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1. Introduction

Nonlinear boundary value problems (NBVPs) for elliptic partial differential equa-
tions (PDEs) are widely studied due to the great mathematical interest in
themselves and their applications in various areas of science. For example, they arise
in the modelling of nonlinear diffusion phenomena and in the theory of nuclear and
chemical reactors (see e.g. [2, 15, 30]). This class of problems has been addressed
through different techniques and approaches, such as variational, penalty, and
maximum principle-based methods that have prominent historical roles (see e.g.
[27, 42, 45]).

In the present work, we are concerned with a class of NBVPs for elliptic equations
with singular boundary potentials and nonlinear derivative terms in the half-space
R’'. More precisely, we consider the following nonhomogeneous elliptic problem:

—Au = K (0%u)", in R"}

, 1.1
Oyu =V (2" )u+ KouP? + f(2'), in R"! (L)

where n >3, p1, p2 > 2, u=u(z', r,) with 2/ € R""! and x, >0, 9, =9/9n, n
is the normal unit outward vector on R’} = R"~! K, K, are constants, 0 < 8 <
2/p1, and the fractional derivative 9” is defined via the Fourier transform on the
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(n — 1)-first variables as

(@ )" (€, xn) = 2ml€' P @)(E, zn). (1.2)

The case 3 = 0 corresponds to the power-type nonlinearity u”*. Moreover, we can
treat doubly supercritical variational cases such as p; > 2* —1 and p2 > 2, — 1.
However, due to technical issues in our approach, the powers pi, p2 have to be
positive integers as well as they and the order 3 of the derivative present a certain
relation between them. The boundary potentials V' and forcing terms f can be
singular such as critical multipolar potentials and Radon measures, respectively.
Our intent is to analyse problem (1.1) via a different approach based on
localization-in-frequency arguments and the Littlewood—Paley decomposition. To
handle the influences of different frequency bands on each of the terms of (1.1),
especially on those coming from singular potentials and forces, we consider a
frequency-based setting, namely the Fourier-Besov space .7:3;700 (FB-space, for

short), whose elements h are such that he L}, .(R™) and present the control in
frequency:

ng\h | e (r) < C27%, forall jeZ,

where the Littlewood-Paley operator A; works as a filter in the frequency domain
with corresponding passband A; = {¢ € R"; 2771 < |¢] < 2771}, The parameters
s € Rand p € [1, oo] stand for the regularity and integrability indexes of the space,
respectively. For more details, see (2.8) and (2.9) in §2.2. This kind of framework,
as well as some of its extensions, has been successfully employed in the analysis of
the well-posedness of parabolic problems, see e.g. [1, 40] and references therein.

Varying the levels of regularity and integrability, we are able to cover singular
classes of boundary potentials V' and forcing terms f as well as obtain properties
for solutions such as axial symmetry, positivity, and homogeneity. Of particular
interest, we have the critical boundary potential V(') = C'|a’|”" as well as its
multipolar versions (even infinitely many poles):

l

l
Aj (' —a:J -’
AN J _
) = z; m and V = Z _ xﬂ‘z 5 (13)
Jj=

j=1

where 27 € OR" are the poles, & e OR" are constant vectors, \; are real con-
stants, 7 =1, ..., 1, and [ € NU{oo}. Indeed, for 0 <o <n—1and 1 <p< oo
a simple computation yields that the potentials |2/| ™7 and 2’ |z/|~“*" belong to
FBy 1=((r=D/P)=o(Rn=1) a5 well as their translations and (for o = 1) those in
(1. 3) These critical potentials can be regarded as boundary versions of the so-
called Hardy-type potentials in the whole space R™. The latter has been the object
of study in a number of works mainly by combining variational methods, Hardy-
type inequalities, and Sobolev spaces (see e.g. [17, 18] and references therein). For
a study via a contraction argument and a sum of weighted L>°-spaces, see [21].

In what follows, we review some works on NBVPs. Chipot et al. [13] described
the non-trivial and non-negative solutions of the NBVP —Au = auf* in R’} and
Opu=buP? on R" 1 withn >3,a,b >0, p1 = (n+2)/(n—2) and po = n/(n — 2).
For a >0 and b=1, the existence part was extended by [14] to the case p; >
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(n+2)/(n—2) and p2 = n/(n — 2). Harada [39] analysed the same problem with
a =0 (Laplace equation), b=1, and py > n/(n —2) obtaining results on -
axial symmetry and asymptotic expansion for positive solutions. For a =0, b =1,
and 1 < py <n/(n—2), Hu [28] proved the non-existence of non-negative clas-
sical solutions. By means of a variational approach and the method of invariant
sets, Liu and Liu [31] studied the existence of positive solutions and sign-
changing solutions for the Laplace equation in R’} with the nonlinear boundary
condition d,u = AV (z')u+ g(u), where the potential V € L>(R""1), 0 <V < 1,
lim|,/|—o V(2') = 1, X is a negative parameter, and g is superlinear at zero and
asymptotically linear at infinity. Linked to the self-similarity problem for the semi-
linear heat equation in R, the authors of [20, 22] analysed the elliptic PDE
with drift —Au = (1/2)z - Vu + cu+ g1(v) in R with d,u = go(u) on R""! by
employing variational techniques along with weighted Sobolev spaces. See also
[23, 47] for further related results on NBVPs in the half-space and/or bounded
domains.

In another branch of research, we have the study of boundary value problems
(BVPs) with singular data which have been a subject of great interest to ellip-
tic PDEs community, see e.g. [3, 33] and references therein. As a matter of fact,
there exists a rich literature about the analysis of such problems with measure
as forcing terms and boundary data. By employing comparison principles, mono-
tonicity arguments, Kato inequality, weak compactness in weighted L'-spaces, or
suitable capacity-based characterizations, we would like to mention the works [4-6,
9, 11, 12, 25, 26, 34, 35, 37, 48], where the reader can find results on solv-
ability and qualitative properties for BVPs of coercive type in smooth bounded
domains  of R™ (see also the book [33] for a nice review). Gmira and Véron
[25] considered the problem —Au + g(u) =0 in Q with v = f on 09, where the
boundary data f is a measure and ¢g : R —R is a continuous nondecreasing func-
tion such that [~ (|g(s)| + |g(—s)[)s~ "/ ("=1)ds < co. They proved existence of a
unique solution u € L'(2) such that p(z)g(u) € L*(Q) where p(z) = d(z, 98). For
related results involving the nonlinearity g(s) = s|s|” ~!and positive measures f, see
[34, 35]. Brézis and Ponce [4] studied the same problem for a bounded measure
f and g : R =R being a continuous nondecreasing function satisfying g(s) = 0 for
s < 0. They developed a programme in the spirit of [5, 6] by introducing a concept
of reduced measure f* and showing that f* is the largest measure such that f* < f
and the problem has L' (Q2)-solution with boundary data f* (good measure), among
other properties. In the case of boundary nonlinearities, Boukarabila and Véron [9]
showed the solvability of the NBVP —Au = 0 in Q with d,u + g(u) = f on 09, for
Radon measures f and g : R —R a continuous nondecreasing function satisfying
¢9(0) =0 and an integral subcritical condition. In the case of problems involving
potentials V' and Radon measures f, we highlight [48] where the authors studied
nonnegative L'(£2)-solutions and reduced measure for the BVP —Au + Vu = 0 in
Q with O,u = f on 0Q by means of an approach with capacity depending on the
locally bounded potential V' > 0 (then, it can be singular near 92), the Poisson
kernel and the first positive eigenfunction of —A in WO1 2(Q) For results on semi-
linear problems considering an interplay between measure data and Hardy-type
potentials, see [11, 12, 26, 37].
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In [3], Amann and Quittner considered the doubly nonlinear problem —Au = gy
(, u) +efi in Q@ with Oyu = ga(x, u) +efo on 9Q in the noncoercive case (i.e.
gi(xz, z) nondecreasing in z), where fi, fo are finite Radon measures and ¢ > 0.
Among others, they obtained existence and multiplicity results by assuming suit-
able smallness conditions on € and employing a mix of sub-super solution method,
Sobolev—Slobodeckij spaces, and techniques of fixed points in ordered Banach
spaces. In [7], Bidaut-Véron et al. treated the problem —Au = g(u, Vu) in R}
with the Dirichlet condition u = ¢f on R"~!, where n > 3 and f is a finite Radon
measure. For g(u, Vu) = u” with p > 1, they proved existence of positive solution
for small € > 0, as well as some sharp pointwise estimates of the solutions, by
assuming suitable conditions involving the Riesz capacity on R”~! and employing
some ideas by Kalton and Verbitsky [29] who developed an extensive study about
a class of integral equations with measure data. The authors of [7] also analysed
the case of smooth bounded domains € (see [8] for related results) as well as the
mixed gradient-power case g(u, Vu) = uf* |Vu|” , where p1, p2 =0, p1 + pa > 1,
and py < 2, both considering small boundary data ef.

In [10], the authors considered a class of weighted L°°-spaces in Fourier vari-
ables, namely the pseudomeasure spaces PM® in the half-space R, and obtained
results on solvability and regularity for (1.1) with 8 = 0 (nonlinearity independent
of derivatives) and Robin boundary conditions by means of suitable weighted-type
estimates and convolution properties of homogeneous functions. Their approach
in PM® is also based on Fourier analysis and employs an integral formulation
similar to ours, nevertheless without using localization arguments and the Little-
wood-Paley decomposition as in the case of 713, . -spaces. Moreover, we have that
PM* C FB, , for s =a—mn/p and 1 < p < oo, and then our results allow more
singular potentials and forcing terms. For a Fourier analysis approach and an appli-
cation of the PM“-framework in the study of elliptic problems in the whole space
R™ with nonlinear derivative terms, see [19]. In this context, difficulties related to
the trace and boundary terms are not present in the integral formulation of the prob-
lem, and handling the Fourier transform is relatively simpler as the transform can be
applied to the whole R™ and not just to some components of © = (x1, za, ..., ).

In [41], Quittner and Reichel addressed the problem —Awu =0 in Q with
Opu+u = g(x, u) on dQ, where n > 3 and 2 C R” is a bounded domain. Consider-
ing the growth condition |g(z, s)| < (1 + |s|”) for some p € (1, (n —1)/(n — 2)), and
developing suitable a priori estimates, they proved that all positive very weak solu-
tion belongs to L () (see also [46] for related results). In addition, they provided
examples showing that p = (n — 1)/(n — 2) is a sharp critical exponent. In fact, for
n = 3, 4, some exponents p > p and g(x, u) = uP + [ with some f € L>(9Q), they
constructed two unbounded very weak solutions blowing-up at a prescribed point
on 0N, where () is taken within a half-space and with a flat boundary piece. In turn,
Merker and Rakotoson [36] analysed very weak solutions of the Poisson equation
—Awu = hin a bounded domain € for singular forcing terms A and singular Neumann
boundary conditions, by means of a framework based on Lorentz-spaces LP9((2),
with p € (1, o0) and ¢ € [1, 00), and an approach relying on a suitable duality for-
mulation for the BVP. They proved an existence and uniqueness result covering
the following classes of forces: (i) h € L'(Q) with d,u = (— [, hdz)d,, and (ii)
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non-integrable h with h - |z — x¢| € L1(Q) and z¢ € 9. Moreover, a generalization
for finite Radon measures p in place of §,, was also discussed by them.

We analyse the unique solvability of (1.1) in a setting based on Fourier-Besov
spaces ]—'B;OO in which localization-in-frequency arguments play a key role (see
theorem 3.2). Moreover, the regularity of solutions is investigated with the help of
Fourier—Sobolev spaces which naturally provide further decay in Fourier variables
for them (see theorem 3.5). Due to the scaling analysis, the power ps is connected

to p1 and 8 via the relation (see (3.13))

2—p1p

P (1.4)

(p2 — p1)y = p1B — 1 with v =

So, we can think that p; and g are free and determine py. Or, alternatively, that
p1 and po are free and determine 5. However, in the case Ko = 0, BVP (1.1) does
not depend on ps and then we no longer have condition (1.4), and thus p; and
[ are free from each other (except for natural conditions involving the parameter
ranges). Assuming that V and f are radially symmetric in R"~!, we show that the
obtained solutions are x,-axial symmetric (see theorem 3.7). Our solvability result
can also be adapted to the case of (1.1) with Robin boundary conditions in place of
the Neumann one (see remark 3.1). With a slight modification in statements and
proofs, our results work well for (1.1) with an additional forcing term h acting within
the domain R’} , namely considering —Au = K; (08u)Pr + h as the first equation in
(1.1) (see remark 3.3(iii)).

In comparison with previous works, we are treating an NBVP in the half-space
R" with singular boundary potentials as (1.3) (see remark 3.4(i)) and a nonlin-
earity involving a fractional derivative. The solvability theory is developed via a
contraction argument in a new setting for the context of elliptic PDEs providing
new classes of solutions, potentials, and forcing terms. Moreover, it covers cases
of variational supercritical powers on the boundary and (when 8 = 0) within the
domain. Note that the results are new even for other relevant subcases of the model
problem (1.1) such as the simpler one 8 =0, K1 =1, V =0, and K> = 0, that is,
—Au = v in R" with 9,u = f on R"~'. Another feature is that 71, , -spaces lack
of good compactness properties and they are non-reflexive (consequently, neither
uniformly convex nor g-convex spaces), making it very difficult to employ capacity
approaches, variational techniques, Leray—Schauder theory, among others, and thus
motivating an analysis based on a non-topological fixed point argument.

In view of the strict continuous inclusions (see property (2.11) in § 2.2)

}—Bij,gé/pl) c ‘7:82;2.@"/171)—(”/172)) CFB, o C flgi;gn*(n/m))’ (1.5)
where s € R and 1 < p; < p2 < 00, we can feel the breadth of the family of spaces
FB, ., especially for negative regularity indexes s. By Hausdorff-Young inequality
and (1.5), we can see that H* C FB; , C FB, ., for 1 <p <2 and s € R, where
H?* stands for the homogeneous Sobolev spaces. Also, denoting the space of finite
Radon measures in R” by M = M(R") and taking s = —(n/p;y) in (1.5), we arrive
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at

Mc FBY, . C FB "I C FB L (1.6)

Pp1,00 1,007

which allows us to cover measure data by considering the space .7-'8;,00 with
s=—(n/p) and 1 < p < oo (see remark 3.4(ii)). Moreover, if f € M with supp(f)
contained in a set of Hausdorff dimension s € [0, n), it follows that | f(£)| < |§|7S/2
and f € F Bgé?oo (see [38, p. 40]). By considering suitable indexes, we point out that
smallness conditions involving FB, ,-norms allow us to consider some functions
with large LP and H®-norms, as well as large Radon measures.

This paper is organized as follows. Section 2 is devoted to some preliminaries by
recalling basic notations of Fourier analysis as well as reviewing basic definitions
and properties on Littlewood—Paley decomposition, Fourier-Sobolev spaces, and
Fourier—-Besov spaces. In §3, we state our results on solvability, regularity, and
symmetry for (1.1). The purpose of §4 is to develop key estimates for the terms of
the integral formulation associated with (1.1). In §5, with the estimates in hand,
we show the proofs of our results.

2. Preliminaries

2.1. Basic definitions and notations

In this section, we collect some notations that will be used throughout this paper.
We denote the Schwartz space of rapidly decreasing smooth functions on R™ by
S = S(R™) and its dual, the space of tempered distributions, by &' = S'(R"). In
both of them, the Fourier transform of f is an isomorphism and denoted by f (&) or
F(f). For its inverse, we use the notation fY (&) or F~1(f). In the case of S, their
actions can be represented in an integral form by

fO = [ ermesade md fle) = f(-0, weeR  (21)

Also, the operators in (2.1) in the S’-setting are defined via the pair duality between
S’ and S.

For p € [1, oo] and the Lebesgue measure 1 on R™, we denote by LP(R™) = L
(R", dp) the usual LP-space endowed with the norm |[-[| . In the case of the counting
measure p, we have the sequence Lebesgue space with p-summability P = [P (Z").

Consider the Fourier—Sobolev space

HY = HY(R") = {f € 83| fllne = |1+ [E)F@I <00}, (22)

which is a Banach space with the norm ||| ;... We have the following basic
properties:

(i) For a constant C' > 0, we have the Holder-type inequality

lurug .. | goe < Ot s [zl gos - Jwmll gos - (2.3)

(ii) The continuous inclusion H* C H* holds true for s > t.
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Now, for each m € N we define the space C§*(R™) as the space of functions u such
that 0%u is continuous and goes to zero as |x| — oo, for all multi-index o € N™ such
that |o| = a1 + -+ ap, < m.

Finally, for z, w € C with Re(z), Re(w) > 0, we recall the Gamma and Beta
functions

+o0 1
I'(z) = / t*“le7tdt and B(z,w)= / 1 -, (2.4)
o 0

respectively, which verify the relation B(z, w) = I'(z)['(w)/T'(z + w).

2.2. Fourier—Besov spaces

Let ¢ € S(R™) satisfy the following properties
0<G(E) <1, VEER"supp(d(9) C {EeRM27 <l <2} (25)

and ZjeZ QASJ- =1, V¢ € R", where ¢;(z) = 27"¢(27z). For each k € Z, the dyadic
k-block Ag and the low-frequency operator Sy are defined as

k

Apf=¢r*f and Spf= Z A;f, forall feS.

j=—o00

Let P stands for the set of all polynomials. For f € S’/P, we have the Little-
wood—Paley decomposition

F=> A (2.6)
jez
Moreover, for f, g §’/P, the Bony paraproduct is given by

f9=> SisfNjg+> Sissgif+ > > AufAg. (2.7)

JET JEZ G kEL | —k|<2

For s € Rand 1 < p, ¢ < 0o, the homogeneous Fourier-Besov space (FB-spaces),
denoted by FB; . is the set of all f € S’/P such that f € L}, (R™) and the norm

P,q’

< 0. (2.8)
19(Z)

s, = {27 157 Nuvem}

JEZ
The pair (FB, ,, || - [|#5; ) is a Banach space.

In what follows, we define the functional setting that will be employed in
the study of BVP (1.1). For se R, 1 < p, ¢, r < 00, and d > 0, we consider the
space Ly FB, , = LyFB, ,(R}) of all Bochner measurable functions u : (0, 00) —

https://doi.org/10.1017/prm.2024.61 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.61

8 L. C. F. Ferreira and W. S. Lagoin

FB, ,(R"!) such that the norm H-||£2]_-B;q is finite, where

1/q
D2 |2 || ¢, wn) vl 00y |+ i@ <00,
Hu”ﬁgfsg,q = JEL
sup 29 || 2l || ¢;0(€, 20) | Lr@n-1)ll (0,005 if ¢ = oo.
Jje

(2.9)

In the sequel, we recall a Bernstein-type inequality in Fourier variables which is
useful for carrying out estimates in the spaces FB, ,(R") and L3 FB; (R ). For
1 < p1 < p2 < 00, a multi-index « of nonnegative real numbers, j € Z, R > 0 and

i~

supp(f) C {¢€ € R™;|¢| < R27}, we have that
€% Fllp, < CRIIHI /P20 o)) | (2.10)

where C' > 0 is a constant independent of n, «, j, p1, p2, &, and f. Estimate (2.10)
yields the continuous inclusion

FB2 (R") C FB (R™), (2.11)

P2,q P1.q
where 1 < p1, p2, ¢ < 0o and s1, s € R satisfy py < py and n/p; + s1 = n/ps + sa.

The proposition below contains an useful scaling property for the norms of the
spaces FB, (R") and Ly FB, (R%).

PROPOSITION 2.1 (see [1, 40]). Let 1 < p, ¢ < o0, s €R, and d > 0.

(i) Foru e FB, ,(R"), consider the rescaling uy = N u(\-). If
n
s—i—’y—n—i—;:O, (2.12)

then

lullzss Sl us 78y Sl wllzss , -

P,q ™ p,q ™

(ii) Foru e LyFB, (RY), consider the rescaling uy = NVu(\-). If

M—d—lzo, (2.13)

s+y—(n—1)+ .

then

Ju Hﬁgfli;,qSH Ux HEQ]—‘B;QS/H u ”LQ}‘B;Q .
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3. Results
Proceeding formally, we can apply the Fourier transform in the n — 1 first variables

in (1.1) in order to get

TnTn

~

{@2 Q€ n) +4m2|E P @)(€, 2n) = [K1(0Pu)r1], for & € R™ 1, a2, > 0,
0., (€,0) = [Val (&) + [Kzur](¢') + F(€)), for & e R,

(3.1)

Note that above we are identifying ¢’ = (¢’, 0) € R™~L. Solving (3.1) with respect
to the x,-variable, we arrive at the following integral equation in Fourier variables:

(e, w) = /Ooo G, O)[K1(0P0)] (€, )t

+ G(€ 2, 0)[(Vu)(€) + (Kou?) () + J(€), (3.2)
where
—27(&" ||z 4] —2m|¢ [|lz—1|
G(f',x,t):e el 4 emEme I for ¢ e R"71/{0}, >0, and t > 0,

4m|¢'| ’
(3.3)

is the Green function associated with problem (3.1) (see [43] for more details).

REMARK 3.1. Replacing the Neumann boundary condition in (3.1) with the Robin
condition
ou

o +Au = V(2" )u+ Kou” + f(2'),

and proceeding analogously to the above, we obtain the integral formulation (3.2)
with the Green function

(2r|¢’] + N)e 2 e+t 1 (ox|e’| — N)e2m I le—

G a,t) = 3.4
(e e + V) -G
instead of (3.4). For both cases, we have the pointwise estimate
|G@aﬁﬂ<—i—€%wm4lmm @@%ﬁﬂ<—i—€%WW4ﬁ (3.5)
o 2m|¢'] o 2m|¢’]

We can see from the integral equation (3.2) that it is necessary to evaluate the
boundary values on dR’; . However, since we are going to work with spaces of rough
functions without a trace notion, we need to consider a functional setting that
carries information on « both within R”} and on the boundary of the domain JR’ .
In this way, writing u; = uhRi and ug = u|3]Ri , equation (3.2) can be equivalently
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rewritten as

—

w1 (&, my,) = /OOC G(&, 2, ) (K1 (0Puy)Pr) (€, t)dt
+ G 20, 0)[(Vua) (€1) + (Kouf?) (&) + F(€)]

o - (3.6)
(€)= / G(&,0,6) (K1 (@Pa)e) (€, )t

+ G(E,0,0)[(Vua) (&) + (Kouf?)(€) + F(€)]

Naturally, in a setting with enough regularity for u, note that us should be the
trace of uy in OR’. This follows directly from the uniqueness of solution for the
problem that will be obtained in theorem 3.2 (see more below).

To handle (3.6), we define the following operators in Fourier variables:

I(ul, UQ) = (Il(ul), Ig(ul)) with

Tu) = [ G ) (K1 (0%u)P) (€, t)dt
0

and ) = [ G(E 0,000 (€ )t
N(uy, uz) = (N1(ug), Na(uz)) with
Ni(u2) = G(€,n,0)(Vup) (&) and  Na(uz) = G(€/,0,0)(Vu) (&);  (3.8)
T(uy, uz) = (T1(uz), To(usg)) with
Ti(up) = G(€, 2, 0)(Kus*)N€')  and  Ty(up) = G(¢,0,0)(K2uf?)"(€); (3.9)
L(f) = (L1(f), L2(f)) with
Li(u) = G(€,2,0)f(§) and  La(up) = G(€/,0,0)f(§).  (3.10)
Then, we can express (3.6) through the formulation
w = I(u) 4+ N(u) + T(u) + L(f), (3.11)

where u = (u1, ug). If u satisfies equation (3.11), we say that v is an integral solution
for (1.1).

In what follows, we carry out a scaling analysis to find suitable indexes for the
corresponding FB-spaces of u, V, f. For that purpose and just a moment, consider
V and f homogeneous distributions of degree hy and hs, respectively. Also, denote

https://doi.org/10.1017/prm.2024.61 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.61

A localization-in-frequency approach for a class of elliptic problems 11

ux(z) = ANu(Ax) and assume that

y=p1(y+B)—2=7-h1—1=pyy—1=—hy -1, (3.12)
or equivalently
2 — -1)-1
= 7/)1/8 hl = 71, hg = M, (pQ — pl)’)/ = plﬁ —1. (313)

pr—1"7 p1—1

Making a scaling analysis, we have that u, verifies (3.11) if so does w. Thus, we
have the scaling map

U — uy. (3.14)

A space of tempered distribution is said to be critical for (3.11) when it is invariant
under (3.14).

Let us point out that the scaling map carries structural information about the
BVP, showing the degree of homogeneity preserved by it. Thus, studying the BVP in
spaces (with the correct indexes) that preserve such homogeneity (critical spaces), in
principle, should provide a good environment for estimating the terms of its integral
formulation via tools such as Fourier transform, product estimates, estimates for
potential operators, among others. This way, a suitable balance is obtained between
the two sides of the needed estimates for the operators of the integral formulation;
in our case the operators I(-), N(-), T(-), and L(-) in (3.11). These aspects are
even more prominent in the case of homogeneous versions of spaces such as the
homogeneous Sobolev spaces, the homogeneous Besov spaces, the homogeneous
Fourier—Besov spaces, as is our case in question. They are also relevant in the case
where the space of original variables is invariant by homotheties z — Az (A > 0),
such as R" or the half-space R?}, in which certain embeddings and estimates work
well only for exact indexes or a precise relation between them.

Next, we define the functional setting where we are going to analyse (3.11). For
n>=3 1<p<oo, s,s €R, 1< p< oo, and d > 0 satisfying the relation

(n—1) (n—1)

s—d+—F=s9+—>=(n—-1)—17, 3.15
’ ) ( ) (3.15)
we consider
X = X007 = LYFB)(RY) x FB2 (R™1), (3.16)
endowed with the norm:
s u) e = Nl o ey . + szl - (3.17)

Note that in view of (3.13) and (3.15), we have that X is a critical space for (3.11),
namely

1w, w2) ||y = [[(A w1 (Az), A ug (Az)) || 5 -

Furthermore, for pi, ps > 2 integers and 8 > 0, define the regularity indexes s and
S as

n—l_l and gz(n_l)_w_l_w

s=(n—-1)— .
( ) p p p1—1

(3.18)
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THEOREM 3.2. Let n >3, p1, p2 = 2 integers with py = (p1 +1)/2, 1 < p < o0,
S1, 82, 8, SER, d>0, and 0< B <2/py. Assume the scaling relations (3.13),
(3.15), and (3.18). Suppose also the conditions

2-p
pr—1"p1—1

d < min{ } ., s1>2—(p1—1)d, and s2>2—pid. (3.19)

Then, there are € >0 and 61, 02 > 0 such that equation (3.11) has a unique solu-

tion u = (u1, uz) satisfying ||ull, < e provided that f € FB, . and V € FB,

with || fllrgs <61 and ||V zgs < 62. Furthermore, the solution u depends
P, p,00

continuously on f and V.

REMARK 3.3.

(i) (Lipschitz dependence on f, V) In fact, the proof of theorem 3.2 gives that
the data-solution map (f, V') — u = (uq, uz) is Lipschitz continuous. More
precisely, if u = (u1, ug) and w = (wy, we) € By are solutions of (3.11) corre-
sponding to the pairs (V, f) and (‘7, f), respectively, then we have positive

constants 7, ¢ independent of V, V| f, f. u, w such that
hu—wle <nllV=Vlems  +CIF=Fllrss . (3:20)

(ii) Note that the conditions in theorem 3.2 are non-empty. As a matter of fact,
it follows from (3.13) that 8 = (2p2 — p1 — 1)/(p2 — 1). For pa > (p1 +1)/2, it
follows that 0 < 3 < 2/p;. Then, we can take d > 0 satisfying (p; + 1)d < 1
and d < (2 —)/(p1 — 1). Also, consider n, p such that

e (p) e (G

Now, for v as in (3.13), we can choose s; and sy such that (3.15) and (3.19)
hold true. The case 8 = 0 is similar but we need to consider an odd integer
p1 = 3, because pg = (p1 +1)/2.

(iii) With suitable adaptations in theorem 3.2, we could treat problem (1.1) with the
first equation being —Au = K1(0%u)?* + h, that is, with an additional forcing
term h. For example, we need to assume h € FB,%, with s3 =n —2 — v — n/p
and ||| zgss < 03, for some small d5 > 0.

(iv) From a more general viewpoint, formulation (3.11) can be interpreted within
the perspective of nonlinearly perturbed linear problems. This broad class
of problems has attracted the attention of several authors; see, for example
[16, 24, 32] and references therein.

REMARK 3.4.

(i) (Singular potentials) Theorem 3.2 covers potentials V' as in (1.3) which are
homogeneous of degree —1. In fact, for potentials homogeneous of degree —o,
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by proposition 2.1(i) we have that V' € }"Bf;oo withs§=n—-1—((n—-1)/p) — 0o
that corresponds to the index § in (3.18) when o = 1.

(ii) (Measures as forcing terms) We can consider f as a Radon measure by taking
5§ = —(n—1)/p. In this case, using (3.18) we have (n — 1) —y =1 and then it
follows from (3.15) that the indexes s, so should satisfy

(n-1)

81—d=$2=1— (321)
p
Therefore, in order to have the conditions on s; and sy in (3.19), we need to
assume
1 -1 -1 1 1 —
d>—+2 and - < min{ , t+p1= B } (3.22)
P1 pp1 p p1—1 p1—1

which is compatible with the other conditions in theorem 3.2. For example, in
the case p = oo, condition (3.22) reduces to the simple one d > 1/p;.

To analyse the regularity of solutions for (3.11), we need to consider another
functional setting which is a suitable half-space version of the Fourier-Sobolev space
H*(R") defined in (2.2). Let H}* = H}*(R") be the Banach space of all Bochner
measurable functions u : (0, oo) — H»*(R"~!) such that the norm |1 2.+ is finite,

where

(L1 1) Fans )| (3.23)

[ £l y2.s = ess sup x?
d T, >0
Consider the Banach space H;’S = H;’S x HY* with the norm
s w2t = Nl + il (3.24)
We have the following result.

THEOREM 3.5. Under the same hypotheses of theorem 3.2, let s € R and suppose

further that py 2 4, p2 < p1, d <min{1/(p1 +1), (2= p18)/(p1 — 1), (L = B)/p1},
and s = 3.

There exist 61, 6o > 0 such that, if f € .7-'3?00 NHY and V € .7-"[3;00 NnHLS
satisfy

||f||]-'B§OOQH1,s <o1 and HVH}'B;OOQHLS < 2,

then the solution u = (u1, uz) of (3.11) obtained in theorem 3.2 belongs to X N
H}l’s. Moreover, we have that ui(-, x,) € COLSJ (R"=1), for each x,, >0, and uy €
COLSJ (R"1), where || stands for the greatest integer function.

REMARK 3.6. For index s large enough in theorem 3.5, we obtain a solution u for
equation (3.11) smooth w.r.t. the variables @’ = (z1, ..., Tp_1).

In the next result, we present a result on axial symmetry of solutions.
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THEOREM 3.7. Under the hypotheses of theorem 3.2. Assume further that V and f
are radially symmetric in R"~Y. Let u = (u1, uz) be the solution of (3.11) obtained
in theorem 3.2 corresponding to V and f. Then, u is invariant under rotations

—
around the axis Ox,, that is, uy is invariant under rotations around Ox, and the
trace component us is radially symmetric in R~ 1,

4. Estimates for the terms of formulation (3.11)

The purpose of this section is to develop the key estimates for the operators
L(f), I(u), T(u), and N(u) defined in (3.7)—(3.10).

4.1. Estimates in spaces of FB-type

Consider the Banach spaces

YV=LYFB (R}) and Z=FB? (R"), (4.1)
with the respective norms |u;ll,, = HulHﬁ;“J—'Bf,}m and |jusl|; = ||“2||f62?w' Note
that Z is a trace space and the space X in theorem 3.2 can be expressed as

X=)Yx2Z.

To deal with the product operator and nonlinearities in ) and Z, we need to
work with some decompositions in frequency variables. For that, let w, v € §'/P
and 1 < p < co. Recalling Bony’s paraproduct formula, we have that

wu = Z SE_3vApw + Z Sk_3wARV + Z Z AjwAgv

keZ keZ LKEZ |1—k|<2

=: A + Ay + As.
Then, for each j € Z, it follows that
165 (@o) [lp< 541 [lp +l¢5 A2 [lp +lI¢5 A3 [lp -

Using that Supp(Sk_/;ﬂEkU)) C{¢ e R 282 C|¢'] < 2772} (similarly for the
parcels of Ay) and

supp [ Y b+ or0 | c{& e R 0 < || <24,
li—k|<2

we can decompose

k—3
I @) I, < Y Z | oot [+ > D | oo+ it |

|k—j|<3l=—00 |k—j|<3l=—00
+ Z Z | 61 * dx ||,y + Z Z | 61 * dx ||
[j—1<5 |k—1|<2 I=j—3|k—1|<2
=: Bl + B2 + B3 + B4. (42)
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Proceeding similarly to the above for the product zvw, we arrive at

k—3
@ e ¥ 3 13 dmmh+ XS | hmweail,

|k—7|<3l=—00 |k—7|<3l=—00
~ ~ > —~ ~
+ YD N EExdktw p+ > Y | Ex 00 |y
li—1]<5 |k—1|<2 I=j—3 |k—1|<2
= D1 + DQ + D3 + D4. (43)

Moreover, we can estimate the parcel D; as follows:

k—3 R N
S I aizx drvw |y

|k—j|<31=—00

k—3 m—3
S S HaEh | XS bt dmill

|[k—j|<3l=—00 |m—k[<3n=—00
m—3 N N N R
+ Z Z | $n0 * pmw lp + Z Z I G * G0 ||pp
[m—k|<3n=—00 [k—m|<5 |m—n|<2

+ Z Z | 4@ * ¢ ||
m=k—3 |n—m|<2
=: D} + D} + D} + D}. (4.4)
In the same way, for Dy, D3, D4 we obtain the estimates

D; < D} +D? + D} + D}, fori=234,

where the parcels D{ are as in (4.4) with the natural small modifications.
First, we treat the operators L (-) and La(-).

LEMMA 4.1. Let $1, 50 €R, 1<p< oo, p1 =22, 20, d>0 satisfy (3.15) with
y=2-=p10)/(p1 —1). C’onszder 5 E R as in (3.18). Then, there exists a constant
C > 0 such that

LNy < Clifllzps . and  NL2(Nllz < Clfllzss (4.5)

forall f € ]—'B;OO(R”A),
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Proof. For each j € Z, using that s; — 1 —d = ss — 1 =35, we can estimate
‘ - . . B e
29, | 05G(E 2 O llp < C2 [ 65 e ™ £ 1y

< ol Wiyl | 6,

= 2611 Di (97 Yo 22wl || GO F |,

<C2Y | 6;f Iy (4.6)

and
2027 || §;G(€,0,0) llp< €227 || 65 llp=C2% | 65 F |, - (4.7)
The estimates in (4.5) follows by taking the supremum over z,, >0 and j € Z in
(4.6) and the supremum over j € Z in (4.7). O

The lemma below contains estimates for the operator I (u) defined in (3.7).

LEMMA 4.2. Let s1 € R, 1 < p < oo, p1 = 2 integer, >0, and let d > 0 be such

that
2-p
d i 2 — —1)d
<m1n{p1_1ap1_1}a 1 > (pl )
and
n—1 2—p1f
s1—d+ =(n-—-1)— . 4.8
: =y (48)
Then, there exists a constant C' > 0 such that
p1—1
—1—i i
1Ty (1) = T (wn)ly < Cllur —willy > uall§ ™ lwilfy (4.9)
i=0

for all uy, wy € Y.

Proof. Assume initially that p; = 2. For each j € Z, in view of (3.5), we have that
227 | @(E')/ G(E,2n, [K1((07u))NE 1) = K1 ((07wn)*)N (€ p)]dt |,
0

< catm / T e et || G e)]0% (s — w1)0% (s + wn)] €1 [p .
0
(4.10)

Taking w = 0%(uy —wy)(-, t) and v = 0%(u; +wy)(-, t), and using (4.2), we
obtain that

R.H.S. of (4.10) < ¢201= 17 / e 272 len~tl(B, 4 By + By + By)dt.  (4.11)
0

In what follows, we separately treat the parcels in (4.11). For the parcel with By,
in view of (4.8) with p; = 2, employing Young inequality in LP and Bernstein-type
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inequality (2.10), we have that
o0 ,
2(51—1)j / e—27r2J Ixn_t‘Bldt
0

k—3
< O /Ooe—%mn—u S Y gln (/s

0 lk—j|<31=—00

x 200 Gufour — w1) (€ ) Iy 2 [ Gelona + 1) (€, 1) [ it
o0 . .
Ol leppagy, [ e m Ty 3 gt
0 Ik—j]<3
xsupt® || By +w1)" (1) [,

t>0

because (n—1)—((n—1)/p)+ B —51=(2-28)—d+ (. Using now that
e 272 2=t (2729 ||z, — t)M < 1 with M < 1, it follows that

00 )
/ t72d6727r2-7|:cn7t|dt
0

< Co27IM (/ 72|, —t|)’Mdt+/ 24|z, —t)Mdt>
0 T

=9 IMpl=M=2d(B(1 24,1 — M)+ B(2d+ M — 1,1 — M))

—jM_1-M-2d
<C277%g,, ,

where B(-, -) is the beta function (see (2.4)) and we use the change of variables
t=a,s and t = x, /w. Here, we need 1 —2d > 0,1 — M >0, and 2d+ M — 1> 0
for the convergence of B. So, taking M + 2d — 1 = d, we arrive at

oo
2010 [ e B < C s = g g 3 20
0 |k—j|<3
x sup t? || Gp(ur + w1)"(-,t) [lp,
t>0

since s1 —1— M +2—d=s;. For By, B3, and B4, proceeding analogously to
above, we have respectively that

2(5171)]'/ 6727727|mn7t|32dt
0

. v k-3
< Cols—Di / e Flen=tl 33 ln-D—((n-1)/p)+A-enl
0 |k—j|<8 1=—00
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x 20 | Gu(u 4+ wi) (€, 1) [lp 257 || i — wi)(€,8) ||, dt

—d E —1=M)(j—k)os1k
< C ||7_L1 + wl”‘cso]:B;loo X, 2(51 )(J )251
[k—jl<3

x supt? || g (ur — w1) (-, t) |1,
t>0

2(5171)3'/ 6727r2j\:vn7t|B3dt
0

o )
< Ools1- 1 / em2m2lea=tl 3§ oln-U=(n-1)/mr+p-silk
0 li—jl<5 |k—1]<2

x 25 || g (ur —wn) (€,8) [lp 2% || dilun + wi)"(€,1) ||, dt

—d E : —1—-M)(j—1 l
<C H U — wy ”E?}-B;}m z, 2(81 )@ )251
l1—51<5

s supt? || gy(ur +wi) (1) ||ps
t>0
and

2(5171)]'/ e72ﬂ'2j|$n7t|B4dt
0

o0 . o0
gcg(sl—nj/ e~ lan=tl 37 3 gln-)=(n-1/p) A=k
0 I=j—3 |k—1|<2

x 25K || g (ur — wi) (€', 8) lp 27 || duur +wi) (€, 1) | dt
< C ||U1 - W1||['30~7:B;,loo x,;d Z 2(51_1_M)(j_l)2511
1=j—3

x supt? || Gu(ur +wi) (1) [ -
>0
Next, bearing in mind (4.10)—(4.11), multiplying both sides of the above estimates

by x¢, taking the supremum over z,, > 0, afterwards the supremum over j € Z, and
applying Young inequality for discrete convolutions in Z, we arrive at

[ (ur) = Li(wr) ly< C flun = wi fly (e fly +llw [ly),

where we have used that 2 —d — 3 > 0 and s; > 2 — d in order to ensure conver-
gence of the series in the estimates involving B;’s.
Now, we turn to the case p; = 3. First, note that

(0Pu1)? — (8°w1)? = 0% (uy — w1)(0%u1)? + 0° (1 — w1 )(0%ur)(0Pw,)
+3’6(u1 —wl)(aﬁw1)2.
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Thus,

29 | 65(¢) /OOO G(& 2, )[K1((07u1)*)" = K1 ((9%w1)*)M)(€' t)dt |l

<Car i [ el ()07 un - wn) (0P €0

0
+ 1165 (€) (0 (w1 — w1)(87u1)(9%w1))" (€, 8) I
+1165(6)(0% (ur = 1) (0% wn))(€,8) |} ) dt
= J1+ Jo + J3. (412)
Let us provide an estimate for Jo. Considering z = 8°%(u; — w,), v = w1, and
w = dPu; in (4.3), we have the corresponding parcels D;’s. We are going to show

how to handle D;. The others can be treated similarly, being left to the reader. We
have that

2(s1=1)j / e~ 2 len—tlp, 4t < 0205113 / o2 len—tl(pl 4 D2 4 D3 4 DYt
0 0

For the terms D?’s, due to the triple product in (4.3), we use Young inequality in
LP and (2.10) twice (see e.g. (4.4)), as well as (4.8) with p; = 3, in order to estimate

2(5171)]‘/ e727r2j|mn7t|D%dt
0

S .
— ] — — J —
e L A e

m—3
< D T 5 5 2t sup ! || (nin) () Iy
[k—j1<3 Im—k|<3n=—0oc t>0

—3d—M j—k)(s1—1—-M
<Czxl™3 ||ul_w1||£30f82}00 ||u1||£30f323w Z 9(i—k)(s1—1-M)
[k—3j]<3

% 2k[272d717M] Z 2(k7m)512m51 suptd H (;Z/;m'&a)(,t) Hpv
imRl<a >0

oo .
o(s1-1); / o272/ ra—t D24y
0

_3d— ik 11—
<C$}L 3 M||U1—w1||£307:32}w le||£so}_B;1°C Z 9(i—k)(s1—1-M)

|k—j1<3

x FL2amME R ptmmsigme sup || G i (-, t) |,
t>0
|k—m|<3
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9(s1-1)j /OO e—27r27|mn—t\Dilidt
0

—3d—M j—k —1-M
<Co 3 M luy —wi |l g g g s, Y, 207 W71
|k—3j|<3
x Q21 M R g gt sup i | § i (-, t) s
t>0
[k—m|<5

and

2(5171)1'/ 672w2j|zn7t\D%dt
0

< Cpl3d=M |1y, _ will e g, Nl goe ms, Z 9(i—k)(s1—1—M)

|k—j|<3
x =21 M] R P gl g et sup ¢ | (G @) (-, t) I -
m—k—3 t>0

Thus, considering the similar estimates for Dy, D3, Dy and taking M =1 — 2d
yield

o0
1) o9 |z
sup sup fo Jo = Csup 26117 sup xfb/ e 272 [en—t|
JEZ ©n >0 JEZL T, >0 0

X [[6;(€)(0° (w1 = w1)(8%ur) (9%w)) " (€',1) ||, it
< Cllur = willy lurlly flwlly (4.13)

where we use 1 —d — (3/2 > 0 and s; > 2 — 2d. Following the same reasoning, we
can also show that

o0
1) oz —
sup sup xfll Jy = Csup2t1=17 gup xi/ e 2% len—t|
JEZ x>0 JEZ zn>0 0

x (67 (€)(% (uy — wi)(9%ur)) (€ ) | dt
< Clur — willy [lu |3, (4.14)

and

o0
14 o g —
sup sup Jing = Csup2® =17 sup xfb/ o272 |en—t|
JEZL xn>0 JEL x,>0 0

X [[6;(€)(0° (w1 — wi)(@Pw1)*) (€, 1) || dt

2
< Cluy —wi|ly [Jwef3, - (4.15)

Considering (4.13), (4.14), (4.15) in (4.12), we obtain (4.9) with p; = 3. The general
case follows by proceeding as above and employing an induction argument for p; > 2
even and p; > 3 odd. O
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In the next lemma, we develop estimates for the trace-type operator Iy from )
to Z.

LEMMA 4.3. Let s1, s9 € R, 1 < p < 00, p1 = 2 integer, B >0 and let d > 0 be such

that
9 _
d<min{,ﬁ}, So > 2 — p1d
pr—1 p1—1
and
n—1 (n—1) 2—p1p
—d+ = S9 + =(n-—-1)— . 4.16
— = (-1 -2 (1.16)
Then, there exists a constant C' > 0 such that
p1—1 . )
[L2(u1) = Ia(w1)] z < C'llur — waly, Z |5 wally (4.17)

for all uy, wy € Y.
Proof. Again we show (4.17) in the cases p; = 2 and p; = 3. The general case follows

by induction for p; > 2 even and p; > 3 odd.
Starting with p; = 2, for each j € Z we can estimate

27 | 65(¢) /OOO G(&, 0, )[K1((0%u))NE' 1) — Kr((9%w1)*)M (¢, t)]dt [l

<02 [T G0 — ) -+ )€ [ .
0

(4.18)
Considering w = 9%(u; — w1)(+, t) and v = 3% (u1 +wy)(:, t), decomposition (4.2)
leads us to
R.H.S. of (4.18) < C2(s2=1)i / e ™Y (By 4 By + B3 + By)dt. (4.19)
0

For the parcel with By, we proceed as follows:
S )
2(3271)3’/ 6727r2]tBldt
0
o j
~1)j —2d  —2m2’
g 02(82 ) Hul — w1||£30]_-52}00 /O t e ™ tdt

x 3 2O supt? | G+ wa) () [y
‘k; Jj|1<3

SCllur —wr |[gorps,

x Y Uk (saradm)gka suptd | () (ur +w1)" (1) Il (4.20)
t>
[k— J\<3

https://doi.org/10.1017/prm.2024.61 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.61

22 L. C. F. Ferreira and W. S. Lagoin
where above we use that [~ t=2de=2m2t gy < 020(Rd-1T(1 — 2d) < €29(24=1) and
(4.16) with p; = 2. For the terms with Bs, Bs, and By, we have the estimates
(=) [ g2 (k) (s2+2d-2) gk
so—1)g —2m27t j—k)(so+2d—2 s
a2 J/ Bt < O | uy 4wy gy 3 207MCat2i-2gkn
0 |k—3jl<3
x supt? || ¢ () (ur —wi)" (1) [lp,
>0
(4.21)

o0 . .
2(5271)J/0 6727r21t33dt <C|lu —w Hﬁ;"]—'B;}w Z 9(5—D)(s24+2d—2)9ls1
[l—7]<5

x supt? || le(')(ul +w1)" (-, 1) |lp,
>0
(4.22)

and

[o'e) o0
—1)j —2m27t —242d)(j—1) 9l
9(s2 )J/O e 2B At < C || ug — wn ”113".7:3;,100 E 9(s2 )@= gls
1=j—3

s supt? || di()(us +w1) (1) | -
t>0
(4.23)

Inserting (4.20)—(4.23) into (4.19), taking the supremum over j € Z, and then
applying Young inequality for discrete convolutions, the resulting estimate is

H2(w1) = Lo(wi)ll zgge gn-1y < Cllur = will o s ) lr +will poe zon g »
which implies (4.17) with p; = 2. Note that above we have used that 2 —d — 3 > 0

and so > 2 — 2d for the convergence of the corresponding series.
We conclude by performing the proof for p; = 3. In this case, we can split

2°39 || §5(¢) /OOO G(E,0,0)[K1(0%uwr)*) — Ky (0%wn)*) (1)t ||

<020 [ eI (3500w — wn) @) (€D |
18560 (ur = wn) (@ un) (0P wn)) (€' 1) I
1165607 (w1 — w1)(@%wn)?) (€, 8) Il) dt

= Jy+ Jo+ Js. (4.24)

In what follows, we explain how to estimate .J;. For z = 0°(u; — wy), v = 0°%uy,
and w = 9%u; in (4.3), we have the decomposition of || ¢;(&')zvw ||, in terms of
D;’s. Below, we treat the term D;. The other ones Dy, D3, D4 can be estimated
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similarly. In this direction, bearing in mind (4.16) with p; = 3, we have that
A j A j
2°27 / e 2 Dydt < C2(s2 71 / e *™(D} + D} + D} + D})dt,
0 0
with the respective estimates for the parcels with Di, D?, D}, and D7:

2(32—1)j /OO e_2ﬂ2th%dt
0

<Cllu = willgg i, lwllpsrpy, Y 207H0272530

|k—j]<3
" Z gk—m)(s2+2d=1=(1/2F) gms gup ¢ || G, (ar (-, 1) ||,
o >0
o0 .
2(52—1)3'/ o2t D24y
0
S COllur —wnll oo rpz Nunll poo sz Z U R
[k—7]<3
x D e nm R0 supt! | o (Vi)

k-l <3
00 )
Q(ngl)j / 6727T2th%dt
0

<C Hul — wy HEZOJ:B;,IOO ||U1||L3C'FB‘;‘1OO Z 9(J—k)(s2—2+3d)
[k—j|<3
x 3 almmar2d1=/DB)gmst sup i || G, (VT (-, 1) |y,
|k—m|<5 >0

and

2(52*1)]‘ /OO ef2ﬂ2th411dt
0

<C ||’U,1 — wl”[lff}'B:}x Hu1||l:<°i°~7:32,loo Z 2(j*k)(5272+3d)

[k—j1<3

x Z 9(k=m)(s2+2d—1—(1/2)B) gms1 Suptd H am()m(7t) ||p )
m—k—3 t>0

Now, considering the similar estimates for Dy, D3, D, and recalling the conditions
1—d— /2> 0and s3 > 2 — 3d, we arrive at

sup J1 < Cllur —willy ||U1||§;- (4.25)
NS
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For J, and J3, proceeding as in the proof of (4.25), but with v = %u;, w = 9%w;
and v = 0Pwy, w = 9w, instead of v = APuy, w = dPuy, we obtain that
sup Jo < C lur — wily [Jully [wi]ly, and  supJs < Cllus —wi]y, [[wi]3,-
JEL JEZ
(4.26)

Estimate (4.17) with p; = 3 follows by taking the supremum over j € Z in both
sides of (4.24) and then considering (4.25) and (4.26). O

The subject of the following lemma are estimates for the operators Ty : Z — )
and Ty : Z — Z.

LEMMA 4.4. Let s1, s € R, 1 < p < 00, po = 2 integer, 3 >0 and d > 0.

(i) Assuming that

-1 -1 1
s1>14+d and sl—d+n ZSQ—FM:(n—l)— ,
p P o — 1
(4.27)
we have the estimate
p2—1
—1-i i
I3 (u2) = Ty (wa)lly < Cllug —wallz Y fuall %™ " fwallz,  (4.28)
i=0

where C' > 0 is a constant independent of ug, wo € Z.
(ii) Supposing that
(n—1) 1

se>1 and s2+ =n-1)— , (4.29)
p2—1
we have the estimate
p2—1
| To(uz) — To(wa) [|z< C [ ug —wa |z Y Jug 277w 5, (4.30)
i=0

where C' > 0 is a constant independent of us, wy € Z.

Proof. For (4.28), considering the basic cases p; = 2 and p, = 3 and proceeding by
induction, this time we need to handle the expressions

217 || 4 (€)G(E, wn, 0)[ (K (u2)?)" — (Ka2(w2)2) () [l
< Cz(slfl)jef%rzjzn H Q/ZS;[(UQ o wg)(u2 +w2)}/\ H:D
and
27 || ()G, 0) (K (u2)*) = (i (w2)*)](€) [l

< C2m1=d)ig—d <|| @(uz —wa)(uz)? ||,

116 (a2 = wa)uzws [l +6; (s = wa) (w2)? Ily)
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instead of (4.10) and (4.12), respectively. For that, we can employ decompositions
(4.2) and (4.3) and proceed as in the proof of lemma 4.2 with a slight adaptation
of the arguments. The same follows for (4.30) but proceeding as in lemma 4.3. We
leave the details to the reader. O

We finish this subsection by treating the operators N; and Ny that depend on
the boundary potential V.

LEMMA 4.5. Let s1, 52, 5 € R, 1 <p < oo and d > 0 satisfy (3.18) and (3.15) with
vy=(2-p1B)/(p1 —1). Let V € FB, ., and suppose further that s; > 1+ d. Then,
there exists a constant C' > 0 such that

| Ni(uz) = Ni(w2) ly< ClIVllggs _ lluz — w2l z, (4.31)

| Na(uz) = Na(w2) |z< C |V [l5s __[I vz — w2 |2, (4.32)
for all us, wy € Z.
Proof. For each j € Z, we have the estimate:

2517 || §; G, 2, 0) (Vi) — (Vawa)] [|p< 0262 DTad | 611V (up — w2)] |, -
(4.33)

Considering w =V and v = uy — wy in (4.2) yields the decomposition

20 =D d | G5V (ug — ws)]" [[p< C20 =4 Da By + By + By + Ba).
(4.34)

Moreover, recalling (3.18) and using Young inequality and (2.10), we can handle
the parcels B;’s as follows:

2(81—1—d)jBl

k—3
<c Y 200 S G —w) |V
l=—0c0

Ik—3]<3
<C Z 9(s1—1—d)j
k—3jI<3
k=3 R R
X Z ln=D=((n=1)/p)=sallglsz | (yy — wo) || || DV |l
l=—o0 p
< Cllug — wa|| zgo2 Z 9(s1=1=d)(G=k)gls1 ~1=dt(n—1)—=((n—1)/p)=s2]k | oV [

|k—jI<3
(4.35)
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2(31—1—(1)jBQ
k—3 N =N
<O Y 2T S T || Bu —wo)|
- p
k—3l<3 I=—o0

<CIV llrss

% Z 9(s1-1=d)(j=k) gs1—1—d+(n—1)—((n—1)/p)— 3]k Hak(uz —w)"| , (4.36)
[k—jl<3 :
2(31—1—d)jBS
SOV llzss
x 3 2l gl —ddt ()= (1) /)= H@(uz —w)|| . (4.37)
j1=1l<s :
and
2(s1-1-d)i g,
SCIV gz Y 201717 GD gl —tmdttn=)—((n=1) /)= Hgl(w —wz)
TS P
(4.38)

Now, in view of the condition s; —d > 1, estimate (4.31) follows by multiplying
(4.33) by z&, using (4.35)—(4.38) to estimate the R.H.S. of (4.33), and taking the
supremum over x, > 0, and then over j € Z.

Finally, for estimate (4.32), we have that s = s; —d > 1 and
227 || $;G(€,0,0)[(Vuz) — (Vaws)] [lp< €229 || 65 [V (uz — wa)]" I,

whose R.H.S. can be handled similar to that of (4.33) with some slight modifications
of the arguments. We omit the details, leaving them to the reader. |

4.2. Regularity estimates in Fourier—Sobolev spaces

This subsection is devoted to presenting some regularity estimates for the terms
in (3.11). With this in mind, in addition to the spaces ) and Z, here we shall
employ the spaces H'* = H“*(R"~') and H* = H}*(R?) defined in (2.2) and
(3.23).

Let R >0 be fixed but arbitrary. Assume the same hypotheses of theorem
3.2. Suppose also that p; >4, pa < p1, d< min{1/(p1 + 1), (2—p18)/(p1 — 1),
(1=0)/(p1)}, and s > B. Let V € FB, ., N H"*.

Then, there exists a universal constant C' >0 (independent of R and V)
such that the following estimates hold true for the components of the operators
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L(f), I(u), T(u), and N(u), respectively:

1
1 La(F) lze < C g | F e

+ O+ R)RC PO [l e VfeFBy  NH",
(4.39)

1
[ L2(f) s < CE | s
+C(1+ RS)R@—mﬁ)/(pl—lHd | f ”fBi.w Vf e }-B?OO nHLS

(4.40)
I Ty (ur) = D(wa) [l e
1 p1—1
1—1—1 i
< Om | ur —wn ||H;vs Z; | wa ||Z;,s | w1 ||H;,s
+ C(1 + R*)RZ=B/(r=1) |y —wy ||y
p1—1 ) ‘
> lua 157 Nw (5, Yua,wn € Y0 HY; (4.41)
=0
| I2(ur) — Io(w1) [l
1 p1—1
—1—i i
< CW [ ur —wi [ Z | u ||’;};,s | w1 ||H;~s
=0
+ C(1+ R*RE=B/(pr=Dkd |y g ||y
)01—1 . .
X Z Jug 187w 115, Yur,wi € YN HS; (4.42)
=0
I 11 (ug) = Ta(wa) [l y.e
1 p2—1
—1—i ;
< Oy s = wa e D7 W W55 e e
=0
+ (14 R*)RC=PA/ (=D ||y —wy || 2
p2—1 ) .
x> Nue 127 N we |z, Vup,we € ZNHY (4.43)
i=0

| To(uz) — Ta(wz) || 1.5
p2—1

1 s .
S Cq e — w2 flg. D s 157 w2 s
i=0
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+C(1+ RS)R((2—915)/(p1—1))+d | ug —ws |2

p2—1
xS Mg |27 wa ll, Vuz,ws € 20 HY (4.44)
1=0

| Ni(uz) = Nu(wz) |10

1

< O

|V Alzvs || ug — wa [|gs

+ U+ R)RE VOV |y wn = wz |z, Yug,wa € Z0H
(4.45)

[[Na(u2) — Na(w2) || g
1
<Cx IV [zs || ua — wa [ g1s

+ C(l + RS)R(Qiplﬁ)/(plil)+d || V H]—"B;‘; - || Ug — W2 Hg, VUQ, w2 S Z N Hl’s.
(4.46)

For reasons of length of the paper, we prove two of the eight estimates above.
More precisely, we show estimates (4.39) and (4.45). The others can be proved by

adapting the proof developed for (4.39)—(4.45), as well as employing some of the
arguments presented in §4.1. The details are left to the reader.

4.2.1. Proof of estimate (4.39) Using R > 0 to split the integral within the H;’S—
norm in low and high frequencies, we obtain that

2 A+ IEL) =2 || (L4 1€9)GE 2, 0)F |1

<ol [ JHIERGE . 0F €l
[€'I<R
ot [ G a0 )¢
[&'1>R

For the parcel Pj, using (2.10) and recalling (3.18), we have that

7€) h

P<CO+R) Y 27iglem e
Jj<1+[log, R|

< CO(1+ R?)

% Z (2j$n)d6727r2]w"2§j H ¢]f(£/) Hp 2[(n71)7((n71)/p)717§7d]j
Jj<1+|log, R|

SO+ RYREAEZ f Iz (4.48)
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because (n—1)— ((n—1)/p) —1-35—d=((2—-p10)/(p1 —1)) —d > 0. For the
high frequency part, we can estimate

P, < CR'a! /m e ()T < ORI S e (449
>

Now, we obtain (4.47) by taking the supremum over x, > 0 in both sides of (4.47)
and using (4.48) and (4.49).

4.2.2. Proof of estimate (4.45) For R > 0, we can estimate

o 1(L+1€1°) (N1 (u2) — N1 (ws))ll
<zl || (L+|€1°)G(E 20, 0)[V (uz — w2)]N(€) |1

N

zd / (L4 1E1) |GE 2my O)[V (utz — wa)] ()] A
[€'|<R

+ / (14 1€1) [G(E', 2, O)IV (utz — w2)] (€)] €/

[£'[>R

= P+ P (4.50)

The integral P; can be handled as follows:

PL<CA+RY) Y (@)% || 6V (uz — w2)]N(€) |
j<1+4|log, R

o 9l(n=1)—=((n—1)/p)~1~d]j_

Taking w =V and v =wug —wy in (4.2), proceeding as in (4.34) and recalling
S=(n-1)—(n-1)/p) — 1, we get

2607 || 9, [V (uz — wo)]" |l < By + Bz + By + B,

where (see also (4.35))

k-3
By<C » 2t M- H¢l(u2 - w2)AH1 I &xV Iy

e—3j]<3 l=—00
k—3
<C Y 260 3l b/ msaigten |Gy — )| ) 4V
k—3|<3 I=—00 i
< Clug —wall5 | V ”fBi,oc Z 9(3=d)(j—k)g[s—d+(n—1)=((n—1)/p)—s2—5]k_

|k—jl<3

In the same way, we can estimate the parcels Bs, B3, and By by proceeding similarly
to (4.36), (4.37), and (4.38), respectively.
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Now, with the corresponding estimates for the B;’s in hand, using that (n — 1) —
(n=1)/p)—sa—d=vy—d>0and v=(2—p18)/(p1 — 1), it follows that

Pi <O+ R fus = wall | V lrss

« 3 $ 2GRl (n=D)/p)=sa
J<14|logy R] [k—j|<3

OO+ R) s —wnlly |V lpmy > 20
j<1+UOg2 RJ

<O+ R)RE=PD D lug —ws 2 | V 5 - (4.51)

For the parcel P,, we have that

Py < CR™afe?mlflen / (L4 IV (w2 — w2)]" (€)|dE’
j&'1>R
< CR™ 7 (Ray) e >R |V (ug — w)) || 1. gn1y
CCOR|V |y s — ws [ roe, (4.52)

where the last pass was obtained via (2.3) and (Rux,)% 271Flzn < O for all
R, z,, > 0. Considering now (4.51) and (4.52) in (4.50) and then taking sup, -,
we are done.

5. Proofs

This section is devoted to the proofs of results stated in § 3.

5.1. Proof of theorem 3.2

With the estimates developed in §4.1 in hand, we are able to employ a contraction
argument and show the solvability of BVP (1.1). For that, recall the spaces ) =
LEFB (RY), 2 =FB2 (R*!), and X =Y x Z with the norm || - [|x=]| - ||y
+ |- ||z (see (3.16)—(3.17)). Consider the operators

\Ill(u) :Il(u1)+N1(u2)+T1(u2)+L1(f), fOI‘U: (U17U2) EX, (51)
and
\IIQ(’LL) = Ig(ul) + NQ(UQ) + TQ(UQ) + Lg(f), for u = (U17U2) S X. (52)

So, we can define ¥(u) = (V1 (u), Ya(u)) in X =Y x Z with the norm || - ||x=]||
Ny + 1 - |z (see (3.16)~(3.17)).
Let &, 01, d2 > 0 be such that

1 1
plgﬂl—l +p2€P2—1 < E’ 5y < E _ P15p1_1 _ p2692_1,
and 01 + doe < = — p1€p1 — p2€p2, (53)

2C

where C' > 0 is the largest constant obtained among those in lemmas 4.1 to 4.5.
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We are going to show that ¥ is a contraction in the closed ball By = {u =
(u1, u2) € X5 [[(ur, u2)|ly <e}. In view of the estimates in the aforementioned
lemmas, we can handle ¥ as follows:

¥ (w) lx < Clpr || (ur,uz) I

T po || (ur, ) 152 HIV s Il Curyua) Il +1F s )

oo

< C(p1eP + pae’ + dae + 1) < (5.4)

<
27

provided that (u1, us) € By. It follows that ¥ maps from By to By. Moreover,
for w = (u1, uz) and w = (w1, we) € X, we have that

| W(u) = U(w) [lx < O+ pre” "+ pae? ™) || (s — wi, s — wn) [l
1
<7lu—wll, (5.5)

which gives the contraction property for W. Then, by the contraction mapping
principle, there exists a unique solution u € X for (3.11) (u = ¥(u)) satisfying
Jull <.

In the sequel, we show the continuity of the data-solution map. Let u = (uq, u2)

and w = (wy, wy) be solutions in By for (3.11) corresponding to V, f and V|, f,
respectively. Proceeding as in (5.5) and using that ¥U(u) = v and ¥(w) = w, we can
estimate

[u—wlx=[¥() - ¥(w)lx
< C(02 + plap“l + p2€p271) | v—wlx
+Ce |V =Vigs:  +CNf=Fllrss.

which yields the desired continuity, since C(dz + p1e”*~1 + paeP2=1) < 1.
5.2. Proof of theorem 3.5

Let €, 61, 02 > 0, and R > 1 be such that

1 s\ p((2=p18)/(p1—1)+d | L 1 1
[Rz—/B—mi+2(1+R)R(( o)/t =1) + 5| (e T 4 pae T < o5 and

1 1 sy p AL +d 1
|:R+Rd+1+2(1+R)Rpl :|(51+62)<86”

with € and 47, d5 satisfying also the relations in (5.6).
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Recall the space Hy® = H}® x H'* (3.24)) and consider the closed ball

ls,
Bayrpgrs = {u=(u1,u2) € X NVH,"; || (w1, u2)| 5 + H(“17u2)||71; <el.

Employing estimates (4.39)—(4.43), (4.45), and (4.46), and proceeding as in the
proof of theorem 3.2, we can show that

(5.7)

3
| W, lgy o< 5,

1
| W(ur,uz) — ¥(wi,ws) Hn}fg 1 | (ur,u2) — (wi,ws) ||H;1-w (5.8)

for all (uy, uz), (wy, wy) € H}i’s, where U = (U, Uy) is defined via (5.4)—(5.7).
Putting together estimates (5.4)—(5.5) and (5.7)—(5.8) yields that ¥ is also a con-
traction in B PUNTIE So, by uniqueness, it follows that the solution u € X obtained

through theorem 3.2 also belongs to ’H;’S.
Finally, recalling (2.2) and (3.23), and using that u € HJy®, we have that

I+ 1€ 1)ar i< 2 flullyre  and || (L4 [€1°)a2 1< flully -
Thus, for each x,, > 0, it follows that
(0%uy (-, 2,)) € LHR™™ 1Y) and  (0%up)" € LYR™1), (5.9)

and then 0% u; (-, x,) and 9% uy belong to the space Co(R" 1) of continuous func-
tions vanishing at infinity, for all multi-index |a| < s. Therefore, they belong to

C’%SJ (R"~1), as requested.
5.3. Proof of theorem 3.7 (axial symmetry)

First, we observe that the function ¢ of the Littlewood—Paley decomposition can
be considered radially symmetric. This can be made without loss of generality since
different functions ¢’s generate equivalent Fourier-Besov norms.

Due to the contraction argument, the solution u = (u3, ug) obtained in theorem
3.2 is the limit in X of the following Picard sequence

u® = (i ) = (Lu(f), La(f)
and
u™ = (@™, uf™) = (U1 (), Uy (umD)),  for m = 2,3,
o~ —_—
Since f is radial, so is f. Also, for each rotation 7 around the axis Ox,, note that
G(r(&,2),t) = G(¢ 2,t), forall eR"™ >0, teR. (5.10)

Then,

— — —_— —

Li(f)(7(&2n) = La(£)( 2n) and  La(f)(€') = La(f)(r(£',0)) = La(f)(€)),
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for all z,, > 0 and ¢ € R*~ . It follows that u(}) o7 = w@ o7 =u® and
ut o7 =W, (5.11)

Note also that (0%g)? o 7 = (9°g)? (see (1.2)), (9)? o7 = (9)? and (Vg) o7 = Vg,
provided that Vo7 =V and go 7 = g. Using these properties, (5.11) and (5.10),
we can show that u(®) = (U (u()), ¥y(uM)) is invariant under rotations 7 around

—_— . . .
Ox,,. In fact, by induction, it follows that

u™ or =u™, V¥meN, (5.12)

e

for each rotation 7 around Ouwz,. Moreover, if ¢ is radially symmetric then
- s : - .

llg o 7'||]_—B;,q = Hg||}-B;’q , for all g € FB, . Employing this invariance property of

the FB, -norm, we get

[wo |y =llw:o T”ﬁ;orzs;}w + [lwz 0 THIBZ?OO

= llwill ooz + lwell s

= |lw|y, forallwe X. (5.13)

Finally, in view of (™) — v in X, (5.12) and (5.13), we can conclude that
—
uo T = u, for each rotation 7 around Owx,,, as desired.

REMARK 5.1. In the proof of theorem 3.7 we have used the Picard sequence coming
from the fixed point argument. Alternatively, we could show the same result by using
the uniqueness property in theorem 3.2 together with the axial-invariance of the
integral formulation (3.11). Note that such invariance has been proved in the above
proof. Anyway, we prefer the use of the recurrent sequence because it illustrates a
general procedure for obtaining qualitative properties that could be useful in other
situations.
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