖ φ̂l(u1 + w1)∧(·, t) ‖p .

Next, bearing in mind (4.10)–(4.11), multiplying both sides of the above estimates
by xd

n, taking the supremum over xn > 0, afterwards the supremum over j ∈ Z, and
applying Young inequality for discrete convolutions in Z, we arrive at

‖I1(u1) − I1(w1) ‖Y� C ‖ u1 − w1 ‖Y (‖u1 ‖Y +‖w1 ‖Y),

where we have used that 2 − d − β > 0 and s1 > 2 − d in order to ensure conver-
gence of the series in the estimates involving Bi’s.

Now, we turn to the case ρ1 = 3. First, note that

(∂βu1)3 − (∂βw1)3 = ∂β(u1 − w1)(∂βu1)2 + ∂β(u1 − w1)(∂βu1)(∂βw1)

+ ∂β(u1 − w1)(∂βw1)2.
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Thus,

2s1j ‖ φ̂j(ξ′)
∫ ∞

0

G(ξ′, xn, t)[K1((∂βu1)3)∧ − K1((∂βw1)3)∧](ξ′, t)dt ‖p

� C2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|
(
‖φ̂j(ξ′)(∂β(u1 − w1)(∂βu1)2)∧(ξ′, t) ‖p

+ ‖φ̂j(ξ′)(∂β(u1 − w1)(∂βu1)(∂βw1))∧(ξ′, t) ‖p

+ ‖φ̂j(ξ′)(∂β(u1 − w1)(∂βw1)2)∧(ξ′, t) ‖p

)
dt

=: J1 + J2 + J3. (4.12)

Let us provide an estimate for J2. Considering z = ∂β(u1 − w1), v = ∂βw1, and
w = ∂βu1 in (4.3), we have the corresponding parcels Di’s. We are going to show
how to handle D1. The others can be treated similarly, being left to the reader. We
have that

2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|D1dt � C2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|(D1
1 + D2

1 + D3
1 + D4

1)dt.

For the terms Di
1’s, due to the triple product in (4.3), we use Young inequality in

Lp and (2.10) twice (see e.g. (4.4)), as well as (4.8) with ρ1 = 3, in order to estimate

2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|D1
1dt

� C2(s1−1)j ‖u1 − w1‖L∞
d FBs1

p,∞ ‖u1‖L∞
d FBs1

p,∞

∫ ∞

0

t−3de−2π2j |xn−t|dt

×
∑

|k−j|�3

2k[1−d−(1/2)β]
∑

|m−k|�3

m−3∑
η=−∞

2η[1−d−(1/2)β]2mβ sup
t>0

td ‖ (φ̂mŵ1)(·, t) ‖p

� Cx1−3d−M
n ‖u1 − w1‖L∞

d FBs1
p,∞ ‖u1‖L∞

d FBs1
p,∞

∑
|k−j|�3

2(j−k)(s1−1−M)

× 2k[2−2d−1−M ]
∑

|m−k|�3

2(k−m)s12ms1 sup
t>0

td ‖ (φ̂mŵ1)(·, t) ‖p,

2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|D2
1dt

� Cx1−3d−M
n ‖u1 − w1‖L∞

d FBs1
p,∞ ‖w1‖L∞

d FBs1
p,∞

∑
|k−j|�3

2(j−k)(s1−1−M)

× 2k[2−2d−1−M ]
∑

|k−m|�3

2(k−m)s12ms1 sup
t>0

td ‖ φ̂mû1(·, t) ‖p,
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2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|D3
1dt

� Cx1−3d−M
n ‖u1 − w1‖L∞

d FBs1
p,∞ ‖u1‖L∞

d FBs1
p,∞

∑
|k−j|�3

2(j−k)(s1−1−M)

× 2k[2−2d−1−M ]
∑

|k−m|<5

2(k−m)s12ms1 sup
t>0

td ‖ φ̂mŵ1(·, t) ‖p,

and

2(s1−1)j

∫ ∞

0

e−2π2j |xn−t|D4
1dt

� Cx1−3d−M
n ‖u1 − w1‖L∞

d FBs1
p,∞ ‖u1‖L∞

d FBs1
p,∞

∑
|k−j|�3

2(j−k)(s1−1−M)

× 2k[2−2d−1−M ]
∞∑

m=k−3

2(k−m)s12ms1 sup
t>0

td ‖ (φ̂mŵ1)(·, t) ‖p .

Thus, considering the similar estimates for D2, D3, D4 and taking M = 1 − 2d
yield

sup
j∈Z

sup
xn>0

xd
n J2 = C sup

j∈Z

2(s1−1)j sup
xn>0

xd
n

∫ ∞

0

e−2π2j |xn−t|

× ‖φ̂j(ξ′)(∂β(u1 − w1)(∂βu1)(∂βw1))∧(ξ′, t) ‖p dt

� C ‖u1 − w1‖Y ‖u1‖Y ‖w1‖Y , (4.13)

where we use 1 − d − β/2 > 0 and s1 > 2 − 2d. Following the same reasoning, we
can also show that

sup
j∈Z

sup
xn>0

xd
n J1 = C sup

j∈Z

2(s1−1)j sup
xn>0

xd
n

∫ ∞

0

e−2π2j |xn−t|

× ‖φ̂j(ξ′)(∂β(u1 − w1)(∂βu1)2)∧(ξ′, t) ‖p dt

� C ‖u1 − w1‖Y ‖u1‖2
Y (4.14)

and

sup
j∈Z

sup
xn>0

xd
nJ3 = C sup

j∈Z

2(s1−1)j sup
xn>0

xd
n

∫ ∞

0

e−2π2j |xn−t|

× ‖φ̂j(ξ′)(∂β(u1 − w1)(∂βw1)2)∧(ξ′, t) ‖p dt

� C ‖u1 − w1‖Y ‖w1‖2
Y . (4.15)

Considering (4.13), (4.14), (4.15) in (4.12), we obtain (4.9) with ρ1 = 3. The general
case follows by proceeding as above and employing an induction argument for ρ1 � 2
even and ρ1 � 3 odd. �
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In the next lemma, we develop estimates for the trace-type operator I2 from Y
to Z.

Lemma 4.3. Let s1, s2 ∈ R, 1 � p � ∞, ρ1 � 2 integer, β � 0 and let d > 0 be such
that

d < min
{

1
ρ1 − 1

,
2 − β

ρ1 − 1

}
, s2 > 2 − ρ1d

and

s1 − d +
n − 1

p
= s2 +

(n − 1)
p

= (n − 1) − 2 − ρ1β

ρ1 − 1
. (4.16)

Then, there exists a constant C > 0 such that

‖I2(u1) − I2(w1)‖Z � C ‖u1 − w1‖Y
ρ1−1∑
i=0

‖u1‖ρ1−1−i
Y ‖w1‖i

Y , (4.17)

for all u1, w1 ∈ Y.

Proof. Again we show (4.17) in the cases ρ1 = 2 and ρ1 = 3. The general case follows
by induction for ρ1 � 2 even and ρ1 � 3 odd.

Starting with ρ1 = 2, for each j ∈ Z we can estimate

2s2j ‖ φ̂j(ξ′)
∫ ∞

0

G(ξ′, 0, t)[K1((∂βu1)2)∧(ξ′, t) − K1((∂βw1)2)∧(ξ′, t)]dt ‖p

� C2(s2−1)j

∫ ∞

0

e−2π2jt ‖ φ̂j(ξ′)[∂β(u1 − w1)∂β(u1 + w1)]∧(ξ′, t) ‖p dt.

(4.18)

Considering w = ∂β(u1 − w1)(·, t) and v = ∂β(u1 + w1)(·, t), decomposition (4.2)
leads us to

R.H.S. of (4.18) � C2(s2−1)j

∫ ∞

0

e−2π2jt(B1 + B2 + B3 + B4)dt. (4.19)

For the parcel with B1, we proceed as follows:

2(s2−1)j

∫ ∞

0

e−2π2jtB1dt

� C2(s2−1)j ‖u1 − w1‖L∞
d FBs1

p,∞

∫ ∞

0

t−2de−2π2jtdt

×
∑

|k−j|�3

2k(2−d−β)2kβ sup
t>0

td ‖ φ̂k(·)(u1 + w1)∧(·, t) ‖p

� C ‖ u1 − w1 ‖L∞
d FBs1

p,∞

×
∑

|k−j|�3

2(j−k)(s2+2d−2)2ks1 · sup
t>0

td ‖ φ̂k(·)(u1 + w1)∧(·, t) ‖p, (4.20)
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where above we use that
∫ ∞
0

t−2de−2π2jtdt � C2j(2d−1)Γ(1 − 2d) � C2j(2d−1) and
(4.16) with ρ1 = 2. For the terms with B2, B3, and B4, we have the estimates

2(s2−1)j

∫ ∞

0

e−2π2jtB2dt � C ‖ u1 + w1 ‖L∞
d FBs1

p,∞

∑
|k−j|�3

2(j−k)(s2+2d−2)2ks1

× sup
t>0

td ‖ φ̂k(·)(u1 − w1)∧(·, t) ‖p,

(4.21)

2(s2−1)j

∫ ∞

0

e−2π2jtB3dt � C ‖ u1 − w1 ‖L∞
d FBs1

p,∞

∑
|l−j|<5

2(j−l)(s2+2d−2)2ls1

× sup
t>0

td ‖ φ̂l(·)(u1 + w1)∧(·, t) ‖p,

(4.22)

and

2(s2−1)j

∫ ∞

0

e−2π2jtB4dt � C ‖ u1 − w1 ‖L∞
d FBs1

p,∞

∞∑
l=j−3

2(s2−2+2d)(j−l)2ls1

× sup
t>0

td ‖ φ̂l(·)(u1 + w1)∧(·, t) ‖p .

(4.23)

Inserting (4.20)–(4.23) into (4.19), taking the supremum over j ∈ Z, and then
applying Young inequality for discrete convolutions, the resulting estimate is

‖I2(u1) − I2(w1)‖FBs2
p,∞(Rn−1) � C ‖u1 − w1‖L∞

d FBs1
p,∞(Rn

+) ‖u1 + w1‖L∞
d FBs1

p,∞(Rn
+) ,

which implies (4.17) with ρ1 = 2. Note that above we have used that 2 − d − β > 0
and s2 > 2 − 2d for the convergence of the corresponding series.

We conclude by performing the proof for ρ1 = 3. In this case, we can split

2s2j ‖ φ̂j(ξ′)
∫ ∞

0

G(ξ′, 0, t)[K1(∂βu1)3)∧ − K1(∂βw1)3)∧(ξ′, t)dt ‖p

� C2(s2−1)j

∫ ∞

0

e−2π2jt
(
‖φ̂j(ξ′)(∂β(u1 − w1)(∂βu1)2)∧(ξ′, t) ‖p

+ ‖φ̂j(ξ′)(∂β(u1 − w1)(∂βu1)(∂βw1))∧(ξ′, t) ‖p

+ ‖φ̂j(ξ′)(∂β(u1 − w1)(∂βw1)2)∧(ξ′, t) ‖p

)
dt

=: J1 + J2 + J3. (4.24)

In what follows, we explain how to estimate J1. For z = ∂β(u1 − w1), v = ∂βu1,
and w = ∂βu1 in (4.3), we have the decomposition of ‖ φ̂j(ξ′)ẑvw ‖p in terms of
Di’s. Below, we treat the term D1. The other ones D2, D3, D4 can be estimated
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similarly. In this direction, bearing in mind (4.16) with ρ1 = 3, we have that

2s2j

∫ ∞

0

e−2π2jtD1dt � C2(s2−1)j

∫ ∞

0

e−2π2jt(D1
1 + D2

1 + D3
1 + D4

1)dt,

with the respective estimates for the parcels with D1
1, D2

1, D3
1, and D4

1:

2(s2−1)j

∫ ∞

0

e−2π2jtD1
1dt

� C ‖u1 − w1‖L∞
d FBs1

p,∞ ‖u1‖L∞
d FBs1

p,∞

∑
|k−j|�3

2(j−k)(s2−2+3d)

×
∑

|m−k|�3

2(k−m)(s2+2d−1−(1/2)β)2ms1 sup
t>0

td ‖ φ̂m(·)û1(·, t) ‖p,

2(s2−1)j

∫ ∞

0

e−2π2jtD2
1dt

� C ‖u1 − w1‖L∞
d FBs1

p,∞ ‖u1‖L∞
d FBs1

p,∞

∑
|k−j|�3

2(j−k)(s2−2+3d)

×
∑

|k−m|�3

2(k−m)(s2+2d−1−(1/2)β)2ms1 sup
t>0

td ‖ φ̂m(·)û1(·, t) ‖p,

2(s2−1)j

∫ ∞

0

e−2π2jtD3
1dt

� C ‖u1 − w1‖L∞
d FBs1

p,∞ ‖u1‖L∞
d FBs1

p,∞

∑
|k−j|�3

2(j−k)(s2−2+3d)

×
∑

|k−m|<5

2(k−m)(s2+2d−1−(1/2)β)2ms1 sup
t>0

td ‖ φ̂m(·)û1(·, t) ‖p,

and

2(s2−1)j

∫ ∞

0

e−2π2jtD4
1dt

� C ‖u1 − w1‖L∞
d FBs1

p,∞ ‖u1‖L∞
d FBs1

p,∞

∑
|k−j|�3

2(j−k)(s2−2+3d)

×
∞∑

m=k−3

2(k−m)(s2+2d−1−(1/2)β)2ms1 sup
t>0

td ‖ φ̂m(·)û1(·, t) ‖p .

Now, considering the similar estimates for D2, D3, D4 and recalling the conditions
1 − d − β/2 > 0 and s2 > 2 − 3d, we arrive at

sup
j∈Z

J1 � C ‖u1 − w1‖Y ‖u1‖2
Y . (4.25)
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For J2 and J3, proceeding as in the proof of (4.25), but with v = ∂βu1, w = ∂βw1

and v = ∂βw1, w = ∂βw1 instead of v = ∂βu1, w = ∂βu1, we obtain that

sup
j∈Z

J2 � C ‖u1 − w1‖Y ‖u1‖Y ‖w1‖Y and sup
j∈Z

J3 � C ‖u1 − w1‖Y ‖w1‖2
Y .

(4.26)

Estimate (4.17) with ρ1 = 3 follows by taking the supremum over j ∈ Z in both
sides of (4.24) and then considering (4.25) and (4.26). �

The subject of the following lemma are estimates for the operators T1 : Z → Y
and T2 : Z → Z.

Lemma 4.4. Let s1, s2 ∈ R, 1 � p � ∞, ρ2 � 2 integer, β � 0 and d > 0.

(i) Assuming that

s1 > 1 + d and s1 − d +
n − 1

p
= s2 +

(n − 1)
p

= (n − 1) − 1
ρ2 − 1

,

(4.27)
we have the estimate

‖T1(u2) − T1(w2)‖Y � C ‖u2 − w2‖Z
ρ2−1∑
i=0

‖u2‖ρ2−1−i
Z ‖w2‖i

Z , (4.28)

where C > 0 is a constant independent of u2, w2 ∈ Z.

(ii) Supposing that

s2 > 1 and s2 +
(n − 1)

p
= (n − 1) − 1

ρ2 − 1
, (4.29)

we have the estimate

‖ T2(u2) − T2(w2) ‖Z� C ‖ u2 − w2 ‖Z
ρ2−1∑
i=0

‖ u2 ‖ρ2−1−i
Z ‖ w2 ‖i

Z , (4.30)

where C > 0 is a constant independent of u2, w2 ∈ Z.

Proof. For (4.28), considering the basic cases ρ2 = 2 and ρ2 = 3 and proceeding by
induction, this time we need to handle the expressions

2s1j ‖ φ̂j(ξ′)G(ξ′, xn, 0)[(K2(u2)2)∧ − (K2(w2)2)∧](ξ′) ‖p

� C2(s1−1)je−2π2jxn ‖ φ̂j [(u2 − w2)(u2 + w2)]∧ ‖p

and

2s1j ‖ φ̂j(ξ′)G(ξ′, xn, 0)[(K2(u2)3)∧ − (K1(w2)3)∧](ξ′) ‖p

� C2(s1−1−d)jx−d
n

(
‖ φ̂j(u2 − w2)(u2)2 ‖p

+‖φ̂j(u2 − w2)u2w2 ‖p +‖φ̂j(u2 − w2)(w2)2 ‖p

)
,
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instead of (4.10) and (4.12), respectively. For that, we can employ decompositions
(4.2) and (4.3) and proceed as in the proof of lemma 4.2 with a slight adaptation
of the arguments. The same follows for (4.30) but proceeding as in lemma 4.3. We
leave the details to the reader. �

We finish this subsection by treating the operators N1 and N2 that depend on
the boundary potential V .

Lemma 4.5. Let s1, s2, s̃ ∈ R, 1 � p � ∞ and d > 0 satisfy (3.18) and (3.15) with
γ = (2 − ρ1β)/(ρ1 − 1). Let V ∈ FBs̃

p,∞ and suppose further that s1 > 1 + d. Then,
there exists a constant C > 0 such that

‖ N1(u2) − N1(w2) ‖Y� C ‖V ‖FBs̃
p,∞

‖u2 − w2‖Z , (4.31)

‖ N2(u2) − N2(w2) ‖Z� C ‖ V ‖FBs̃
p,∞‖ u2 − w2 ‖Z , (4.32)

for all u2, w2 ∈ Z.

Proof. For each j ∈ Z, we have the estimate:

2s1j ‖ φ̂jG(ξ′, xn, 0)[(V̂ u2) − (V̂ w2)] ‖p� C2(s1−1−d)jx−d
n ‖ φ̂j [V (u2 − w2)]∧ ‖p .

(4.33)

Considering w = V and v = u2 − w2 in (4.2) yields the decomposition

2(s1−1−d)jx−d
n ‖ φ̂j [V (u2 − w2)]∧ ‖p� C2(s1−d−1)jx−d

n (B1 + B2 + B3 + B4).
(4.34)

Moreover, recalling (3.18) and using Young inequality and (2.10), we can handle
the parcels Bi’s as follows:

2(s1−1−d)jB1

� C
∑

|k−j|�3

2(s1−1−d)j
k−3∑

l=−∞

∥∥∥φ̂l(u2 − w2)∧
∥∥∥

1
‖ φ̂kV̂ ‖p

� C
∑

|k−j|�3

2(s1−1−d)j

×
k−3∑

l=−∞
2[(n−1)−((n−1)/p)−s2]l2ls2

∥∥∥φ̂l(u2 − w2)∧
∥∥∥

p
‖ φ̂kV̂ ‖p

� C ‖u2 − w2‖FBs2
p,∞

∑
|k−j|�3

2(s1−1−d)(j−k)2[s1−1−d+(n−1)−((n−1)/p)−s2]k ‖ φ̂kV̂ ‖p,

(4.35)
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2(s1−1−d)jB2

� C
∑

|k−j|�3

2(s1−1−d)j
k−3∑

l=−∞
‖ φ̂lV̂ ‖1

∥∥∥φ̂k(u2 − w2)∧
∥∥∥

p

� C ‖ V ‖FBs̃
p,∞

×
∑

|k−j|�3

2(s1−1−d)(j−k)2[s1−1−d+(n−1)−((n−1)/p)−s̃]k
∥∥∥φ̂k(u2 − w2)∧

∥∥∥
p
, (4.36)

2(s1−1−d)jB3

� C ‖ V ‖FBs̃
p,∞

×
∑

|l−j|<5

2(s1−1−d)(j−l)2[s1−1−d+(n−1)−((n−1)/p)−s̃]l
∥∥∥φ̂l(u2 − w2)∧

∥∥∥
p
, (4.37)

and

2(s1−1−d)jB4

� C ‖ V ‖FBs̃
p,∞

∞∑
l=j−3

2(s1−1−d)(j−l)2[s1−1−d+(n−1)−((n−1)/p)−s̃]l
∥∥∥φ̂l(u2 − w2)∧

∥∥∥
p
.

(4.38)

Now, in view of the condition s1 − d > 1, estimate (4.31) follows by multiplying
(4.33) by xd

n, using (4.35)–(4.38) to estimate the R.H.S. of (4.33), and taking the
supremum over xn > 0, and then over j ∈ Z.

Finally, for estimate (4.32), we have that s2 = s1 − d > 1 and

2s2j ‖ φ̂jG(ξ′, 0, 0)[(V̂ u2) − (V̂ w2)] ‖p� C2(s2−1)j ‖ φ̂j [V (u2 − w2)]∧ ‖p,

whose R.H.S. can be handled similar to that of (4.33) with some slight modifications
of the arguments. We omit the details, leaving them to the reader. �

4.2. Regularity estimates in Fourier–Sobolev spaces

This subsection is devoted to presenting some regularity estimates for the terms
in (3.11). With this in mind, in addition to the spaces Y and Z, here we shall
employ the spaces H1,s = H1,s(Rn−1) and H1,s

d = H1,s
d (Rn

+) defined in (2.2) and
(3.23).

Let R > 0 be fixed but arbitrary. Assume the same hypotheses of theorem
3.2. Suppose also that ρ1 � 4, ρ2 < ρ1, d < min{1/(ρ1 + 1), (2 − ρ1β)/(ρ1 − 1),
(1 − β)/(ρ1)}, and s � β. Let V ∈ FBs̃

p,∞ ∩ H1,s.
Then, there exists a universal constant C > 0 (independent of R and V )

such that the following estimates hold true for the components of the operators
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L(f), I(u), T (u), and N(u), respectively:

‖ L1(f) ‖H1,s
d

� C
1

Rd+1
‖ f ‖H1,s

+ C(1 + Rs)R(2−ρ1β)/(ρ1−1) ‖ f ‖FBs
p,∞, ∀f ∈ FBs

p,∞ ∩ H1,s;
(4.39)

‖ L2(f) ‖H1,s � C
1
R

‖ f ‖H1,s

+ C(1 + Rs)R(2−ρ1β)/(ρ1−1)+d ‖ f ‖FBs
p,∞, ∀f ∈ FBs

p,∞ ∩ H1,s;
(4.40)

‖ I1(u1) − I1(w1) ‖H1,s
d

� C
1

R2−β−(ρ1−1)d
‖ u1 − w1 ‖H1,s

d

ρ1−1∑
i=0

‖ u1 ‖ρ1−1−i

H1,s
d

‖ w1 ‖i
H1,s

d

+ C(1 + Rs)R(2−ρ1β)/(ρ1−1) ‖ u1 − w1 ‖Y

×
ρ1−1∑
i=0

‖ u1 ‖ρ1−1−i
Y ‖ w1 ‖i

Y , ∀u1, w1 ∈ Y ∩ H1,s
d ; (4.41)

‖ I2(u1) − I2(w1) ‖H1,s

� C
1

R2−β−ad
‖ u1 − w1 ‖H1,s

d

ρ1−1∑
i=0

‖ u1 ‖ρ1−1−i

H1,s
d

‖ w1 ‖i
H1,s

d

+ C(1 + Rs)R(2−ρ1β)/(ρ1−1)+d ‖ u1 − w1 ‖Y

×
ρ1−1∑
i=0

‖ u1 ‖ρ1−1−i
Y ‖ w1 ‖i

Y , ∀u1, w1 ∈ Y ∩ H1,s
d ; (4.42)

‖ T1(u2) − T1(w2) ‖H1,s
d

� C
1

Rl+1
‖ u2 − w2 ‖H1,s

ρ2−1∑
i=0

‖ u2 ‖ρ2−1−i
H1,s ‖ w2 ‖i

H1,s

+ (1 + Rs)R(2−ρ1β)/(ρ1−1) ‖ u2 − w2 ‖Z

×
ρ2−1∑
i=0

‖ u2 ‖ρ2−1−i
Z ‖ w2 ‖i

Z , ∀u2, w2 ∈ Z ∩ H1,s; (4.43)

‖ T2(u2) − T2(w2) ‖H1,s

� C
1
R

‖ u2 − w2 ‖H1,s

ρ2−1∑
i=0

‖ u2 ‖ρ2−1−i
H1,s ‖ w2 ‖i

H1,s
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+ C(1 + Rs)R((2−ρ1β)/(ρ1−1))+d ‖ u2 − w2 ‖Z

×
ρ2−1∑
i=0

‖ u2 ‖ρ2−1−i
Z ‖ w2 ‖i

Z , ∀u2, w2 ∈ Z ∩ H1,s; (4.44)

‖ N1(u2) − N1(w2) ‖H1,s
d

� C
1

Rd+1
‖ V ‖H1,s‖ u2 − w2 ‖H1,s

+ C(1 + Rs)R(2−ρ1β)/(ρ1−1) ‖ V ‖FBs̃
p,∞‖ u2 − w2 ‖Z , ∀u2, w2 ∈ Z ∩ H1,s;

(4.45)

||N2(u2) − N2(w2) ‖H1,s

� C
1
R

‖ V ‖H1,s‖ u2 − w2 ‖H1,s

+ C(1 + Rs)R(2−ρ1β)/(ρ1−1)+d ‖ V ‖FBs̃
p,∞‖ u2 −w2 ‖Z , ∀u2, w2 ∈Z ∩H1,s.

(4.46)

For reasons of length of the paper, we prove two of the eight estimates above.
More precisely, we show estimates (4.39) and (4.45). The others can be proved by
adapting the proof developed for (4.39)–(4.45), as well as employing some of the
arguments presented in § 4.1. The details are left to the reader.

4.2.1. Proof of estimate (4.39) Using R > 0 to split the integral within the H1,s
d -

norm in low and high frequencies, we obtain that

xd
n ‖ (1 + |ξ′|s)L̂(f) ‖1 = xd

n ‖ (1 + |ξ′|s)G(ξ′, xn, 0)f̂ ‖1

� xd
n

∫
|ξ′|�R

|(1 + |ξ′|s)G(ξ′, xn, 0)f̂(ξ′)|dξ′

+ xd
n

∫
|ξ′|>R

|(1 + |ξ′|s)G(ξ′, xn, 0)f̂(ξ′)|dξ′

=: P1 + P2. (4.47)

For the parcel P1, using (2.10) and recalling (3.18), we have that

P1 � C(1 + Rs)
∑

j�1+
log2 R�
2−jxd

ne−2π2jxn ‖ φ̂j f̂(ξ′) ‖1

� C(1 + Rs)

×
∑

j�1+
log2 R�
(2jxn)de−2π2jxn2sj ‖ φ̂j f̂(ξ′) ‖p 2[(n−1)−((n−1)/p)−1−s−d]j

� C(1 + Rs)R(2−ρ1β)/(ρ1−1) ‖ f ‖FBs
p,∞ , (4.48)

https://doi.org/10.1017/prm.2024.61 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.61


A localization-in-frequency approach for a class of elliptic problems 29

because (n − 1) − ((n − 1)/p) − 1 − s − d = ((2 − ρ1β)/(ρ1 − 1)) − d > 0. For the
high frequency part, we can estimate

P2 � CR−1xd
n

∫
|ξ′|>R

e−2πRxn(1 + |ξ′|s)|f̂ |dξ′ � CR−1−d ‖ f ‖H1,s . (4.49)

Now, we obtain (4.47) by taking the supremum over xn > 0 in both sides of (4.47)
and using (4.48) and (4.49).

4.2.2. Proof of estimate (4.45) For R > 0, we can estimate

xd
n ‖(1 + |ξ′|s)(N1(u2) − N1(w2))‖1

� xd
n ‖ (1 + |ξ′|s)G(ξ′, xn, 0)[V (u2 − w2)]∧(ξ′) ‖1

� xd
n

∫
|ξ′|�R

(1 + |ξ′|s) |G(ξ′, xn, 0)[V (u2 − w2)]∧(ξ′)|dξ′

+ xd
n

∫
|ξ′|>R

(1 + |ξ′|s) |G(ξ′, xn, 0)[V (u2 − w2)]∧(ξ′)|dξ′

=: P1 + P2. (4.50)

The integral P1 can be handled as follows:

P1 � C(1 + Rs)
∑

j�1+
log2 R�
(2jxn)de−2π2jxn ‖ φ̂j [V (u2 − w2)]∧(ξ′) ‖1

× 2[(n−1)−((n−1)/p)−1−d]j .

Taking w = V and v = u2 − w2 in (4.2), proceeding as in (4.34) and recalling
s̃ = (n − 1) − ((n − 1)/p) − 1, we get

2(s̃−d)j ‖ φ̂j [V (u2 − w2)]∧ ‖p� B1 + B2 + B3 + B4,

where (see also (4.35))

B1 � C
∑

|k−j|�3

2(s̃−d)j
k−3∑

l=−∞

∥∥∥φ̂l(u2 − w2)∧
∥∥∥

1
‖ φ̂kV̂ ‖p

� C
∑

|k−j|�3

2(s̃−d)j
k−3∑

l=−∞
2[(n−1)−((n−1)/p)−s2]l2ls2

∥∥∥φ̂l(u2 − w2)∧
∥∥∥

p
‖ φ̂kV̂ ‖p

� C ‖u2 − w2‖Z ‖ V ‖FBs̃
p,∞

∑
|k−j|�3

2(s̃−d)(j−k)2[s̃−d+(n−1)−((n−1)/p)−s2−s̃]k.

In the same way, we can estimate the parcels B2, B3, and B4 by proceeding similarly
to (4.36), (4.37), and (4.38), respectively.
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Now, with the corresponding estimates for the Bi’s in hand, using that (n − 1) −
((n − 1)/p) − s2 − d = γ − d > 0 and γ = (2 − ρ1β)/(ρ1 − 1), it follows that

P1 � C(1 + Rs) ‖u2 − w2‖Z ‖ V ‖FBs̃
p,∞

×
∑

j�1+
log2 R�

∑
|k−j|�3

2(s̃−d)(j−k)2[(n−1)−((n−1)/p)−s2−d]k

� C(1 + Rs) ‖u2 − w2‖Z ‖ V ‖FBs̃
p,∞

∑
j�1+
log2 R�

2[γ−d]j

� C(1 + Rs)R(2−ρ1β)/(ρ1−1) ‖u2 − w2‖Z ‖ V ‖FBs̃
p,∞ . (4.51)

For the parcel P2, we have that

P2 � CR−1xd
ne−2π|R|xn

∫
|ξ′|>R

(1 + |ξ′|s)|[V (u2 − w2)]∧(ξ′)|dξ′

� CR−1−d(Rxn)de−2π|R|xn ‖V (u2 − w2)‖H1,s(Rn−1)

� CR−1−d ‖ V ‖H1,s‖ u2 − w2 ‖H1,s , (4.52)

where the last pass was obtained via (2.3) and (Rxn)de−2π|R|xn � C for all
R, xn > 0. Considering now (4.51) and (4.52) in (4.50) and then taking supxn>0,
we are done.

5. Proofs

This section is devoted to the proofs of results stated in § 3.

5.1. Proof of theorem 3.2

With the estimates developed in § 4.1 in hand, we are able to employ a contraction
argument and show the solvability of BVP (1.1). For that, recall the spaces Y =
L∞

d FBs1
p,∞(Rn

+), Z = FBs2
p,∞(Rn−1), and X = Y × Z with the norm ‖ · ‖X=‖ · ‖Y

+ ‖ · ‖Z (see (3.16)–(3.17)). Consider the operators

Ψ1(u) = I1(u1) + N1(u2) + T1(u2) + L1(f), for u = (u1, u2) ∈ X , (5.1)

and

Ψ2(u) = I2(u1) + N2(u2) + T2(u2) + L2(f), for u = (u1, u2) ∈ X . (5.2)

So, we can define Ψ(u) = (Ψ1(u), Ψ2(u)) in X = Y × Z with the norm ‖ · ‖X=‖
· ‖Y + ‖ · ‖Z (see (3.16)–(3.17)).

Let ε, δ1, δ2 > 0 be such that

ρ1ε
ρ1−1 + ρ2ε

ρ2−1 <
1

4C
, δ2 � 1

4C
− ρ1ε

ρ1−1 − ρ2ε
ρ2−1,

and δ1 + δ2ε � ε

2C
− ρ1ε

ρ1 − ρ2ε
ρ2 , (5.3)

where C > 0 is the largest constant obtained among those in lemmas 4.1 to 4.5.
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We are going to show that Ψ is a contraction in the closed ball BX = {u =
(u1, u2) ∈ X ; ‖(u1, u2)‖X � ε}. In view of the estimates in the aforementioned
lemmas, we can handle Ψ as follows:

‖ Ψ(u) ‖X � C(ρ1 ‖ (u1, u2) ‖ρ1
X

+ ρ2 ‖ (u1, u2) ‖ρ2
X +‖V ‖FBs̃

p,∞‖ (u1, u2) ‖X +‖f ‖FBs
p,∞)

� C(ρ1ε
ρ1 + ρ2ε

ρ2 + δ2ε + δ1) � ε

2
, (5.4)

provided that (u1, u2) ∈ BX . It follows that Ψ maps from BX to BX . Moreover,
for u = (u1, u2) and w = (w1, w2) ∈ X , we have that

‖ Ψ(u) − Ψ(w) ‖X � C(δ2 + ρ1ε
ρ1−1 + ρ2ε

ρ2−1) ‖ (u1 − w1, u2 − w2) ‖X
� 1

4
‖ u − w ‖X , (5.5)

which gives the contraction property for Ψ. Then, by the contraction mapping
principle, there exists a unique solution u ∈ X for (3.11) (u = Ψ(u)) satisfying
‖u‖X � ε.

In the sequel, we show the continuity of the data-solution map. Let u = (u1, u2)
and w = (w1, w2) be solutions in BX for (3.11) corresponding to V, f and Ṽ , f̃ ,
respectively. Proceeding as in (5.5) and using that Ψ(u) = u and Ψ(w) = w, we can
estimate

‖ u − w ‖X = ‖Ψ(u) − Ψ(w) ‖X
� C(δ2 + ρ1ε

ρ1−1 + ρ2ε
ρ2−1) ‖ u − w ‖X

+ Cε ‖ V − Ṽ ‖FBs̃
p,∞ +C ‖ f − f̃ ‖FBs

p,∞ ,

which yields the desired continuity, since C(δ2 + ρ1ε
ρ1−1 + ρ2ε

ρ2−1) < 1.

5.2. Proof of theorem 3.5

Let ε, δ1, δ2 > 0, and R > 1 be such that

[
1

R2−β−ad
+ 2(1 + Rs)R((2−ρ1β)/(ρ1−1))+d +

1
R

]
(ρ1ε

ρ1−1 + ρ2ε
ρ2−1) � 1

8C
and[

1
R

+
1

Rd+1
+ 2(1 + Rs)R

2−ρ1β
ρ1−1 +d

]
(δ1 + δ2) � 1

8C
,

(5.6)

with ε and δ1, δ2 satisfying also the relations in (5.6).
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Recall the space H1,s
d = H1,s

d × H1,s (3.24)) and consider the closed ball

BX∩H1,s
d

= {u = (u1, u2) ∈ X ∩H1,s
d ; ‖(u1, u2)‖X + ‖(u1, u2)‖H1,s

d
� ε}.

Employing estimates (4.39)–(4.43), (4.45), and (4.46), and proceeding as in the
proof of theorem 3.2, we can show that

‖ Ψ(u1, u2) ‖H1,s
d

� ε

2
, (5.7)

‖ Ψ(u1, u2) − Ψ(w1, w2) ‖H1,s
d

� 1
4
‖ (u1, u2) − (w1, w2) ‖H1,s

d
, (5.8)

for all (u1, u2), (w1, w2) ∈ H1,s
d , where Ψ = (Ψ1, Ψ2) is defined via (5.4)–(5.7).

Putting together estimates (5.4)–(5.5) and (5.7)–(5.8) yields that Ψ is also a con-
traction in BX∩H1,s

d
. So, by uniqueness, it follows that the solution u ∈ X obtained

through theorem 3.2 also belongs to H1,s
d .

Finally, recalling (2.2) and (3.23), and using that u ∈ H1,s
d , we have that

‖(1 + |ξ′|s)û1 ‖1� x−d
n ‖u‖H1,s

d
and ‖ (1 + |ξ′|s)û2 ‖1� ‖u‖H1,s

d
.

Thus, for each xn > 0, it follows that

(∂α
x′u1(·, xn))∧ ∈ L1(Rn−1) and (∂α

x′u2)∧ ∈ L1(Rn−1), (5.9)

and then ∂α
x′u1(·, xn) and ∂α

x′u2 belong to the space C0(Rn−1) of continuous func-
tions vanishing at infinity, for all multi-index |α| � s. Therefore, they belong to
C


s�
0 (Rn−1), as requested.

5.3. Proof of theorem 3.7 (axial symmetry)

First, we observe that the function φ of the Littlewood–Paley decomposition can
be considered radially symmetric. This can be made without loss of generality since
different functions φ’s generate equivalent Fourier–Besov norms.

Due to the contraction argument, the solution u = (u1, u2) obtained in theorem
3.2 is the limit in X of the following Picard sequence

u(1) = (u(1)
1 , u

(1)
2 ) = (L1(f), L2(f))

and

u(m) = (u(m)
1 , u

(m)
2 ) = (Ψ1(u(m−1)),Ψ2(u(m−1))), for m = 2, 3, . . .

Since f is radial, so is f̂ . Also, for each rotation τ around the axis
−−→
Oxn, note that

G(τ(ξ′, x), t) = G(ξ′, x, t), for all ξ′ ∈ Rn−1, x � 0, t ∈ R. (5.10)

Then,

L̂1(f)(τ(ξ′, xn)) = L̂1(f)(ξ′, xn) and L̂2(f)(ξ′) = L̂2(f)(τ(ξ′, 0)) = L̂2(f)(ξ′),
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for all xn > 0 and ξ′ ∈ Rn−1. It follows that û(1) ◦ τ = û(1) ◦ τ = û(1) and

u(1) ◦ τ = u(1). (5.11)

Note also that (∂βg)θ ◦ τ = (∂βg)θ (see (1.2)), (g)θ ◦ τ = (g)θ and (V g) ◦ τ = V g,
provided that V ◦ τ = V and g ◦ τ = g. Using these properties, (5.11) and (5.10),
we can show that u(2) = (Ψ1(u(1)), Ψ2(u(1))) is invariant under rotations τ around−−→
Oxn. In fact, by induction, it follows that

u(m) ◦ τ = u(m), ∀m ∈ N, (5.12)

for each rotation τ around
−−→
Oxn. Moreover, if φ is radially symmetric then

‖g ◦ τ‖FBs
p,q

= ‖g‖FBs
p,q

, for all g ∈ FBs
p,q. Employing this invariance property of

the FBs
p,q-norm, we get

‖w ◦ τ‖X = ‖w1 ◦ τ‖L∞
d FBs1

p,∞ + ‖w2 ◦ τ‖FBs2
p,∞

= ‖w1‖L∞
d FBs1

p,∞ + ‖w2‖FBs2
p,∞

= ‖w‖X , for all w ∈ X . (5.13)

Finally, in view of u(m) → u in X , (5.12) and (5.13), we can conclude that
u ◦ τ = u, for each rotation τ around

−−→
Oxn, as desired.

Remark 5.1. In the proof of theorem 3.7 we have used the Picard sequence coming
from the fixed point argument. Alternatively, we could show the same result by using
the uniqueness property in theorem 3.2 together with the axial-invariance of the
integral formulation (3.11). Note that such invariance has been proved in the above
proof. Anyway, we prefer the use of the recurrent sequence because it illustrates a
general procedure for obtaining qualitative properties that could be useful in other
situations.
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