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1. Introduction

The projective Stiefel manifolds have been of interest in connection with a varied
spectrum of topological questions. On one hand, they are useful in studying equiv-
ariant maps between the Stiefel manifolds [17], and on the other, they form a part
of an obstruction theory for constructing sections of multiples of a given line bundle
[3]. In the real case, they play an important role in the immersion problem for real
projective spaces [19].

In this paper, we consider the complex projective Stiefel manifolds PWn,k, defined
as the quotient of the complex Stiefel manifold Wn,k by the S1-action. Recall that
Wn,k is the space of orthonormal k-frames in Cn, and the group S1 acts on Wn,k

by vector-wise multiplication using S1 ⊂ C, whose orbit space is the complex pro-
jective Stiefel manifold PWn,k. The cohomology of PWn,k with Z/p-coefficients
was computed in [3], which is analogous to the Z/2-computation for real projective
Stiefel manifolds in [11]. Among other applications, this has been used to prove the
non-existence of S1-equivariant maps between Stiefel manifolds [17].

A natural idea here is that extending the computations to generalized cohomology
theories would yield further results about equivariant maps. We follow through
along these lines and compute the BP -cohomology as (theorem 4.4).

Theorem A. The BP -cohomology of PWn,k is described as

BP ∗(PWn,k) ∼= ΛBP∗(pt)(γn−k+2, . . . , γn)⊗BP∗(pt) BP
∗(pt)[[x]]/I
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where γj’s are of degree 2j − 1, x is of degree 2, and I is the ideal generated by
{(nj)xj |n− k < j � n}.

The method used to compute the BP -cohomology is the homotopy fixed point
spectral sequence. This works for any complex oriented cohomology theory, where
the class x comes from the choice of complex orientation. Consequently, the
K-theory of the complex projective Stiefel manifold has an analogous formula,
which was computed in [13] using the Hodgkin spectral sequence for the cohomol-
ogy of homogeneous spaces. The same method is also likely to work for P�Wn,k,
the quotient by a variant of the S1-action, whose cohomology was computed in [5].
Here, � refers to a tuple of integers (l1, . . . , lk) and the action of S1 is given by
z · (v1, . . . , vk) = (zl1v1, . . . , z

lkvk).
We observe that the BP -cohomology ring of PWn,k is just the extension of coef-

ficients from Z(p) in ordinary cohomology to Z(p)[v1, v2, . . .] in BP -cohomology.
Therefore, the primary multiplicative structure does not yield new results for equiv-
ariant maps between Stiefel manifolds. However, BP has the action of Adams
operations [2], which yield the following new result on equivariant maps (see
theorem 5.3).

Theorem B. Suppose that m, n, l, k are positive integers satisfying

(1) n− k < m− l and there is an s such that m < 2s +m− l � n.

(2) 2 divides all the binomial coefficients
(

n
n−k+1

)
, . . . ,

(
n

m−l

)
.

(3) 2 does not divide
(

m
m−l+1

)
and 2 � m− l.

Then, there is no S1-equivariant map from Wn,k to Wm,l.

We also obtain some new results using the action of Steenrod operations on
H∗PWn,k. We point out that the analysis of equivariant maps on Stiefel manifolds
also leads to results in topological combinatorics [4].

1.1. Organization

In § 2, we discuss the construction of the homotopy fixed point spectral sequence,
proving results about the convergence and the differentials in the case of projective
Stiefel manifolds. In § 3, we describe the cohomology of the Stiefel manifold over
generalized cohomology theories, and then specialize to BP . In § 4, we complete the
calculation of the spectral sequence and describe the BP -cohomology of PWn,k. In
§ 5, we discuss the applications to equivariant maps between Stiefel manifolds.

2. Homotopy fixed point spectral sequence

The purpose of this section is to set up the computational tools for the following
sections. The main idea here is the homotopy fixed point spectral sequence for
(naive) G-equivariant spectra: for a spectrum Z with a G-action, there is a spectral
sequence with E2-page Hs(G;πtZ) which converges to πt−sZ

hG [10] (see also [12]).
The principal example for our paper is when G acts on a function spectrum

F (X, E) for a spectrum E and a based G-space X. Let us make this more precise.
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Let E be a spectrum so that the reduced E-cohomology of based spaces is computed
as (note here that the cohomological grading is negative of the usual homotopy
grading)

Ẽn(X) ∼= [X,ΣnE] ∼= π−nF (X,E).

Here we use the notation [−, −] for the homotopy classes of maps between spectra.
We follow the construction of function spectra in [14]. If X has a G-action, the
function spectrum F (X, E) is a spectrum with G-action (that is, a G-spectrum
indexed over a trivial G-universe). We write [−, −]Gtr for the equivariant homotopy
classes in the category of spectra with G-action, and FG

tr (−, −) for the equivari-
ant function spectrum with G-action. We have the following result regarding this
construction.

Proposition 2.1 [14, Ch. XVI, §1, (1.9)]. Let X be a based G-space, and E a
spectrum. Then,

πG
−nF

G
tr (X,E) ∼= [X,ΣnE]Gtr ∼= [X/G,ΣnE] ∼= Ẽn(X/G).

For a free G-space X we may apply proposition 2.1 by adding a disjoint base-
point. The homotopy fixed points of a spectrum Z with G-action are ZhG =
FG

tr (EG+, Z)G. We know that for a free G-space X, the projection X × EG→ X
is a G-equivalence. Therefore, we have the following equivalence of spectra.

Corollary 2.2. Let X be a free G-space, and E a spectrum. Then

FG
tr (X+, E)hG � FG

tr (X+, E)G � F (X/G+, E).

In this paper, we apply corollary 2.2 to the case X = Wn,k, the Stiefel manifold
of k-orthogonal vectors in Cn. This action is free and the quotient space is the
projective Stiefel manifold PWn,k.

Corollary 2.3. Let E be a spectrum. There is an equivalence of spectra

F (PWn,k+, E) � FS1

tr (Wn,k+, E)hS1
.

We attempt to understand FS1

tr (Wn,k+, E)hS1
via the homotopy fixed point spec-

tral sequence. For a spectrum Z with S1-action, we follow the exposition in [8]
replacing homology with homotopy groups. We have a S1-equivariant filtration of
ES1 given by

∅ ⊂ S(C) ⊂ S(C2) ⊂ . . . ⊂ S(Cr) ⊂ S(Cr+1) ⊂ . . . ,
so that

ZhS1 � lim←−
r

FS1

tr (S(Cr)+, Z)S1
.

We index the filtration of ES1 as

E(r)S1 =

{
S(C

r
2+1) if r is even

E(r−1)S1 if r is odd,
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so that

E(2r)S1/E(2r−1)S1 � S1
+∧S2r, E(2r+1)S1/E(2r)S1 � ∗,

where the action of S1 on S2r is the trivial action. The filtration on the induced
tower of fibrations is written as

ZhS1

(r) = FS1

tr (E(r)S1
+, Z)S1

,

so that

ZhS1

(r) /Z
hS1

(r−1) �
{
FS1

tr (S1
+∧Sr, Z)S1 � Σ−rZ if r is even

∗ if r is odd.

We may now follow [8] to obtain a conditionally convergent spectral sequence [6].

Proposition 2.4. Let Z be a homotopy commutative ring spectrum with S1-action.
There is a conditionally convergent multiplicative spectral sequence

Es,t
2 = Hs(S1;πt(Z)) =⇒ πt−s(ZhS1

).

In this expression, the group cohomology H∗(S1;πtZ) of S1 with coefficients in the
discrete group πtZ equals Z[y]⊗ πtZ with |y| = (2, 0).

Example 2.5. If Z = E with trivial S1-action, the homotopy fixed point spec-
trum ZhS1 � F (BS1

+, E). In this case, the homotopy fixed point spectral sequence
becomes

Es,t
2 = Hs(CP∞)⊗ πtE =⇒ πt−sF (CP∞

+ , E).

Making identifications En(CP∞) ∼= π−nF (CP∞
+ , E), we observe that this reduces

to the Atiyah-Hirzebruch spectral sequence for CP∞. If E is complex orientable,
the class y becomes a permanent cycle.

Next we specialize to the case Z = FS1

tr (X+, E) where X is a free S1-space,
and E is a spectrum. The homotopy groups of FS1

tr (X+, E) in proposition 2.4 are
computed by forgetting the S1 action, and thus we have

πtF
S1

tr (X+, E) ∼= πtF (X+, E) ∼= E−t(X).

On the other hand, we apply corollary 2.2 to deduce

πtF
S1

tr (X+, E)hS1 ∼= πtF
S1

tr (X+, E)S1 ∼= πtF (X/S1
+, E) ∼= E−t(X/S1).

We now switch the sign of the t-grading in the spectral sequence of proposition 2.4
to obtain a conditionally convergent multiplicative spectral sequence

Es,t
2 = Hs(S1;Et(X)) ∼= Z[y]⊗ Et(X) =⇒ Es+t(X/S1).

We summarize these facts together in the theorem below. For the rest of the section,
X is a free S1-space and E a homotopy commutative ring spectrum.
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Proposition 2.6. There is a conditionally convergent multiplicative spectral
sequence

Es,t
2 = Hs(S1;Et(X)) ∼= Z[y]⊗ Et(X) =⇒ Es+t(X/S1).

(1) If E is complex orientable, the class y is a permanent cycle.

(2) The differential dr changes the grading by (s, t) �→ (s+ r, t− r + 1).

(3) If X, X/S1 are finite CW complexes, and E is complex orientable, the spectral
sequence is strongly convergent.

Proof. The degree of the differentials follow from the construction of the exact
couple for the spectral sequence. We also have the map X+ → S0 which gives a
map E → FS1

tr (X+, E) which is S1-equivariant. Thus we have a map between the
homotopy fixed point spectral sequences which maps the classes y to one another,
and so, (1) follows from the identification in example 2.5.

It remains to prove (3). For this, we show that for k sufficiently large, yk lies
in the image of a differential. It will then follow that for r sufficiently large the
classes ym and their π∗E multiples are 0 in the Er-page for m � k. Therefore, the
Er-page will be concentrated in the columns between 1 and k, and E∞ = Er by
increasing r further if necessary. Hence, the spectral sequence converges strongly [6,
theorem 7.4].

The space X/S1 being finite dimensional implies that the classifying map
X/S1 → BS1 (for the S1-bundle X → X/S1) factors through a finite skeleton.
Hence, we have an equivariant map X → S(Ck+1) for some k, and thus a map
FS1

tr (S(Ck+1)+, E)→ FS1

tr (X+, E). As E is complex orientable,

π∗FS1

tr (S(Ck+1)+, E) ∼= π∗F (CP k, E) ∼= E−∗(CP k) ∼= π∗E[y]/(yk+1)

for some choice of complex orientation y. Observe that the homotopy fixed point
spectral sequence for the space ES1 as in example 2.5 matches with the Atiyah-
Hirzebruch spectral sequence for CP∞. It follows that the class y represents the
complex orientation in the E2-page. For S(Ck+1) and hence also for X via the
equivariant map X → S(Ck+1), the class y represents a nilpotent class whose k +
1-power is 0. Therefore, yk+1 must lie in the image of a differential, and (3) follows.

�

Example 2.7. Suppose that E = HR for a commutative ring R, the Eilenberg-
MacLane spectrum with π0HR = R. In this case the spectral sequence in proposi-
tion 2.6 matches the Serre spectral sequence (from the E2-page onwards) associated
to the fibration

X → X/S1 → CP∞

obtained by identifying the homotopy orbits space XhS1 � X/S1, and the classify-
ing space BS1 � CP∞. In this case, the spectral sequence is strongly convergent
from the corresponding result for the Serre spectral sequence. Moreover, due to the
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fact that X/S1 is a finite complex, the E∞-page vanishes beyond the dimension of
X/S1.

Next we provide a method to compute the differentials in the spectral sequence of
proposition 2.6. In the tower of fibrations used to construct the spectral sequence,
the spectrum at the bottom of the tower is FS1

tr (S1 ×X+, E)S1 � F (X+, E).

Let Q denote the homotopy cofibre of the map X → X/S1. In the category of spec-
tra, F (Σ−1Q, E) � ΣF (Q, E) is the homotopy cofibre of the map F (X/S1

+, E)→
F (X+, E). In view of the commutative square

we obtain coherent maps Pk : ΣF (Q, E)→ΣFS1

tr (Q(k), E)S1
, where Q(k) =

[S(Ck+1)/S(C)] ∧X+ is the S1-equivariant homotopy cofibre of X × S(C)→ X ×
S(Ck+1). Projecting onto the first factor gives a map Q(k)→ S(Ck+1)/S(C) which
gives a map

F (CP k, E) � FS1

tr (S(Ck+1)/S(C), E)S1 → FS1

tr (Q(k), E)S1
.

Let an element x ∈ En(X) be represented by the map S−n x→ F (X+, E). Our
hypothesis about such an x is a factorization in the following commutative diagram
for 0 � k �∞.

(2.1)

Before applying this hypothesis we note

Proposition 2.8. Suppose that the composite S−n x→ F (X+, E)→ ΣFS1

tr

(Q(k), E)S1
is null-homotopic. Then, dr(x) = 0 for r � 2k + 1.
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Proof. The statement follows from the fact that the composite being null-homotopic
implies that x lifts in the tower of fibrations to FS1

tr (S(Ck+1)×X+, E)S1
. �

Example 2.9. In the case E = HR, the spectral sequence is the Serre spectral
sequence of the fibration X → X/S1 → CP∞ according to example 2.7. Note that

F (CP k,HR) �
∨

1�i�k

Σ−2iHR,

so in the diagram (2.1) y may be non-trivial only when n is odd, and k � n+1
2 . If n

is odd and (2.1) holds for k = n+1
2 , the class x is transgressive, and dn+1(x) is the

composite

S−n y→ ΣF (CP
n+1

2 ,HR) �
∨

1�i� n+1
2

Σ−2i+1HR→ Σ−nHR.

We assume now that E is connective, and that (2.1) holds for k =∞. In this case
we have

Proposition 2.10. Suppose that (2.1) holds for k =∞ and that E is connec-
tive. Then, dr(x) = 0 if r � n. Further, dn+1(x) = dH

n+1(qH(x)), where qH is the
map E → Hπ0E, and dH

n+1 is the (n+ 1)th differential for the spectral sequence of
proposition 2.6 for Hπ0E. (Here we observe that the spectral sequence is one of
π0E-modules, so this allows us to interpret the last statement.)

Proof. We observe that E is connective implies that ΣF (CP k, E) is (−2k + 1)-
connective (that is, the homotopy groups are 0 in degree � −2k). Therefore, the
composite

S−n y→ ΣF (CP∞, E)→ ΣF (CP k, E)

is trivial for degree reasons if −n � −2k. From the commutative square

we deduce that the composite in the lower row is trivial. Hence, from proposition
2.8 we get that dr(x) = 0 if r � n.

Via the map qH : E → Hπ0E, we observe that (2.1) also holds for qH(x) when we
replace E by Hπ0E. Therefore, in the associated spectral sequence dH

r (qH(x)) = 0
if r � n and dH

n+1(qH(x)) is described in the formula in example 2.9. Also we need
to only assume n is odd, as the result is vacuously true in the other case. We fix
k = n+1

2 so that n = 2k − 1. With this choice of n and k,

π−nΣF (CP k, E) ∼= π0E, π−nΣF (CP k−1, E) = 0.

It follows that the composite of y to ΣF (CP k, E) lifts to yk : S−n →
ΣF (CP k/CP k−1, E).
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The differential dn+1(x) may be described as the composite

S−n χ→ FS1

tr (S(Ck)×X+, E)S1 → ΣFS1

tr ([S(Ck+1)/S(Ck)] ∧X+, E)S1

where χ is a lift of x along the map FS1

tr (S(Ck)×X+, E)S1 → F (X+, E). We
expand this in the diagram below

Observe that the bottom square is a homotopy pullback square of spectra as
the homotopy fibre of both the vertical maps are FS1

tr (Q(k − 1), E)S1
. There-

fore, the map χ is determined from x and the map S−n → ΣFS1

tr ([S(C∞)/S(Ck)] ∧
X+, E)S1

. This may now be computed using the lift of y to ΣF (CP∞/CP k−1, E)S1

as its restriction to CP k−1 is 0. We may now compute dn+1(x) via the following
commutative diagram

The middle vertical map is the one which quotients out the factor X, and this also
induces the right vertical map. Under the identification ΣF (CP k/CP k−1, E) �
Σ−2k+1E, and π−nΣ−2k+1E ∼= π0E, we identify yk with dH

n+1(x). �

3. The cohomology of Wn,k

In this section, we calculate the generalized cohomology of Wn,k with respect to a
complex oriented spectrum E. Later in the section, we specialize to E = BP , the
spectrum for Brown-Peterson cohomology.

Recall that a complex orientation for a homotopy commutative ring spectrum
E is a class x ∈ Ẽ2(CP∞), which restricts to a generator of the free rank one
π0E-module Ẽ2(S2) ∼= E0(pt). For a complex oriented spectrum E, we have [1]

E∗(CPn) ∼= E∗(pt)[x]/(xn+1), E∗(CP∞) ∼= E∗(pt)[[x]].

For the complex Stiefel manifold, the classical computations of their cohomology
[15] proceeds using the Serre spectral sequence as for other homogeneous spaces.
It is proved that the cohomology of Wn,k is an exterior algebra with generators
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in degrees 2n− 2k + 1, 2n− 2k + 3, . . . , 2n− 1. The Stiefel manifold also has a
filtration

where the inclusion Wn−1,k−1 ↪→Wn,k is given by adding the last vector en. The
filtration quotients are computed using the following homotopy pushout ([20, chap-
ter IV] defines the maps in the diagram below, and [16, Ch. 5, proposition 2] proves
the entirely analogous result in the real case)

(3.1)

In order to construct μn one defines

S1 × CPn−1 → U(n)

by (z, L) �→ A(z, L), where A(z, L) : Cn → Cn is the unitary transformation which
multiplies the elements of L by z and fixes the orthogonal complement. The map
μn is induced by matrix multiplication in U(n) and the left action on Wn,k. From
the construction of μ and the fact that Wn,k

∼= U(n)/U(n− k), one obtains the
induced map

μn,k : Σ[CPn−1/CPn−k−1]→Wn,k.

It follows from (3.1) that

Wn,k/Wn−1,k−1 � Σ[CPn−1/CPn−2] ∧Wn−1,k−1+�Σ2n−1(Wn−1,k−1+).

In the case of ordinary cohomology, the exterior algebra generators for the coho-
mology of Wn,k pullback under μn,k to Σxi−1 (Σ : H∗X → H∗ΣX is the suspension
isomorphism). We now use this filtration to prove analogous results for the
E-cohomology of Wn,k.

Proposition 3.1. Let E be a complex oriented cohomology theory, such that there
is no 2-torsion in E∗(pt). Then,

E∗(Wn,k) ∼= ΛE∗(pt)(zn−k+1, . . . , zn),

is an exterior algebra with |zi| = 2i− 1. These generators satisfy
(1) The inclusion Wn−1,k−1 ↪→Wn,k sends zi to zi if n− k + 1 � i � n− 1 and

sends zn to 0.
(2) μ∗

n,k(zi) = Σxi−1.
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Proof. We prove the results by induction on k, constructing the generators zi along
the way. For k = 1, the Stiefel manifold is the sphere S2n−1, and in this case, we
know that the E-cohomology is the exterior algebra on one generator. This starts
the induction.

In the induction step, we know that E∗(Wn−1,k−1) is as described in this proposi-
tion, and attempt to derive the same for E∗(Wn,k) via the pushout (3.1). This gives
us the following maps between long exact sequences corresponding to the columns
of (3.1).

(3.2)

We now justify the various identifications described in (3.2). The fact that E is
complex oriented implies E∗(CPn−1)→ E∗(CPn−2) is surjective, and the induc-
tion hypothesis gives us that E∗(Wn−1,k−1) is a free E∗(pt)-module. This implies
that

Er(Σ(CPn−1
+ )×Wn−1,k−1)→ Er(Σ(CPn−2

+ )×Wn−1,k−1)

is surjective. This implies the identifications in the bottom row of (3.2). Note
that the map Σ(CPn−2

+ )×Wn−1,k−1 →Wn−1,k−1 has a section corresponding
to the inclusion of the base-point of Σ(CPn−2

+ ), and thus, the map induced on
E-cohomology is injective. The identifications on the top follow from the ones of
the bottom row, and the fact that Er(Wn−1,k−1)→ Er(Σ(CPn−2

+ )×Wn−1,k−1) is
injective. It follows that we have short exact sequences

0→ E∗(Σ2n−1Wn−1,k−1+)
j∗
→ E∗(Wn,k) i∗→ E∗(Wn−1,k−1)→ 0.

For n− k + 1 � i � n− 1, we choose zi ∈ E2i−1(Wn,k) so that they map to zi under
i∗. The class zn is chosen so that it maps to Σxn−1 under μn,n−1. From (3.2), it
follows that zn is a generator for the ideal of E∗(Wn,k) given by image of j∗.
By the construction (1) and (2) follow. As the classes zi are in odd degree and
E∗(pt) has no 2-torsion, we have z2

i = 0, and (3.2) implies that E∗(Wn,k) additively
matches with the exterior algebra on the zi. The result now follows by induction
on k. �

We now proceed to define the generators of the exterior algebra E∗(Wn,k) in
a strict fashion which will satisfy (1) and (2) of proposition 3.1. From the proof,
we note that for any classes zi satisfying (2), E∗(Wn,k) ∼= ΛE∗(pt)(zn−k+1, . . . , zn).
Although the results in the following will have analogous consequences for any
complex oriented E, we fix our attention to the case E = BP , which will be used
in the following sections. Recall [18]

BP ∗(pt) ∼= Z(p)[v1, v2, . . .],
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where vi denotes the Araki generators [18, A2.2.2] that lie in degree −2(pi − 1). We

also fix from now on x ∈ B̃P 2
(CP∞) to denote the fixed orientation for a p-typical

formal group law over BP ∗(pt). We also assume that x is such that it maps to the
first Chern class under the map λ : BP → HZ(p).

The method of choosing the generators yj for BP ∗(Wn,k) is by relating them to
the BP -Chern classes cBP

j [9]. We start with the case k = n, when Wn,n = U(n).
Recall that H∗(U(n); Z(p)) = ΛZ(p)(y

H
1 , . . . , y

H
n ) with |yH

j | = 2j − 1, and in Serre
spectral sequence for the fibration

U(n)→ EU(n)→ BU(n),

yH
j transgresses to the jth-Chern class cHj . This follows from [7] which identifies

the transgression for the above spectral sequence. We also know that A∗(yH
j ) =

Σxj−1
H , where A : Σ(CPn−1

+ )→ U(n) is induced from (z, L) �→ A(z, L), and xH is
the first H-Chern class of the canonical line bundle over CP∞. Write σ : ΣU(n)→
BU(n) for the adjoint of the equivalence U(n) � ΩBU(n), and form the composite
diagram

For a cohomology theory E, denote by φ∗E (respectively σ∗
E) the map induced by φ

(respectively σ) on E-cohomology. We have φ∗H(cj) = Σ2xj−1
H as σ∗

H(cj) = ΣyH
j .

Proposition 3.2. There are classes τj ∈ BP 2j(BU(n)) of the form

τn = cBP
n , and ∀ 1 � j � n, τj = cBP

j +
∑
k>j

νkc
BP
k

for νk ∈ BP ∗(pt), such that

φ∗BP τj = Σ2xj−1.

The standard map BU(n)→ BU(n+ 1) classifying the canonical bundle plus a triv-
ial bundle sends τj to τj for j � n, and τn+1 to 0. Define yBP

j ∈ BP 2j−1(U(n)) by
the formula ΣyBP

j = σ∗
BP τj. Then,

(1) The classes yBP
1 , . . . , yBP

n are generators for the exterior algebra BP ∗(U(n)).
(2) λ(yBP

j ) = yH
j . (That is, the classes yBP

j are lifts of the cohomology classes
yH

j to BP .)
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Proof. We note that using proposition 3.1, it suffices to prove the statements about
τj . Consider the following commutative diagram

(3.3)
We have λ(cBP

j ) = cj , and also that λ maps the complex orientation of BP to that
of H. It readily follows that φ∗BP (cBP

j )− Σ2xj−1 lies in the kernel of λ, which is
the ideal (v1, v2, . . .). As

B̃P
∗
(Σ2(CPn−1

+ )) ∼= Z(p)[v1, v2, . . .]{Σ21,Σ2x, . . . ,Σ2xn−1},
the left vertical arrow of (3.3) is an isomorphism in degree 2n. It follows that
φ∗BP (cBP

n ) = Σ2xn−1, and so, τBP
n = cBP

n maps to the element of BP ∗(Σ2(CPn−1
+ ))

required by the proposition.
We proceed to construct the τj such that φ∗BP τj = Σ2xj−1. Starting from j = n,

suppose that τj+1 has already been defined. We now have φ∗BP (cBP
j )− Σ2xj−1 ∈

(v1, v2, . . .). For degree reasons we have

φ∗BP (cBP
j )− Σ2xj−1 =

∑
k>j

ρkΣ2xk−1 =
∑
k>j

ρkφ
∗
BP (τk),

for some ρk ∈ (v1, v2, . . .). Rearranging terms and substituting the formula for τk,
we obtain an equation

Σ2xj−1 = φ∗BP (cBP
j +

∑
k>j

νkc
BP
k ),

where νk is a BP ∗(pt)-linear combination of the classes ρk in the preceeding
equation. It follows that τj = cBP

j +
∑

k>j νkc
BP
k satisfies the required criteria. We

note that φ∗BP has image in BP ∗(Σ2(CPn−1
+ )) which is a suspension. It follows that

the decomposable elements over BP ∗(pt) map to 0 under φ∗BP . Also the formula
φ∗BP (τj) = Σ2xj−1 implies that φ∗BP induces an isomorphism when restricted to the
module of indecomposables. This shows that the elements νk are unique, and so
the classes τk are coherently defined over n as required in the proposition. �

We now provide a strict definition for the generators of BP ∗(Wn,k) following
proposition 3.2. Recall that there are maps

i : Wn−1,k−1 →Wn,k, q : Wn,k →Wn,k−1,

where i adds the vector en at the end, and q forgets the last vector. We have
already seen in (3.2) that i∗ is surjective in BP -cohomology. We also note that
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q∗ is injective. For, q∗ applied to the generators of BP ∗(Wn,k−1) as in proposition
3.1 together with a generator of BP ∗(S2n−2k+1) = BP ∗(Wn−k+1,1) satisfies (2) of
proposition 3.1. This provides a tuple of exterior algebra generators for BP ∗(Wn,k).
Therefore, the quotient map π : U(n)→Wn,k is injective in BP -cohomology.

Proposition 3.3. With notations as above, π∗ maps BP ∗(Wn,k) to the subalgebra
of BP ∗(U(n)) generated by the classes yBP

n−k+1, . . . , y
BP
n .

Proof. We have a diagram of fibrations

which induces the commutative diagram

(3.4)
From the construction of the classes yBP

j we have π∗α(τj) = δ(yBP
j ). On the

other hand, if j > n− k, the class α(τj) maps to 0 in BP ∗(BU(n− k)). The map
BP ∗BU(n)→ BP ∗BU(n− k) is the map on BP -cohomology associated to the
standard inclusion BU(n− k)→ BU(n) classifying the sum of the canonical bun-
dle with k-copies of a trivial bundle. This maps cBP

j to 0 for j > k, and hence,
from the formula in proposition 3.2, the classes τj to 0 if j > k. It follows that for
j > k, there are classes yj ∈ BP ∗(Wn,k) such that α(τj) = δ(yj), and from (3.4)
that π∗(yj) = yBP

j . Also the property φ∗BP (τj) = Σ2xj−1 implies that the classes
yj satisfy (2) of proposition 3.1. This result follows readily. �

4. BP -cohomology of PWn,k

In this section, we describe the BP -cohomology ring of PWn,k using the homo-
topy fixed point spectral sequence (proposition 2.6). This is a strongly convergent
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spectral sequence

Es,t
2 = Z[x]⊗BP t(Wn,k) =⇒ BP s+t(PWn,k) (4.1)

Recall that

BP ∗(Wn,k) ∼= ΛBP∗(pt)(yn−k+1, . . . , yn)

by proposition 3.3. We start with a proposition describing the initial differential on
the classes yj .

Proposition 4.1. In the spectral sequence (4.1), the differentials on yj are
described by

dr(yj) =

{
0 if r < 2j(
n
j

)
xj if r = 2j.

Proof. The proof will follow from the existence of a diagram as in (2.1). We have
the commutative diagram

in which the rows are fibrations [3]. The map f classifies the n-fold Whitney sum
of universal canonical complex line bundle. It leads to the following commutative
diagram

Suppose that the class τj of proposition 3.2 is mapped to ψj under f∗. In the
first row, the image of yj and image of τj coincide (proposition 3.2 and (3.4)),
hence, the same must happen in the bottom row leading to the following homotopy
commutative diagram

(4.2)

The Whitney sum formula for Chern classes over BP -cohomology implies that
f∗(cBP

j ) =
(
n
j

)
xj . The description of τj in proposition 3.2 now leads to the following
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form for ψj

ψj =
(
n

j

)
xj +

∑
k>j

νk

(
n

k

)
xk. (4.3)

Now apply proposition 2.10 to get dr(yj) = 0 if r < 2j, and d2jyj is determined
from the corresponding spectral sequence over HZ(p). This may be computed as in
[3] to be d2jyj =

(
n
j

)
xj . Hence the result follows. �

We now proceed to compute the E∞-page of the spectral sequence. The main
idea here is that (4.2) may be used to determine all the differentials on the classes
yj .

Proposition 4.2. The E∞-page of the spectral sequence (4.1) is given by

E∞ = ΛBP∗(pt)(γn−k+2, . . . , γn)⊗BP∗(pt) BP
∗(pt)[[x]]/I

where γj are certain elements in BP ∗(Wn,k) with deg(γj) = 2j − 1, and I is the
ideal of BP ∗[[x]] generated by the set {(nj)xj |n− k < j � n}.

Proof. The class x is a permanent cycle by proposition 2.6. The multiplicative
structure determines all the differentials once they are known on the classes yj . We
notice that E2n+1 is the E∞-page because d2n(yn) = xn (proposition 4.1) and so
all the higher powers of x are killed in the E2n-page.

From proposition 4.1, we see that the first non-trivial differential is d2(n−k+1) and
the generator yn−k+1 and all its multiples do not survive to the next page since

d2(n−k+1)(yn−k+1) =
(

n

n− k + 1

)
xn−k+1.

For the yj of higher degree, it may happen that the first non-trivial differential on
it

d2jyj =
(
n

j

)
xn−k+1

may be zero. This precisely happens when
(
n
j

)
lies in the ideal generated by

(
n
i

)
for

n− k + 1 � i < j inside Z(p). This condition may be interpreted in terms of p-adic
valuations of these numbers. We then obtain a multiple psyj on which the differen-
tial is 0, determined by the formula s+ vp(

(
n
j

)
) = minn−k+1�i<j vp(

(
n
i

)
). The class

psyj may now support higher order differentials. Their formula is determined by
computing psψj using (4.2) in the form of (2.1)
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for N > 2j. According to the formula (4.3), the next possible differential is

d2j+2(psyj) = psνj+1

(
n

j + 1

)
xj+1 = psνj+1d2j+2(yj+1).

We now rectify this class as psyj − psνj+1yj+1 and obtain a cycle. This process
continues until we reach the E2n+1-page following which there are no further non-
zero differentials.

We now formalize the above process by writing down a series of modifications to
produce the element γj . Starting with γ

(2)
j := yj , in r-th step of the modification,

the modified element will be denoted by γ(r)
j . Below we describe transformations,

exactly one of which will be performed to produce γ(r+1)
j from γ

(r)
j .

(1) If drγ
(r)
j = 0, then it survives to the next page and we call that element γ(r+1)

j .

(2) If r = 2j and γ
(2j)
j = yj and dr(γ

(r)
j ) =

(
n
j

)
xj . Define s by the formula s+

vp(
(
n
j

)
) = minn−k+1�i<j vp(

(
n
i

)
), and declare γ(r+1)

j = psγ
(r)
j .

(3) If r > 2j, and dr(γ
(r)
j ) �= 0, then we know r is even, and there is a BP ∗-

multiple of y r
2

mapped by dr onto the same class (this follows from the formula

for ψj in the same way as demonstrated for psyj above). That is, dr(γ
(r)
j ) =

λdr(y r
2
) for some λ ∈ BP ∗(pt). We declare γ(r+1)

j = γ
(r)
j − λy r

2
.

We finally write γj = γ
(2n+1)
j which survives to the E∞-page. Hence, we have

shown that the 0-th column of the E∞-page is ΛBP∗(γn−k+2, . . . , γn). Also on the
E∞-page the ideal generated by {(nj)xj |n− k < j � n} goes to 0, as each of the
generators are hit by the differentials d2j(yj). This completes the proof. �

It remains now to solve the additive and multiplicative extension problems to
obtain BP ∗PWn,k from the expression in proposition 4.2. In the following lemma,
we show that the part BP ∗(pt)[x]/I forms a subalgebra of BP ∗PWn,k. Recall the
fibration Wn,k → PWn,k

pk→ CP∞. We prove

Lemma 4.3. The kernel of the map p∗ : BP ∗(CP∞)→ BP ∗(PWn,k) contains the
ideal I generated by {(nj)xj |n− k < j � n} in BP ∗(pt)[[x]].

Proof. The proof goes by induction on k. For k = 1, the fibration is up to homotopy
the following sequence

so that the kernel of p∗1 is the ideal generated by xn, satisfying the statement of
the lemma. Suppose that the lemma is true for PWn,k−1. To show the result for
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PWn,k, we consider the diagram

In the above diagram, f classifies the bundle nγ where γ is the canonical line bundle
over CP∞, and q is induced by the S1-equivariant projection Wn,k →Wn,k−1. The
three squares in the diagram are homotopy pullbacks. Our aim is to understand the
kernel of q∗. We see that PWn,k → PWn,k−1 is, up to homotopy, the sphere bundle
associated to the complex bundle classified by the map Tn,k−1. This is because
BU(n− k) is (up to homotopy) the sphere bundle of the canonical n− k + 1-plane
bundle over BU(n− k + 1). As BP is complex oriented, we obtain a Gysin sequence

It follows that the kernel of q∗ is the ideal generated by eBP (Tn,k−1) in
BP ∗PWn,k−1. The bundle Tn,k−1 is obtained by lifting the composite PWn,k−1

pk−1→
CP∞ nγ→ BU(n) to BU(n− k) so that Tn,k−1 + (k − 1)ε = np∗k−1γ. We readily
compute eBP as the top BP -Chern class

eBP (Tn,k−1) = p∗k−1cn−k+1(nγ) =
(

n

n− k + 1

)
xn−k+1.

Therefore,
(

n
n−k+1

)
xn−k+1 lies in the kernel of p∗k : BP ∗CP∞ → BP ∗PWn,k. By the

inductive formula for the kernel of p∗k−1 : BP ∗CP∞ → BP ∗PWn,k−1, the proof is
now complete. �

We now apply lemma 4.3 and proposition 4.2 to complete the calculation of
BP ∗PWn,k.

Theorem 4.4. For every prime p, the BP -cohomology algebra of PWn,k is
described additively by BP ∗(pt)-module

BP ∗(PWn,k) ∼= ΛBP∗(pt)(γn−k+2, . . . , γn)⊗BP∗(pt) BP
∗(pt)[[x]]/I

where γj’s are of degree 2j − 1, x is of degree 2, and I is the ideal generated by
{(nj)xj |n− k < j � n}. This isomorphism is also multiplicative if p �= 2.

Proof. Lemma 4.3 implies that p∗ induces a ring map of BP ∗-modules
BP ∗(pt)[[x]]/I → BP ∗(PWn,k). Choosing representatives for generators γj

of proposition 4.2 in the E∞-page we obtain a BP ∗(pt)-module map
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ΛBP∗(pt)(γn−k+2, . . . , γn) to BP ∗PWn,k. The multiplication as a bilinear map on
these factors gives a map

ΛBP∗(pt)(γn−k+2, . . . , γn)⊗BP∗(pt) BP
∗(pt)[[x]]/I → BP ∗PWn,k

of BP ∗(pt)-modules. This is an isomorphism by proposition 4.2 and the multiplica-
tive structure of the spectral sequence (4.1). Further if p �= 2, we have γ2

j = 0 as γj

lies in odd degree. Therefore, the isomorphism is also multiplicative. �

We observe that in theorem 4.4, we do not expect the isomorphism to be
multiplicative when p = 2, as it does not even hold over HZ/p ([3]).

5. Equivariant maps between Stiefel manifolds

In this section, we demonstrate how the computations of BP -cohomology opera-
tions may be used to rule out S1-equivariant maps between the Stiefel manifolds.
The results of [17] can be improved in this way.

5.1. Applications using Steenrod operations

We start with an example using Steenrod operations in Z/2-cohomology. The
Steenrod operations on H∗(PWn,k; Z/2) are described in [3, theorem 1.2]. We have
from [17] that if there is an S1-equivariant map from Wn,k to Wm,l with n− k =
m− l, then (

n

n− k + 1

)
divides

(
m

m− l + 1

)
,

which is then used to rule out such equivariant maps in many cases when n− k =
m− l and n > m [17, theorem 3.10]. The Steenrod operations allow us to rule out
equivariant maps for cases where the above divisibility is valid. An example is given
in the theorem below.

Theorem 5.1. Suppose r ≡ −1, −2, or 3 (mod 9) and r ≡ 2, 1, or −2 (mod 7),
and m = 16r − 2. Then, there is no S1-equivariant map from Wm−3,7 to Wm,10.

Proof. Write n = m− 3, k = 7 and l = 10. Observe that the following are satisfied
by these integers

(1) m, l even and n, k odd, and m− l = n− k.
(2) 2 divides both

(
m

m−l+1

)
,
(

n
n−k+1

)
but 4 does not divide either.

(3)
(

n
n−k+1

)|( m
m−l+1

)
.

An S1-equivariant map f from Wn,k to Wm,l induces a map of fibration sequences
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We compare the associated Serre spectral sequences with Z-coefficients in the case
n− k = m− l. The condition (2) implies that f∗(ym−l+1) = cyn−k+1, where c is
odd. This is because in those spectral sequences yj transgresses to

(
n
j

)
xj and

(
m
j

)
xj

respectively. The classes yn−k+1 and ym−l+1 also survive in the Z/2-cohomology
spectral sequence by (2), and we have f∗(ym−l+1) = yn−k+1. [3, Theorem 1.2]
implies

Sq2(ym−l+1) = (m− l)ym−l+2 +mxym−l+1 = 0,

and

Sq2(yn−k+1) = (n− k)yn−k+2 + nxyn−k+1 = xyn−k+1.

This is a contradiction. �

5.2. Results using BP -operations

We have seen how Steenrod squares yield some results on non-existence of S1-
equivariant maps between complex Stiefel manifolds. We now derive stronger results
using BP -theory and cohomology operations associated to it. The operations we
use here are the Adams operations defined via [2, 2.4]. These are multiplicative,
stable operations with the formula

Ψa
BP (x) = a−1[a]BP (x), (5.1)

where a ∈ Z×
(p), and [a]BP denotes the a-series using the BP -formal group law.

These operations act on the coefficient ring via Ψa
BP (vi) = api−1vi.

Denote the ideal (v1, v2, . . .) in BP ∗(pt) = Z(p)[v1, v2, . . .] by J . We fix the
{vi | i � 1} to be the Araki generators [18, A2.2.2]. The formal group law μBP ,
associated to BP with respect to our chosen orientation is strictly isomorphic to
the additive formal group law over BP ∗(pt)⊗Q and the isomorphism is given by
BP -log series. The choice of generators imply that the BP -log series has the form

logBP (x) = x+
∑
i�1

lix
pi

,

where li are determined by the relations

pln =
∑

0�i�n

liv
pi

n−i

with l0 = 1 and v0 = p. This implies the formula

ln =
vn

p− pn
(mod J2).

Now we consider the expression of [1, part II, proposition 7.5] (mod J2) to obtain
the following relation for the expBP -series

expBP (x) = x−
∑
i�1

lix
pi

= x−
∑
i�1

vi

p− pi
xpi

(mod J2).
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This implies

x +BP y = expBP (logBP x + logBP y)

= logBP x + logBP y −
∑
i�1

li(logBP x + logBP y)pi

(mod J2)

= x + y +
∑
i�1

li(x
pi

+ ypi

) −
∑
i�1

li

⎛⎝x + y +
∑
j�1

lj(x
pj

+ ypj

)

⎞⎠pi

(mod J2)

= x + y +
∑
i�1

li(x
pi

+ ypi − (x + y)pi

) (mod J2)

= x + y +
∑
i�1

vi

p − pi
(xpi

+ ypi − (x + y)pi

) (mod J2), (5.2)

where by +BP we mean the formal sum under the formal group law μBP .
We now restrict our attention to p = 2, and obtain the following reduction for

Ψ3
BP (5.1) by applying (5.2) multiple times.

Ψ3
BP (x) =

1

3
[3]BP (x)

=
1

3
(x +BP [2]BP (x))

=
1

3
(x +BP (2x +BP v1x

2 +BP v2x
4 +BP . . . +BP vix

2i
+BP . . .))

=
1

3
(x +BP 2x +BP (v1x

2 + . . . + vix
2i

+ . . .)) (mod J2)

=
1

3

((
3x+

∑
i�1

vi

2 − 2i
(x2i

+(2x)2
i −(3x)2

i
)

)
+BP (v1x

2 + . . .+vix
2i

+. . .)

)
(mod J2)

=
1

3

(
3x +

∑
i�1

vi

2 − 2i
(x2i

+ (2x)2
i − (3x)2

i
) + (v1x

2 + . . . + vix
2i

+ . . .)

)
(mod J2)

= x +
∑
i�1

1 − 32i−1

2(1 − 22i−1)
vix

2i
(mod J2)

We note that 1−32i−1

2(1−22i−1)
= αi lies in Z×

(2), and in this notation we have

Ψ3
BP (x) = x+

∑
i�1

αivix
2i

(mod J2) (5.3)

We shall now determine the action of Ψ3
BP onBP ∗(Wn,k) = ΛBP∗(yn−k+1, . . . , yn)

modulo the ideal I2, where I is the ideal of BP ∗(Wn,k) generated by
yn−k+1, . . . , yn.

Proposition 5.2.

Ψ3
BP (yj) = yj + (j − 1)

∑
i�1, 2i+j−1�n

αiviy2i+j−1 (mod I2 + J2)
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Proof. Recall the map μn,k : Σ[CPn−1/CPn−k+1] = ΣPn,k −→Wn,k, for which we
had μ∗

n,k(yj) = Σxj−1. Hence this will give us the isomorphism

μ∗
n,k : BP ∗(Wn,k)/I2 −→ ΣBP ∗(Pn,k)

By naturality of the Adams operations, Ψ3
BP commutes with μ∗

n,k. The action of
Ψ3

BP on yj is determined up to I2 from the computation for Σxj−1. The Adams
operation being stable, commutes with the suspension, so it is enough to compute
the action of Ψ3

BP on xj−1, which comes from the multiplicative structure and the
formulas above.

Ψ3
BP (xj−1) = (Ψ3

BP (x))j−1

=

⎛⎝x+
∑
i�1

αivix
2i

⎞⎠j−1

(mod J2) (using 5.3)

= xj−1 +
∑
i�1

(j − 1)αivix
2i+j−2 (mod J2).

Hence the proposition follows. �

We now use the action of BP -Adams operations to prove new results about equiv-
ariant maps between complex Stiefel manifolds. We note from [17] that the existence
of a S1-equivariant map Wn,k →Wm,l implies that n− k � m− l. It states a num-
ber of hypotheses on n, k, m, l in the case n− k = m− l for which equivariant
maps do not exist. Proposition 5.1 proves some further results for this case. We use
BP -operations to rule out equivariant maps in some cases where n− k < m− l.

Theorem 5.3. Suppose that m, n, l, k are positive integers satisfying

(1) n− k < m− l and there is an s such that m < 2s +m− l � n.

(2) 2 divides all the binomial coefficients
(

n
n−k+1

)
, . . . ,

(
n

m−l

)
.

(3) 2 does not divide
(

m
m−l+1

)
and 2 � m− l.

Then, there is no S1-equivariant map from Wn,k to Wm,l.

Proof. We assume the contrary that g : Wn,k →Wm,l is an S1-equivariant map.
This induces a map of homotopy fixed point spectral sequences, and also a compat-
ible map between the associated projective Stiefel manifolds. The formula for the
differentials in the homotopy fixed point spectral sequence (proposition 4.1) and
the fact that

(
n

m−l+1

)
must be odd due to the hypotheses (2) and (3), implies that

the pullback satisfies

g∗(ym−l+1) = βym−l+1 +
∑

j>m−l+1

pjyj (mod I2 + J2).
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for some β ∈ Z×
(2) and pj ∈ BP ∗(pt). Note that |yj | = 2j − 1 and |vj | = 2− 2j+1.

For degree reasons, the second term in the above expression will be of the form∑
j�1,n�2j+m−l

kjvjy2j+m−l

where kj ∈ Z(2).
Now we shall compute Ψ3

BP (g∗(ym−l+1)) and g∗(Ψ3
BP (ym−l+1)) modulo the ideal

I2 + J2.

Ψ3
BP (g∗(ym−l+1)) = Ψ3

BP

⎛⎝βym−l+1+
∑

j�1, n�2j+m−l

kjvjy2j+m−l

⎞⎠ (mod I2+J2)

= β

⎛⎝ym−l+1 + (m− l)
∑

i�1, 2i+m−l�n

αiviy2i+m−l

⎞⎠
+

∑
j�1, n�2j+m−l

kjΨ3
BP (vj)Ψ3

BP (y2j+m−l) (mod I2 + J2)

= β

⎛⎝ym−l+1 + (m− l)
∑

i�1, n�2i+m−l

αiviy2i+m−l

⎞⎠
+

∑
j�1, n�2j+m−l

kj · 32j−1vj · y2j+m−l (mod I2 + J2). (5.4)

On the other hand, we have

g∗(Ψ3
BP (ym−l+1)) = g∗

⎛⎝ym−l+1 + (m − l)
∑

i�1, m�2i+m−l

αiviy2i+m−l

⎞⎠ (mod I2 + J2)

= βym−l+1 +
∑

j�1, n�2j+m−l

kjvjy2j+m−l

+
∑

i�1, m�2i+m−l

αivig
∗(y2i+m−l) (mod I2 + J2). (5.5)

Note that for degree reasons,

αivig
∗(y2i+m−l) = ναiviy2i+m−l (mod I2 + J2),

for some ν ∈ Z(2). Since Ψ3
BP (g∗(ym−l+1)) = g∗(Ψ3

BP (ym−l+1)), the coefficients for
y2s+m−l (for s as in (1)) in the expressions (5.4) and (5.5) must be the same modulo
the ideal I2 + J2. This implies

β(m− l)αs + 32s−1ks = ks

=⇒ β(m− l) = 2(1− 22s−1)ks.

This contradicts the fact that β(m− l) ∈ Z×
(2). Hence no such S1-equivariant map

g can exist. �
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Example 5.4. One may easily figure out values of m, n, l, k for which the hypoth-
esis of theorem 5.3 is satisfied. For example, putting k = n and m− l + 1 = 2, we
obtain : If n is even and

(
m
2

)
odd, and there is some s such that m < 2s + 1 � n,

then, there is no S1-equivariant map from Wn,n to Wm,m−1.
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