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Abstract. We investigate cyclic bi-embeddings in an orientable surface of Stei-
ner triple systems on 31 points. Up to isomorphism, we show that there are precisely
2408 such embeddings. The relationship of these to solutions of Heffter’s first dif-
ference problem is discussed and a procedure described which, under certain condi-
tions, transforms one bi-embedding to another.
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1. Introduction. In 1967 Ringel and Youngs completed the proof of the
Heawood Map Colour Theorem. An account can be found in [6]. In particular they
proved that the complete graph K, can be embedded in an orientable surface of
genus [(n — 3)(n —4)/12]. In the cases in which n=0, 3, 4 or 7 (mod 12) the
embeddings are triangulations and the faces form a Mendelsohn triple system. When
n =3 or 7 (mod 12) there is potential for the Mendelsohn triple system to form two
Steiner triple systems. In the literature, there is a wealth of material on graph
embeddings but results on the embedding of designs are much more sparse. This
paper is concerned with the latter. Throughout we deal only with orientable
embeddings.

A Mendelsohn triple system of order n, MTS(n), is a pair (V, B), where V is a set
of points of cardinality n and B is a set of cyclically ordered triples of elements of V
which collectively have the property that each ordered pair of elements of V is con-
tained in precisely one triple. (A triple (a, b, ¢) “‘contains™ the pairs (a, b), (b, c),
(c, a).) Such systems exist for n =0 or 1 (mod 3), n # 6. A Steiner triple system of
order n, STS(n), is a pair (V, B), where V is a set of points of cardinality » and B is a
set of triples of elements of V that collectively have the property that each unordered
pair of elements of V is contained in precisely one triple. Such systems exist for n = 1
or 3 (mod 6). If the graph K, is embedded in an orientable surface and every triple of
a Steiner triple system is a face of this embedding then that system is also regarded
as being embedded in the surface with these faces being coloured, say, black. If the
remaining faces (white) also form a Steiner triple system we then have a face two-
colourable bi-embedding of the two Steiner triple systems.

A particular question is whether, for n =3 or 7 (mod 12), all STS(n)’s can be
embedded. This seems to be a difficult question to answer. When n = 3 (mod 12), the
first non-trivial case is n = 15. There are 80 non-isomorphic STS(15)’s and it is cur-
rently known that three of these can be bi-embedded [1]. In this paper we focus on
n =17 (mod 12) and, in particular, cyclic bi-embeddings of cyclic systems. By this we
mean an embedding which has a cyclic automorphism of order n that necessarily
extends to the two STS(n)’s. In the case n = 3 (mod 12), a cyclic STS(n) contains a
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unique short orbit. Consequently there can be no cyclic bi-embeddings of such a
system. The STS(7) can be cyclically bi-embedded in a torus and details of this and
the cyclic bi-embeddings of the STS(19)’s can be found in [4]. The case examined in
this paper is the cyclic bi-embedding of the 80 non-isomorphic STS(31)’s. These are
given in [3] and we follow the numbering therein.

2. Summary of results. Each of the cyclic STS(31)’s comprises five cyclic orbits.
In a cyclic bi-embedding the blocks of each orbit are oriented consistently. Without
loss of generality, one orbit may be oriented arbitrarily and there are then two pos-
sibilities for each of the other orbits. This gives 16 potential orderings for con-
sideration for each of the 80 systems, a total of 1280 possibilities.

An embedding of a graph (or design) in an orientable surface may be described
by means of a rotation scheme. Given a vertex x of the graph (or point of the design)
the rotation scheme at x comprises the cyclically ordered list of other vertices
(points) that are adjacent to x taken in the order in which they appear around x in
the embedding. The rotation scheme for the embedding is the set of all the vertices
together with their rotations taken with a consistent orientation, i.e. all clockwise or
all anti-clockwise. If the rotation scheme is cyclic, then we can denote the vertices by
0,1, ..., n—1 in such a way that the rotation about x is obtained by adding
x (modulo n) to the rotation about 0.

The 1280 orientations produce a total of 5536 cyclic bi-embeddings. These were
found by the same computer program which was used in [4]. As a check on the
correctness of the program it was used to verify the results produced by hand for
n=19. The 5536 cyclic bi-embeddings can be reduced to 2408 non-isomorphic
embeddings. The key to this is the observation that if system #i is embedded with
system #j and ¢ is a multiplier automorphism of #i but not of #j then isomorphic
embeddings of #i with #/ and of #i with ¢(#j) will be obtained.

Amongst the 80 STS(31)’s there are 12 systems with a multiplier automorphism
of order 3 and one system with a multiplier automorphism of order 5 (#80). For
each of the 1280 orientations the program was used to determine all possible bi-
embeddings. Hence a further check on the correctness of the program is the sym-
metry of the matrix N given in the Appendix whose entries give the numbers of non-
isomorphic cyclic bi-embeddings of system #i with system #;.

A brief summary of the computational results is as follows.

(a) Of the 80 cyclic STS(31)’s, 76 can be cyclically bi-embedded (although this
does not mean that the remaining four cannot be bi-embedded non-cyclically). This
contrasts with the four cyclic STS(19)’s, all of which may be cyclically bi-embedded
[4].

(b) There are 64 non-isomorphic bi-embeddings of a system with itself, invol-
ving 44 distinct systems.

(c) System #80 (PG(4,2)) does cyclically bi-embed, but not with itself. This is
unlike the STS(7) (PG(2,2)). The projective STS(15) (PG(3,2)), as noted above, can-
not have a cyclic bi-embedding; it does however have a non-cyclic bi-embedding
with itself. This suggests that there is still hope for a non-cyclic bi-embedding of
PG(4,2) with itself.

The distribution of the 5536 bi-embeddings of the cyclic STS(31)’s is given in the
matrix M (see Appendix). Each entry in the body of the matrix M gives the number
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of bi-embeddings of system #i with system #j, where i/ and j are the system numbers
which appear at the heads of the associated row and column. The numbering of the
STS(31)’s corresponds to that given in [3] but the systems are grouped into the
classes discussed below. Because of this grouping the rows and columns of M are
not numbered sequentially. The distribution of the 2408 non-isomorphic bi-embed-
dings is given, in similar format, in the matrix N.

The matrices have a noticeable “block” structure which we show to be con-
nected with the solution of Heffter’s first difference problem. It is this which led us to
group the STS(31)’s into eight classes and thus explain the ordering of the 80 sys-
tems in the matrices (see Section 3 for details). The rotation schemes for the 2408 bi-
embeddings are available from the authors in the format.

bi-embedding rotation the two STS(31)’s
number at 0 embedded therein

3. Heffter’s first difference problem. In 1897, Heffter posed the following dif-
ference problem [S]: can the integers 1, 2, ..., 3k be partitioned into k triples {a, b, c}
so that for each triple, a + b &= ¢ = 0 (mod 6k + 1)? Heffter observed that a solution
to this problem produces cyclic Steiner triple systems of order 6k + 1. Each differ-
ence triple {a, b, ¢} gives rise to a cyclic orbit of the system generated by ecither
{0, a,a+ b} or {0, b, a+ b}. In [2] it was found that for the case where k = 5 there
are 64 solutions to Heffter’s difference problem (HDP) producing 64 x 2° = 2048
distinct cyclic STS(31)’s which lie in 80 isomorphism classes. Two solutions to HDP
are said to be multiplier equivalent if one set of triples may be obtained from the
other by first multiplying by a constant factor (modulo 6k + 1) and then reducing
any residue x in the range 3k + 1 < x < 6k to (6k + 1 — x). Clearly, two solutions to
HDP that are multiplier equivalent will produce isomorphic sets of Steiner triple
systems. The 64 solutions to HDP for k = 5 partition into eight “Heffter classes”
under multiplier equivalence. A representative solution for each of these eight classes
is listed as A to H below.

A {123} (47,11} (512,14} {6,9,15) (8,10,13}
B: {123} {4.8,12} {5,9,14} (6,10,15}  {7,11,13}
C: {134} {2.8,10} (512,14} {6,9,15} (7,11,13}
D: {123} (47,11} (510,15}  {6,12,13}  {8,9,14}
E: {134} (2,10,12}  {5,11,15}  {6,7,13} (8,9,14}
F: {156} (2,7.9} (3,13,15)  {4,10,14}  {8,11,12}
G: {156} (2,10,12}  {3,13,15} {4711} (8,9,14}
H:  {11L12}  {2.7.9} (3,5.8) (413,14} {6,10,15}

Each of these eight HefTter classes produces 2° distinct STS(31)’s, some of which
will be isomorphic. In fact, three of the classes produce 16 systems,three produce 8
systems and two produce 4 systems. The distribution of the 80 cyclic STS(31)’s into
the eight Heffter classes is given in the table below using the standard numbering of
the 80 systems given in [3].

A5 6 7 8 9 10 11 12 33 34 35 36 37 38 39 40

B: 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
C: 41 42 43 44 45 46 47 48 55 56 57 58 59 60 61 62
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D: 1 2 3 4 13 14 31 32
E: 49 50 51 52 53 54 63 64
F: 65 66 67 68 69 70 71 76
G: 72 73 74 75
H: 77 78 79 &80

These 80 numbers, in the order in which they appear above, form the headers
for the rows and columns of the matrices M and N given in the Appendix. The sig-
nificance of Heffter’s first difference problem for the results is now explained.

Consider the oriented cyclic orbit containing an oriented triple (0, o, o + ).
This orbit will also contain the oriented triples (0, 8, —«) and (0, —(« + B), —8). If
this orbit forms part of a cyclic embedding, then there are just two possibilities for
the rotation about zero:

@ (@+p) ... (=) ... (=(@+B)=p) ... a,

or
(b) (@+p) ... (—(@+P)(=P) ... B(—a) ... .

In case (b) consider the alternative rotation about zero given by

© (@+p) ... ((@+p)(=) ... a=p) ... B,

where the three sections of the rotation, namely (@ + B)...(—(a + B)), (—a)...«,
and (—p)... B are exactly as in (b). If (b) generates a cyclic bi-embedding, then so
does (c). The cyclic orbits of the two Steiner triple systems of (c) will be identical to
those of (b) except that the oriented cyclic orbit containing (0, «t, o + B) is replaced
by the oriented cyclic orbit containing (0, 8, @ + B). Both these orbits come from a
common Heffter difference triple. As a consequence, we see that if (0, o, @ + B) is an
oriented triple of system #i bi-embedded with a system #j in which the rotation
about zero has the structure given in (b), then we obtain a bi-embedding of system
#i’ with system #j. The systems #i and #i’ will lie in the same Heffter class and differ
only in the orbit corresponding to the Heffter difference triple {«, 8, « + B}. The
system #j is common to both embeddings.

The observations above provide an explanation for the ““block” structure of the
matrices M and N. The operation described in moving from (b) to (c) is an example
of a combinatorial trade where one substructure is replaced by an equivalent sub-
structure; in this case the oriented orbit containing (0, o, « 4+ B) is replaced by that
containing (0, 8, @ + B). Finally we note that the four STS(31)’s which are not
cyclically bi-embedded are #72 - #75 and comprise Heffter class G in the table given
above.

4. Conclusion. The results of this paper give rise to the following questions.

1. The Heffter class G does not give rise to any cyclic bi-embeddings. Is it pos-
sible to identify structural features of this class that clearly preclude such bi-embed-
dings?

2. (An extension of (1)). There are several pairs of Heffter classes which do not
give rise to corresponding bi-embeddings. Again, is it possible to identify structural
features of these classes that explain this phenomenon?

3. The matrices M and N have a clear block structure related to the Heffter
classes. Within a block it is noticeable that most entries are non-zero and that in
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many cases it is possible to move from one non-zero entry to another using a trade
of the form described above. A worthwhile future investigation would be the extent
to which it is possible to obtain all the non-zero entries in such a block from any one
entry by performing a sequence of such trades.

Less important but still of interest are the following problems.

4. The systems #72 - #75, which comprise Heffter class G, do not cyclically bi-
embed with any other system. However, this does not imply that these systems will
not embed in some other way and it would be of interest to find bi-embeddings of
these systems.

5. PG(4,2) does not cyclically bi-embed with itself but the possibility still exists
for this system to have a non-cyclic bi-embedding with itself. The basis for this
suggestion is twofold:

(a) PG(2,2) does cyclically bi-embed with itself and
(b) PG(3,2) (which cannot have a cyclic bi-embedding) does have a non-cyclic
bi-embedding with itself.
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Table 2. The Matrix N
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