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Vertical convection is the fluid motion that is induced by the heating and cooling of
two opposed vertical boundaries of a rectangular cavity (see e.g. Wang et al., J. Fluid
Mech., vol. 917, 2021, A6). We consider the linear stability of the steady two-dimensional
flow reached at Rayleigh numbers of O(108). As a function of the Prandtl number, Pr,
and the height-to-width aspect ratio of the domain, A, the base flow of each case is
computed numerically and linear simulations are used to obtain the properties of the
leading linear instability mode. Flow regimes depend on the presence of a circulation
in the entire cavity, detachment of the thermal layer from the boundary or the corner
regions and on the oscillation frequency relative to the natural frequency of oscillation in
the stably temperature-stratified interior, allowing for the presence of internal waves or not.
Accordingly, the regime is called slow or fast, respectively. Either the global circulation
or internal waves in the interior may couple the top and bottom buoyancy currents, while
their absence implies asymmetry in their perturbation amplitude. Six flow regimes are
found in the range of 0.1 ≤ Pr ≤ 4 and 0.5 ≤ A ≤ 2. For Pr � 0.4 and A > 1, the base
flow is driven by a large circulation in the entire cavity. For Pr � 0.7, the thermal boundary
layers are thin and the instability is driven by the motion along the wall and the detached
boundary layer. A transition between these regimes is marked by a dramatic change in
oscillation frequency at Pr = 0.55 ± 0.15 and A < 2.
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1. Introduction

Over the past six decades, vertical convection has attracted significant interest due to
its wide range of applications in industry, the environment and geophysics. Circulation
patterns and instabilities that may arise due to vertical heat transport along hot or
cold isothermal boundaries are relevant in view of the transport of heat (see e.g.
Miroshnichenko & Sheremet 2018). In the idealised case of a rectangular cavity, the
typical flow evolution is such that, after turning on the heat forcing above its critical
value for convection, an upward motion arises at the heated boundary and a downward
motion at the cooled boundary, while stratification develops progressively in the interior
(Gill 1966). When these motions reach the two horizontal adiabatic boundaries, they turn
into horizontal buoyancy currents. The flow pattens in this cavity and related instabilities
are determined by the Rayleigh number, the Prandtl number and the aspect ratio defined
respectively as

Ra = gβ�TH3

νκ
Pr = ν

κ
and A = H

W
, (1.1a–c)

with β the thermal expansion coefficient, ν the dynamic viscosity, κ the thermal
diffusivity, H and W the height and width of the cavity, �T the horizontal temperature
difference in the cavity and g the gravitational constant. In view of the relatively low
aspect ratio considered (A < 4), the Rayleigh number is based on the height H of the tank,
as is most common (see e.g. Bejan 2013), allowing also for comparison with other results
in the literature. In this study, we consider the linear instability of the steady circulating
flow that is reached at intermediate critical Rayleigh numbers O(108) beyond the onset of
the convective instability for a range of Prandtl numbers. This steady circulating flow is
later called the base flow.

Applications vary with Prandtl number. Generally, higher Prandtl numbers apply
to geophysical flows with Prandtl numbers of 0.7 and 7 for air and water at 20 ◦C,
respectively, and very high Prandtl numbers for the Earth’s mantle, with magma viscosities
somewhere around 1019 (e.g. Busse 2006). For seawater the Prandtl number is in the
range 1 < Pr < 14 as a function of temperature and salinity. The lower Prandtl numbers
apply to gases and liquid metals. Atmospheric air has a Prandtl number in the range of
0.7 < Pr < 0.79, methane gas in the range of 0.7 < Pr < 0.87, whereas a mixture of
liquid helium may have a Prandtl number in the range 0.2 < Pr < 0.6 depending on its
mixture. Other applications are semiconductor crystals with Pr O(10−2) (see e.g. Gelfgat,
Bar-Yospeh & Yarin 1999), and nuclear engineering processes that are associated with
convective fluid motions of sodium, lead or alloys for cooling with Pr ≈ 10−1 to 10−3 (see
e.g. Grötzbach 2013). Very small Prandtl numbers apply to astrophysics, stellar and deep
solar convection with Pr ≈ 10−6 (see e.g. Guervilly, Cardin & Schaeffer 2019; Garaud
2021; Pandey, Schumacher & Sreenivasan 2021, etc.).

In the past, particular attention has been given to the flow transition to a permanent
oscillatory state that occurs in the corner regions of a cavity with A = 1 for Pr = 0.7 and a
Rayleigh number just above critical, i.e. Ra ≈ 108. The thermal boundary layers detach and
the presence of standing and dissipative internal wave modes were observed in the interior
(see Paolucci & Chenoweth 1989; Henkes & Hoogendoorn 1990; Le Quéré & Behnia 1998,
and references therein). Above the critical Rayleigh number, a shear instability occurs in
the vertical boundary layers, with a transition to chaos through quasi-periodicity (see e.g.
Lappa 2009). For larger Prandtl numbers, differences in behaviour occur since the thermal
boundary layer is thinner with a larger velocity gradient normal to the boundary, favouring
shear instability. Thus, an immediate transition to turbulence has been observed for Prandtl
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numbers, 2.5 ≤ Pr ≤ 7.0, and a transition from steady to a periodic state of the jet-like
structure for the lower Prandtl number range 0.25 ≤ Pr ≤ 2.0 (see Chenoweth & Paolucci
1986; Janssen & Henkes 1995).

For tall cavities with 1.0 ≤ A ≤ 3.0 (Pr = 0.7) (see e.g. Xin & Le Quéré 2006, and
references therein), the instability is determined by the detachment of the boundary layer
in the corner regions and the spatial structure of normal modes that fill the cavity. The
instability in the boundary remains relatively small. The inclined flow structures in the
interior that were ascribed to internal waves (see Le Quéré & Behnia 1998; Xin & Le Quéré
1995) are shown to be in fact part of the unstable mode (Xin & Le Quéré 2006). For cavities
with A ≥ 3, the travelling waves in the vertical boundaries have approximately 10 times
higher frequencies with the instability in the vertical boundary layers being dominant.
These wall mode waves occur as Tollmien–Schlichting waves in the boundary layer for
small Ra (Yahata 1999; Xin & Le Quéré 2006; Xin & Le Quéré 2012). For smaller values
of A, internal waves in the interior dominate the instability (Yahata 1999). The instability
mode is found to be either centrosymmetric or anti-centrosymmetric, respectively. This
instability is part of two Hopf bifurcations that are encountered for increasing Ra (and
fixed Pr), with consecutively the (anti-centrosymmetric or centrosymmetric) internal wave
modes, and for larger Rayleigh number the (anti-centrosymmetric or centrosymmetric)
wall modes (see Burroughs et al. 2004; Oteski et al. 2015).

For larger Ra, the flow becomes nonlinear with vortices detaching from the boundary
layer and penetrating into the stratified core. These penetrating vortices excite internal
waves with a frequency smaller than the Brunt–Väisäla frequency, thus perturbing the core
fluid (Xin & Le Quéré 1995). The instability in a rectangular cavity can thus form in the
corner region or in the lateral boundary, and internal waves take part in the instability. Next
to the instability, for certain parameters, a large-scale circulation has also been observed
with the hot boundary layer motion ‘connecting’ to the start of the cold boundary layer
motion. In the case of conducting horizontal boundaries, this gives rise to limit cycles (see
Henkes & Hoogendoorn 1990). A comprehensive review of studies on vertical convection
is given in a historical perspective by Le Quéré (2022).

Although a range of Prandtl numbers and different aspect ratios have been considered
in the past, the critical Rayleigh number and the shape and symmetry of the most unstable
corresponding mode are known only for some specific values of Pr and A. There are no
clear indications as to the mechanism responsible for the instability, the presence of locally
increasing modes or global modes and their symmetry. In this research, in order to obtain
information about the shape of the most unstable mode and the critical Rayleigh number,
a numerical linear stability analysis is used. The representation of the perturbations of
amplitude, phase and vorticity of each specific unstable mode allows investigation of the
mechanism of instability and the role of internal waves, permitting different flow regimes
to be identified.

Apart from the reduced computational costs, the advantage of a two-dimensional
approach is that it is well posed with a simple geometry and forcing, similar to other
flows for which the knowledge and understanding of regimes and the transition between
them is of fundamental interest. Some well known other examples are Taylor–Couette flow
or Rayleigh–Bénard flow in thin gaps. More related flows are the shear-driven cavity flow
(see e.g. for the homogeneous case Bengana et al. (2019), and for the stratified case Wu,
Welfert & Lopez 2018), or the self-organised state of two-dimensional turbulence on a
rectangular domain interacting with vorticity generated at the slip-free boundaries (van
de Konijnenberg, Flor & van Heijst 1998; van Heijst, Clercx & Molenaar 2006). In the
latter example, a large central vortex interacts with the boundaries, implying aspects of
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(a) (b)

Figure 1. (a) Schematic of the problem with the walls kept at constant temperatures 0.5 and −0.5 so that �T =
1.0. The initial condition for the nonlinear simulations is T0 = �T × (x/xmax − 0.5) + noise and (u, v) =
(0, 0), and for the linear simulations, Tp0 = noise and (up, vp) = (0, 0). (b) Location of the interrogation points
used to assess the state of the flow with the oscillation frequency ω measured in the corner at (x, z) = (0.1, 0.1),
for A = 1, H = (0, 1) and W = (1, 0), Nc being the stratification in the centre of the cavity. The maximum
speed in the buoyancy current is sketched by red and blue curved lines. Here, Lh is the horizontal distance from
the wall to the minimum (in z) on the red line of the current at the top.

symmetry with flow phenomena analogous to large cell flows in vertical convection, but
without baroclinic effects.

In a three-dimensional box with periodicity in the third direction (see Xin & Le Quéré
2012, for Pr = 0.7), the instability starts for a 10 times smaller Rayleigh number. The
three-dimensional effects are, however, modest, with low frequency modes losing their
stability earlier than in the two-dimensional case. Two-dimensional simulations are found
to be also satisfactory for larger aspect ratio (A = 4) and capture the general features of
buoyancy-driven flow, as long as it is not turbulent, i.e. up to Ra ∼ 1010 (Trias et al. 2007).
Also partial similarities to the two-dimensional counterpart have been noticed in cubic
cavities (see Gelfgat 2017, 2020a,b). This is further discussed at the end of the conclusions.

In the next section, § 2, the numerical code with the linear approach and the
decomposition into leading modes are discussed next to the nonlinear approach and the
diagnostics. In the subsequent section, § 3, the results are presented with the different
base states, leading linear modes and the different observed regimes. In § 4, the main
conclusions are presented and further discussed.

2. Numerical set-up

2.1. Governing equations and linear stability approach
We consider a two-dimensional flow inside a rectangular cavity of aspect ratio Av = H/W
with cavity height H and width W, adiabatic top and bottom boundaries and the two
walls kept at a constant temperature with temperature difference �T (see figure 1a). The
scales of this problem are �T for the temperature difference and for the length scales
(x, y) ∼ (δT , H), where δT = (κtr)1/2 is the thickness of the heated boundary layer, and
tr is the reference time defined below. Using the momentum equations, the friction term
then scales with the buoyancy term, i.e. νVr/(δT)2 ∼ gβ�T , which yields a characteristic
speed Vr = (κ/H)Ra1/2. The time scale tr = H/Vr is obtained from the balance between
the advective term and diffusive term in the temperature equation. With these scales, one
obtains for the dimensionless form of the continuity equation, Boussinesq approximation
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Figure 2. Temperature signal of a nonlinear simulation at point (x, z) = (0.1, 0.1) for A = 1.0, Pr = 0.71 and
Ra = 1.85 × 108, with (a) the evolution of the flow from t = 0, and (b) the evolution to a steady state and
subsequent exponential growth in amplitude and saturation. The inset shows the perturbation in log scale with
the fit giving the growth rate (straight line).

of the Navier–Stokes equations and the temperature equations, respectively,

∇ · v = 0, (2.1)

∂v

∂t
+ v · ∇v = −∇P + Pr

Ra1/2 ∇2v + PrΘez, (2.2)

∂Θ

∂t
+ v · ∇Θ = 1

Ra1/2 ∇2Θ, (2.3)

with v the velocity vector, pressure P and Θ the dimensionless temperature (T − Tr)/�T ,
with Tr being the average temperature (here, Tr = 0). As mentioned above, the control
parameters of this flow are the Rayleigh number, Prandtl number and aspect ratio A =
H/W, which depends on the chosen length W since the height H is kept constant.

The no-slip condition is used for all boundaries. For the temperature, the Dirichlet
condition is used with Θ = 0.5 and Θ = −0.5 on the two lateral walls, and for zero heat
flux the Neumann condition at the two horizontal boundaries.

Numerical simulations are performed with the spectral element code Nek5000 (https://
nek5000.mcs.anl.gov) using the two newly developed Python packages Snek5000 (https://
snek5000.readthedocs.io) and Snek5000-cbox (https://github.com/snek5000/snek5000-
cbox) (Augier, Mohanan & Bonamy 2019; Mohanan et al. 2019; Mohanan, Khoubani &
Augier 2023). The packages are available online and the data that we have produced here
are available as a Zenodo dataset (https://zenodo.org/record/7827872).

Tests have been conducted for Pr = 0.71 and A = 1 and results for the growth rate and
oscillation frequency have been validated with respect to former studies in the literature.
The resolution employed (see table 1 in the Appendix) allows for the study of the motion
in the thin boundary layers near the walls, and accuracy in growth rate and oscillation
frequency. Figure 2 shows a typical temperature signal measured in the corner of the cavity
(see figure 1b) for the nonlinear simulation. The large difference in temperature between
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figures 2(a) and 2(b) reveals the transient to the base state (t < 250) and the subsequent
growth and saturation of the instability (t > 250), respectively. From t = 0 to 250, the
motions along the boundaries and the stratification in the interior develop. The base state
is a steady state with minimum amplitude of oscillations (at approximately t ≈ 500), with
motions in thermal boundary layers in the presence of a stratified interior. From t = 500
onwards, a linear instability leads to the exponential growth of the amplitude of the
oscillation up until approximately t = 1375, after which it saturates and small nonlinear
oscillations in amplitude develop. The oscillation frequency shows a perfect exponential
growth in the range of approximately 500 < t < 1400 (see the inset in figure 2b).

For each set of control parameters Pr and A, nonlinear simulations are performed to
obtain a first approximation of the critical Rayleigh number Rac. Nonlinear simulations
reach a steady state at a Rayleigh number of O(∼ 108) but still smaller than the critical
Rayleigh number, i.e. Ra < Rac, while for slightly higher Ra values, the flow starts to
oscillate at t ≈ 500. Three nonlinear simulations are performed for three values of Ra
slightly larger than the estimated Rac using the selective frequency damping (SFD) method
of Åkervik et al. (2006), which give us three steady base states. This method has also been
used recently for computing the base state of the flow that is induced when tilting a cavity
containing a stably stratified fluid (see Grayer et al. 2020).

Subsequently, the linear stability of these steady base flows is considered. Using
perturbed variables Θ = Θb + θ ′, V = V b + v′, P = Pb + p′ where subscript b
represents the base state and superscript ′ the perturbation, and neglecting second-order
terms, we obtain linearised perturbation equations of the form

∂v′

∂t
+ Vb · ∇v′ + v′ · ∇Vb = −∇p′ + Pr

Ra1/2 ∇2v′ + Prθ ′ez, (2.4)

∂θ ′

∂t
+ Vb · ∇θ ′ + v′ · ∇Θb = 1

Ra1/2 ∇2θ ′. (2.5)

Linear simulations are run for the three steady base states obtained from the SFD
method, and corresponding to three unstable Ra values. A small amount of noise of the
order of 10−6 is added so that, due to the linear instability, an exponential growth of the
leading mode is observed in the whole cavity. This noise is random and therefore not
necessarily symmetric. Then, the growth rate is determined for each linear simulation,
thus providing eventually three different growth rates. Using a linear interpolation of these
growth rates, the critical Rayleigh number Rac is extrapolated from the value for zero
growth rate. The base flow and the perturbation analysed in the next section are obtained
from the nonlinear and linear simulations for the Rayleigh number just above this critical
Rayleigh number.

2.2. Decomposition of the leading linear mode
In view of former observations of this instability (see e.g. Xin & Le Quéré 2006), the
different variables can be decomposed during the oscillating exponential growth into

θ ′ (x, z, t) = Aθ (x, z) cos (ωt + Φθ (x, z)) eσrt, (2.6)

u′ (x, z, t) = Au (x, z) cos (ωt + Φu (x, z)) eσrt, (2.7)

and
w′ (x, z, t) = Aw (x, z) cos (ωt + Φw (x, z)) eσrt, (2.8)

where A(x, z), ω, Φ(x, z) and σr are amplitude, frequency, phase and growth rate of
the field variables, respectively. The growth rate σ and the oscillation frequency ω are
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Figure 3. The base flow states for A = 2.0 and different Pr: (a) Pr = 0.35, (b) Pr = 0.53, (c) Pr = 0.71,
(d) Pr = 1.4, (e) Pr = 2.0 and ( f ) Pr = 2.8. Streamlines are supplied with arrows indicating flow direction,
and colour representing the temperature.

computed by an algorithm based on Hilbert transforms. The amplitude fields are then
obtained by taking the time maximum of the perturbation variables divided by eσrt. Finally,
the phase fields are obtained with one curve fit per grid point and variable.

3. Numerical results

3.1. The steady base flow and diagnostics
Figure 3(a– f ) shows the steady base flow for different Prandtl numbers and constant
aspect ratio A = 2.0. From figure 3(a– f ) one notices that, for larger Prandtl numbers,
the buoyancy currents detach and meander along the horizontal boundaries, the number
of meanders depending on the Pr. Clear experimental and numerical support for this
meandering is shown by Xu, Patterson & Lei (2008). The wavelength of this meandering
buoyancy current changes significantly with Pr, while its presence is limited by the
horizontal extend W of the cavity represented by A (note H is kept constant). When the
width of the cavity is smaller than this wavelength, the head of the buoyancy current joins
the start of the cold boundary layer, and vice versa near the bottom boundary, such that
the two currents reinforce each other’s inertia, leading to a large-scale fast circulation
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Figure 4. The base flow state for Pr = 0.35 and different A: (a) A = 0.5, (b) A = 1.0, (c) A = 1.5 and
(d) A = 2.0. Lines show the streamlines with the arrows giving the flow direction, and colour representing
the temperature.

along the boundaries (see figure 3a). With increasing Pr (Pr < 0.7 in figure 3), the
large-scale circulation decreases in strength and the buoyancy current detaches from the
horizontal boundary, i.e. Lh < W, and it meanders locally. For larger Pr values, (Pr > 1,
see figure 3d– f ) a horizontal exchange flow establishes in the interior between the two
thermal boundary layers. The boundary layers are thinner for these higher Pr values. For a
constant Pr it depends on the aspect ratio whether there are cell patterns (as in figure 3a)
or rather horizontal exchanges between the thermal boundary layers (as in figure 3 f ) (see
Xin & Le Quéré 2006).

Figure 4 shows flows for Pr = 0.35 and varying aspect ratio A. When the width of
the cavity is large (see figure 4a for A = 0.5), the buoyancy current meanders along
the horizontal boundary. With increasing aspect ratio A, the meander length scale of the
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buoyancy current becomes smaller than the width of the cavity, and there is an increasing
tendency for the formation of cell circulation. Two circulation cells appear for A = 2 in
figure 4(d).

In all cases, a stable density gradient −βdT/dz is present in the interior. The buoyancy
(Brunt–Väisäilä) frequency scaled with time tr = H2/(κRa1/2) is given by

(Nctr)2 = gβ
dT
dz

H4

κ2
1

Ra
= Pr

H
�T

dT
dz

, (3.1)

showing that the Prandtl number, height of the reservoir and density gradient are relevant
for the scaled buoyancy frequency, with slightly stronger stratifications for shallow cavities
(small A) and weaker stratifications for high and narrow cavities (large A).

In the simulations, the buoyancy frequency Nc is determined by the density gradient in
a small region around the centre of the tank. The meander length scale of the buoyancy
current, Lh, is defined as the horizontal distance from the wall where the line that describes
the maximum speed (see figure 1b) has a minimum in z. Here, Lh has been determined
from the flow near the top. In the perturbed state, the instability causes oscillations in the
temperature with frequency, ω. Its amplitude increases due to the linear instability, and
although present in the entire tank, the oscillations are mainly visible in the corner regions
where the thermal motion along the wall is blocked by the horizontal boundary (see e.g.
Le Quéré & Behnia 1998; Xin & Le Quéré 2006, and references therein). Thus, to analyse
this flow, the frequency of the oscillation frequency of the instability mode, ω, the density
stratification in the interior, Nc and the wavelength of the meandering buoyancy current,
Lh, are measured at the locations shown in figure 1(b).

When the temperature oscillations have a higher frequency than the buoyancy frequency,
i.e. ω > Nc, internal waves cannot propagate in the interior and are evanescent. In contrast,
when ω < Nc, the buoyancy currents near top and bottom boundaries may couple due to
the internal waves that propagate into the interior. Even though a larger value of N may
exist near the top and bottom boundaries, the value Nc in the centre of the tank is taken as
reference value since it is more relevant for the coupling of the top and bottom regions. As
mentioned, flows with ω/Nc > 1 are called fast, and flows with ω/Nc < 1 slow since they
allow for the propagation of internal gravity waves, and, in most cases, for the coupling
between the two buoyancy currents. In the absence of internal waves, top and bottom
instabilities generally start to grow independently with different perturbation amplitudes,
resulting in asymmetry. This is referred to as amplitude asymmetry, or asymmetry in short,
and is further detailed below.

For the base states, figure 5(a) shows the (scaled) wavelength of the meandering
buoyancy current Lh/H against Pr for different aspect ratios of the cavity. For small Pr
there is no detachment and Lh is larger than the width of the cavity, i.e. Lh = 1/A. In
this case, the horizontal buoyancy currents and boundary layers at the sidewalls reinforce
each other, leading to a large cell circulation. For larger Pr values, the boundary layers are
thin and the aspect ratio A has no influence on the value of Lh/H. The effects obtained
for decreasing Pr can also be obtained for larger aspect ratio. Boundary layers grow with
distance and become thicker and have more inertia, leading to relatively larger values of Lh.

Figure 5(b) shows that the stratification in the interior increases less for Pr > 0.4
than for Pr < 0.4 since larger gradients form near the horizontal boundaries, and a
weaker stratification forms in the interior. The aspect ratio A has an influence on the
internal stratification only for smaller Prandtl numbers for which the large cell circulation
dominates.
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Figure 5. (a) Meander length scale Lh/H against Prandtl number, Pr, with the dashed lines representing the
aspect ratios A = H/W, and (b) Nc, the Brunt–Väisälä frequency, scaled with the characteristic time tr at the
centre of the cavity as a function of Pr. For comparison, the slope of

√
Pr predicted by (3.1) is shown by the

dashed line.

The asymmetry in the value of the amplitude between the top and bottom currents
is considered in particular since its relation to the presence of internal waves is novel
and provides new insights. For both currents the growth rates are the same, but due to
an asymmetry in the initial noise, the amplitudes of the perturbations may be different.
Writing out the equations for the temperature, we have then

θ ′(x, t) = (C+A+(x) + C−A−(x)) cos(ωt + φ(x)) eσ t, (3.2)

with the ratio C+/C− depending on the initial noise. Thus, in contrast to the coupled case,
with top and bottom currents having the same amplitude and internal waves being part of
the same global mode, we have in the uncoupled case two local regions that are growing
independently.

The symmetry conditions are imposed by the boundary conditions, so that for a solution
Φ with

Φ(x) =

⎛
⎜⎝

Θb(x)

Vb(x)

Pb(x)

ξb(x),

⎞
⎟⎠ (3.3)

with ξb = ∇ × Vb the vorticity in the basic state, the equations are invariant for the
transformations

RΦ(x) =

⎛
⎜⎝

−Θb(−x)

−Vb(−x)

Pb(−x)

ξb(−x).

⎞
⎟⎠ (3.4)

In case there is symmetry, the solution can be either ‘centro-symmetric’, i.e. RΦ(x) =
Φ(x), or ‘anti-centro-symmetric’, i.e. RΦ(x) = −Φ(x) (see Burroughs et al. 2004).
Counter-intuitively, for centro-symmetry, the velocity phase must be opposite to that in the
other corner whereas the vorticity must be equal, and vice versa for anti-centro-symmetry.
This centro-symmetry was tested considering the point reflected value with respect to
the centre of the tank. Thus, the non-dimensional temperature in the top half of the

cavity θ ′
top is compared with its flipped counterpart in the bottom half of the cavity θ

′flip
bot .
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The parameters for centro-symmetry and anti-centro-symmetry then become, respectively,

IC =
〈∣∣∣θ ′

top − θ
′flip
bot

∣∣∣
〉

√
〈θ ′2〉

, (3.5)

IA =
〈∣∣∣θ ′

top + θ
′flip
bot

∣∣∣
〉

√
〈θ ′2〉

, (3.6)

with the brackets standing for the average over the domain, and the enumerator
representing the root-mean-square value of θ ′. When the perturbation is centro-symmetric
or anti-centro-symmetric, either IC or IA, respectively, is small and never zero because
of numerical noise. Both values are large when there is no such symmetry. To identify
centro-symmetry, the difference of the reciprocals of IC and IA

Idif = 1
IC

− 1
IA

, (3.7)

is used, with anti-centro-symmetry for Idif > 0, i.e. the temperature perturbations in
the top and bottom halves of the cavity have the same sign, and centro-symmetry for
Idif < 0, i.e. opposite temperature perturbations in the top and bottom halves of the cavity.
When Idif � 0, there is no symmetry, i.e. the top and bottom currents are asymmetric
in amplitude. The expression (3.7) therefore provides simultaneously information about
centro-symmetry and amplitude symmetry.

Centro-symmetry is generally better solved with different methods that provide a
continuous distribution for the critical Rayleigh number and the centro-symmetry as a
function of Prandtl number (see e.g. Lyubimova et al. 2009, and references therein). Since
this was not the aim of the present investigation, the centro-symmetry below is provided
for completeness, and the details are left for future study.

Below, the six observed regimes for increasing Pr are discussed for a single aspect
ratio A = 1. For the regimes shown in figure 6 the field of the base flow is shown next
to the fields of the perturbations predicted by the linear mode decomposition, with (b)
amplitude, (c) phase and (d) vorticity. The perturbation of the vorticity field (d) reveals
the spatio-temporal nature of the disturbing wave packets. The phase map (c) shows the
distribution of the length scales in the field and can be considered as a signature of the
internal waves. In addition, two time steps show the base flow perturbed with the linear
perturbation (see figure 7a,b).

Movies of the unsteady states are provided as supplementary material available at
https://doi.org/10.1017/jfm.2023.1056. The effects of varying aspect ratio A, along with
the measured parameters ω/Nc and the regime diagram in the space set by A and Pr, are
discussed below.

3.2. Six unsteady regimes
The identification of the different regimes, shown in figure 6, is based on the detachment
of the buoyancy current from the top and bottom boundaries and/or the location of the
instability, the existence of a large-scale circulation and whether the scaled oscillation
frequency is slow (ω/Nc ≤ 1) or fast (ω/Nc > 1), allowing for the presence of internal
waves (or not). With increasing Prandtl number, the plumes detach earlier from the
horizontal boundaries, and the presence of internal wave motions in the interior changes
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Figure 6. Flow maps for A = 1.0 and different different values of Prandtl number, Pr, and oscillation
frequency, ω/Nc (cases I–VI), with (a) base state, (b) temperature amplitude Aθ ′ , (c) phase map Φθ ′ and
(d) vorticity perturbation ξ ′. Supplementary movies of the regimes I, fast circulation cells (FCc) (movie 1);
II, slow circulation cells (SCc) (movie 2); III, fast corner flow (FCo) (movie 3); IV, slow corner flow (SCo)
(movie 4); V, fast corner with evanescent waves (FCoE) (movie 5); and VI, fast instabilities at the wall (FW)
(movie 6) are available online.

981 A10-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1056


Vertical convection regimes
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Figure 7. The base flows corresponding to regimes shown in figure 6 plus the perturbation at (a) t = 0 and
(b) t = 0.25T . Arrows on streamlines indicate flow direction and colour represents temperature. Case VI is
not shown since differences from case V are very small. For all cases I–VI, the same movies as referred to in
figure 6 are represented online.

accordingly (see figure 6 I–VI); figure 7 I–V shows the transition from a convective regime
with circulation cells moving locally through the tank to flows confined to boundary
currents with horizontal exchange between them. Below we present each flow regime.
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In case I (Pr = 0.1) (see figure 6), there is no detachment of the buoyancy current from
the horizontal boundaries and the hot buoyancy current joins the cold thermal boundary
layer, resulting in a large cell circulation (see e.g. Xin & Le Quéré 2006), thus coupling
the top and bottom motions. The phase plot (figure 6c I) shows a central rotary motion.
In the perturbed flow (see figure 7a,b I) smaller cells move in the interior with the large
cell circulation, showing that convective motions dominate. The oscillation frequency of
this mode is larger than the buoyancy frequency, ω/Nc = 2.26, and internal waves can
therefore not propagate. This flow regime is referred to as the fast cell circulation (FCc).

In case II (Pr = 0.35) (see figure 6 II), the buoyancy current detaches from the boundary
and meanders with a wavelength of approximately half the cavity width (figure 6a II).
(Note that for the case Pr = 0.1 shown above, an increase in width of the cavity would
also result in a detachment of the buoyancy current.) This detachment causes the radiation
of internal waves into the interior (see phase plots in figure 6c II) that have a dominant
vertical mode with ω/Nc close to 1.0, leading to quasi vertical iso-phase lines. Vorticity
perturbations (figure 6d II) show a maximum shear in the detached buoyancy current. The
perturbed flow (figure 7a,b II) consists of two large cell structures with a dominant vertical
transport, and large oscillations in the density profile, revealing the presence of internal
waves. In contrast to the FCc case above, energy of the detached buoyancy currents is
dispersed into internal wave motions such that the oscillation frequency is relatively small
or ‘slow’. This regime is referred to as slow circulation cells (SCc).

In case III Pr = 0.53 (see figure 6 III) the flow pattern changes from a convective
flow to a horizontal exchange flow with a shift in direction at mid-height (figure 6a III).
The buoyancy currents detach from the horizontal boundary close to the thermal wall.
Oscillations are fast, ω/Nc > 3, and internal waves cannot propagate through the stratified
interior, and the phase plot (figure 6c III) shows very different length scales in the
buoyancy currents compared with those in the interior. In the absence of internal waves
and a large-scale circulation, the top and bottom motions are decoupled. Thus, the
independent growth of the unstable regions leads to different perturbation amplitudes,
implying amplitude asymmetry (see figure 6b III). Because of the fast oscillations and the
localisation of the instability in the corner regions, this flow is referred to as the fast corner
flow (FCo).

In case IV Pr = 0.71 (see figure 6 IV), we recover the case studied in detail in former
studies (see e.g. Paolucci 1990; Le Quéré & Behnia 1998; Xin & Le Quéré 2006, and
references therein), and more recently by Grayer et al. (2020). Here, ω/Nc ≈ 0.5, allowing
for internal waves in the interior. These internal waves and the unstable corner regions
are part of the same global instability mode (Xin & Le Quéré 2006) as the phase plot
in figure 6(c IV) clearly shows. The amplitude of the internal waves in the interior is
relatively weak compared with the amplitude in the corner regions. The perturbed base
flow (figure 7a,b IV) shows next to the oscillating corner regions, recirculating regions in
the interior that are slightly flattened by the internal buoyancy stratification. The absolute
values of the perturbation amplitude of the top and bottom currents are identical or
very close, which is referred to as symmetric in amplitude (not to be confused with
centro-symmetry). The vorticity perturbations (figure 6d IV) have opposite signs at the top
and bottom corners, revealing that this mode is anti-centro-symmetric (see the definition in
§ 3.1), which is the mode that appears for the lowest Rayleigh number, in agreement with
Burroughs et al. (2004) and Oteski et al. (2015). The centro-symmetric mode appears for
a slightly higher Rayleigh number.

In case V, Pr = 2.8, the thermal boundary layer thickness is thin and the perturbation
maxima are limited to very small corner regions (figure 6a–d V). The oscillation frequency
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Figure 8. Base flows showing close ups of the streamline–temperature fields of the corner regions for A = 1
with maximum amplitude (a–d) for Prandtl numbers from 0.53 to 4.0, and (e–h) the corresponding amplitude
fields. Note that zooms and aspect ratios in (a,b; e, f ) and (c,d; g,h) are chosen differently for visualisation
purposes.

is again increased (figure 6c V). Heat is diffused relatively slowly for this Pr so that the
temperature gradients near the top and bottom boundaries are larger than in the interior.
The scaled oscillation frequency near the boundaries is ω/N ≈ 0.8 while in the interior
ω/N ≈ 1, implying close to evanescent waves in the interior, as can be inferred from
their almost vertical propagation direction (figure 6c V). The coupling between the top
and bottom currents is therefore also weak, and there is amplitude symmetry only for
some aspect ratios. In the interior, there is a smooth exchange flow (figure 7a,b V). This
regime is referred to as fast corner flow with evanescent internal waves (FCoE).

In case VI, Pr = 4, a simulation for a single aspect ratio has been conducted, showing
that the oscillation frequency of the instability (here, ω/Nc ≈ 1.8) increases further with
Pr (see figure 6a–d VI). Internal waves emitted by the buoyancy currents near the top and
bottom are evanescent and cannot propagate further into the interior. The two buoyancy
currents have again different perturbation amplitudes and are therefore asymmetric in
amplitude (figure 6b VI). The scales of motion in the boundary layer, top and bottom
buoyancy currents as well as the interior are indeed very different (see figure 6c VI),
showing two independent unstable regions. As will be shown below, this is a shear
instability located at the wall. This regime is referred to as the fast instability at the wall
(FW).

3.2.1. Corner and boundary layer flows
When zooming in the corner regions (figure 8) substantial flow changes can be noticed
for different Pr. For Pr = 0.53, the detachment and position of Lh (see figure 1b) is
small. Rolling vortex billows emerging from shear instability move to the corner (see
supplementary movies) leading a maximum of the instability in the boundary layer near
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the corner (see figure 8a,e). For Pr = 0.71, the instability has its maxima in the corner
in the detached buoyancy current, where the main mixing occurs (see figure 8b, f ). For
Pr = 2.8, the buoyancy current hardly detaches, and the flow is characterised by the
presence of a downward jet close to the wall (at 0.98 in figure 8c,g). The instability is
located inside the detached buoyancy current and close to the boundary (figure 8g).

For Pr = 4, the boundary layer detaches right in the corner region where it also
results in a downward return flow (figure 8d). The temperature gradient has its maximum
very near to the wall. Outside the boundary layer, the strong shear between the upward
boundary layer motion and the downward return flow with rotary motions similar to that for
Kelvin–Helmholtz-type instabilities (see figure 8d,h and supplementary material) suggests
a shear instability (see also Janssen & Henkes 1995; Xu et al. 2008). In the interior, there is
a horizontal exchange flow from right to left above mid-depth, and below from left to right
(see figure 6 with Pr ≥ 0.53). This exchange flow becomes dominant with increasing Pr.

The phase plots in figure 6(c) V–VI, (Pr = 2.8 and Pr = 4.0) show a large difference in
scale between the boundary layers and the interior. Internal waves in the interior emerge
from the buoyancy currents at the top and bottom boundaries, and are related to up-
and downward motions of entrainment and detrainment, as shown in figure 8(c,d,g,h).
Comparing these latter plots showing the perturbation amplitude (figure 8g,h), one notices
that the downward flow for Pr = 4.0 goes to mid-depth, and for Pr = 2.8 to only
approximately half that distance. In contrast to the case Pr = 2.8, for Pr = 4 the instability
is located at the boundary where it has its maximum amplitude.

3.3. Instabilities and regime diagram
Figure 9(a) presents the normalised oscillation frequency of the leading linear mode with
respect to Pr for the four different values of A. Here, Nc varies with Pr (see figure 5) but
the main variation is in ω. The sharp jump at Pr ≈ 0.55 ± 0.15 separates two different
regimes, one for small Pr and one for large Pr, which can be deduced from scaling
arguments (see Gill 1966). From the stationary heat equation, one can deduce that the
velocity along the boundary scales as κ/� when � is the length scale of the boundary layer.
When introducing this scaling into the vorticity equation, with ξ = ∇ × vb, we obtain for
the convective term vb · ∇ξ ∼ κ2/�3 and the diffusive term ν∇2ξ ∼ νκ/�3. The ratio of
the diffusive term over the convective term is equal to Pr = ν/κ .

For small Prandtl number the instability is thus convectively driven with large cell
circulations (see also figure 7). In figure 9(a) (Pr � 0.5) the flow is characterised by a
cell circulation that is affected by the cavity aspect ratio A. For small cavity widths (large
A), the buoyancy current remains attached to the horizontal boundary, and reinforces the
motion in the thermal boundary layer at the wall, resulting in a fast motion with a high
frequency of oscillation (see e.g. red squares in figure 5a). For large cavity widths (small
A), the buoyancy currents detach from the horizontal boundaries, and radiate internal
waves into the interior. The cell circulation is therefore weakened, resulting in a relatively
slow motion with a low frequency of oscillation (see e.g. blue squares figure 5a), and thus
a smaller Pr is needed to increase ω/Nc.

For large Prandtl numbers the diffusion term is larger than the convective term, from
which it was concluded that the instability is buoyancy driven (see McBain, Armfield
& Desrayaud 2007). But the detrainment and entrainment motions and the related return
flows that are due to these horizontal boundaries cannot be neglected. Janssen & Henkes
(1995) (for different Pr values, 0.25, 0.71 and 2) and Yahata (1999) (for Pr = 0.71)
suggested this to be a shear instability with a change in instability from shear driven
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Figure 9. (a) Maximum normalised oscillation frequency (ω/Nc) and (b) regime diagram in space set by Pr
and aspect ratio A, with the colour indicating the logarithmic value of the normalised oscillation frequency
ω/Nc. Regime names are F for fast when ω/Nc > 1 and S for slow when ω/Nc < 1, � fast circulation cells
(FCc); + slow circulation cells; � fast corner flow (FCo); � slow corner flow (SCo); + fast corner evanescent
waves (FCoE), and � fast instability at the wall (FW). (c) Diagram showing the symmetry index Idif (3.7),
with the extremes (blue and red) corresponding to symmetric cases (anti-centro-symmetric – letter A – and
centro-symmetric – letter C –) and yellow for amplitude asymmetry and no coupling between top and bottom
regions.
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for A > 3.65, to internal wave driven for A < 3.41. For the present range in Pr values,
figure 9(a) shows strong variations around Pr = 0.55 ± 0.15 before the general trend to
thinner boundaries and larger ω/Nc values for Pr � 1.

The regime diagram in figure 9(b) shows the oscillation frequency ω/N represented by
the colour as a function of Pr and aspect ratio A, with the symbols indicating the different
regimes discussed above. For Pr � 0.5, the above reasoning with a dominating cell-driven
motion is represented in this diagram. But for Pr > 0.5, not less than 4 regimes appear due
to the changing influences of internal waves (as indicated in figure 9(b) for Pr > 0.5) and
decreasing thickness of the boundary layer at the wall with Pr. In regime FCo there are no
waves and no coupling; in SCo for the majority of cases there are waves and the top and
bottom regions couple. For even larger Pr values internal waves weaken, and the thermal
boundary layers are thinner (FCoE). For Pr = 4.0 (regime FW) there are no waves and no
coupling. In contrast to the regime FCo, the instability occurs at the boundary. Since for
larger Pr the lateral boundary layers will be even closer to the walls, one may speculate
that this regime will not further change. Simulations were tested for aspect ratio, A = 6
and Pr = 0.7 as in Xin & Le Quéré (2006), showing again the FCc regime. In view of the
mentioned increase of the boundary layer thickness with height, and the increasing inertia
of the buoyancy current for taller cavities and thus larger Lh, the regime FCo most likely
disappears for larger aspect ratio A.

Figure 9(c) shows the amplitude asymmetry according to the definition of (3.7) as a
function of Pr and A. In the FCo regime, due to the absence of internal waves and cell
circulation, the flow is asymmetric in amplitude. For larger Pr (regime SCo), waves are
present, and generally (except for A = 1, Pr = 1.4) couple the top and bottom regions. Not
all flows with internal waves are found to be symmetric in amplitude. Wave patterns in the
interior vary considerably depending on the aspect ratio of the cavity and the location
of the detachment of the buoyancy currents, and some do not allow for coupling. This
may explain the isolated points of asymmetry in amplitude (orange, green and yellow)
for regimes with internal waves (SCc, SCo in figure 9b). In the regime FCoE (Pr = 2.8),
internal waves are close to evanescent, so that the coupling is generally weak in this regime,
causing asymmetry in the amplitude for most cases, and complete asymmetry in the regime
FW (Pr = 4). Regime FCc is symmetric in amplitude due to the coupling by the cell
circulation, and SCc due to internal waves except for one case (A = 1 and Pr = 0.2). For
Pr � 0.5, the cell circulation was found to increase in strength for larger aspect ratios
A > 1, and appeared to cause amplitude symmetry also in the regime FCo, thus showing
some overlap between the regimes (dashed line in figure 9b,c). This suggest that, for higher
aspect ratios A ≥ 2 and Pr < 0.6, the flow is also dominated by convectively driven cells.

Figure 9(c) also shows anti-centro- and centro-symmetry (letters A and C, respectively).
These results are coherent with former results (see e.g. Burroughs et al. 2004; Xin & Le
Quéré 2006; Oteski et al. 2015). However, no systematic variation with the regime diagram
and amplitude asymmetry was found in this context. It is expected that more pertinent
results could be found with a continuous parameter variation method (see e.g. Lyubimova
et al. 2009). This is left open for further research.

Figure 9(a,b) suggests that there is a transition in instability in the regime Pr =
0.55 ± 0.15. The increase of both the shear and the density gradient between the detached
buoyancy currents and the motion in the boundary layer with Pr, make it hard, however,
to determine when exactly the instability is buoyancy or shear driven. A quantitative
comparison is needed to determine the precise nature of the instability for each Pr. This is
undertaken in a separate study.
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Figure 10. Critical Rayleigh number as a function of Prandtl number and (b) the Reynolds number derived
from the critical Rayleigh number and Prandtl number against Prandtl number for different aspect ratios A (see
legend). The dashed lines represent the power laws discussed in the text.

Outside the space of this regime diagram, for aspect ratios greater than 3 or 4, the
boundary layer will become unstable with, for large Ra, the detachment of vortices
disturbing the internal stratification and generating internal waves (Xin & Le Quéré 1995).
In the limit of very large Pr and large A, the onset of local cells was found in the core, the
number of cells being set by the scale of the instability in the boundary layer (see Daniels
1985, 1987, and references therein).

Figure 10(a,b) shows the variation of the critical Rayleigh number and Reynolds number
as a function of Pr, respectively. There is a clear transition between the two regimes, with
Rac ∼ Pr2 for Pr < 1 and Rac ∼ Pr5 for Pr > 1. In between (i.e. for 0.5 < Pr � 2) there
is an intermediate region where internal waves are present and play a role in the dynamics.
In both figures 10(a) and 10(b), for Pr > 1 the aspect ratio does not affect the results.
Finally, it is noteworthy that the Reynolds number defined as Rec = Ra0.5

c /Pr could serve
as an appropriate critical value for the onset of instability since it varies just between
(2 ± 1)104 for Pr < 1, and for Pr > 1, Rec = 104Pr2, whereas the Rayleigh number varies
over six decades (see figure 10b). This Reynolds number compares well with a Reynolds
number based on the maximum velocity in the cavity and the appropriate typical length
scale.

4. Conclusions and discussion

The present investigation shows that there is a large variation in flow regimes depending on
the Prandtl number and aspect ratio, as is represented in the regime diagram of figure 9(b).
The roles of the detachment in the corner regions and the internal waves in the dynamics
are investigated.

The regimes depend on the variation in the detachment of the buoyancy current with
Prandtl number and its effect on the circulation inside the cavity, and on the other hand, the
presence of internal waves. When there is no detachment (for Pr < 0.5) and the buoyancy
current is limited by the horizontal extent of the cavity, a cell circulation develops. The
instability mode is global, and top and bottom motions have amplitude symmetry, i.e. they
have the same (absolute) perturbation amplitude.

When there is detachment of the buoyancy current, there is a local circulation that
is determined by the dynamics of the buoyancy current. The coupling between top and
bottom motions, and therefore their symmetry in amplitude, then depends on the presence
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of internal waves. Generally, in the absence of internal waves and large-scale circulation,
the perturbation amplitudes in the corner region differ and the flow is asymmetric.
However, some exceptions occur, and not all internal wave patterns allow for this
coupling.

The critical Rayleigh number depends on the Prandtl number, with two regimes, one
for Pr < 1 with some variation due to aspect ratio and Rac ∼ Pr2, and one for 1 <

Pr < 4 where the aspect ratio does not affect the results and Rac ∼ Pr5. As mentioned
above, this can equally be expressed in terms of the Reynolds number. For our extreme
value of Pr = 4, Janssen & Henkes (1995) find a critical Rayleigh number Rac =
2.5 × 1010, while for Pr = 10 Wang et al. (2021) find a critical Rayleigh number of
Rac = 6 × 1010, showing a downward tendency. This subject is open to further research.
On the other hand, for very small Prandtl numbers, Gelfgat et al. (1999) found critical
Ra values of O(10−4) so that, on this side, a further decrease in critical Rayleigh
number can be expected with higher critical Rayleigh numbers for the smaller aspect
ratios A.

Some of the regimes represented in figure 9(b) have been observed in former
investigations. For air-filled cavities with aspect ratios of 6 and 7, for example, the FCc
regime was also found in Xin & Le Quéré (2006), whereas the SCo regime is well studied
in e.g. Le Quéré & Behnia (1998) and Oteski et al. (2015), but no detailed information has
been found about the instabilities of the FCoE and FW regimes. Most remarkable is the
FCo regime with its drastic increase in oscillation frequency of a factor of 10 for Prandtl
numbers in the range of Pr = 0.55 ± 0.15. This regime has not been shown before. It most
likely disappears for larger aspect ratio, with for A ≤ 2 and approximately Pr < 0.55, the
flow being dominated by convectively driven cells.

For 0.4 ≤ Pr ≤ 0.7, the shear and the temperature gradient between the corner region
and upward motion near the wall increase, and the corner region oscillates with internal
waves in the interior. There is uncertainty about the origin of the instability mechanism,
and the roles of shear and internal waves. For Pr > 2.8 the region of instability changes
again and occurs between the downward motion in the detached corner flow and the
upward motion at the wall at some distance from the boundary. Also, here, the temperature
gradient is large. Therefore, in order to determine the origin of the instability, a comparison
of the individual terms in the momentum equations, as well as plots for the Rayleigh
criterion, centrifugal instability and Richardson number, is needed. Since this is a rather
elaborate effort, it will be presented elsewhere.

This investigation is limited to a single mode, obtained for the lowest critical Ra. When
increasing Ra, bifurcations with other modes may appear, as shown by Oteski et al.
(2015) for Pr = 0.7 for air, and in a three-dimensional box by e.g. Gelfgat (2017). In
view of former results obtained with direct numerical simulations (see Trias et al. 2007),
one may nevertheless expect that the present results will provide also a good guideline
for the three-dimensional case, as long as the Rayleigh number is small (Ra < 1010).
Preliminary tests in the present research have shown that three-dimensional instabilities
are absent as long as the cavity depth is approximately 10 % of the cavity height (i.e.
0.1 × H). Therefore, we expect that the present regimes have their footprint also in a
quasi-three-dimensional environment.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.1056. The
data that support the findings of this study are openly available in Zenodo at https://zenodo.org/records/
7827872, reference number 7827872.
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Appendix. Table with input parameters

A Pr Ra(107) nx ny A Pr Ra(107) nx ny

0.5 0.1 0.369 80 40 1 0.1 0.1406 40 40
0.5 0.2 2.2 80 40 1 0.2 2.605 40 40
0.5 0.35 12.8 80 40 1 0.35 4.939 40 40
0.5 0.44 16.5 88 44 1 0.44 10.962 44 44
0.5 0.53 24 88 44 1 0.53 14.82 44 44
0.5 0.62 24.1 88 44 1 0.62 13.26 44 44
0.5 0.69 19.85 88 44 1 0.69 20.40 44 44
0.5 0.71 23.75 88 44 1 0.71 18.35 44 44
0.5 1 12.13 96 48 1 1 12.88 48 48
0.5 1.4 28.15 104 52 1 1.4 35.15 52 52
0.5 2 310 160 80 1 2 2000 80 80
0.5 2.8 2880 200 100 1 2.8 2800 100 100
— — — — — 1 4 11 950 100 100

A Pr Ra(107) nx ny A Pr Ra(107) nx ny

1.5 0.1 0.213 27 40 2 0.1 0.594200 20 40
1.5 0.2 0.739 27 40 2 0.2 0.6408 20 40
1.5 0.35 6.19 27 40 2 0.35 2.6788 20 40
1.5 0.44 13.2 33 50 2 0.44 6.7 28 56
1.5 0.53 13.18 33 50 2 0.53 7.95 25 50
1.5 0.62 12.135 33 50 2 0.62 12.63 25 50
1.5 0.69 18.26 33 50 2 0.69 17 25 50
1.5 0.71 16.325 33 50 2 0.71 15.87 25 50
1.5 1 158 37 56 2 1 14.125 28 56
1.5 1.4 34.1 40 60 2 1.4 34.15 30 60
1.5 2 197.2 53 80 2 2 181.25 40 80
1.5 2.8 2600 80 120 2 2.8 2500 60 120

Table 1. Input parameters for the linear simulations. Here, nx and ny are the number of elements in the x and
y directions, respectively, and the polynomial order O is for all cases 7 so that the number of grid points is
(O + 1)2 × nx × ny.
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