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Abstract

Purpose: To analyse the impact of multileaf collimator (MLC) leaf width in multiple metastases
radiosurgery (SRS) considering the target distance to isocenter and rotational displacements.
Methods: Ten plans were optimised. The plans were created with Elements Multiple Mets SRS
v2·0 (Brainlab AG, Munchen, Germany). The mean number of metastases per plan was 5 ± 2
[min 3,max 9], and themean volume of gross tumour volume (GTV)was 1·1± 1·3 cc [min 0·02,
max 5·1]. Planning target volume margin criterion was based on GTV-isocenter distance and
target dimensions. Plans were performed using 6MVwith high-definitionMLC (HDMLC) and
reoptimised using 5-mmMLC (MLC-5). Plans were compared using Paddick conformity index
(PCI), gradient index, monitor units , volume receiving half of prescription isodose (PIV50),
maximum dose to brainstem, optic chiasm and optic nerves, and V12Gy, V10Gy and V5Gy
for healthy brain were analysed. The maximum displacement due to rotational combinations
was optimised by a genetic algorithm for both plans. Plans were reoptimised and compared
using optimised margin.
Results: HDMLC plans had better conformity and higher dose falloff than MLC-5 plans.
Dosimetric differences were statistically significant (p< 0·05). The smaller the lesion volume,
the higher the dosimetric differences between both plans. The effect of rotational displacements
produced for each target in SRS was not dependent on the MLC (p> 0·05).
Conclusions: The finer HDMLC offers dosimetric advantages compared with the MLC-5 in
terms of target conformity and dose to the surrounding organs at risk. However, only dose
falloff differences due to rotations depend on MLC.

Introduction

The introduction of the multileaf collimator (MLC) has incorporated new features
to radiotherapy, enabling the generation of irregular field shapes and to modify them easily,
the intensity modulation of fixed beams and the generation of volumetric modulation
as from arcs. This allows improvements in conformity and homogeneity of the dose distribu-
tion.1–5

A study with intensity-modulated radiotherapy demonstrated that the use of finer MLC leaf
would be clinically beneficial in cases involving very small or irregular target volumes.5 The
impact of the narrower leaf on radiotherapy treatment planning has been studied by many
authors.6–13 The impact of the MLC leaf width on stereotactic radiosurgery (SRS) and 3D
conformal radiotherapy treatment plans was analysed for finer (1·7-mm and 3-mm) and wider
(10-mm)MLC. The finer MLC allowed to comply with the Radiation Therapy Oncology Group
(RTOG) treatment planning guidelines for SRS.14 More recently, Wu et al. performed a
dosimetric comparison between 2·5-mm and 5-mm MLC for SRS.15 They demonstrated small
dosimetric benefits of the finer MLC.15 The state of art of MLC on SRS suggests that the finer
MLC seems to be a promising approach on multiple metastases treatments.15–24

The use of a single isocenter in multiple metastases SRS (SIMM-SRS) treatment is widely
used, and it has shown many advantages in comparison to multiple isocenter technique such
as the reduction of treatment time, monitor units (MU) and setup uncertainties.6,25

SRS requires high-dose delivery, high-dose gradient and sub-millimetre precision. It is neces-
sary to quantify the sources of uncertainty involved in the SRS treatment given its special char-
acteristics. The mechanical uncertainties, for all the axes of the linear accelerators with gantry,
can be quantified by means of the WL test according to the AAPM TG-142.26 The mechanical
precision for SRS is required to be less than 1 mm.27 In the specific case of SIMM-SRS, the WL
test might be not sufficient to ensure precision in all targets.28 In addition, inasmuch as there is
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no consensus on specific quality controls to determine the
geometric precision in SIMM-SRS, it is of utmost importance to
analyse the impact of the patient’s setup, above all in single fraction
treatments.

The study of the patient’s setup uncertainties entails the dose
degradation applying rotations and translations to the targets
and the subsequent variation of the quality parameters: Paddick
conformity index and the gradient index. There are few studies
evaluating the geometric and dosimetric impact of MLC in
SIMM-SRS treatments.4,24 Until today, there are not enough
studies related to the dosimetric impact of MLC and the associated
setup uncertainties.25,29,30 This evaluation is treatment technique-
dependent. For volumetric arc radiotherapy (VMAT)29, there are
not the same considerations as for dynamic conformal arc (DCA)
approach. VMAT optimises the dynamic MLC, gantry speed and
dose rate. For DCA, the MLC shapes around the planning target
volumes (PTVs) and as gantry rotates the aperture changes
according to the beam eye view of the PTV. Every 1 to 10 degrees
static open projection of PTV changes. The comparison between
VMAT and DCA was evaluated in the work of Molinier et al.
for multiple metastases SRS.31 The VMAT plans were more
appropriate than the DCA due to the conformity and homogeneity
of the dose distribution and the reduction of treatment time.
However, for DCA the dose to the healthy brain is lower than
for VMAT.31

In this work, the dosimetric impact of high-definition MLC
(HDMLC) and 5-mm MLC (MLC-5) leaves was studied for
SIMM-SRS by DCA technique using Elements™ Multiple Mets
(Brainlab AG, Munchen, Germany) treatment planning system
(TPS) taking into account the dose conformity, MU and the avoid-
ance of healthy structures. Additionally, dosimetric differences due
to rotation-induced displacements were studied for both MLC
following the previous study of our work group.32

Method and Materials

Plan selection

Ten multiple brain metastases plan (55 metastases in total) were
selected retrospectively. The average number of metastases was
5 ± 2 [min 3, max 10] per plan with an average gross tumour
volume (GTV) volume of 1·1 ± 1·3 cc [min 0·02 cc, max
5·1 cc]. The prescribed dose to PTV volume was 21 Gy to D95%.

Patients were immobilised with SRS thermoplastic mask.
A high-resolution (1 mm slice thickness) CT scan was acquired
on a CT simulator (Somatom Spirit, Siemens Healthineers,
Germany). T1, T2 and T1-weighted post-contrast magnetic
resonance (MR) images (1 mm slice thickness, 1 mm spacing) were
fused with CT images. The images were transferred to the TPS
(Brainlab Elements, Brainlab AG, Munchen, Germany) for
co-registration. All fusions were inspected and approved by the
radiation oncologist. Organs at risk (OARs) were contoured by
a physicist or dosimetrist (approved by a radiation oncologist)
including the brain, chiasm, optic nerves, optic tract, eyes, lens,
cochlea, brainstem and healthy brain. The healthy brain was
defined as the volume of the brain minus the volumes of the
GTVs and the brainstem. The GTVwas delineated by the radiation
oncologist and was equal to the clinical target volume (CTV).

The PTV was created following an institutional geometric
margin criterion based on Kuntz et al. and others.6,32–35 If the
GTV is located less than 50 mm from the isocenter, a margin of
0·5mmwas assigned. If the GTV is locatedmore than 50mm from

the isocenter or its volume was less than 0·1 cc, a margin of 1 mm
was assigned.32

Treatment planning

Elements™ Multiple Mets SRS v2·0 (Brainlab AG, Munchen,
Germany) is a commercial TPS that automatically optimises a
dedicated set of dynamic arcs to treat single isocenter brain
lesions.36,37 The beams of the Elements™ plans were selected from
a predefined template with 5 table angles. Both templates were
defined following the institutional protocol. Treatment machine
and the collimation system were selected as part of the planning
process. The isocenter was selected automatically by the TPS,
considering the average of the centre of mass of all GTVs.

SIMM-SRS plans were optimised for TrueBeam STx® using
6 MV beam with a flattening filter. HDMLC and MLC-5 were
employed for planning. Both collimation systems are 120-leaf
MLC with 60 central 2·5 mm leaves for HDMLC38–40 and 5-mm
leaves for MLC-5. The plans were optimised using the HDMLC
andMLC-5, as shown in Figure 1. Dose calculation was performed
with a 1 mm grid using the Brainlab pencil beam algorithm.41–43

The plans were created using a dose template for a single fraction
of 21 Gy with a desired PTV coverage of 95% and a tolerated
coverage of 90%. The templates were set to aim a homogeneous
dose distribution within the PTV. The quality index obtained from
Elements™ report Paddick conformity index (PCI), gradient index
(GI) and maximum dose (defined as the calculated maximum dose
in the voxels) for the GTVs are shown in Table 1.

The MLC transmission factor and dosimetric leaf gap for the
HDMLC were 1·23% and 0·86 mm,44 respectively, and for the
MLC-5 were 1·4% and 0·9 mm, respectively. These parameters
were used in the machine profile configuration of Elements™ for
TrueBeam STx®.

Dosimetric parameters such as Paddick conformity index
(PCI),45 gradient index (GI)46 MU, volume receiving half of
prescription isodose, maximum dose to brainstem, chiasm,
cochlea, optic tract and optic nerves and the volume of 12 Gy,
10 Gy and 5 Gy to the healthy brain (V12, V10 and V5, respectively)
were analysed. The PCI and GI were calculated based on the formal
definition of those indices.46–48 The PCI was calculated as shown in
Equation 1:

PCI ¼ TV2
PIV100

TV � PIV100
; (1)

where TV is the volume of the PTV, PIV100 is the volume of the
prescription isodose, and TVPIV100

is the volume of the PTV
covered by the prescription isodose. PIV50 is the volume of
the 50% prescription isodose. The GI was calculated as shown
in Equation 2:

GI ¼ PIV50

PIV100
: (2)

Rotation-induced displacements

The impact of rotation-induced displacements was analysed for
HDMLC and MLC-5 plans. At present, the commercial TPS could
perform exclusively displacements (translations) on the planning
structures to determine their dosimetric effect on targets and
OARs. Rotations were not included in TPS. In a previous work32,
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we worked out on the DICOM files handling to perform rotations
of the targets with respect to a single point (isocenter).
Additionally, it is known that the group of rotation transforma-
tions is non-commutative. The final location where the target
was displaced depended on the rotational order and direction.
Thus, the optimal combination of rotations is necessary to deter-
mine the maximum displacement produced. The complete study
of rotational combinations implies to analyse mathematically all
possible combinations by the product of the rotation matrices
represented in Equation 3. To simplify the computations, the
use of optimisation algorithms is useful in these cases considering
the coded-uncoded information in bidimensional binary arrays.
Bio-inspired optimisation algorithms such as genetic algorithm
are easy to implement, they are robust and the optimal solution
converged in few cycles.

Rrollð�Þ ¼
1 amp; 0 amp; 0
0 amp; cos � amp;� sin �
0 amp; sin � amp; cos �

0
@

1
A

Rpitchð�Þ ¼
cos � amp; 0 amp; sin �
0 amp; 1 amp; 0

� sin � amp; 0 amp; cos �

0
@

1
A

Ryawð�Þ ¼
cos � amp;� sin � amp; 0
sin � amp; cos � amp; 0
0 amp; 0 amp; 1

0
@

1
A

(3)

The order and direction of rotations of 0·5º and 1º of each target
were optimised and performed in three directions (roll, pitch and
yaw) by the use of a genetic algorithm (GA) using in-house soft-
ware. The software technical description is shown in literature.32 It

works under the assumption that if displacements are relatively
small with respect to the relevant anatomical dimensions and
the radiological path of the treatment beams towards the targets,
this approach is valid for an arc treatment.12 It allows to handle
each structure from the DICOM structure file, applying rotations
in any direction with respect to isocenter plan, while the CT
and dose DICOM files remained fixed to display dosimetric
calculations.

The rotational combinations were performed following the
maximum displacement evaluated by a GA. The algorithm worked
following the Darwinian principle of natural evolution and the
DNA recombination process to reproduce naturally evolution
processes and survival of the fittest to find the near-optimal
solution.49 In last years, the GA was implemented successfully in
population pharmacokinetic models,49 in multi-population for
flexible job scheduling problem,50 ensemble method for cancerous
gene identification,51 medical disease estimation,52 protein design
structure53 and so on. The typical representation of GA is as
follows: First, a random initial population of solutions represented
as binary vectors (chromosomes) is generated. The first allele is
defined for j≤ 3. Elements were transformed from the binary to
the decimal system. There were 8 combinations in total for the first
allele, and each one was assigned a particular combination of the
order in which the couch rotations were performed. The second
allele is defined for j ≥ 4. Elements correspond to the rotational
direction. If the gene is 1, the direction is clockwise (CW).
Otherwise, if is 0, it is counterclockwise (CCW).32 Second, the
chromosomes were evaluated by the module of the difference
vector between the centre of mass of the original structure and
the displaced structure. Third, the best chromosomes were recom-
bined in pairs by a cross-over point and two daughters were

Figure 1. Comparison for a single isocenter multiple metastases radiosurgery (SIMM-SRS) plan for nine metastases between different multileaf collimator (MLC) leaf widths in
Brainlab Elements: a) using HDMLC and b) using MLC-5. c) The dose distribution for both plans is compared between HDMLC (superior) and MLC-5 (inferior).
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generated. Fourth, the parents and daughters were subject to
random bit mutations. Finally, the new chromosomes were evalu-
ated. The process was iterative.

Dosimetric differences in PCI and GI were evaluated for the
plans with non-rotated and rotated structures for each MLC leaf
configuration.

Ethical Considerations

The treatment plans were selected and anonymised. There was no
relationship between the plan and the personal data of the patients.
The Institutional Quality Committee (Comité de Calidad
Institucional) from our institution approved and authorised the
use of this information, the results and the ethical conduct of this
study.

Results

The dosimetric differences in terms of the MLC by the SRS-SIMM
plans are shown in Figures 2 and 3. PCI and GI for HDMLC
are higher than MLC-5 plans as shown in Table 2. In all cases,
dosimetric differences are statistically significant (p< 0·05). The
p-values are shown in Table 1. The mean MU for HDMLC plans
was 7528 ± 2180 MU [min 5418 MU, max 12,258 MU] and for
MLC-5 plans was 7575 ± 2218 MU [min 4993 MU, max 11,673
MU]. The dosimetric differences between both plans tended to
decrease as the lesion volume increased as represented by
Pearson’s coefficient for PCI (r = −0·1 for HDMLC and
r = −0·05 for MLC-5) and for GI (r = −0·6 for HDMLC and
r = −0·6 for MLC-5). In Figures 2 and 3 are shown the smaller
lesion volume, the higher dosimetric differences between both
plans. In addition to the lesion volume, the irregular shape of
the metastases has an important role on the dosimetric impact
considering different MLC, as shown in Figures 2 and 3 for the
5·3 cc lesion.

In Figures 2 and 3 are shown the data curve fitted only for visual
guide, and the prediction levels were based on the existing fit to the
data, and they were simultaneous for all predictor values. The
simultaneous level measured the confidence that a new observation
lies within 95% regardless of the predictor value. The fit is a single-
term exponential to generated data and the bounds reflect a 95%
confidence level. The intervals associated with a new observation
are wider than the fitted function intervals because of the addi-
tional uncertainty in predicting a new response value (the curve
plus random errors).

The use of HDMLC in an SRS-SIMM shows a remarkable
reduction of the volume of 12 Gy, 10 Gy and 5 Gy to the healthy
brain (V12, V10 and V5, respectively) with respect to MLC-5, as
shown in Figure 4. It is shown that complying with the dose-
volume constraints for both plans, there is an improvement on
the reduction of organs at risk (optic nerves, optic tract, chiasm,
cochlea and lens) maximum dose in all cases.

The degradation of the plans was evaluated by the
dosimetric differences. The differences considered as
Xoriginal � Xrotated

� �
=Xoriginal � 100, where X is the dosimetric

parameter (PCI or GI), were determined for both MLC leaf width
plans. The differences between MLCs were no statistically signifi-
cant p= 0·364 for PCI and p= 0·762 for GI by a two-tailed t-test.

To consider the GTV-to-PTV geometrical margin criterion
used in this work, the dosimetric differences as a function of lesion
volume and the maximum effective displacements produced byTa
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rotations in three directions for 0·5º and 1º in each target are shown
in Figures 5 and 6. The correlation between dosimetric differences,
lesion volume and displacements were analysed. The Pearson
correlation coefficient for all parameters is shown in Figures 7
and 8 for PCI and GI, respectively. There is no correlation between
volume and dosimetric differences produced by rotations (�<0:08
for PCI and �<0:09 for GI); however, medium negative correlation

(� ¼ �0:43 for PCI and � ¼ �0:48 for GI) was determined
between displacements and dosimetric differences. In the case
for rotation-induced displacement effect and MLC, the dosimetric
differences were studied. Small positive correlation was deter-
mined for PCI (� ¼ 0:25) and high positive correlation for GI
(� ¼ 0:62). Nevertheless, in all cases the higher dose difference,
the higher maximum effective displacement up to 2 mm.

Figure 2. Left y-axis: Distribution of Paddick conformity index (PCI) as function of target volume for both plans using high-definitionmultileaf collimator HDMLC (blue circles) and
MLC-5 (blue triangles). Solid and dashed lines represent the fitted curves for PCI as function of volume. The prediction functional levels of 95% are shown in dots for both plans.
Right y-axis: Difference between two MLCs taken as reference HDMLC.

Figure 3. Left y-axis: Distribution of gradient index (GI) as function of target volume for both plans using high-definitionmultileaf collimator HDMLC (blue circles) and MLC-5 (blue
triangles). Solid and dashed lines represent the fitted curves for PCI as function of volume. The prediction functional levels of 95% are shown in dots for both plans. Right y-axis:
Difference between two MLCs taken as reference HDMLC.
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Discussion

There was a statistically significant decrease in the PCI and GI for
the HDMLC compared with MLC-5 (p= 0·09 and 6 × 10�8,
respectively). These results are in concordance with other authors
where they compared the VarianMLC and themicro-MLC for single
targets.17 The PCI difference between theMLCs ranged between 9·9%
and 24·2% and the HDMLC exhibited better dose conformation as
Tanyi et al. reported22 indicating a worse conformity of the prescrip-
tion isodose to the PTVusing a widerMLC. Equivalent PTV coverage
was achieved using the MLC-5 by adjusting the MLC shape around
the target in every case. The GI differences between the two MLCs
were higher, ranging from 0·8% to 49·2%. The higher differences were
associated with smaller volume lesion (<0·3 cc) indicating a better
dose falloff to the PTV using a HDMLC.

The indices in all cases were within some authors15,53,54 and our
institutional clinical criterion in the range from 0·65 to 0·9 to PCI
and from 3·0 to 8·0 to GI. The MU between both plans has no
difference in all ranges differing from what previous authors have
reported.17

Small targets and complex geometrical distribution between
OARs and targets are improved from the use of a finer MLC.15

The HDMLC enhances PTV conformity and surrounding tissue
sparing when compared to that of SMLC.17 This advantage
decreases when the target volume increases.

As other authors mentioned, the finer MLC yields dosimetric
advantages in terms of target conformity and dose to the
surrounding normal tissues.18,55,56 The current study shows dosi-
metric benefits of the HDMLC over the MLC-5 for SRS multiple

Table 2. Mean value, standard deviation and [min, max] of dosimetric parameters D99, Paddick conformity index (PCI), gradient index (GI), volume receiving half of
prescription isodose (PIV50) and Dmax for organs at risk for plans using high-definition multileaf collimator (HDMLC) and MLC-5. The p-values from one-tailed t-test
are shown

HDMLC MLC-5 p

D99 [Gy] 20·6 ± 0·5 [20·0, 24·3] 20·5 ± 0·8 [17·0, 22·5] 0·02

PCI 0·83 ± 0·05 [0·65, 0·89] 0·81 ± 0·04 [0·62, 0·89] 0·009

GI 5·0 ± 1·0 [3·1, 7·0] 6·0 ± 1·0 [3·5, 8·9] 6 × 10�8

PIV50 18·0 ± 4·0 [11·2, 25·5] 22·0 ± 6·0 [14·4, 29·8] 0·0002

Chiasm Dmax [Gy] 1·6 ± 0·5 [1·0, 3·4] 1·8 ± 0·5 [1·3, 4·0] 0·01

Cochlea Dmax [Gy] 1·6 ± 0·9 [0·6, 3·1] 1·8 ± 0·9 [0·8, 3·3] 0·004

Optic Nerves Dmax [Gy] 1·3 ± 0·6 [0·7, 3·1] 1·4 ± 0·6 [0·8, 3·1] 0·04

Optic Tracts Dmax [Gy] 2·0 ± 0·5 [1·7, 4·0] 2·3 ± 0·7 [1·8, 5·0] 0·02

Figure 4. Dosimetric differences in healthy brain considering the volume that received 12 Gy, 10 Gy and 5 Gy (V12, V10 and V5, respectively) between the plans using high-definition
multileaf collimator (HDMLC) and MLC-5.
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Figure 5. Comparison of the dosimetric difference produced between rotated and original plans for Paddick conformity index (PCI) between the target located in the original
position (original) and the displaced (rotated) for HDMLC (red triangles) and MLC-5 (blue circles) plans as a function of maximum effective displacement produced by 0·5º and
1·0º rotations in three directions (roll, pitch, yaw).

Figure 6. Comparison of the dosimetric difference produced between rotated and original plans for gradient index (GI) between the target located in the original position
(original) and the displaced (rotated) for HDMLC (red triangles) andMLC-5 (blue circles) plans as a function of maximum effective displacement produced by 0·5º and 1·0º rotations
in three directions (roll, pitch, yaw).
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Figure 7. Pearson’s correlation coefficients for volume,maximumeffective displacement and Paddick conformity index (PCI) dosimetric rotational differences for high-definition
multileaf collimator (HDMLC) and MLC-5. The higher the diameter of the circle, the stronger the correlation.

Figure 8. Pearson’s correlation coefficients for volume, maximum effective displacement and gradient index (GI) dosimetric rotational differences for high-definition multileaf
collimator (HDMLC) and MLC-5. The higher the diameter of the circle, the stronger the correlation.
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targets in single isocenter treatments. For normal tissue, mean dose
was reduced more effectively by a decrease in MLC width.19,21

The most important characteristic in SRS is the precise dose
delivery to the target conformally with rapid dose falloff into the
surrounding normal tissues. The small positive correlation
(� ¼ 0:25) for PCI rotation-induced dosimetric differences
between two types of MLC indicates that it does not depend on
the MLC on how closely the radiation prescription dose conforms
to the size and shape of the target. In the other hand, there is a high
positive correlation (� ¼ 0:62) for GI that can indicate that the
dose falloff outside of the target is dependent on the MLC. The
positive correlation shows that there is a directly proportional rela-
tion between the dosimetric rotational difference and the displace-
ment produced by rotations. The dosimetric rotational differences
for GI are not statistically significant, and the mean values are
similar considering their standard deviations (−4% ± 8% for
HDMLC and −4% ± 10% for MLC-5).

The use of the institutional PTV margin criterion is necessary
for reducing the dosimetric degradation produced by rotations and
satisfies the MLC effect on dose coverage, but is not sufficient as
reported by past work of our group.32 Rotational corrections via
image guidance are necessary for SRS with a thermoplastic mask
for immobilisation. The study ofCalmels et al.29 suggests that patient
positioning errors at each couch rotation should be corrected
by image guidance systems such as Exactrac® (Brainlab AG,
Munchen, Germany). The use of these systems for position correc-
tion treatment table avoids compromising dose coverage for meta-
stases located beyond 3 cm from the plan isocenter.29 There is a clear
trade-off between dosimetric quality of small and large targets that
should be considered carefully when placing the isocenter.9,57,58

Regarding the target coverage, there were dosimetric benefits of a
finer MLC. However, the downsizing effect of the MLC decreased
with the use of a more precise radiotherapy technique and a more
sophisticated grade of the same technique.24,58,59

The effects of rotational displacements produced for each target
in SRS-SIMM are not dependent on the MLC for how closely the
dose prescribed conforms to the target but the dose falloff outside
of the target is dependent on the MLC. Finer collimator leaves are
associated with smaller GI differences with respect to rotational
displacements. As described Calmels et al.,29 PCI close to one is
a predictor of local control and sparing of the OAR, while an
increase of GI to above three can lead to a higher V12 Gy to the
healthy brain, which is related to the risk of radionecrosis; there-
fore, the use of finer collimator leaves considering the rotation-
induced displacements in the patient’s setup could be associated
with a lower risk of necrosis.

The use of GA in SRS offers a novel tool to obtain information
concerning the maximum displacement performed by the order
and the direction of patient’s setup rotations. This fact is valuable,
and it can provide well-informed decisions (not only based on
geometric concepts) for medical staff to define the appropriate
PTV margins. The development of adaptive PTV margins for each
metastasis that consider the combined effect of translations, rota-
tions, the dose that healthy brain receive and the specific MLC is
proposed as future work.

Conclusion

The finer HDMLC offers dosimetric advantages compared with
the MLC-5 in terms of target conformity and dose to the
surrounding organs at risk with respect to optimised dynamic arcs
from Elements™ Multiple Brain Mts.

The effect of displacements produced by rotations due to setup
uncertainties has differentiate effect in bothMLC plans for the dose
falloff outside of the target. This can be associated with a correct
PTV to GTV margins in SIMM-SRS.
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