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RATIONAL APPROXIMATIONS TO ALGEBRAIC NUMBERS

K. F. ROTH

1. It was remarked by Liouville in 1844 that there is an obvious limit
to the accuracy with which algebraic numbers can be approximated by
rational numbers; if a is an algebraic number of degree n (at least 2) thenf

h A
1 ?™

for all rational numbers h/q, where A is a positive number depending only
on a.

More precise and very much more profound results were proved by
Thue in 1908, by Siegel in 1921, and by Dyson in 1947. Suppose the
inequality

<x-— '— (1)
q qK

is satisfied by infinitely many rational numbers hjq. Then Thue proved
that K <C£n-f-lj Siegel proved that

for s=l, 2, ..., n—l;

and Dyson J proved that K ^ A/(2n).

It was conjectured by Siegel that in reality K ^ 2, and it is the purpose
of this paper to prove that conjecture. Our result is accordingly as
follows.

f The result is an immediate deduction from the definition of an algebraic number;
see, for example, Davenport, The Higher Arithmetic (London 1952), 165-167.

J Acta Mathematica, 79 (1947), 225-240. The algebraic part of Dyson's work was
simplified by Mahler, Proc. K. Akad. Wet. Amsterdam, 52 (1949), 1175-1184. Another
proof of Dyson's result was given by Schneider in Archiv der Math., 1 (1948-9), 288-295.
Dyson's result (with a generalization) was apparently obtained independently by Gelfond;
see his Transcendental and algebraic numbers (Moscow 1952, in Bussian), Chapter 1.

[MATHEMATIKA 2 (1965), 1-20J £
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2 K. F. ROTH

THEOREM. Let a be any algebraic number, not rational. If (1) has an
infinity of solutions in integers h and q (q > 0) then K ̂  2.

The inequality K ̂  2 is, of course, the best possible, since every
irrational number, whether algebraic or not, has infinitely many rational
approximations satisfying (1) with K — 2.

The above theorem, like its predecessors, has applications to other
arithmetical questions, and in particular to the theory of Diophantine
equations f. Suppose f(x, y) is a homogeneous irreducible polynomial of
degree n with integral coefficients. It follows easily from the theorem
that if the inequality

\f(x,y)\<(\x\+\y\)n-'

has an infinity of solutions in integers x, y then K ̂  2. Thus if g(x, y) is
any polynomial, not necessarily homogeneous, every term in which has
total degree at most n—3, then the equation

/(*, y) = tr(*, y)

can have only a finite number of integral solutions.
Various generalizations and analogues of the Thue-Siegel-Dyson

theorem are known, and it seems probable that the method of the present
paper will lead to improvements in many such results. Certainly this
is the case for all the results in Siegel's basic memoir %, one of the most
important of which concerns approximation to an algebraic number by
algebraic numbers of given degree. Improving this by the method of the
present paper, I have obtained the following generalization of the theorem
stated above. Let a be any algebraic number, not rational. If the inequality

*-p\<(H(p))'

is satisfied by infinitely many algebraic numbers /? of degree g, then K < 2g.
Here H(fi) denotes the maximum absolute value of the rational integral
coefficients in the primitive irreducible equation satisfied by /3.

As regards the substance of the present paper, it will be appreciated
that many of the ideas and methods used are not new. The novel part of the
proof is that culminating in Lemma 7, and even here we make much use of
ideas that have occurred before in the literature of the subject.

I am greatly indebted to Prof. Davenport for his constant encourage-
ment while I was working on the problem, and for rewriting my original
manuscript in a form suitable for publication. In particular, my original

f See Skolem, Diophantische Gleichungen (Ergebnisse der Math. V4, Berlin, 1938),
Chapter 6, §2.

X Math. Zeitschrift, 9 (1921), 173-213.
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APPROXIMATIONS TO ALGEBRAIC NUMBERS. 3

manuscript referred to a lemma of Schneiderf, and this Prof. Davenport
replaced by the much simpler Lemma 8. This is one of many simplifications
and improvements he has introduced.

2. If <f>0(x), (j)x{x), ..., <f>i^(x) are I polynomials in a single variable, the
determinant

is called their Wronskian. If <f>0(x), ..., < _̂x(a;) have rational coefficients,
it is well known that their Wronskian vanishes identically if and only if
they are linearly dependent, that is, satisfy identically a linear relation

CoMx)+ —+Gi-ifa-i(x) = 0

with rational constant coefficients c0, ..., c ^ .
We define generalized Wronskians| for polynomials in p variables as

follows. We consider differential operators of the form

= ^ ( B * •••(&-)'••

and we call *!+... -\-ip the order of the operator A. If

<j>aixi, •••> XP)> • ••> 4>i-i(xv •••. xp)

are I polynomials in p variables, and

Ao, A1; ..., A M

are any differential operators of the form (2) whose orders are at most
0, 1, ..., I—I respectively, we call the determinant

O(xv ..., xp) = det

a generalized Wronskian of <f>0, .... <̂ ,_1. If p > 1 and I > 1 there is more
than one such generalized Wronskian. It is plain that if <f>0, ..., ^_x are
linearly dependent then all their generalized Wronskians vanish identically.
We proceed to prove the converse §.

f J. fiir die reine und angew. Math., 175 (1936), 182-192, Lemma 1, formula (7). This
paper contains a proof that K < 2 provided that the solutions of (1) satisfy a certain very
restrictive condition.

J Since writing this paper I find that generalized Wronskians were used by Siegel
[Math. Annalen, 84 (1921), 80-99] in a similar connection. See also Kellogg, Oomptes
rendus des stances de la Soc. Math, de France, 41 (1912), 19-21, where the main result
(Lemma 1 below) is stated without proof.

§ It should perhaps be remarked (though it is immaterial to our argument) that the
generalized Wronskians and their derivatives may satisfy identities, by virtue of which
the vanishing of some of the generalized Wronskiaiis implies the vanishing of the others,
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4 K. F. ROTH

LEMMA 1. 1/ <l>0(xv ..., xp), ..., ^i_1(*1,. . . , xp) are I linearly independent
polynomials in p variables, with rational coefficients, then at least one of their
generalized WronsMans does not vanish identically.

Proof. Let k be an integer which is greater than the degrees of all the
polynomials <£0, .... ^_j in eaoh of the separate variables xv ..., xp.
Consider the I polynomials

Ut, «*, •«*", - . O (v = 0, .... l-l) (3)

in the single variable t. These polynomials are linearly independent.
For let

hfa, .... xp)= S1 ... "x bU(Sl, ..., »,)*•!...aj;
, 1 = o «p=o p

if the polynomials (3) were linearly dependent there would be an identity
in t of the form

' s c s 1 . . . ii* &<">(«!, .,.,8p)t°i+k3t+-+kp-'°>-=:0.

Since the representation of an integer in the form

Si+fcs2+---+&p~1Sj, (<)<«!<&—1, ..., 0 <«„<*—1)

is unique, this identity would imply the corresponding identity

J-I

F = 0

It follows that the Wronskian of the I polynomials (3), namely

W{t) = det(± {^)Ut> tk, .... th>"^ 0*. v = 0, ..., 1-1), (4)

does not vanish identically. Now

i = ~ +kt*-i •£- + .
dt dxx dx2 p

where the operators on the right are applied to a polynomial in xv ..., xp

and these variables are subsequently replaced by t, ..., tk"~l. By induction
on [i, we see that the operator {djdty is expressible as a linear combination
of differential operators on x1; ..., xp of the form (2), of orders not exceed-
ing p:

where r depends only on n and p, and A(1), ..., A(r) are operators of orders
not exceeding ju,, and fi(t), ..., fr(t) are polynomials with rational
coefficients. Substituting in (4) and expressing the determinant as a
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APPROXIMATIONS TO ALGEBBAIC NTXMBEBS. 5

sum of other determinants, we obtain an expression for W of the form

where Gm, ..., (?(s) are certain generalized Wronskians of <f>0, ..., ^>l_1 and
<7i(0> •••> 9>{t) a r e polynomials in t.

Since W(t) does not vanish identically, there is some i for which
GP>(t, tk, ..., <&J'"1) does not vanish identically, and a fortiori 0®(xv ..., xp)
does not vanish identically.

3. LEMMA 2. Let B(xv ..., xp) be a polynomial in p^2 variables,
with integral coefficients, which is not identically zero. Let R be of degree at
most r} in xf for j = 1, ..., p. Then there exists an integer I satisfying

l < J < r p + l , (5)

and there exist differential operators Ao, ..., Al_1 on the variables xlt ..., xp_v

of orders at most 0, ..., I—1 respectively, such that if

(^jf(^j^ O,.. . ,J-l) (6)

then

(i) F has integral coefficients and is not identically zero;

(ii) we have

), (7)

where U and V have integral coefficients, and U is of degree at most lrt in x,
for j=l, ..., p—\ and V is of degree at most lrp in xp.

Proof. We consider all representations of J? in the form

• where the </>v and ifi, are polynomials with rational coefficients, subject to
the condition that the <$>y are of degree at most rp and the ifi, of degree at
most r, in x} for j=l, ..., p—1. Such a representation is possible,
e.g. with l—l = rp and <f>v(xp) = xp

v. From all such representations we
select one for which I is least. Then

are linearly independent. For if not, say

<f>l-l = <^0 <f>0+ • • • + d l - 2 fa-2

with rational coefficients dQ, ..., d,_2, we should have

• B = <j>o(>
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6 K. F. ROTH

contrary to the definition of I. Similarly

are linearly independent. Also 1 ^.
Let W(xp) denote the Wronskian of <f>0(xp), ..., <j>i-x{xp), so that W is a

polynomial with rational coefficients, not identically zero. Let
G(xv ..., xp_^) denote some generalized Wronskian of

M x v •••> x p - \ ) > •••> i'l-i^i' •••> X P - I )

which is not identically zero, the existence of such a generalized Wronskian
being assured by Lemma 1. Then

and

G(xv ..., xp_1) = det(Allifir(x1, ..., xp_x)) (/*, v = 0, ..., l—l),

where Ao, ..., A/-x are certain differential operators of the form (2) but
with p—1 in place of p, of orders at most 0, ..., l—l respectively.
Multiplying the two determinants by rows, we obtain

Thus W(xp)Q(x1, ..., Xp^) = F(xv ..., xp), say, is representable in the
form (6). It is plain from (6) that F has integral coefficients, and since
W and O are not identically zero, neither is F.

From the fact that

F{xx, ..., xp)=W(xp)G(x1, ..., xp^),

where F has integral coefficients and W, G have rational coefficients, it
follows that there exists a rational number g such that the polynomials
U(x1} ..., xp^) = gG{xx, ..., x^j) and V(xp) = g-1W(xp) have integral
coefficients f.

Finally, since W is a determinant of order I whose elements are poly-
nomials in xp of degree rp at most, it follows that W, and therefore V, is a
polynomial in xp of degree lrp at most. Similarly G, and therefore U, is of
degree at most ITJ in xt fovj = 1, ..., p—1.

We have now proved all that was asserted.

t See, for example, Perron, Algebra I (Berlin, 1927, 1931, 1951), Satz 88. The deduc-
tion does not depend on the separation of the variables between O and W.
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APPROXIMATIONS TO ALGEBRAIC NUMBERS. 7

LEMMA 3. Let R satisfy the hypotheses of Lemma 2 and suppose that
all the coefficients of R have absolute values not exceeding B. Then all the
coefficients of F(xx, ..., xp), defined in (6), have absolute values not exceeding

Proof. In the definition (6) of F, we can regard R as a sum of
(r1-{-l)...(rp

J
rl) terms, each of the form

a. s xU ...Xs'1,

where | a,ltmi, | < B. The determinant on the right of (6) can be developed

into a sum of Urx-\-l)...(rp-\-l)J determinants, the general element in

one such determinant being of the form

where slt ..., sp depend on /x, or alternatively on v, according as the original
determinant is developed by rows or columns. Now

for some tx ^sv ..., tp ^sp, and the coefficient A, if not zero, is given by

' -(?)•••(£)•
Thus . A ^2si+~+*p^2ri+~+r'>.

Hence the coefficients of each of the l\ terms in the expansion of an
individual determinant have absolute values not exceeding

and the result follows.

4. Let P(xv ..., xp) be any polynomial in p variables which does not
vanish identically. Let ala ..., a.p be any real numbers, and let rx, ..., rp

be any positive numbers. We define the index d of P at the point
(ax, ..., QCj,) relative to rx, ..., rp as follows. Expand P(*x+yx, ..., xp+yp)
as a polynomial in yx, ..., yp, say

= S ... s c(jx, ...,jp)yii...y3f.

Then (
\rx rp

for all sets of non-negative integers j x , ..., jp for which
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8 K. F. ROTH

The last condition can obviously be expressed equivalently as

•_9_y. (JLfp, a ) , 0
dx-J •" \dxp)

 v "•"' *>'

We note that 0 ^ 0 always, and 8 = 0 if and only if P(a1; ..., «p) # 0.
We note also that the index of the derived polynomial

f d \kl / 9 \ftp p/

at (xv ..., ap) relative to rv ..., rp is at least

for any non-negative integers kv ..., &p, provided that the derived
polynomial is not identically zero. Some further immediate consequences
of the definition are given in the following lemma.

LEMMA 4. Let P{xv ..., xp) and Q(xv ..., xp) be polynomials, neither
of which vanishes identically. Then, if all the indices are formed at the same
point (ocj, ..., ap) relative to the same numbers r1} ..., rp, we have

index (P+Q) >min (index P, index Q), (8)

index PQ = index P+index Q. (9)

(9) remains true if Pisa polynomial inxv ..., xp_1 only and Q is a polynomial
in xp only, and the index of P is taken at (a1; ..., a^^) relative to rlt ..., rp_1

and that of Q at xp relative to rp.

5. We consider, for a particular set of positive integers rlt ..., rm and
a particular number B ^ 1, polynomials R(xv ...,xm) in m variables
which satisfy the conditions:

(a) R has integral coefficients and is not identically zero;

(b) R is of degree at most rt in xt for j = I, ..., m;

(c) the coefficients of R have absolute values not exceeding B.

We denote the aggregate of all such polynomials by

^m = ^m(Bi rl> •••>rm)-

Let qv ..., qm denote positive integers and let hv ..., hm denote integers
satisfying (hj,qj) = \ for j — \ , ..., m. Let 8{R) denote the index of
R(xlt ...,xm) at the point (hjq^ ..., hjqm) relative to rv ..., rm. Our
object in the present section is to obtain, under certain conditions, an
estimate for 8(R) in terms of B, qv ..., qm, rv ..., rm. We therefore define

Sm(B; qv ..., q^; rv ..., rm) = upper bound of 6{R) (10)
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APPROXIMATIONS TO ALGEBBAIC NUMBERS* 9

taken over all polynomials R in the set Km and over all integers hv ..., hm

which are relatively prime to qv ..., qm respectively.
It is important to observe the double significance of rv ..., rm in the

definition (10); these numbers occur both in the definition of the index 6(R)
and in condition (b) above.

Our arguments are based on induction with respect to m, and in the
course of the work we shall need to use the above definitions for various
values of m and for various sets of values of B, qv ..., qm, rv ..., rm.

The case m = 1 is simple, and can be treated without imposing any
new conditions.

LEMMA 5. We have

© ( B ; 1\ * ) < logB

r1logq1
(11)

Proof. By the definition of the index 6 of R, the polynomial R(xj)
is divisible byf (%i—h1lqiy

ri. It follows from Gauss's theorem on the
factorization of polynomials with integral coefficients into polynomials
with rational coefficients, and from the fact that (hv qt) = 1, that

where Q{x^) is a polynomial with integral coefficients. Hence the
coefficient of the highest term in R{xx) is an integral multiple of ?{*"», so that

giving (11). [It may be noted in passing that we have not used the
hypothesis that the degree of R is at most rx; the double significance of
rv ..., rm mentioned above becomes important only when m> 1.]

We now come to the inductive argument.

LEMMA 6. Let p^2 be a positive integer, let rv ..., rp be positive
integers satisfying

rp > 108-\ »Wr, > S-1 for j = 2, ..., p, (12)

where 0 < § < 1, and let qv ..., qp be positive integers. Then

%{B; qv ..., qp; rlt ..., rp) < 2 max (O+*V»+8V«), (13)

where the maximum is taken over integers I satisfying

l, (14)

f The exponent Br1 is of course a non-negative integer, and can be supposed to be a
positive integer.
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10 K. F. ROTH

and where

* = ©1(Jf; qp; lrp) + ®P_X(M; qx, ..., qp_x; lrx, ..., trp_x) (15)

arad Jf = (r! + 1 )*» I! £< 2»*». (16)

Proof. We have to show that if B(xx, ..., xp) is any polynomial in
the class Kp(B; rx, ..., rp), and if hx, ..., hp are integers relatively prime
to qv ..., qp respectively, then the index 9 of B at (hx/qx, ..., hp/qp) relative
to rx, ..., rp does not exceed the right-hand side of (13).

The polynomial B(xx, ..., xp) satisfies the hypotheses of Lemma 2,
and therefore there exist an integer I satisfying (14) and a polynomial
F(xx, ..., xp) of the form (6) with the properties (i) and (ii) of Lemma 2.
By Lemma 3 the coefficients of F have absolute values not exceeding

by (16), since rx > r% > ... > rp by (12). Since

F=U(xlt...,xp_1)V(xp),

and U, V have integral coefficients, it follows that the coefficients of U
and V also have absolute values less than M.

The polynomial U(xv ..., xp_x) has degree at most lr} in x} for
j = 1, ..., p—1. I t satisfies the conditions (a), (b), (c) above for the class
of polynomials

KP^{M; lrv .... fr^).

Hence its index at (hjqv ..., hp^lq^) relative to lrv ..., lrp_x does not
exceed

%-i(M; qu ..., qp_x; lrx, ..., lrp_x).

It follows from the definition of the index that the index of U at that point
relative to rx, ..., rp_x does not exceed

l®p-i(M; qx, ..., qP_x; lrx, ..., lrp_x).

Similarly V(xp) belongs to the class Kx (M; lrp), and its index at hp/qp

relative to rp does not exceed

1&X(M; qp; lrp).

By the final clause of Lemma 4, the index of F = UV at (hx/qX) ..., hp/qp)
relative to rx, ..., rp is the sum of the indices of U and V, whence

index F^l®, (17)

where O is defined in (15).
We now deduce from the determinantal representation of F in (6) a

lower bound for the index of F in terms of the index 6 of B. Consider first
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APPROXIMATIONS TO ALGEBRAIC NUMBERS. 11

any differential operator of the form

A = AY'1
H' • • • ip-i

on xlt ..., xp_v of order w = il-\-...-\-ip_1 <£—1. If the polynomial

does not vanish identically, its index at (hjq^ ..., hp/qp) relative to
rv ..., rp is at least

Now w/rp_1^(l—l)/rp_1^rp/rp_1<8, by (14) and (12). Hence, since
the index is never negative, it must be at least

max (0, d—v/rp)—8.

If we expand the determinant on the right of (6), we obtain for F a
sum of l\ terms, the typical term being of the form

where A ô, ..., A/,(_i are differential operators on xv ..., xp_x whose orders
are at most I— 1. By Lemma 4, the index of such a term (if it does not
vanish identically) is at least

2 max(O, 0—v/rp) — IS.

Since F is a sum of such terms, it follows from Lemma 4 again that

z-i
index F > 2 max (0, 0—v/rp) — 18.

We can suppose that 8rp > 10, for if not we have

6 < \0r~x <8< 2S1/2,

and the desired inequality for 6 then holds. If 9rp < I, we have

i-i
2 max(0,6»-v/rJ,)=T-1 2 (0rp-y)

v=0 O^p^tffp

If drp ^ I, we have

2 max(0, O—v/rp) =
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12 K. F. ROTH

Hence index F > min ($6, \rp d2) — 18. (18)

Combining the inequalities (17) and (18), we obtain

Hence either 0^2(&-{-8), in which ease <? satisfies the desired inequality, or

\rp 6* < Z(<P+S) < (rp

Since rp-\-l <%rp by (12), the latter implies

6 < 2(<D+S)1/2

This completes the proof of Lemma 6.

We next deduce an explicit result, in a form suitable for use later, by
giving B a particular value and imposing further restrictions on the q's
and r's.

LEMMA 7. Let m be a positive integer and let 8 satisfy

0<8<m-1. (19)

Let rv ..., rm be positive integers satisfying

rm > 108-1, r,_Jr, > S-1 for j = 2, ..., m. (20)

Let qv ..., qm be positive integers satisfying

Iogq1>8-1m(2m+l), (21)

rt logq, 5*rx logq1forj = 2, ...,m. (22)

Then 0w(gf»; qv ..., qm; rv ..., rj < 10^8^m. (23)

Proof. We establish Lemma 7 by induction on m. If m = 1, Lemma 5
gives

8

and we obtain (23) without using the hypotheses (20) and (21).
Now suppose that p ^ 2 is an integer, and that Lemma 7 is valid when

m — p—1. We proceed to prove Lemma 7 when m = p. The hypotheses
of Lemma 7 when m = p are more stringent than those of Lemma 6, hence
Lemma 6 is applicable. We now estimate first M in (16) and then <£
in (15).

We have

M = (

Now Z < r , , + 1 < rx+1 < 2ri. Hence

M
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APPROXIMATIONS TO ALGEBRAIC NUMBERS. 13

By (21) with m = p, we have 2p4-l < Sp-1 logqv whence

M < qfi1'!,

where S1 = S(l+i)-1). (24)

Thus 0X(M; qp; lrp) < 0 ^ 1 ; qp; lrp) (25)

and

%-i{M; qv ..., ?,_!; lrv ..., lrp_x)

<®p-i (?{ i l r i ; 8fi. ••- ffp-i; &i. •••> K-i)- (26)

By Lemma 5, the right-hand side of (25) does not exceed

log(gfrfi) < h 1 l r x \ o g q l =

KloS1P ^ lr1logq1
 15

in view of (22).
To estimate the right-hand side of (26) we use the inductive hypothesis

of the present proof, namely that Lemma 7 holds when m = p— 1. The
conditions of Lemma 7 for m =p—1 are satisfied when we replace 8 by Sx

and rv ..., rp_x by lrv ..., lrp_x; since Sx > S this is immediate for all but
(19). To verify the analogue of (19) we have to show that

8i<(j>-1)"1,

and this follows from (24) and the fact that S <p~x by (19) with m=p.
It follows that

Since Sx < 28, the two results just proved imply that

Now (13) gives

— 4- 3 4- —o + 10s/2 + l0

Thus Lemma 7 holds when m = p, as asserted.

6. The next lemma is independent of any hypotheses concerning the
positive integers rv ..., rm.

LEMMA 8. / / rv ..., rm are any positive integers, and A>0, then the
number of sets of integers j v ..., j m which satisfy the inequalities

^ < j r o < m > + +

does not exceed 2m1/2 A"1 (»yf 1) . . . (rm+1).
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14 K. T. ROTH

Proof. The result holds when m = 1, for the number of integers jx

satisfying

is at most rx-\-\ and is 0 if A > 1.
We suppose m > 1 and prove the result by induction on m. The

result is trivial if A < 2m1/2, so we can suppose A > 2m1/2. For a particular
value ofjm, the conditions on^ , ..., j m _ 1 are of the same general nature as
before but with m—1 in place of m and with A replaced by A', where

i(m_l_A') = i(m-\)-jm/rm,

that is, X' = \~l+2jjrm.

We note that A'> 0 for 0 < j m < r m , since A > 2 m l / 2 > 1 . By the
hypothesis of the induction, the number of solutions of the original
inequalities i n ^ , •..,jm does not exceed

2 2 ( m -

Hence it suflSces to prove that

S (A— 1+2j/r) (
3=0

for any positive integers r and m, when A > 2m1/2.
If we suppose r even, and replace,/ by \r-\-h, the sum becomes

r/2 r/2
S (A+2A;/r)-i = A-1+ S

i=-r/2 ft=l
r/2

+ 2 2A(A2-1)-X

Now 1—A~2> 1—Jm~1> (1—m"1)1/2, whence the result. A similar but
slightly simpler argument applies if r is oddf.

7. Let a be a real algebraic number, not rational, and suppose that the
inequality (1) is satisfied by infinitely many pairs of integers h, q with
q > 0. We can suppose that a is an algebraic integer; for if not there is a
rational integer M such that Ma. is an algebraic integer, and the inequality

h' M
Ma.-— <—K

is satisfied by infinitely many pairs of integers h', q. Hence Ma. has the

t The case of even r would in fact suffice for the application later, since we could
choose rJ( ..., »•„, in §8 so as to be even,
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APPROXIMATIONS TO ALGEBRAIC NUMBERS. 15

same property as a provided that in (1) we replace K by any smaller
number.

If « is an algebraic integer, there is some polynomial

f(x) = xn+ax xn~1+...+an, (27)

with integral coefficients and highest coefficient 1, such that /(a) = 0.
Put

A = ma,x(l, \at\, ..., \an\). (28)

In the remainder of the paper we shall be concerned with only one set
of values of TO, 8, qx, hv ..., qm, hm, rv ..., rm, which will be chosen later in
the order just indicated. The choice will be so made as to satisfy the
following conditions:

0 < 8 < mr1, (29)

1Om §a/2r + 2(1 + 38) nmV* < \m, (30)

rm > 10S-1, r^r, > 8"1 for j = 2, ..., TO, (31)

82 logq1 > 2TO+1 + 2TO log (l+A) + 2m log (1+| a|), (32)

r^ogq^r^ogq^ (33)

We note that these conditions imply those of Lemma 7, since (29) and (32)
imply S logffr > m(2m+1).

Define A, y, 17, J5X by

A = 4 ( 1 + 3S)TCTO1/2, (34)

y=|(TO-A), (35)

^=10m8»/2)'"j (36)

B^lq^l (37)

We note that (30) is equivalent to

V<Y- (38)

We note also that B1 is necessarily large, since rx > 10 and qf > e2m+1 ^ e3.
Thus, in particular, qfr^ < Bv

We now come to the main lemma, which is the only lemma to which
reference will be made in the final proof of the theorem.

LEMMA 9. Suppose the conditions (29)-(33) are satisfied, and suppose
that \ , ..., hm are integers relatively prime to qv ..., qm respectively. Then
there exists a polynomial Q(xv ..., xm) with integral coefficients, of degree at
most Tj in x} for j = 1, ..., TO, such that

(i) the index of Q at the point (a, ..., a) relative to rv ..., rm is at least
y—q;

(ii)

https://doi.org/10.1112/S0025579300000644 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579300000644


16 K. F. ROTH

(iii) for all derivatives

where iv ...,im are any non-negative integers, we have

\Qh ,•>, ..,«)i<r (39)
Proof. We consider all polynomials W(xv .,., xm) of the form

W(xv ...,xm)= S ... S c(sv ...,sm)^...a£, (40)

where the coefficients c(8v ..., sm) assume independently all integral values
satisfying

0<cK, ...,sm)^Bv (41)

The number of such polynomials W is

(42)

where for brevity we write

r=(ri+l)...(rm+l). (43)

For each such polynomial W we consider the derivatives

( d ) h (A.\in

for all integers j v ...,jm satisfying

- 1 (d)h (A
-ji{ _jj [dxJ - [dx

' 1 ' m

By Lemma 8 and (35), the number D of such derivatives satisfies

Z><2m1/2A-1J-, (45)

where r is given by (43).
For each such derivative we form the polynomial

in a single variable x, and divide this polynomial by f(x), denoting the
remainder by

Th lm(W; x).

This remainder is a polynomial in x with integral coefficients, of degree n—1
at most.

We proceed to obtain an estimate for the magnitude of the coefficients
in any such remainder. The coefficients in each derived polynomial
Wt hXxi' •••> xm) have absolute values not exceeding
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APPROXIMATIONS TO ALGEBRAIC NUMBERS. 17

since rnr1 log2 < JS2r1 logqx by (32). When xv ..., xm are all replaced
by x, some of the terms in the polynomial may coalesce; since the total
number of terms is at most r, the coefficients in Wjltmjjm{x, ..., x) have
absolute values less than rB\+s. Now

r=(r1+l)... ( r f f l + l )<^+-+ '» .<2w. < Bx
s,

so that rB\+s < -BJ+25. It remains to consider the operation of dividing
this polynomial, say

by f(x), given in (27). The first operation (supposing s > n) is to subtract
ws x

s~nf{x); and this gives a new polynomial whose coefficients are either
of the form wv—as_yws or of the form wv. Hence the coefficients of the new
polynomial have absolute values less than (1+-4) B\+2i, with A as in (28).
The same consideration applies to the subsequent operations in the division
process, and leads to the conclusion that the coefficients in the remainders
TJlt__mtlm(W; x) have absolute values less than

(l+A)s-n+1B1
]+

2S.

Since s ^ rx-\-...-}-rm ^. mrx, this is less than

1 1
by (32).

In view of this estimate for the coefficients in each remainder T, the
number of distinct sets of D remainders that can arise is less than

(l+2B{+3S)nD.

By (45) and the definition of A in (34), we have

whence (l+2B\+3S)nl> < {2+2Bx)'^ <

By reference to (42), we see that the number of distinct possible sets of
remainders is less than the number of polynomials W under consideration.
Hence there exist two distinct polynomials, say W and W", of the form
(40) such that

is divisible byf(x) for all j v ...,jm satisfying (44). Putting W* = W — W",
we deduce that all the corresponding derivatives

are zero when xx ==.. .= xm = a. Hence the index of W* at the point
(a, ..., a) relative to rv ..., rm is at least y. Also the coefficients of W*
are integers, not all zero, of absolute values not exceeding Bv

We now appeal to Lemma 7, the conditions of which are satisfied, as
was noted earlier. The polynomial W*(xv ..., xm) satisfies the conditions

0

https://doi.org/10.1112/S0025579300000644 Published online by Cambridge University Press

https://doi.org/10.1112/S0025579300000644


18 K. F. BOTH

(a), (b), (c) of §5 and so belongs to the class

K-mW1; rlt ..., r j .
By Lemma 7, its index at (hjq^ ..., hm/qm) relative to rx, ..., rm is less than
rj, denned in (36). Hence W* possesses some derivative

with h+.
rl

such that Qihjq-L, •••, hjqm) =£ 0.

The index of Q at the point (a, ..., a) relative to rv ..., rm is at least y—r\.
Thus Q has the properties (i) and (ii) of the enunciation.

Since the coefficients of W* have absolute values at most JS1; it follows
that the coefficients of Q have absolute values at most

Hence the coefficients of any further derivative

Qit ivfe •••>£»,)

have absolute values less than 2mri B\+s < 5J+28. It follows that

!«*„-.«-(«. - . «)|
and this implies (iii) since

by (32). This completes the proof of Lemma 9.

8. Completion of the proof. We suppose that K > 2 and that the
inequality

a.—

has infinitely many solutions in integers h, q with q > 0. Since a is irrational
there must be infinitely many solutions with (h, q)=l. We shall deduce
a contradiction.

We first choose m so large that m > 4nm1/2 and

TO-4rami/2^*> (47)

as is possible since K > 2. For sufficiently small 8 we have
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where y is given by (36) and is arbitrarily small with 8. This condition
is the same as (30). We choose S to satisfy this, and to satisfy (29), and
further to satisfy

2m(l+4S)
m-4:(l+38)nmV2-2r)^- ' {V>>

as is possible in view of (47). The inequality (48) is equivalent to

(49)
y—v

by (34) and (35).
Having chosen m and 8, we now choose a solution hv qx of (46) with

(K> ?i) = 1 a n d with qx sufficiently large to satisfy (32). We then choose
further solutions h2, q2', •••', hm, qm, with (hjt <?,) = 1 throughout, to
satisfy

We now take rr to be any integer satisfying

r -

and define r2, ..., rOTby

Then (33) is satisfied. Also

The conditions (31) are satisfied, since

a n d *•**

by (52), (53) and (50).
By Lemma 9 there exists a polynomial Q(xv ..., xm) with the properties

stated there. The contradiction is reached by comparing two inequalities
for Qihjq-L, ..., hjqm), which is not 0 by (ii) of Lemma 9. Since Q has
integral coefficients and is of degree at most rt in xt forj = 1, ...,m,we have

| Q(hjq1; ..., hjqj | > gfi... fflT- > q^i+t) (54)

by (53). On the other hand, we have

Q(hl/ql>...,hjqm)= 2 ...
» 0 »
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20 APPROXIMATIONS TO ALGEBRAIC NUMBERS.

and by (i) of Lemma 9 the terms with

f + ...+!.<,,_„
rl rm

all vanish. In every other term we have

_y (* _a
/ '"\q

since qs > q[i/r> by (52). Hence, using (iii) of Lemma 9, we have

Comparing this with (54), we obtain

-mr^l+S) < (l+48)8r1-r1(y-,)if,

m(l + 8)+8(l+48) m(l+4§)
y—n y—n

contrary to (49). This completes the proof of the theorem.

University College,
London.
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