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RATIONAL APPROXIMATIONS TO ALGEBRAIC NUMBERS
K. F. Rorn

1. It was remarked by Liouville in 1844 that there is an obvious limit
to the accuracy with which algebraic numbers can be approximated by
rational numbers; if « is an algebraic number of degree n (at least 2) thent

a—£,>—4—
q i

for all rational numbers A/q, where A is a positive number depending only
on «. :

More precise and very much more profound results were proved by
Thue in 1908, by Siegel in 1921, and by Dyson in 1947. Suppose the
inequality

h

of— —

q

1
< ‘q-; (1)

is satisfied by infinitely many rational numbers s/gq. Then Thue proved
that « << {n+1, Siegel proved that

for s=1, 2, ..., n—1,

H

n
Sty

and Dyson} proved that x < 4/(2n).

It was conjectured by Siegel that in reality « < 2, and it is the purpose
of this paper to prove that conjecture. Our result is accordingly as
follows.

t The result is an immediate deduction from the definition of an algebraic number;
see, for example, Davenport, The Higher Arithmetic (London 1952), 165-167.

t Acta Mathematica, 79 (1947), 225-240. The algebraic part of Dyson’s work was
simplified by Mahler, Proc. K. Akad. Wet. Amsterdam, 52 (1949), 1175-1184. Another
proof of Dyson’s result was given by Schneider in Archiv der Math., 1 (1948-9), 288-295.
Dyson’s result (with a generalization) was apparently obtained independently by Gelfond;
see his T'ranscendental and algebraic numbers (Moscow 1952, in Ruassian), Chapter 1.

[MaTHEMATIRA 2 (1955), 1-20] B
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2 K. F. Roru

TEEOREM. Let « be any algebraic number, not rational. If (1) has an
infinity of solutions in integers h and q (g > 0) then k < 2.

The inequality « <2 is, of course, the best possible, since every
irrational number, whether algebraic or not, has infinitely many rational
approximations satisfying (1) with « = 2.

The above theorem, like its predecessors, has applications to other
arithmetical questions, and in particular to the theory of Diophantine
equationst. Suppose f(z, ¥) is a homogeneous irreducible polynomial of
degree n with integral coefficients. It follows easily from the theorem
that if the inequality

| f(, )] < (] +]y [y

has an infinity of solutions in integers z, ¥ then « <{2. Thus if g(z, y) is
any polynomial, not necessarily homogeneous, every term in which has
total degree at most n—3, then the equation

flx, y)=g(=, y)

can have only a finite number of integral solutions.

Various generalizations and analogues of the Thue-Siegel-Dyson
theorem are known, and it seems probable that the method of the present
paper will lead to improvements in many such results. Certainly this
is the case for all the results in Siegel’s basic memoirf, one of the most
important of which concerns approximation to an algebraic number by
algebraic numbers of given degree. Improving this by the method of the
present paper, I have obtained the following generalization of the theorem
stated above. Let « be any algebraic number, not rational.  If the inequality

|l < (H(B) ™

is satisfied by infinitely many algebraic numbers B of degree g, then « < 2g.
Here H(B) denotes the maximum absolute value of the rational integral
coefficients in the primitive irreducible equation satisfied by S.

As regards the substance of the present paper, it will be appreciated
that many of the ideas and methods used are not new. The novel part of the
proof is that culminating in Lemma 7, and even here we make much use of
ideas that have occurred before in the literature of the subject.

I am greatly indebted to Prof. Davenport for his constant encourage-
ment while I was working on the problem, and for rewriting my original
manuscript in a form suitable for publication. In particular, my original

+ See Skolem, Diophantische Gleichungen (Ergebnisse der Math. V4, Berlin, 1938),
Chapter 6, §2.
1 Math. Zeitschrift, 9 (1921), 173-213,
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APPROXIMATIONS TO ALGEBRAIC NUMBERS. 3
manuseript referred to a lemma of Schneiderf, and this Prof. Davenport

replaced by the much simpler Lemma 8. Thisis one of many simplifications
and improvements he has introduced.

2. If ¢y(x), (), ..., d_1(x) are ! polynomials in a single variable, the

determinant
1 d¢
det (;ﬁ W@”v(x)) (0, v=0,1, ..., 1—1)
is called their Wronskian. If ¢,(z), ..., ¢,_;(x) have rational coefficients,

it is well known that their Wronskian vanishes identically if and only if
they are linearly dependent, that is, satisfy identically a linear relation

Copo(®)+ .. F0g by () =0

with rational constant coefficients ¢, ..., ¢,_;.
We define generalized Wronskians} for polynomials in p variables as
follows. We consider differential operators of the form

A=m(5’z>i‘m (a%p) 2)

and we call 4;-...-+i, the order of the operator A. If
oy, ooes Tp)s oes Ppa (@, o.e, )
are [ polynomials in p variables, and
Ay, Ay, o, Ay

are any differential operators of the form (2) whose orders are at most
0, 1, ..., I—1 respectively, we call the determinant

G@y, - ) =det (A, b2y, o %)) (o v =0, ..., I—1)

a generalized Wronskian of ¢, ..., ¢, ;. If p>1 and 7> 1 there is more
than one such generalized Wronskian. It is plain that if ¢, ..., ¢, ; are
linearly dependent then all their generalized Wronskians vanish identically.
We prooeed to prove the converse§.

t J. fiir die reine und angew. Math., 175 (1936), 182-192, Lemma 1, formula (7). This
paper contains a proof that x < 2 provided that the solutions of (1) satisfy a certain very
restrictive condition.

1 Since writing this paper I find that generalized Wronskians were used by Siegel
[Math. Annalen, 84 (1921), 80-99] in & similar connection. See also Kellogg, Comptes
rendus des séances de la Soc. Math. de France, 41 (1912), 19-21, where the main result
(Lemma 1 below) is stated without proof. )

§ It should perhaps be remarked (though it is immaterial to our argument) that the
generalized Wronskians and their derivatives may satisfy identities, by virtue of which
the vanishing of some of the generalized Wronskians implies the vanishing of the others,
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LemMa 1. If $o(@y; -ous Tp)s -oos Ba (@4, oo, @) are Llinearly independent
polynomials in p variables, with rational coefficients, then at least one of their
generalized Wronskians does not vanish identically.

Proof. Let k be an integer which is greater than the degrees of all the
polynomials ¢y, ..., ¢_; in each of the separate variables x,, ..., =,.
Consider the ! polynomials

é,(t, t*,, ', .., #) (y=0, ..., I—1) (3)

in the single variable ¢. These polynomials are linearly independent.

For let
k-1 k—1
(@, .o, )= X ... T bWy, ..., 8p) TR 25

8,=0 8=

if the polynomials (3) were linearly dependent there would be an identity
in t of the form

-1 k-1 k-1
Te, T oo I By, ., gy )Rt etk T ey
v=0 §,=0 8,=0
Since the representation of an integer in the form
81tksyt-... +EP s, (08 <k—1, ..., 0, <k—1)
is unique, this identity would imply the corresponding identity

-1
Zoc,qS,(a:l, vees Tp) = 0.

It follows that the Wronskian of the I polynomials (3), namely
— 1 (a\ % Jor=1 =
W(t) =det <;7 <%) (ﬁ,,(t, ot )> (H', V= 0, seey l—]): (4)

does not vanish identically. Now

4 _ 0 4410 g O
&g T gyt TR s

where the operators on the right are applied to a polynomial in x,, ..., #,
and these variables are subsequently replaced by ¢, ..., t*"”'. By induction
on p, we see that the operator (d/dt)* is expressible as a linear combination
of differential operators on x,, ..., 2, of the form (2), of orders not exceed-
ing w:
d\*
() =hOa+. tf 080,

where r depends only on p and p, and AD, ..., AP are operators of orders

not exceeding u, and fi(t), ..., f,(!) are polynomials with rational
coefficients, Substituting in (4) and expressing the determinant as a
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APPROXIMATIONS TO ALGEBRAIC NUMBERS. 5

sum of other determinants, we obtain an expression for W of the form

W () = g,(t) GV, ..., 7 7)+...+g,() GO, ..., ),

where GO, ..., G® are certain generalized Wronskians of ¢,, ..., ¢,_, and
71(t), ..., g,(t) are polynomials in ¢.

Since W (t) does not vanish identically, there is some ¢ for which
GO, ¢, ..., ") does not vanish identically, and a fortiori G9(z,, ..., )
does not vanish identically.

3. LEmma 2. Let R(zy, ..., ,) be a polynomial in p =2 variables,
with integral coefficients, which is not identically zero. Let R be of degree at
most ryn x; for j=1, ..., p. Then there exists an integer I satisfying

1<ILr,+1, (5)

and there exist differential operators A,, ..., A, on the variables &, ..., %,_,,
of orders at most O, ..., I—1 respectively, such that if

F@y, oo ) =det(A“ 2 (%p)”ﬂ) (o v=0, .y l=1) ()
then
(i) F has integral coefficients and ts not identically zero;
(ii) we have
F@y, ooy 25)=Ulwy, ..., 254) Vi), )

where U and V have integral coefficients, and U 1is of degree at most Ir, in z,
forj=1, ..., p—1 and V is of degree at most lr,, in x,,.

Proof. We consider all representations of R in the form
B(zy, ..o, @) = ¢o(xp)‘/fo(“’1’ cers “’p—l)+---+¢z—1(wp) Proa(®y, vy Tpoyg),

- where the ¢, and i, are polynomials with rational coefficients, subject to
the condition that the ¢, are of degree at most r,, and the i, of degree at
most 7, in x; for j=1, ..., p—1. Such a representation is possible,
e.g. with I—1=r, and ¢,(%,) =x,". From all such representations we
select one for which [ is least. Then

¢0(xp)’ vee 4’1—1(%)
are linearly independent. For if not, say
$ra=dodot -T2 bi2
with rational coefficients dy, ..., d; 5, We should have

R = ¢y(otdo¥-1)t . T+ bs (st da 1),
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6 K. F. Rorw

contrary to the definition of I. Similarly

Yo(@1s ooos Tpq)s vons Pra(@yy ooes Tpg)

are linearly independent. Also 1 <<I<r,+1.

Let W(z,) denote the Wronskian of ¢,(%,), ..., ¢;,_1(%,), so that W is a
polynomial with rational coefficients, mnot identically zero. Let
G(zy, ..., 7,_,) denote some generalized Wronskian of

Yoy vy Tpa)s oor Yral@rs oes Tpa)

which is not identically zero, the existence of such a generalized Wronskian
being assured by Lemma 1. Then

1 /d\* '
W(wp)=det(m (gx;) rﬁ,(xp)) (, v=0, ..., 1—1)
and

Gy, .., Tpy) =det (A, @1, oo Bpy)) (v =0, .., I—1),

where A, ..., A;_; are certain differential operators of the form (2) but
with p—1 in place of p, of orders at most 0, ..., I—1 respectively.
Multiplying the two determinants by rows, we obtain

-1 1/08\*
GW = det <,,§0 A, <@> o () (@1, s xp_1)>

1 /0"
- det(A,‘ 5 <@) R> (4, v=0, ..., I—1).
Thus W(x,) G(zy, ..., Tpy)= F(xy, ..., 7,), say, is representable in the
form (6). It is plain from (6) that F has integral coefficients, and since
W and @ are not identically zero, neither is F.

From the fact that

Fay, ..., z,) = Wix,) Gy, ..., Tp_q),

where F has integral coefficients and W, G have rational coefficients, it
follows that there exists a rational number g such that the polynomials
U@y, oooy @) =gy, ..., ¢, ;) and V(z,) =g W(x,) have integral
coefficients .

Finally, since W is a determinant of order ! whose elements are poly-
nomials in z,, of degree r,, at most, it follows that W, and therefore V, is a
polynomial in ,, of degree Ir, at most. Similarly @, and therefore U, is of
degree at most Ir; in z, forj=1, ..., p—1.

We have now proved all that was asserted.

t See, for example, Perron, Algebra I (Berlin, 1927, 1931, 1951), Satz 88. The deduc-
tion does not depend on the separation of the variables between @ and W.
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APPROXIMATIONS TO ALGEBRAIC NUMBERS. 7

Lemma 3. Let R satisfy the hypotheses of Lemma 2 and suppose that
all the coefficients of R have absolute values not exceeding B. Then all the
coefficients of F(xy, ..., x,), defined in (6), have absolute values not exceeding

((ry+1) e (1t 1)) 1 BP 2wttr,

Proof. 1In the definition (6) of ¥, we can regard R as a sum of
(r1+1)...(r,+1) terms, each of the form

gy, .5, ... x;;’,
where |a, . |<B. The determinant on the right of (6) can be developed
into a sum of ((rl—l— 1)...(rp+ 1))1 determinants, the general element in
one such determinant being of the form

1L/0vV
A, = <—> whh... aly,

a,
Byl axp

15 o0, 8p

where s, ..., s, depend on , or alternatively on v, according as the original
determinant is developed by rows or columns. Now

A, (-a—)"xgx = Ay ..oty

—
vl \oz,

for some ¢; < s, ..., t, < 8,, and the coefficient A4, if not zero, is given by

— (5 Sp
A= (t1> (t,,)'
Thus . A 2+t L Arak iy,

Hence the coefficients of each of the I! terms in the expansion of an
individual determinant have absolute values not exceeding

(B2rvtetp),
and the result follows.

4. Let P(zy, ..., #,) be any polynomial in p variables which does not
vanish identically. Let «;, ..., «, be any real numbers, and let 7y, ..., 7,
be any positive numbers. We define the index 0 of P at the point

(og, .re5 @) Telative to 1y, ..., 7, a8 follows. Expand P(a;+¥1, s %+Yp)

as a polynomial in g, ..., y,, say

P(ayty1 ooes 0pTYp) = Z ...jgoc(jl, ceos Jp) Y Y

i1= »
Then 0= min (2 +ont-32)
7y p
for all sets of non-negative integers jj, ..., j, for which

¢(J1s +ovs Jp) 7 O.
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8 K. F. RotH

The last condition can obviously be expressed equivalently as

(£ﬁhn.§§)”Pwpuﬂﬁg¢o,

oz,

We note that § >0 always, and 6 = 0 if and only if P(«y, ..., «,) #0.
We note also that the index of the derived polynomial

<_a.>k‘ (i)kp P(xy, ..., zp)

0z, oz,
at (ay, ..., a,) relative tory, ..., r, is at least
ok
r p .
for any non-negative integers k,, ..., k,, provided that the derived

polynomial is not identically zero. Some further immediate consequences
of the definition are given in the following lemma.

Lemma 4. Let P(wy, ..., x,) and Q(xy, ..., x,) be polynomials, neither
of which vanishes identically. Then, if all the indices are formed at the same

point (g, ..., «,) relative to the same numbers ry, ..., r,, we have
index (P+ @) > min (index P, index ), (8)
index PQ = index P-+index Q. (9)

(9) remains trueif Pis a polynomialin x;, ..., ,_; only and Q is a polynomial
in x, only, and the index of P is taken at (ay, ..., o, ) relative to ry, ..., 7,4
and that of @ at w, relative to r,.

5. We consider, for a particular set of positive integers ry, ..., ,, and
a particular number B >1, polynomials R(w,, ..., %,) in m variables
which satisfy the conditions:

(@) R has integral coefficients and is not identically zero;
(b) R is of degree at most r; in x; for j=1, ..., m;
(¢) the coefficients of R have absolute values not exceeding B.
We denote the aggregate of all such polynomials by
R =Rp(B; 715 ooy )

Let ¢y, ..., ¢,, denote positive integers and let &, ..., k,, denote integers
satisfying (h;, ¢;)=1 for j=1, ..., m. Let 6(R) denote the index of
R(xy, ..., x,) at the point (h,/q;, ..., bp/q,) relative to ry, ..., r,. Our
object in the present section is to obtain, under certain conditions, an
estimate for 8(R) in terms of B, ¢y, ..., @y T1s +++» Tm» We therefore define

0, (B; ¢4, -5 s T1s «++s Ty) = upper bound of §(R) (10)
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APPROXIMATIONS TO ALGEBRAIC NUMBERS, 9

taken over all polynomials R in the set ®,, and over all integers A, ..., h,,
which are relatively prime to ¢, ..., q,, respectively.

It is important to observe the double significance of ry, ..., r,, in the
definition (10); these numbers occur both in the definition of the index 8(R)
and in condition (b) above.

Our arguments are based on induction with respect to m, and in the
course of the work we shall need to use the above definitions for various
values of m and for various sets of values of B, q,, ..., @y, 7y, «vvs Ty

The case m ==1 is simple, and can be treated without imposing any
new conditions.

LeMMaA 5. We have

L log B
0(B; g1; ) < rlogq,”
Proof. By the definition of the index § of R, the polynomial R(x,)
is divisible byt (@;—h;/g,)’1. Tt follows from Gauss’s theorem on the
factorization of polynomials with integral coefficients into polynomials
with rational coefficients, and from the fact that (A, ¢;) =1, that

B(z) = (12— 7)1 Q(=y),

where @(x;) is a polynomial with integral coefficients. Hence the
coefficient of the highest term in R(x,) is an integral multiple of ¢{"1, so that

(11)

¢ < B,

giving (11). [It may be noted in passing that we have not used the
hypothesis that the degree of R is at most r,; the double significance of
7y, ., Iy Mentioned above becomes important only when m > 1.]

We now come to the inductive argument.

LemmA 6. Let p>2 be a positive integer, let ry, ..., r, be positive
integers satisfying

rp > 10871, 7, 4/r;>8"1 for j=2, ..., p, (12)
where 0 <8 <1, and let ¢y, ..., q, be positive integers. Then
Op(B; 15 s Gp3 T ooy 1) <2 max (O PV24-5Y/2), (13)
1

where the maximum ts taken over integers 1 satisfying

1<I<r,+1, (14)

+ The exponent 6r, is of course a non-negative integer, and can be supposed to be &
positive integer.
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10 K. F. Rotn
and where

Q=0,(M; q,; Iry) + Opy (M5 q4; .., Gpys Iry, oo, Irpy)  (15)
and M = (r,-1)7!1} B} 200, (16)

Progf. We have to show that if R(w, ..., z,) is any polynomial in
the class R,(B; ry, ..., r,), and if Ay, ..., h, ave integers relatively prime
o gy, ..., g, respectively, then the index 8 of R at (%,/qy, ..., ky/q,) relative
to 7y, ..., r, does not exceed the right-hand side of (13).

The polynomial R(x;, ..., x,) satisfies the hypotheses of Lemma 2,
and therefore there exist an integer ! satisfying (14) and a polynomial
F(x, ..., x,) of the form (6) with the properties (i) and (i) of Lemma 2.
By Lemma 3 the coefficients of F have absolute values not exceeding

(a4 1)yt 1)) 8 Br oottt < Y
by (16), since r, >r,>...>r, by (12). Since
F = U(w]_, sany xp_l) V(xp),

and U, V have integral coefficients, it follows that the coefficients of U
and V also have absolute values less than M.
The polynomial U(w, ..., #,_;) has degree at most Ir; in =; for
j=1, ..., p—1. 1t satisfies the conditions (a), (b), (¢) above for the class
of polynomials

Ry a(M; lry, ..., lryy).

Hence its index at (hy/qy, ..., hy_1/2,—1) relative to Iry, ..., lr, , does not
exceed
®p—1(M; USTIRERY qp—l; lrla sy lrp-—-l)‘

It follows from the definition of the index that the index of U at that point
relative to ry, ..., r,_; does not exceed

l®p—1(-M; Q15 +eos qp—l; lrl’ [XX3) lrp—l)‘

Similarly V(x,) belongs to the class R, (M ; Ir,), and its index at &,/q,
relative to r,, does not exceed

10,(M; qp; Iry).

By the final clause of Lemma 4, the index of F'= UV at (h;/qy, --., hy/q,)
relative to ry, ..., r, is the sum of the indices of U and V, whence

index F < I, (17)

where @ is defined in (15).
We now deduce from the determinantal representation of F in (6) a
lower bound for the index of F in terms of the index 6 of B. Consider first
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APPROXIMATIONS TO ALGEBRAIC NUMBERS. 11
any differential operator of the form

d= e () ()

on y, ..., Xp_y, of order w =1¢,+...44, ; <I—1. If the polynomial

AL (%)"R(xl, ey )

vl

does not vanish identically, its index at (k/qy, ..., b,/q,) relative to

Pis ey Tp 18 AL least
g tp1 ¥ ;9__”’“__‘1_
7y Tp1 Ty Tp1 Tp
Now w/r, ; < )/ry1 <rpfrp—y <8, by (14) and (12). Hence, since

the index is never nega.twe it must be at least
max (0, 6—v/r,)

If we expand the determinant on the right of (6), we obtain for F a
sum of ! terms, the typical term being of the form

£+ (8, B) (B, 1 a%, B)... <A“l_] =5 (a‘Z;)H R> ,

where A, ..., A, | are differential operators on 2, ..., #,_; whose orders
are at most /—1. By Lemma 4, the index of such a term (if it does not
vanish identically) is at least

-1 o
2 max (0, §—v/r,) — B.
y=0

Since F is a sum of such terms, it follows from Lemma 4 again that

-1
index ¥ > X max (0, §—v/r,) — 8.

v=0
We can suppose that 0r,, > 10, for if not we have
0 < 107, < 8 < 26V/2,
and the desired inequality for 6 then holds. If 6r, <!, we have

-1
Zo‘ma.x 0, 0—vy/ry)=ryt T (6r,—v)

org 01‘p
> %r;l [6r, ]
> §r, 0%
If 6r, >1, we have

-1 11
Zo max (0, 6—vy/ry) = X (0—v/r,) > }0.
r= v=0
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12 K. F. Rorw

Hence index F >>min (310, 1r,6%) — 0. (18)
Combining the inequalities (17) and (18), we obtain
min (316, ¥, 67) <U(D4-5).
Hence either § < 2(D+35), in which case 0 satisfies the desired inequality, or
37, 2 <UDH-0) < (1, +1)(D+9).
Since r,+1 < 4r, by (12), the latter implies
0 < 2(D-8)V2 L 2(PV24-§V2),
This completes the proof of Lemma 6.
We next deduce an explicit result, in a form suitable for use later, by

giving B a particular value and imposing further restrictions on the ¢’s
and 7’s.

LemMA 7. Let m be a positive integer and let & satisfy

0<d<<m™, ( IQ)

Let 1y, ..., r,, be positive integers satisfying
Top > 10871, 7, yfr;>871 for j=2, ..., m. (20)

Let qy, ..., q,, be positive integers satisfying
logg, > 8-1m(2m+-1), (21)
r;logg, >=r logq, for j=2, ..., m. (22)
Then O (@15 Gis woer G5 T oes Tp) < 1OM VAT, (23)

Proof. We establish Lemma 7 by induction onm. Ifm = 1, Lemma 5

gives
CHUHEHN THE ) B 8‘7:*—“‘?11(?551 =& < 10842,

and we obtain (23) without using the hypotheses (20) and (21).

Now suppose that p > 2 is an integer, and that Lemma 7 is valid when
m = p—1. We proceed to prove Lemma 7 when m = p. The hypotheses
of Lemma 7 when m = p are more stringent than those of Lemma 6, hence
Lemma 6 is applicable. We now estimate first M in (16) and then @
in (15).

We have

M = (ry+1)201 29 g  ((ry+- 1) 1 20m1 g
Now I <r,+1<r+1<2 Hence

M < (2(219-1—1)1'1 qirl)l < (e(2p+1)rl qir,)l_
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APPROXIMATIONS TO ALGEBRAIC NUMBERS. 13

By (21) with m = p, we have 2p+1 < §p—1 logg,, whence

M < girin,
where 8, =368(1+p™). (24)
Thus Oy (M; g5 Iry) <Oy (qhh¥s; gy Iry) (25)

and
Op1(M; g1y o5 Gpy; Iryy o, Iy y)
KO, (@75 gy, oy Gpgs Uy, o, Iy y). (26)
By Lemma 5, the right-hand side of (25) does not exceed

log (g3:"1) < 8, lr, log g, —
Ir,logq, = Irlogq,

1s
in view of (22).

To estimate the right-hand side of (26) we use the inductive hypothesis
of the present proof, namely that Lemma 7 holds when m =p—1. The
conditions of Lemma 7 for m = p—1 are satisfied when we replace 8 by §,
and 7y, ..., 7p_y by Iry, ..., Ir,_4; since 3; > 3 this is immediate for all but
(19). To verify the analogue of (19) we have to show that

81 < (p_ 1)_1’

and this follows from (24) and the fact that § < p~! by (19) with m = p.
It follows that

Op_1(281715 g4y oo Gy Iryy e, Ir,_q) << 10771 3(11/2),:—1.
Since 8; <C 28, the two results just proved imply that
D < 25-4-2(10P-130/2°7") < 3(10P-1§1/2"7T),
Now (13) gives
0,055 @y ooy s Ty s 1) < 2(3(10ﬂ—1a<1/2>'~*)+31/2 10@-1)/23(1/2)”4_31/2)

3 g2 1
i A il 2 §(1/2
<2 (10+108/2+102) 1073

< 107 50/,

Thus Lemma 7 holds when m = p, as asserted.

6. The next lemma is independent of any hypotheses concerning the
positive integers 7, ..., 7.

LemMa 8. If ry, ..., 7, are any positive integers, and A >0, then the
number of sets of integers jy, ..., j, Which satisfy the inequalities

0 <y o 0 < o <y ﬁ—i+...+ﬁ_m <3(m—2)
m

does not exceed 2mVEX-1(ry+1) ... (1, +1).
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Proof. The result holds when m =1, for the number of integers j;

satisfying
0<ji <y, JHi<¥1-A)r
is at most r;+1 and is 0if A > 1.

We suppose m >1 and prove the result by induction on m. The
result is trivial if A < 2m1/2, so we can suppose A > 2m1/2. TFor a particular
value of j,,, the conditions on jy, ..., j,_, are of the same general nature as
before but with m—1 in place of m and with A replaced by A’, where

%(m—' 1-X)= %(m_)‘)—_Jm/rm’
that is, A =A—142§,,./7m

We note that X' >0 for 0<j,<r, since A>2ml2>1. By the
hypothesis of the induction, the number of solutions of the original
inequalities in j,, ..., j,, does not exceed

P o(m— 1)V 142, /1) (1) ooe (ryy 1),

jm=0
Hence it suffices to prove that

2 A—142j/r)= < AL(m—1)"V2 ml/2(r4-1)
=0

for any positive integers » and m, when A > 2m1/2,
If we suppose r even, and replace j by }r+%, the sum becomes

r/2 r/2
S (AF2k/r) =214+ T 2X(A2—4k2/r2)1
=~r/2 k=1

r/2
<A T 2AM—1)t
k=1

< (1) AL(1—A2),

Now 1—A-2> 1—}m1 > (1—m~1)/2, whence the result. A similar but
slightly simpler argument applies if r is oddf.

7. Let « be a real algebraic number, not rational, and suppose that the
inequality (1) is satisfied by infinitely many pairs of integers 4, ¢ with
g >0. We can suppose that « is an algebraic integer; for if not there is a
rational integer M such that M« is an algebraic integer, and the inequality

,Moc———h—)<%
q q

is satisfied by infinitely many pairs of integers 2’, g. Hence M« has the

t+ The case of even r would in fact suffice for the application later, since we could
choose 74, ..., Tin in §8 so as to be even,
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same property as « provided that in (1) we replace « by any smaller

number.
If « is an algebraic integer, there is some polynomial

flx) =a"+a, 2" 1 +... +a,, (27)
with integral coefficients and highest coefficient 1, such that f(a)=0.
Put

A=max(1, |a, ..., |a,]). (28)

In the remainder of the paper we shall be concerned with only one set
of values of m, 6, ¢y, by, ... Qs Py 715 ..., 7y, Which will be chosen later in
the order just indicated. The choice will be so made as to satisfy the
following conditions:

0<d<m™, (29)

10m §0/2™ - 2(14-38) nm¥/2 < im, (30)

T > 10871, r,_y/r;>81 for j=2, ..., m, (31)

32 log ¢, > 2m—+1+-2m log (14A4)+2m log (14| «|), (32)
r; loggq; >r, logq,. (33)

We note that these conditions imply those of Lemma 7, since (29) and (32)
imply 8 logg, > m(2m-1).
Define A, y, 5, B; by

A= 4(1-+38)ymm1/2, (34)
y = §(m—2), (35)
n = 10m3V/2", (36)
B, = [g"]- (37)
We note that (30) is equivalent to
7 <<y (38)

We note also that B, is necessarily large, since r; > 10 and ¢§* > e2m+1 > ¢3,
Thus, in particular, ¢ < B;.

We now come to the main lemma, which is the only lemma to which
reference will be made in the final proof of the theorem,

Lemma 9. Suppose the conditions (29)—(33) are satisfied, and suppose

that by, ..., b, are integers relatively prime to qy, ..., q,, respectively. Then
there exists a polynomial Q(zy, ..., x,) with integral coefficients, of degree at
most r; in x; for j =1, ..., m, such that

(i) the index of @ at the point (a, ..., «) relative to ry, ..., r,, is at least
Y=
(i) QChyfgy, -, Bfgm) # 0
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(ii) for all derivatives

Qi ..., in (@15 s ) :zl_'_le_' (‘a%)il (aj")lm 0.

where iy, ..., i, are any non-negative integers, we have

| @yt (s o5 @)] < BEFS (39)
Proof. We consider all polynomials W(x,, ..., z,,) of the form
ry fm
Wz, .o, op)= Z ... D c(sy, ..., 8) ... alm, (40)
8,=0 Sm=0

where the coefficients ¢(sy, ..., s,,) assume independently all integral values

satisfying
0<celsy, ..., 8,) < By (41)

The number of such polynomials W is

N = (Bl+1)r7 (42)
where for brevity we write '
' r=(r;+1)... (rp+1). (43)
For each such polynomial W we consider the derivatives

Wi orin(@ps oees xm):j_l'_l‘_?;,' (a_i;yl <%@)ij

for all integers j,, ..., j,, satisfying
0<Gy <7 vons 0 < <o ﬁ—i+...+ﬁ4"<y. (44)

n

By Lemma 8 and (35), the number D of such derivatives satisfies
D < 2m2 X1y, (45)

where r is given by (43).
For each such derivative we form the polynomial

W.fl, wes Im (x’ ey x)

in a single variable z, and divide this polynomial by f(x), denoting the
remainder by

Tf]_,..., 5»1(W > x)'
This remainder is a polynomial in « with integral coefficients, of degree n—1

at most. :

We proceed to obtain an estimate for the magnitude of the coefficients
in any such remainder. The coefficients in each derived polynomial
Wi.,..;n(#1 -+ T,) have absolute values not exceeding

1t etrm ‘Bl < gmry _B1 < _Bi+82
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since mr, log 2 << 18%r, logq, by (32). When 2, ..., z,, are all replaced
by =z, some of the terms in the polynomial may coalesce; since the total
number of terms is at most r, the coefficients in W, _; (, ..., z) have
absolute values less than rBI*. Now

r=(r41) ..o (b 1) S 2kt L 21 < By,

so that rB+* < BI+2, It remains to consider the operation of dividing
this polynomial, say
wat+w,_y 25w,

by f(z), given in (27). The first operation (supposing s == n) is to subtract
w,z*~"f(x); and this gives a new polynomial whose coefficients are either
of the form w,—a,_, w, or of the form w,. Hence the coefficients of the new
polynomial have absolute values less than (14-4) B}*%, with 4 as in (28).
The same consideration applies to the subsequent operations in the division
process, and leads to the conclusion that the coefficients in the remainders
T;, .. 1.(W; z) have absolute values less than

(1 +A)s—n+1 B}+28.
Since s < ry4-...+r,, <mry, this is less than
(1+A)mr1 Bi-{-Z& < Bi+38
by (32).
In view of this estimate for the coefficients in each remainder 7, the
number of distinct sets of D remainders that can arise is less than

(142BL)2,
By (45) and the definition of A in (34), we have
(14-38)nD < 2(14-38) nm2 X1y = Ir,
whence (14-2BH3)nD < (242B,y/2 < (14 B,

By reference to (42), we see that the number of distinct possible sets of
remainders is less than the number of polynomials W under consideration.
Hence there exist two distinet polynomials, say W’ and W', of the form
(40) such that

Wi,

i@ s =W (@, ey )

is divisible by f(z) forallj,, ..., j,, satisfying (44). Putting W#*=W'—W"/,
we deduce that all the corresponding derivatives

W;}:! ey Iim (x]J Ty xm)

are zero when z; =...=ux, =«. Hence the index of W#* at the point
(2, ..., «) relative to r, ..., 7, is at least y. Also the coefficients of W*
are integers, not all zero, of absolute values not exceeding B,.
We now appeal to Lemma 7, the conditions of which are satisfied, as
was noted earlier. The polynomial W#*(x,, ..., #,,) satisfies the conditions
Y
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(@), (b), (c) of §5 And so belongs to the class

R (85 1y, ooy 1),

By Lemma 7, its index at (%,/q,, ..., b,,/q,,) relative to ry, ..., r,, is less than
y, defined in (36). Hence W* possesses some derivative
1 (2\E (9 \Ep,
@@y oo Fm) = T T (551) (6xm) W,
with ﬁ-‘{—...-I—-Ig’—”<'r],
T3 Tm
such that Q(hy/q1s s Pf8m) #O.

The index of @ at the point («, ..., «) relative to ry, ..., 7, is at least y-—.
Thus @ has the properties (i) and (ii) of the enunciation.

Since the coefficients of W# have absolute values at most B,, it follows
that the coefficients of @ have absolute values at most

gritetrn By < 2m By < B,
Hence the coefficients of any further derivative
Qi i (15 oovs Ty)
have absolute values less than 2m11 B}+% < Bl+%, Tt follows that

I Qi;, ...,l'm(“: XY “), < Bfl-%(l"‘l “1)1'1+...+fm’
and this implies (iii) since
(1+|aym < By?

by (32). This completes the proof of Lemma 9.

8. Completion of the proof. We suppose that «>2 and that the
inequality

h 1
* Q| T (46)

has infinitely many solutions in integers #, ¢ with ¢ > 0. Since « is irrational
there must be infinitely many solutions with (%, ¢) = 1. We shall deduce
a contradiction.

We first choose m so large that m > 4nm!/2 and

2m
m— it < (47)

as is possible since k > 2. For sufficiently small § we have

m—4(14-38) nmV2— 27 > 0,
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where 7 is given by (36) and is arbitrarily small with §. This condition
is the same as (30). We choose § to satisfy this, and to satisfy (29), and
further to satisfy
2m (1+48)
m—4(14-38) nml/2—2n

<k, (48)

as is possible in view of (47). The inequality (48) is equivalent to

m(1--43) <k, (49)
Y=

by (34) and (35).
Having chosen m and 8, we now choose a solution %,, ¢, of (46) with
(hy, g) =1 and with ¢, sufficiently large to satisfy (32). We then choose

further solutions &, ¢5; ...; Ay, ¢, With (R, ¢;) =1 throughout, to

satisfy
log g, 2 .
Eg——%il>—8~ (j=2, ..., m). (50)
We now take r; to be any integer satisfying
10 log g, qm
"> Slogg (51)
and define r,, ..., r,, by
7 logg, riloggy . _
Togg < <1+35, (j=2, ..., m). (52)
Then (33) is satisfied. Also
rLIOg 9 IOg 9; IOg m 1
nlogg, < rlogg, ST rlogg < 1T (53)

The conditions (31) are satisfied, since

>nlogd - g5

"= loggy,
41 log g, 1 8)-1 —1
and v >10gq (14%8)1>8

by (52), (63) and (50).

By Lemma 9 there exists a polynomial @(x;, ..., z,) with the properties
stated there. The contradiction is reached by comparing two inequalities
for Q(hy/qy, -+, Bp/2,), which is not 0 by (ii) of Lemma 9. Since @ has
integral coefficients and is of degree at most r; in z; forj =1, ..., m, we have

(@41, s Praf Q) | = T - g™ > gT 104D (54)
by (63). On the other hand, we have
Qhy/ay, -, bp/2) = 2 3 @iyt (@5 00 W) (yfgy— )t .. (B —ar)im,

=0 'm—' )
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20 APPROXIMATIONS TO ALGEBRATC NUMBERS.
and by (i) of Lemma 9 the terms with
DY by
" —I—...—!—rm < y—
all vanish. In every other term we have
h]_ )il <hm )fm ‘ 1 _ _
—L—a) (2= < s, g,
qu In (@ gy ST
since ¢; > ¢}/ by (52). Hence, using (iii) of Lemma 9, we have
| Q(Pa/g1, o Prp[@n) | < (ry+1) ... (1 1) BEF® grrale—m=
< Bi+48 q-l-rl(y—n)x
< q(11+45)57'1—"’1(7-ﬂ)*_
Comparing this with (54), we obtain
—mry(14+8) < (14-48)0r —ry (y—n)k,

o K<m(1+8)+8(1+48)<m(1+48)’
y—1 y—n

contrary to (49). This completes the proof of the theorem.

University College,
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