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Abstract Let H be the generic Iwahori–Hecke algebra associated with a finite Coxeter group W .
Recently, we have shown that H admits a natural cellular basis in the sense of Graham and Lehrer,
provided that W is a Weyl group and all parameters of H are equal. The construction involves some
data arising from the Kazhdan–Lusztig basis {Cw} of H and Lusztig’s asymptotic ring J . We attempt
to study J and its representation theory from a new point of view. We show that J can be obtained in an
entirely different fashion from the generic representations of H, without any reference to {Cw}. We then
extend the construction of the cellular basis to the case where W is not crystallographic. Furthermore,
if H is a multi-parameter algebra, we see that there always exists at least one cellular structure on H.
Finally, the new construction of J may be extended to Hecke algebras associated with complex reflection
groups.
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1. Introduction

Let H be a generic one-parameter Iwahori–Hecke algebra associated with a finite Weyl
group W , defined over a suitable ring of Laurent polynomials. (More precise definitions
will be given below.) By definition, H has a standard basis usually denoted by {Tw |
w ∈ W}. Using properties of the ‘new’ basis {Cw | w ∈ W} introduced in [14], Lusztig
has defined a ring J which has a Z-basis {tw | w ∈ W} and integral structure constants,
and which can be viewed as an ‘asymptotic’ version of H. All the ingredients in the
construction of J can be defined in an elementary way, but the proof that we indeed
obtain an associative ring with identity requires a deep geometric interpretation of the
basis {Cw} (see [19,20]).

It turns out that JQ = Q
⊗

Z J is a split semisimple algebra isomorphic to the group
algebra of W . Using properties of the irreducible representations of JQ, we have recently
proved in [9] that H has a natural ‘cellular’ structure in the sense of Graham and
Lehrer [13]. The elements of the corresponding ‘cellular’ basis of H are certain Z-linear
combinations of the basis {Cw}, where the coefficients involve data arising from the action
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of the basis elements tw in the irreducible representations of JQ. Note that, although
there is an isomorphism between JQ and the group algebra of W , it does not seem to be
possible to see the data that we need easily through this isomorphism. (For example, the
image of tw in the group algebra of W is, in general, a rather complicated sum of group
elements.)

Now Lusztig [17,20] has shown that the construction of J also makes sense—under
the assumption that the conjectures (P1)–(P15) in [20, § 14.2] hold—when we consider
an Iwahori–Hecke algebra H with possibly unequal parameters. The results in [9] also
extend to this case, assuming that (P1)–(P15) hold.

One of the purposes of this paper is to show that the data required to define a ‘cellular’
basis of H can be obtained in an alternative way, using the generic irreducible repre-
sentations of H and the leading matrix coefficients introduced in [8]. These coefficients
even allow us to construct a ring J̃ with rational structure constants, and show that it
is associative with identity, without any reference to the Kazhdan–Lusztig basis {Cw}
at all. We expect that we have J = J̃ in general but, at present, we can only prove this
equality by assuming that Lusztig’s conjectures (P1)–(P15) hold.

As an application, we extend the construction of a ‘cellular’ basis to Iwahori–Hecke
algebras associated with non-crystallographic finite Coxeter groups, as announced in [9,
Remark 3.3]. Using the results in [10], we can also show that an Iwahori–Hecke algebra
with possibly unequal parameters always admits at least one ‘cellular’ structure.

Another aspect of our construction of the ring J̃ is that it may actually be applied to
other types of algebras, like the cyclotomic Hecke algebras of Broué and Malle [4] asso-
ciated with complex reflection groups. We hope to discuss this in more detail elsewhere.

This paper is organized as follows. In § 2, we briefly recall the main facts about the
Kazhdan–Lusztig basis and the a-invariants of the irreducible representations of W . Here,
we work in the general case of possibly unequal parameters. In Proposition 2.5, we recall
a result from [10] which shows that the structure constants of Lusztig’s ring J can be
expressed in terms of the ‘leading matrix coefficients’ of [8]. This is the starting point
for our construction of a new ring J̃ (see § 3). For this purpose, we use a definition of the
leading matrix coefficients which is somewhat more general than that in [8]; this general-
ization is necessary to obtain the strongest possible statements in our applications. The
new definition involves the concept of ‘balanced’ representations, which will be studied in
more detail in § 4. In particular, we establish an efficient criterion for checking if a given
representation is balanced or not (see Proposition 4.3). We will show that the analogue
of [9, Proposition 2.6] (which describes the data required to define a cellular basis) holds
for all types of W and all choices of the parameters. In § 5, we formulate the hypothesis
(P̃15), which is a variant of Lusztig’s (P15) in [20, § 14.2]. This hypothesis alone allows
us to construct a cellular basis of H; the statement in Theorem 5.5 is actually slightly
stronger than the main result of [9]. In the process of doing this, we give a simplified
treatment of Lusztig’s homomorphism from H into J (see Theorem 5.2).

Let us now introduce some basic notation that will be used throughout this paper. Let
(W, S) be a Coxeter system and let l : W → Z�0 be the usual length function. In this
paper, we will only consider the case where W is a finite group. Let Γ be an abelian group
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(written additively). Following [20], a function L : W → Γ is called a weight function if
L(ww′) = L(w) + L(w′) whenever w, w′ ∈ W are such that l(ww′) = l(w) + l(w′). Note
that L is uniquely determined by the values {L(s) | s ∈ S}. Furthermore, if {cs | s ∈ S}
is a collection of elements in Γ such that cs = ct whenever s, t ∈ S are conjugate in W ,
then there is a (unique) weight function L : W → Γ such that L(s) = cs for all s ∈ S.

Let R ⊆ C be a subring and let A = R[Γ ] be the free R-module with basis {εg | g ∈ Γ}.
There is a well-defined ring structure on A such that εgεg′

= εg+g′
for all g, g′ ∈ Γ .

We write 1 = ε0 ∈ A. Given a ∈ A, we denote by ag the coefficient of εg, so that
a =

∑
g∈Γ agε

g. Let H = HA(W, S, L) be the generic Iwahori–Hecke algebra over A

with parameters {vs | s ∈ S}, where vs := εL(s) for s ∈ S. This is an associative algebra,
which is free as an A-module, with basis {Tw | w ∈ W}. The multiplication is given by
the rule

TsTw =

{
Tsw if l(sw) > l(w),

Tsw + (vs − v−1
s )Tw if l(sw) < l(w),

where s ∈ S and w ∈ W . The element T1 is the identity element.

Example 1.1. Assume that Γ = Z. Then A is nothing but the ring of Laurent
polynomials over R in an indeterminate ε; we will usually set v = ε. Then H is an
associative algebra over A = R[v, v−1] with relations

TsTw =

{
Tsw if l(sw) > l(w),

Tsw + (vcs − v−cs)Tw if l(sw) < l(w),

where s ∈ S and w ∈ W . This is the setting of Lusztig [20].

Example 1.2.

(a) Assume that Γ = Z and L is constant on S; this case will be referred to as the
equal parameter case. Note that we are automatically in this case when W is of
type An−1, Dn, I2(m), where m is odd, H3, H4, E6, E7 or E8 (since all generators
in S are conjugate in W ).

(b) Assume that W is irreducible. Then unequal parameters can only arise in types
Bn, F4 and I2(m), where m is even.

Example 1.3. A ‘universal’ weight function is given as follows. Let Γ0 be the group of
all tuples (ns)s∈S , where ns ∈ Z for all s ∈ S and ns = nt whenever s, t ∈ S are conjugate
in W . (The addition is defined componentwise). Let L0 : W → Γ0 be the weight function
given by sending s ∈ S to the tuple (nt)t∈S , where nt = 1 if t is conjugate to s, and
nt = 0 otherwise. Let A0 = R[Γ0] and H0 = HA0(W, S, L0) be the associated Iwahori–
Hecke algebra, with parameters {vs | s ∈ S}. Then A0 = R[Γ0] is nothing but the ring of
Laurent polynomials in indeterminates vs (s ∈ S) with coefficients in R, where vs = vt

whenever s, t ∈ S are conjugate in W . Furthermore, if S′ ⊆ S is a set of representatives
for the classes of S under conjugation, then {vs | s ∈ S′} are algebraically independent.
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2. The Kazhdan–Lusztig basis and leading matrix coefficients

We now introduce two concepts whose interplay is the main subject of this paper: the
Kazhdan–Lusztig basis and leading matrix coefficients. Both of these essentially rely on
the choice of a total ordering � on Γ which is compatible with the group structure, that
is, whenever g, g′, h ∈ Γ are such that g � g′, then g + h � g′ + h. Such an order on Γ

will be called a monomial order.
We will assume that such an ordering exists on Γ . One may readily check that this

implies that A = R[Γ ] is an integral domain; we usually reserve the letter K to denote
its field of fractions. If we are in the equal parameter case (Example 1.2), the group
Γ = Z has a natural monomial order. On the other hand, in the setting of Example 1.3
(assuming that not all elements of S are conjugate), there are infinitely many monomial
orders on Γ .

Throughout this paper, we fix a choice of a monomial order, and we assume that

L(s) > 0 for all s ∈ S.

We define Γ�0 = {g ∈ Γ | g � 0} and denote by Z[Γ�0] the set of all integral linear com-
binations of terms εg, where g � 0. The notations Z[Γ>0], Z[Γ�0] and Z[Γ<0] have a
similar meaning.

2.1. The a-invariants

We set ZW := Z[2 cos(2π/mst) | s, t ∈ S] (where mst denotes the order of st in W ).
Note that ZW = Z if W is a finite Weyl group (or of crystallographic type), that is, if
mst ∈ {2, 3, 4, 6} for all s, t ∈ S. Recall that R is a subring of C. We shall always assume
that

ZW ⊆ R and F is the field of fractions of R.

Then it is known that F is a splitting field for W (see [12, Theorem 6.3.8]). The set of
irreducible representations of W (up to isomorphism) will be denoted by

Irr(W ) = {Eλ | λ ∈ Λ},

where Λ is some finite indexing set and Eλ is an F -vector space with a given F [W ]-module
structure. We shall also write

dλ = dimEλ for all λ ∈ Λ.

Let K be the field of fractions of A. By extension of scalars, we obtain a K-algebra HK =
K

⊗
A H. This algebra is known to be split semisimple (see [12, 9.3.5]). Furthermore, by

Tits’s Deformation Theorem, the irreducible representations of HK (up to isomorphism)
are in bijection with the irreducible representations of W (see [12, 8.1.7]). Thus, we can
write

Irr(HK) = {Eλ
ε | λ ∈ Λ}.

https://doi.org/10.1017/S0013091508000394 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508000394


Leading coefficients and cellular bases 657

For λ ∈ Λ, denote by χλ the character afforded by Eλ
ε . Thus, we have χλ(Tw) =

Tr(Tw, Eλ
ε ) for w ∈ W . Then the correspondence Eλ ↔ Eλ

ε is uniquely determined
by the following condition:

θ1(χλ(Tw)) = Tr(w, Eλ) for all w ∈ W,

where θ1 : A → R is the unique R-algebra homomorphism such that θ1(εg) = 1 for all
g ∈ Γ . Note also that χλ(Tw) ∈ A for all w ∈ W .

The algebra H is symmetric, with trace from τ : H → A given by τ(T1) = 1 and
τ(Tw) = 0 for 1 �= w ∈ W . The sets {Tw | w ∈ W} and {Tw−1 | w ∈ W} form a pair of
dual bases. Hence, we have the following orthogonality relations:

∑
w∈W

χλ(Tw)χµ(Tw−1) =

{
dλcλ if λ = µ,

0 if λ �= µ

(see [12, 8.1.8]). Here, 0 �= cλ ∈ A and, following Lusztig, we can write

cλ = fλε−2aλ + combination of terms εg, where g > −2aλ;

here aλ ∈ Γ�0 and fλ is a strictly positive real number (see [8, § 3.3]).

Remark 2.1. The invariants aλ and fλ are explicitly known for all types of W [20,
Chapter 22]. The elements cλ ∈ A and the coefficients fλ are independent of the mono-
mial order �, but aλ heavily depends on it. Note that the statement concerning the
independence of fλ is of interest only in the unequal parameter case; see [10, Proposi-
tion 5.1 and Table 1] for types F4 and I2(m) and [20, Proposition 22.14] for type Bn.

The invariants aλ play a fundamental role in Lusztig’s study [18] of the characters of
reductive groups over finite fields. In [9], we use these invariants to define an ordering
of Λ, which is an essential ingredient in the construction of a ‘cellular’ basis of H.

2.2. Balanced representations

We can now introduce the notion of ‘balanced’ representations, which is slightly more
general than the related concept of ‘orthogonal’ representations introduced in [8]. For
this purpose, following [8], we consider a certain valuation ring O in K. Let us write

F [Γ�0] = set of F -linear combinations of terms εg, where g � 0,

F [Γ>0] = set of F -linear combinations of terms εg, where g > 0.

Note that 1 + F [Γ>0] is multiplicatively closed. Furthermore, every element x ∈ K can
be written in the form

x = rxεgx
1 + p

1 + q
, where rx ∈ F, gx ∈ Γ and p, q ∈ F [Γ>0].

Note that if x �= 0, then rx and gx indeed are uniquely determined by x; if x = 0, we
have r0 = 0 and we set g0 := +∞ by convention. We set

O := {x ∈ K | gx � 0} and p := {x ∈ K | gx > 0}.
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Then it is easily verified that O is a valuation ring in K, with maximal ideal p. Note that
we have

O ∩ F [Γ ] = F [Γ�0] and p ∩ F [Γ ] = F [Γ>0].

We have a well-defined F -linear ring homomorphism O → F with kernel p. The image
of x ∈ O in F is called the constant term of x. Thus, the constant term of x is 0 if x ∈ p;
the constant term equals rx if x ∈ O×.

Definition 2.2. Choosing a basis of Eλ
ε , we obtain a matrix representation ρλ : HK →

Mdλ
(K). Given h ∈ HK and 1 � i, j � dλ, we denote by ρλ

ij(h) the (i, j)-entry of the
matrix ρλ(h). We say that ρλ is balanced if

εaλρλ
ij(Tw) ∈ O for all w ∈ W and all i, j ∈ {1, . . . , dλ}.

If ρλ is balanced, we define the leading matrix coefficient cij
w,λ ∈ F to be the constant

term of (−1)l(w)εaλρλ
ij(Tw).

Proposition 2.3 (Geck [8, §4]). For each λ ∈ Λ, there exists a balanced represen-
tation ρλ afforded by Eλ

ε ; moreover, ρλ can be chosen such that

∆λρλ(Tw−1) = ρλ(Tw)tr∆λ for all w ∈ W,

where ∆λ ∈ Mdλ
(O) is a diagonal matrix with diagonal coefficients having positive real

numbers as constant terms. In particular, det(∆λ) ∈ O×.

Proof. We may assume without loss of generality that F ⊆ R. Let (· , ·) be any
symmetric bilinear form on Eλ

ε which admits an orthonormal basis. We define a new
bilinear form 〈· , ·〉 by the formula

〈e, e′〉 :=
∑

w∈W

(Tw.e, Tw.e′) for any e, e′ ∈ Eλ
ε .

As in the proof of [16, 1.7], it is easily checked that 〈Ts · e, e′〉 = 〈e, Ts · e′〉 for all s ∈ S

and, hence, 〈Tw.e, e′〉 = 〈e, Tw−1 · e′〉 for all w ∈ W . Arguing as in step 1 of the proof
of [8, Proposition 4.3], we see that the following holds:

for any 0 �= e ∈ Eλ
ε we have ε2g〈e, e〉 ∈ b + p, (∗)

where g ∈ Γ and b ∈ F is such that b > 0. (Recall that F ⊆ R.) Since we are working
over a field of characteristic 0, there exists an orthogonal basis, {e1, . . . , edλ

} say, with
respect to 〈· , ·〉. Now (∗) implies that by multiplying the basis vectors ei by ε−gi for
suitable gi ∈ Γ we can assume that

〈ei, ei〉 ∈ bi + p, where bi ∈ F, bi > 0.

Let ρλ be the matrix representation afforded by Eλ
ε with respect to the basis {e1, . . . , edλ

}
and let ∆λ be the Gram matrix of 〈· , ·〉 with respect to that basis. Let Dλ be the diagonal
matrix with b1, . . . , bdλ

on the diagonal. Then we have

∆λ ≡ Dλ mod p and ∆λρλ(Tw−1) = ρλ(Tw)tr∆λ for all w ∈ W.
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We can now argue as in the proof of [8, Theorem 4.4] to show that ρλ is balanced. Indeed,
let γ ∈ Γ be minimal such that εγρλ

ij(Tw) ∈ O for all w ∈ W and all 1 � i, j � dλ. Let
ĉij
w,λ ∈ F be the constant term of εγρλ

ij(Tw). Choose i, j ∈ {1, . . . , dλ} such that ĉij
y,λ �= 0

for some y ∈ W . Now, we do not only have the orthogonality relations already mentioned
above, but also the Schur relations in [12, Corollary 7.2.2]. Thus, we have

ε2γcλ ≡
∑

w∈W

(εγρλ
ij(Tw))(εγρλ

ji(Tw−1)) ≡
∑

w∈W

ĉij
w,λĉji

w−1,λ mod p.

Now we multiply the relation ∆λρλ(Tw−1) = ρλ(Tw)tr∆λ by εγ and consider constant
terms. Taking into account the relation ∆λ ≡ Dλ mod p, we obtain

bj ĉ
ji
w−1,λ = ĉij

w,λbi for all w ∈ W.

This yields ∑
w∈W

ĉij
w,λĉji

w−1,λ = bib
−1
j

∑
w∈W

(ĉij
w,λ)2,

which is a non-zero real number since ĉij
y,λ �= 0 for some y ∈ W . Thus, we conclude

that ε2γcλ lies in O and has a non-zero constant term. Comparing this with the relation
ε2aλcλ ≡ fλ mod p, we deduce that γ = aλ as required. �

Remark 2.4. In [8, Proposition 4.3], we assumed that F = R. This allowed us to
go one step further in the above proof and take square roots of the numbers bi. Con-
sequently, by rescaling the basis vectors ei, we can even assume that ∆λ is diagonal
with diagonal coefficients in 1 + p. The resulting balanced representations were called
orthogonal representations in [8]. The corresponding leading matrix coefficients satisfy
the following additional property (see [8, Theorem 4.4]):

cij
w,λ = cji

w−1,λ for all w ∈ W and 1 � i, j � dλ.

2.3. The Kazhdan–Lusztig basis and Lusztig’s a-function

We now recall the basic facts about the Kazhdan–Lusztig basis of H, following [17,20].
Again, this relies on the choice of a monomial � on Γ . Now, there is a unique ring
involution A → A, a �→ ā, such that εg = ε−g for all g ∈ Γ . We can extend this map to
a ring involution H → H, h �→ h̄, such that∑

w∈W

awTw =
∑

w∈W

āwT−1
w−1 , aw ∈ A.

By [14,17,20], we have a ‘new’ basis {C ′
w | w ∈ W} of H (depending on �), where C ′

w

is characterized by the following two conditions:

• C̄ ′
w = C ′

w and

• C ′
w = Tw +

∑
y∈W py,wTy, where py,w ∈ Z[Γ<0] for all y ∈ W .
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Here we follow the original notation in [14,17]; the element C ′
w is denoted by cw in [20,

Theorem 5.2]. As in [20], it will be convenient to work with the following alternative
version of the Kazhdan–Lusztig basis. We set Cw = (C ′

w)† for all w ∈ W , where † : H →
H is the A-algebra automorphism defined by T †

s = −T−1
s , s ∈ S (see [20, § 3.5]). Note

that h̄ = j(h)† = j(h†) for all h ∈ H, where j : H → H is the ring involution such that
j(a) = ā for a ∈ A and j(Tw) = (−1)l(w)Tw for w ∈ W . Thus, we have

• C̄w = Cw and

• Cw = j(C ′
w) = (−1)l(w)Tw +

∑
y∈W (−1)l(y)p̄y,wTy, where p̄y,w ∈ Z[Γ>0].

Since the elements {Cw | w ∈ W} form a basis of H, we can write

CxCy =
∑
z∈W

hx,y,zCz for any x, y ∈ W,

where hx,y,z = h̄x,y,z ∈ A for all x, y, z ∈ W . Note that either hx,y,z ∈ Z or hx,y,z involves
terms from both Γ<0 and Γ>0. For a fixed z ∈ W , we set

a(z) := min{g ∈ Γ�0 | εghx,y,z ∈ Z[Γ�0] for all x, y ∈ W}.

This is Lusztig’s function a : W → Γ (see [20, Chapter 13]). Given x, y, z ∈ W , we have
εa(z)hx,y,z ∈ Z[Γ�0]. By [20, § 13.9], we have a(z) = a(z−1). Then we define γx,y,z ∈ Z

to be the constant term of εa(z)hx,y,z−1 ∈ Z[Γ�0], that is, we have

εa(z)hx,y,z−1 ≡ γx,y,z mod Z[Γ>0].

These constants appear as the structure constants in Lusztig’s ring J [20, Chapter 18].
We can now state the following result, which relates the a-function and γx,y,z to leading

matrix coefficients. Here we assume that, for each λ ∈ Λ, we have chosen a balanced
representation ρλ afforded by Eλ

ε as in Remark 2.4. (We will see in Lemma 3.2 that the
same statement holds for any choice of balanced representations.)

Proposition 2.5 (Geck [10, Proposition 3.6 and Remark 4.2]). Assume that
conjectures (P1)–(P15) in [20, § 14.2] hold. Let z ∈ W . If λ ∈ Λ and i, j ∈ {1, . . . , dλ}
are such that cij

z,λ �= 0, then a(z) = aλ. Furthermore, for all x, y, z ∈ W , we have

γx,y,z =
∑
λ∈Λ

∑
1�i,j,k�dλ

f−1
λ cij

x,λcjk
y,λcki

z,λ.

In the next section, we will use the expression on the right-hand side of the above
identity to construct a ring J̃ , without assuming that (P1)–(P15) hold. Note also that
not all of (P1)–(P15) are required for proving Proposition 2.5. For example, (P15) is not
needed (see [10, Remark 3.9]).

Remark 2.6. The conjectures (P1)–(P15) are known to hold, for example, in the
equal parameter case. For crystallographic W , see [20, Chapter 16] and the references
therein; for W of type I2(m), H3 or H4, see [7]. (An alternative argument for proving
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(P1)–(P15) in types H3 and H4 is sketched in [10, Example 4.8].) Now let (W, S) be
of type Bn, F4 or I2(m) (m even). Let L0 : W → Γ0 be the universal weight function
as in Example 1.3. Thus, L0 depends on two values a, b ∈ Γ , which are attached to the
generators in S, as shown in Figure 1.

Choose a pure lexicographic order on Γ0, such that b > ra > 0 for all r ∈ Z�1. Then
(P1)–(P15) are also known to hold (see [10, Theorem 5.3] and the references therein). In
analogy to [2], this may be called the general ‘asymptotic case’.

3. The ring J̃

In this section, we show that the ‘leading matrix coefficients’ associated with balanced
representations as in Definition 2.2 can be used to construct a ring J̃ . We keep the
basic setting of § 2.2. Throughout this section we assume that, for each λ ∈ Λ, we are
given a balanced representation ρλ afforded by Eλ

ε , with corresponding leading matrix
coefficients cij

w,λ.

Definition 3.1. For w, x, y, z ∈ W , we set

γ̃x,y,z :=
∑
λ∈Λ

∑
1�i,j,k�dλ

f−1
λ cij

x,λcjk
y,λcki

z,λ,

ñw :=
∑
λ∈Λ

∑
1�i�dλ

f−1
λ cii

w−1,λ.

Let J̃ be the F -vector space with basis {tw | w ∈ W}. We define a bilinear product on
J̃ by

txty =
∑
z∈W

γ̃x,y,z−1tz, x, y ∈ W.

Let D̃ := {w ∈ W | ñw �= 0}. We define an element of J̃ by 1J̃ :=
∑

w∈D̃ ñwtw.

Lemma 3.2. The constants γ̃x,y,z and ñw do not depend on the choice of the balanced
representations {ρλ | λ ∈ Λ}.

Proof. For any λ ∈ Λ, the sum
∑

1�i,j,k�dλ
cij
x,λcjk

y,λcki
z,λ (appearing in the definition

of γ̃x,y,z) is the constant term of

ε3aλ

∑
1�i,j,k�dλ

ρλ
ij(Tx)ρλ

jk(Ty)ρλ
ki(Tz) ∈ O.
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But the latter expression just equals ε3aλχλ(TxTyTz) and, hence, depends on the char-
acter of ρλ but not on the choice of ρλ itself. A similar argument applies to the sum∑

1�i�dλ
cii
w−1,λ (which appears in the definition of ñw): it is the constant term of

εaλχλ(Tw−1). �

Remark 3.3. Since H is symmetric, we have the following Schur relations (see [12,
Corollary 7.2.2]): ∑

y∈W

ρλ
ij(Tw)ρµ

kl(Tw−1) = δilδjkδλµcλ,

where λ, µ ∈ Λ, 1 � i, j � dλ and 1 � k, l � dµ. Multiplying by εaλ+aµ and taking
constant terms on both sides, we obtain orthogonality relations for the leading matrix
coefficients: ∑

w∈W

cij
w,λckl

w−1,µ = δilδjkδλµfλ. (3.1)

These relations can be ‘inverted’ and so we also have∑
λ∈Λ

∑
1�i,j�dλ

f−1
λ cij

x,λcji
y−1,λ = δxy for all x, y ∈ W. (3.1′)

Lemma 3.4. We have the following relations:

(a) γ̃x,y,z = γ̃y,z,x for all x, y, z ∈ W ,

(b)
∑

w∈W γ̃x−1,y,wñw = δxy for all x, y ∈ W .

Proof. (a) Just note that the defining formula for γ̃x,y,z is symmetrical under cyclic
permutations of x, y, z.

(b) Using the defining formulae for γ̃x,y,z and ñw, the left-hand side is evaluated as( ∑
λ∈Λ

∑
1�i,j,k�dλ

f−1
λ cij

x−1,λcjk
y,λcki

w,λ

)( ∑
w∈W

∑
µ∈Λ

∑
1�p�dµ

f−1
µ cpp

w−1,µ

)

=
∑

λ,µ∈Λ

∑
1�i,j,k�dλ

∑
1�p�dµ

f−1
λ f−1

µ cij
x−1,λcjk

y,λ

( ∑
w∈W

cki
w,λcpp

w−1,µ

)
.

By the relations in (3.1), the parenthesized sum evaluates to δkpδipδλµfλ. Inserting this
into the above expression yields

∑
λ∈Λ

∑
1�i,j�dλ

f−1
λ cij

x−1,λcji
y,λ = δxy, where the last

equality holds by (3.1′). �

Proposition 3.5. J̃ is an associative algebra with identity element 1J̃ .

Proof. Let x, y, z ∈ W . We must check that (txty)tz = tx(tytz), which is equivalent
to ∑

u∈W

γ̃x,y,u−1 γ̃u,z,w−1 =
∑
u∈W

γ̃x,u,w−1 γ̃y,z,u−1 for all w ∈ W.
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Using the defining formula, the left-hand side evaluates to

∑
u∈W

( ∑
λ∈Λ

∑
1�i,j,k�dλ

f−1
λ cij

x,λcjk
y,λcki

u−1,λ

)( ∑
µ∈Λ

∑
1�p,q,r�dµ

f−1
µ cpq

u,λcqr
z,λcrp

w−1,λ

)

=
∑

λ,µ∈Λ

∑
1�i,j,k�dλ

∑
1�p,q,r�dµ

f−1
λ f−1

µ cij
x,λcjk

y,λcqr
z,λcrp

w−1,λ

( ∑
u∈W

cki
u−1,λcpq

u,λ

)
.

By the relations in (3.1), the parenthesized sum evaluates to δkqδpiδλµfλ. Hence, the
above expression equals ∑

λ∈Λ

∑
1�i,j,k,r�dλ

f−1
λ cij

x,λcjk
y,λckr

z,λcri
w−1,λ.

By a similar computation, the right-hand side evaluates to∑
u∈W

( ∑
λ∈Λ

∑
1�i,j,k�dλ

f−1
λ cij

x,λcjk
u,λcki

w−1,λ

)( ∑
µ∈Λ

∑
1�p,q,r�dµ

f−1
µ cpq

y,λcqr
z,λcrp

u−1,λ

)

=
∑

λ,µ∈Λ

∑
1�i,j,k�dλ

∑
1�p,q,r�dµ

f−1
λ f−1

µ cij
x,λcki

w−1,λcpq
y,λcqr

z,λ

( ∑
u∈W

cjk
u,λcrp

u−1,λ

)
=

∑
λ∈Λ

∑
1�i,j,k,q�dλ

f−1
λ cij

x,λcjq
y,λcqk

z,λcki
w−1,λ.

We see that both sides are equal; hence, J̃ is associative. To show that 1J̃ is the identity
element of J̃ we let x ∈ W and note that

tx1J̃ =
∑

w∈W

ñwtxtw =
∑
y∈W

( ∑
w∈W

ñwγ̃x,w,y−1

)
ty

=
∑
y∈W

( ∑
w∈W

ñwγ̃y−1,x,w

)
ty = tx by Lemma 3.4 (a), (b).

A similar argument shows that 1J̃ tx = tx. Thus, 1J̃ is the identity element of J̃ . �

Proposition 3.6. The linear map τ̄ : J̃ → F defined by τ̄(tw) = ñw−1 is a symmetriz-
ing trace such that τ̄(txty−1) = δxy for all x, y ∈ W .

Proof. Let x, y ∈ W . Then, using Lemma 3.4 (b), we obtain

τ̄(tx−1ty) =
∑

w∈W

γ̃x−1,y,w−1 τ̄(tw) =
∑

w∈W

γx−1,y,w−1 ñw−1 = δxy.

This implies that τ̄(txty) = τ̄(tytx) for all x, y ∈ W , and hence τ̄ is a trace function. We
also see that {tw | w ∈ W} and {tw−1 | w ∈ W} form a pair of dual bases; hence, τ̄ is
non-degenerate. Thus, J̃ is a symmetric algebra with trace form τ̄ . �
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Proposition 3.7. For λ ∈ Λ, define a linear map

ρ̄λ : J̃ → Mdλ
(F ), tw �→ (cij

w,λ)1�i,j�dλ
.

Then ρ̄λ is an absolutely irreducible representation of J̃ , and all irreducible representa-
tions of J̃ (up to equivalence) arise in this way. In particular, J̃ is a split semisimple
algebra. (Recall that F is any field containing ZW .)

Proof. We must show that ρ̄λ(txty) = ρ̄λ(tx)ρ̄λ(ty) for all x, y ∈ W . Now, by the
definition of γ̃x,y,z, we have

ρ̄λ
ij(txty) =

∑
z∈W

γ̃x,y,z−1cij
z,λ =

∑
z∈W

( ∑
µ∈Λ

∑
1�p,q,r�dµ

f−1
µ cpq

x,µcqr
y,µcrp

z−1,µ

)
cij
z,λ.

Using the relations in Remark 3.3, the right-hand side evaluates to∑
µ∈Λ

∑
1�p,q,r�dµ

f−1
µ cpq

x,µcqr
y,µδrjδpiδλµfλ =

∑
1�q�dλ

ciq
x,µcqj

y,µ = (ρ̄λ(tx)ρ̄λ(ty))ij ,

as required. To show that ρ̄λ is absolutely irreducible, we argue as follows. By Proposi-
tion 3.6, we have a symmetrizing trace where {tw | w ∈ W} and {tw−1 | w ∈ W} form
a pair of dual bases. Consequently, the relations in Remark 3.3 can be interpreted as
orthogonality relations for the coefficients of the representations ρ̄λ. Thus, we have∑

w∈W

ρ̄λ
ij(tw)ρ̄λ

kl(tw−1) = δilδjkfλ for all 1 � i, j, k, l � dλ.

By [12, Remark 7.2.3], the validity of these relations implies that ρ̄λ is absolutely irre-
ducible. Finally, if λ �= µ in Λ, then we also have the relations∑

w∈W

ρ̄λ
ij(tw)ρ̄µ

kl(tw−1) = 0.

In particular, this implies that ρ̄λ and ρ̄µ are not equivalent.
Since dim J̃ = |W | =

∑
λ∈Λ d2

λ, we can now conclude that J̃ is split semisimple, and
that {ρ̄λ | λ ∈ Λ} are the irreducible representations of J̃ (up to equivalence). �

Proposition 3.8. The linear map J̃ → J̃ defined by tw �→ tw−1 is an anti-involution,
that is, we have γ̃x,y,z = γ̃y−1,x−1,z−1 for all x, y, z ∈ W .

Proof. By Lemma 3.2, we may assume that F = R and that our balanced representa-
tions ρλ are chosen such that they are orthogonal, as in Remark 2.4. Then the correspond-
ing leading matrix coefficients have the additional property cij

w,λ = cji
w−1,λ. The defining

formula then immediately shows that γ̃x,y,z = γ̃y−1,x−1,z−1 for all x, y, z ∈ W . �

https://doi.org/10.1017/S0013091508000394 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508000394


Leading coefficients and cellular bases 665

Lemma 3.9. Assume that ρλ and σλ are balanced and equivalent over K. Then there
exists a matrix Uλ ∈ Mdλ

(O) such that

det(Uλ) ∈ O× and Uλρλ(Tw) = σλ(Tw)Uλ for all w ∈ W.

Denote the leading matrix coefficients with respect to σλ by dij
w,λ. Then, for a given

element w ∈ W , we have

cij
w,λ �= 0 for some i, j ⇐⇒ dkl

w,λ �= 0 for some k, l.

Proof. Since ρλ and σλ are equivalent over K, there exists an invertible matrix
Uλ ∈ Mdλ

(K) such that Uλρλ(Tw) = σλ(Tw)Uλ for all λ ∈ Λ. Multiplying Uλ by a
suitable scalar, we may assume that all coefficients of Uλ lie in O and that at least one
coefficient does not lie in p.

We show that det(Uλ) ∈ O×. For this purpose, let Ūλ be the matrix whose (i, j)-
coefficient is the constant term of the (i, j)-coefficient of Uλ. Multiplying the relation
Uλρλ(Tw) = σλ(Tw)Uλ by εaλ and taking constant terms, we see that Ūλ ∈ Mdλ

(F ) is
a non-zero matrix such that

Ūλρ̄λ(tw) = σ̄λ(tw)Ūλ for all w ∈ W,

where σ̄λ(tw) := (dij
w,λ)1�i,j�dλ

. Now let v ∈ F dλ be such that Ūλv = 0. Then we also
have

Ūλ(ρ̄λ(tw)v) = σ̄λ(tw)Ūλv = 0,

and so the nullspace of Ūλ is a ρ̄λ-invariant subspace of Udλ . Since ρ̄λ is irreducible and
Ūλ �= 0, we conclude that the nullspace is 0 and, hence, Ūλ is invertible, as claimed.

The assertion about the leading matrix coefficients is now clear. �

Remark 3.10. Let λ ∈ Λ and w ∈ W . As in [10, Definition 3.1], we write Eλ �L w if
cij
w,λ �= 0 for some i, j ∈ {1, . . . , dλ}. By Lemma 3.9, this relation does not depend on the

choice of the balanced representations ρλ. In particular, choosing ρλ as in Remark 2.4,
we see that

Eλ �L w ⇐⇒ Eλ �L w−1. (3.2)

Now define a graph as follows: the vertices are in bijection with the elements of W ; two
vertices corresponding to elements x �= y in W are joined by an edge if there exists some
λ ∈ Λ such that Eλ �L x and Eλ �L y. Considering the connected components of
this graph, we obtain a partition of W ; the pieces in this partition will be called the
L-blocks of W . By [10, Remark 3.3], we have that

each L-block is contained in a two-sided cell of W. (3.3)

(See [20, Chapter 8] for the definition of two-sided cells; if (P1)–(P14) hold, then one
can show that the L-blocks are precisely the two-sided cells of W [10, Remark 3.9].)

For an L-block F of W , we define J̃F = 〈tw | w ∈ F〉F ⊆ J̃ . Then one may easily check
that J̃F is a two-sided ideal of J̃ . (Indeed, let x ∈ W , w ∈ F ; we must show that txtw
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and twtx lie in J̃F . Now, txtw =
∑

y∈W γ̃x,w,y−1ty. Assume that γ̃x,w,y−1 �= 0. Then, by
the defining formula, there exists some λ ∈ Λ such that Eλ �L x, Eλ �L w and
Eλ �L y−1. By (3.2), we also have Eλ �L y. It follows that x, y, y−1 ∈ F . Thus,
txtw ∈ J̃F . The argument for twtx is similar.) We obtain a decomposition as a direct
sum of two-sided ideals

J̃ =
⊕
F

J̃F (sum over all L-blocks F of W ). (3.4)

Now, given λ ∈ Λ, there will be a unique L-block F such that ρ̄λ(tw) �= 0 for some w ∈ F .
We denote this L-block by Fλ.

4. Properties of balanced representations

The purpose of this section is to study in more detail balanced representations as in
Definition 2.2. In particular, we wish to develop some methods for verifying whether or
not a given matrix representation is balanced. The criterion in Proposition 4.3 will prove
very useful in dealing with a number of examples. Proposition 4.10 exhibits some basic
integrality properties.

We keep the general assumptions of the previous section. In particular, {ρλ | λ ∈ Λ}
is a fixed choice of balanced representations of HK .

Lemma 4.1. Let {δλ | λ ∈ Λ} be a complete set of representatives for the equivalence
classes of irreducible representations of J̃ . Then ρλ can be chosen such that ρ̄λ(tw) =
δλ(tw) for all w ∈ W .

Proof. First of all, we can assume without loss of generality that ρ̄λ is equivalent
to δλ for each λ ∈ Λ. Let Gλ ∈ Mdλ

(F ) be an invertible matrix such that δλ(tw) =
(Gλ)−1ρ̄λ(tw)Gλ for all w ∈ W . Now set ρ̂λ(Tw) := (Gλ)−1ρλ(Tw)Gλ for w ∈ W .
Then ρ̂λ is an irreducible representation of HK equivalent to ρλ. Moreover, since the
transforming matrix Gλ has all its coefficients in F , it is clear that ρ̂λ is also balanced
and that the leading matrix coefficients associated with ρ̂λ(Tw) are given by δλ(tw). It
remains to use Lemma 3.2. �

Example 4.2. Assume that we are in the equal parameter case or, more generally,
that Lusztig’s (P1)–(P15) are known to hold (see Remark 2.6). Then, by Proposition 2.5,
we have

γ̃x,y,z = γx,y,z ∈ Z for all x, y, z ∈ W.

Assume further that R := ZW is a principal ideal domain. Then, by a general argument
(see, for example, [12, 7.3.7]), every irreducible representation of J̃ can be realized over R.
Hence, by Lemma 4.1, the balanced representations of HK can be chosen such that

ρ̄λ(tw) ∈ Mdλ
(ZW ) for all λ ∈ Λ and w ∈ W.

This applies to all finite Weyl groups in the equal parameter case, where ZW = W . It
also applies to (W, S) of type H3 or H4, where ZW = Z[ 12 (−1 +

√
5)]; note that ZW is a
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principal ideal domain. By [10, Theorem 5.2], it also applies to (W, S) of type F4 (where
ZW = Z), any weight function and any monomial order on Γ .

Proposition 4.3. Assume that F ⊆ R (which we can do without loss of generality).
Let λ ∈ Λ and σλ : HK → Mdλ

(K) be any matrix representation afforded by Eλ
ε . Then

σλ is balanced if and only if there exists a symmetric matrix Ωλ ∈ Mdλ
(O) such that

det(Ωλ) ∈ O× and Ωλσλ(Tw−1) = σλ(Tw)trΩλ for all w ∈ W.

Proof. Assume first that σλ is balanced. Now σλ is obtained by choosing some basis
of Eλ

ε . Let Ωλ be the Gram matrix of 〈· , ·〉 with respect to that basis, where 〈· , ·〉 is a
bilinear form on Eλ

ε as constructed in the proof of Proposition 2.3. Multiplying Ωλ by a
suitable scalar, we may assume without loss of generality that all coefficients of Ωλ lie in
O and that some coefficient of Ωλ does not lie in p. Then Ωλ ∈ Mdλ

(O) is a symmetric
matrix such that

Ωλ �= 0 and Ωλσλ(Tw−1) = σλ(Tw)trΩλ for all w ∈ W.

Let Ω̄λ be the matrix whose (i, j)-coefficient is the constant term of the (i, j)-coefficient
of Ωλ. Now, multiplying the relation Ωλσλ(Tw−1) = σλ(Tw)trΩλ by εaλ and taking con-
stant terms, we see that Ω̄λ is a non-zero symmetric matrix such that

Ω̄λσ̄λ(tw−1) = σ̄λ(tw)trΩ̄λ for all w ∈ W.

Thus, Ω̄λ defines a J̃ -invariant symmetric bilinear form on a representation space afford-
ing σ̄λ. The invariance implies that the radical of the form is a J̃ -submodule. Hence,
since σ̄λ is an irreducible representation, we conclude that the radical must be zero and
so det(Ω̄λ) �= 0.

Conversely, assume that a matrix Ωλ with the above properties exists. Let Ω̄λ be the
matrix whose (i, j)-coefficient is the constant term of the (i, j)-coefficient of Ωλ. Then
Ω̄λ ∈ Mdλ

(F ) is a symmetric matrix such that det(Ω̄λ) �= 0 (since det(Ωλ) ∈ O×). Thus,
Ω̄λ defines a non-degenerate symmetric bilinear form. Now, since we are working over a
field of characteristic 0, there will be an orthogonal basis with respect to that form. So
we can find invertible matrices Qλ, Dλ ∈ Mdλ

(F ) such that Ω̄λ = (Qλ)trDλQλ and Dλ

is diagonal. Now let Pλ := (Qλ)−1 and define

σ̂λ(Tw) := (Pλ)−1σλ(Tw)Pλ for all w ∈ W,

Ω̂λ := (Pλ)trΩλPλ.

Thus, σ̂λ is an irreducible representation of HK equivalent to σλ; furthermore, we have

Ω̂λσ̂λ(Tw−1) = σ̂λ(Tw)trΩ̂λ for all w ∈ W.

Since the transforming matrix Pλ has all its coefficients in F , it is clear that Ω̂λ ∈ Mdλ
(O)

and det(Ω̂λ) ∈ O×; furthermore, σλ is balanced if and only if σ̂λ is balanced.
Thus, it remains to show that σ̂λ is balanced. Now, the point about the above trans-

formation is that we have Ω̂λ ≡ Dλ mod p. We can now argue as in the proof of Propo-
sition 2.3 to show that σ̂λ is balanced. �
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Remark 4.4. Note that, in order to verify that a matrix Ωλ satisfies

Ωλσλ(Tw−1) = σλ(Tw)trΩλ for all w ∈ W

it is sufficient to verify that Ωλσλ(Ts) = σλ(Ts)trΩλ for all s ∈ S. This remark, although
almost trivial, is nevertheless useful in dealing with concrete examples.

Example 4.5. Let 3 � m < ∞ and (W, S) be of type I2(m), with generators s1, s2

such that (s1s2)m = 1. We have ZW = Z[ζ + ζ−1], where ζ ∈ C is a root of unity of
order m. We assume without loss of generality that L(s1) � L(s2) > 0. The irreducible
representations of HK are determined in [12, 8.3]. These representations have dimension
1 or 2. Notice that one-dimensional representations are automatically balanced. By [12,
Theorem 8.3.1], the two-dimensional representations can be realized as

ρj : Ts1 �→
(

−v−1
s1

0
µj vs1

)
, Ts2 �→

(
vs2 1
0 −v−1

s2

)
,

where µj = vs1v
−1
s2

+ ζj + ζ−j + v−1
s1

vs2 and 1 � j � 1
2 (m − 2) (if m is even) or 1 � j �

1
2 (m − 1) (if m is odd). Note that the coefficients of the representing matrices lie in the
ring ZW [v±1

s1
, v±1

s2
]. Now let

Ωj =

(
vs1µj(vs2 + v−1

s2
) vs1µj

vs1µj v2
s1

+ 1

)
∈ M2(ZW [v±1

s1
, v±1

s2
]).

Then Ωj is a symmetric matrix satisfying Ωjρj(Tw−1) = ρj(Tw)trΩj for all w ∈ W . (By
Remark 4.4, it is sufficient to verify this for w ∈ {s1, s2}.) We see that

Ωj ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1 0

0 1

)
mod p if L(s2) > L(s1) > 0,

(
2 + ζj + ζ−j 0

0 1

)
mod p if L(s2) = L(s1) > 0.

Hence, by Proposition 4.3, ρj is a balanced representation, in all cases. Since the coef-
ficients of the matrices ρj(Ts1) and ρj(Ts2) lie in ZW [v±1

s1
, v±1

s2
], the same will be true

for the matrices ρj(Tw), where w ∈ W . Hence, all the corresponding leading matrix
coefficients will also lie in ZW .

Example 4.6. The argument in Example 4.5 can be applied whenever the irreducible
representations of HK are explicitly known.

Assume, for example, that (W, S) is of type H3 or H4. In these cases, all elements
in S are conjugate and so all vs, s ∈ S, are equal; write v = vs for s ∈ S. We have
ZW = Z[α], where α = 1

2 (−1 +
√

5). The irreducible representations of HK are con-
structed by Lusztig [15, § 5] and Alvis and Lusztig [1] in terms of so-called W -graphs.
(These W -graphs are reproduced in [12, Chapter 11].) Thus, we obtain explicit matrix
representations ρλ : HK → Mdλ

(K) for all λ ∈ Λ. By inspection, one sees that

ρλ(Tw) ∈ Mdλ
(ZW [v, v−1]) for all w ∈ W.
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Table 1. Invariant bilinear forms for H3

Ω1′
r =

[
1
]
, Ω1r =

[
1
]
, Ω5′

r =

⎡⎢⎢⎢⎢⎢⎣
v2+1 0 −v 0 0

0 v2+1 0 −v 0
−v 0 v2+1 0 −v

0 −v 0 v2+1 −v

0 0 −v −v v2+1

⎤⎥⎥⎥⎥⎥⎦ ,

Ω5r=

⎡⎢⎢⎢⎢⎢⎣
v8+v6+v4+v2+1 v4 v7+v5+v3+v v5+v3 v6+v4+v2

v4 v8+v6+v4+v2+1 v5+v3 v7+v5+v3+v v6+v4+v2

v7+v5+v3+v v5+v3 v8+2v6+2v4+2v2+1 v6+2v4+v2 v7+2v5+2v3+v

v5+v3 v7+v5+v3+v v6+2v4+v2 v8+2v6+2v4+2v2+1 v7+2v5+2v3+v

v6+v4+v2 v6+v4+v2 v7+2v5+2v3+v v7+2v5+2v3+v v8+2v6+3v4+2v2+1

⎤⎥⎥⎥⎥⎥⎦ ,

Ω3s =

⎡⎢⎣v2+1 −v 0
−v v2+1 ᾱv

0 ᾱv v2+1

⎤⎥⎦ , Ω3′
s =

⎡⎢⎣v4−αv2+1 v3+v −ᾱv2

v3+v v4+2v2+1 −ᾱv3−ᾱv

−ᾱv2 −ᾱv3−ᾱv v4+v2+1

⎤⎥⎦ ,

Ω3s =

⎡⎢⎣v2+1 −v 0
−v v2+1 αv

0 αv v2+1

⎤⎥⎦ , Ω3′
s =

⎡⎢⎣v4−ᾱv2+1 v3+v −αv2

v3+v v4+2v2+1 −αv3−αv

−αv2 −αv3−αv v4+v2+1

⎤⎥⎦ ,

Ω4′
r =

⎡⎢⎢⎢⎣
v4−v3+2v2−v+1 v3+v v3+v v2

v3+v v4+2v2+1 v3+v2+v v3+v

v3+v v3+v2+v v4+2v2+1 v3+v

v2 v3+v v3+v v4−v3+2v2−v+1

⎤⎥⎥⎥⎦ ,

Ω4r =

⎡⎢⎢⎢⎣
v4+v3+2v2+v+1 −v3−v −v3−v v2

−v3−v v4+2v2+1 −v3+v2−v −v3−v

−v3−v −v3+v2−v v4+2v2+1 −v3−v

v2 −v3−v −v3−v v4+v3+2v2+v+1

⎤⎥⎥⎥⎦
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Figure 2.

For each λ ∈ Λ, we can work out a non-zero matrix Ωλ ∈ Mdλ
(ZW [v, v−1]) such that

Ωλρλ(Tw−1) = ρλ(Tw)trΩλ for all w ∈ W . (For example, with the help of a computer, we
can simply compute Ωλ :=

∑
w∈W ρλ(Tw)trρλ(Tw).) Multiplying Ωλ by a suitable scalar,

we may assume that all coefficients lie in ZW [v] and at least one coefficient does not lie
in vZW [v]. For type H3, the matrices Ωλ are given in Table 1, where we use the labelling
of Irr(W ) as in [12, Table C.1]. In this case, we notice that the diagonal coefficients lie in
1 + p, while the off-diagonal coefficients lie in p. Hence, clearly we have det(Ωλ) ∈ 1 + p.
The situation in type H4 is slightly more complicated, but one can check again that
det(Ωλ) ∈ O× for all λ ∈ Λ. Thus, by Proposition 4.3, the representations given by the
W -graphs are balanced.

One may conjecture that every representation given by a W -graph is balanced.

Example 4.7. Let W = Wn be a Coxeter group of type Bn, with generators
s0, s1, . . . , sn−1 and relations given by the diagram in Figure 2; the ‘weights’ a, b ∈ Γ

attached to the generators of Wn uniquely determine a weight function L = La,b on Wn.
Assume that a > 0. Then we claim that, for each λ ∈ Λ, there is a balanced represen-

tation ρλ with corresponding matrix Ωλ (as in Proposition 4.3) such that

(a) all the leading matrix coefficients cij
w,λ lie in Z,

(b) Ωλ ∈ Mdλ
(Z[Γ ]) and det(Ωλ) ∈ 2nλ + p where nλ ∈ Z,

(c) nλ = 0 if b �∈ {a, 2a, . . . , (n − 1)a}.

This can be seen by an argument which is a variation of that in [11, Example 3.6]. Indeed,
it is well known that we can take for Λ the set of all pairs of partitions of total size n.
Furthermore, for each λ ∈ Λ, we have a corresponding Specht module S̃λ as constructed
by Dipper et al . [5]. Let {et | t ∈ Tλ} be the standard basis of S̃λ, where Tλ is the set
of all standard bitableaux of shape λ. With respect to this basis, each Tw, w ∈ Wn, is
represented by a matrix with coefficients in Z[Γ ].

Let 〈· , ·〉λ be the invariant bilinear form on S̃λ as constructed in [5, § 5]. Let Ψλ be the
Gram matrix of this bilinear form with respect to the basis {et | t ∈ Tλ}. All coefficients of
Ψλ lie in Z[Γ ]. Let {ft | t ∈ Tλ} be the orthogonal basis constructed in [5, Theorem 8.11];
this basis is obtained from the standard basis by a unitriangular transformation. Hence,
we have

det(Ψλ) =
∏

t∈Tλ

〈ft, ft〉λ ∈ Z[Γ ].

Using the recursion formula in [6, Proposition 3.8], it is straightforward to show that,
for each basis element ft, there exist integers st, ati, btj , ctk, dtl ∈ Z such that ati � 0,
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btj � 0 and

〈ft, ft〉λ = ε2sta

∏
i(1 + ε2a + · · · + ε2atia)∏
j(1 + ε2a + · · · + ε2btja)

∏
k(1 + ε2(b+ctka))∏
l(1 + ε2(b+dtla))

.

So there exist ht, h
′
t, mtk, m′

tl, nt, n
′
t ∈ Z such that∏

k

(1 + ε2(b+ctka)) = 2ntε2ht

∏
k

(1 + ε2mtk) where mtk > 0,∏
l

(1 + ε2(b+dtla)) = 2n′
tε2h′

t

∏
l

(1 + ε2m′
tl) where m′

tl > 0.

Hence, setting ẽt := ε−sta−ht+h′
tet and f̃t := ε−sta−ht+h′

tft, we obtain 2n′
t−nt〈f̃t, f̃t〉λ ∈

1+ p for all t ∈ Tλ. Now let ρλ be the matrix representation afforded by S̃λ with respect
to {ẽt | t ∈ Tλ} and let Ωλ be the Gram matrix of 〈· , ·〉λ with respect to that basis. Then

det(Ωλ) = det(Ψλ)
∏

t∈Tλ

ε2(−sta−ht+h′
t) =

∏
t∈Tλ

(ε2(−sta−ht+h′
t)〈ft, ft〉λ) =

∏
t∈Tλ

〈f̃t, f̃t〉λ.

Hence, we can deduce that (a) and (b) hold. Finally, the cases in (c) correspond to the
situations already considered in [11, Example 3.6] and [3, Proposition 2.3]; the special
feature of these cases is that nt = 0 for all t.

Definition 4.8. Recall that ZW = Z[2 cos(2π/mst) | s, t ∈ S]. We say that the subring
R ⊆ C is L-good if the following conditions hold:

• ZW ⊆ R and

• fλ is contained and invertible in R for all λ ∈ Λ.

By Remark 2.1, this notion does not depend on the choice of the monomial order on Γ .
Note that, if W is a finite Weyl group, i.e. we have mst ∈ {2, 3, 4, 6}, then 2 cos(2π/mst) ∈
Z and fλ ∈ Z for all λ ∈ Λ. Hence, in this case, ZW = Z and the only condition on R

is that the integer fλ is invertible in R for every λ ∈ Λ (which is precisely the condition
used in [9, § 2.2]).

Example 4.9. Assume that (W, S) is of type I2(m), where m = 5 or m � 7. Formulae
for the elements cλ can be found in [12, Theorem 8.3.4]. Using these formulae, one may
check that R is L-good if and only if 2 cos(2π/m) ∈ R and the integer m is invertible
in R.

Assume that (W, S) is of type H3. Then [12, Table E.2] shows that R is L-good if and
only if 1

2 (1 +
√

5) ∈ R and the integers 2, 5 are invertible in R.
Assume that (W, S) is of type H4. Then [12, Table E.3] shows that R is L-good if and

only if 1
2 (1 +

√
5) ∈ R and the integers 2, 3, 5 are invertible in R.

Proposition 4.10. Let R ⊆ C be a subring which is L-good. Let λ ∈ Λ. Then the
balanced representation ρλ can be chosen such that the following hold.
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(a) ρ̄λ
ij(tw) = cij

w,λ ∈ ZW for all w ∈ W and 1 � i, j � dλ.

In particular, we have γ̃x,y,z ∈ R for all x, y, z ∈ W . Furthermore, there exists a symmet-
ric, positive-definite matrix

Bλ = (βλ
ij)1�i,j�dλ

, where βλ
ij ∈ ZW for all 1 � i, j � dλ,

such that the following two conditions hold:

(b) Bλρ̄λ(tw−1) = ρ̄λ(tw)trBλ for all w ∈ W ;

(c) det(Bλ) �= 0 is invertible in R.

Proof. By standard reduction arguments, one can assume that (W, S) is irreducible.
Now (a) holds in all cases by Examples 4.2, 4.5 and 4.7. Once this is proved, we see

(by the defining formula) that γ̃x,y,z ∈ R for all x, y, z ∈ W . We can now actually take R

to be the ring generated by ZW and f−1
λ , λ ∈ Λ. Notice that, if ZW is a principal ideal

domain, then so is R.
Now (b) and (c) can be proved as in [9, Proposition 2.6], if ZW is a principal ideal

domain. (In the last step of [9, Proposition 2.6], instead of reducing modulo a prime
number, one reduces modulo a prime ideal in R.) Hence, it only remains to prove (b) and
(c) for (W, S) of type I2(m), m � 3. Note that the assertions are clear for one-dimensional
representations, where we can just take Ωλ = (1). For a two-dimensional representation
ρj , let Ωj be as in Example 4.5. Let Bj be the matrix obtained by taking the constant
terms of the entries of Ωj . We notice that all entries of Bj lie in ZW , and Bj satisfies (b).
It remains to consider det(Bj). By Example 4.9, m is invertible in R, so it will be sufficient
to show that det(Bj) divides m in R. Now, if L(s2) > L(s1) > 0, then det(Bλ) = 1 and
so there is nothing to prove. If L(s1) = L(s2) > 0, then det(Bj) = 2 + ζj + ζ−j . Now, we
have ∏

1�j�(m−1)/2

(2 + ζj + ζ−j) = 1 if m is odd,

∏
1�j�(m−2)/2

(2 + ζj + ζ−j) = 1
2m if m is even.

Thus, det(Bj) divides m, as required. It follows that (c) holds. �

Corollary 4.11. Let Q(2) be the ring of all rational numbers of the form 2ab, where
a, b ∈ Z. Then γ̃x,y,z ∈ Q(2) for all x, y, z ∈ W .

Proof. By standard reduction arguments, we can assume that (W, S) is irreducible.
Now, if (P1)–(P15) hold, then γ̃x,y,z = γx,y,z ∈ Z for all x, y, z ∈ W (see Proposition 2.5).
Hence, by Remark 2.6, the assertion holds in the equal parameter case. By [10, § 5], this
also applies to (W, S) of type F4 and I2(m) (for all choices of weight functions and
monomial orders). If (W, S) if of type Bn, the result is covered by Example 4.7. �
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5. Cellular bases

We are now ready to review the construction of a cellular basis of H and to extend this
construction to further types of examples. We refer to [20, Chapter 8] for the definition
of the Kazhdan–Lusztig preorder relation �LR. (Note that this depends on the weight
function L and the monomial order on Γ .) For any w ∈ W , we have HCwH ⊆

∑
y ACy,

where the sum runs over all y ∈ W such that y �LR w. Let ∼LR be the associated
equivalence relation; the equivalence classes are called the two-sided cells of W . Instead
of Lusztig’s (P1)–(P15) (see [20, § 14.2]), we shall only have to consider the following
property, which is a variant of (P15).

(P̃15) If x, x′, y, w ∈ W satisfy w ∼LR y, then∑
u∈W

γ̃w,x′,u−1hx,u,y =
∑
u∈W

hx,w,uγ̃u,x′,y−1 .

Remark 5.1. Assume that (P1)–(P15) in [20, § 14.2] hold. Then γ̃x,y,z = γx,y,z for
all x, y, z ∈ W (see Proposition 2.5). Now, if x, x′, y, w ∈ W satisfy w ∼LR y, then
a(w) = a(y) by (P4) and, hence, (P̃15) follows from [20, Theorem 18.9 (b)], which itself
is deduced from (P15). Thus, (P̃15) holds if (P1)–(P15) hold.

Assume from now on that R is L-good (see Definition 4.8). By Proposition 4.10, all
structure constants γ̃x,y,z lie in R. Let J̃R be the R-span of {tw | w ∈ W}. Then J̃R is
an R-subalgebra of J̃ and J̃ = F

⊗
R J̃R. By the identification Cw ↔ tw, the natural

left H-module structure on H (given by left multiplication) can be transported to a left
H-module structure on J̃A := A

⊗
R J̃R. Explicitly, the action is given by

Cx ∗ ty =
∑
z∈W

hx,y,ztz for all x, y ∈ W.

Now we have the following result which was first proved by Lusztig in [19] for the equal
parameter case and in [20, Theorems 18.9 and 18.10] for the general case, assuming that
(P1)–(P15) hold. Note that our proof is much less ‘computational’ than that in [20]; it
is inspired by an analogous argument in [15].

Theorem 5.2 (Lusztig). Assume that (P̃15) holds. Then there is a unique unital
A-algebra homomorphism φ : H → J̃A such that, for any h ∈ H and w ∈ W , the
difference φ(h)tw − h ∗ tw is an A-linear combination of terms ty, where y �LR w and
y �∼LR w. Explicitly, φ is given by

φ(Cw) =
∑

z∈W, d∈D̃,
z∼LRd

hw,d,zñdtz, w ∈ W.

Proof. Using the preorder �LR, we can define a left H-module structure on J̃A by
the formula

Cx � ty =
∑

z∈W :z∼LRy

hx,y,ztz for all x, y ∈ W.
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(More formally, one considers a graded module gr(E) with canonical basis {ēw | w ∈ W}
as in [15, p. 492], and then transports the structure to J̃A via the identification ēw ↔ tw.
This immediately yields the above formula. Of course, one can also check directly that
the above formula defines a left H-module structure on J̃A.) For any h ∈ H and w ∈ W ,
the difference h ∗ tw − h � tw is an A-linear combination of terms ty, where y �LR w and
y �∼LR w.

On the other hand, we have a natural right J̃A-module structure on J̃A (given by
right multiplication). Then (P̃15) is equivalent to the statement that J̃A is an (H, J̃A)-
bimodule. Indeed, we simply remark that (P̃15) is obtained by writing out the identity
Cx � (twtx′) = (Cx � tw)tx′ , where we use the fact that, on both sides of (P̃15), the sum
needs only to be extended over all u ∈ W such that u ∼LR w. (This follows from the
fact that each L-block is contained in a two-sided cell; see (3.3).)

Now we can argue as follows. The left H-module structure on J̃A gives rise to an
A-algebra homomorphism

ψ : H → EndA(J̃A) such that ψ(h)(tw) = h � tw.

Since the left action of H on J̃A commutes with the right action of J̃A, the image of ψ

lies in EndJ̃A
(J̃A). Now, we have a natural A-algebra isomorphism

η : EndJ̃A
(J̃A) → J̃A, f �→ f(1J̃A

).

(This works for any ring with identity.) We define φ = η ◦ ψ : H → J̃A. Then φ is an
A-algebra homomorphism such that

φ(h) = ψ(h)(1J̃A
) = h � 1J̃A

for all h ∈ H.

This yields φ(h)tw = (h � 1J̃A
)tw = h � 1J̃A

tw = h � tw or, in other words, the difference
φ(h)tw − h ∗ tw is an A-linear combination of terms ty, where y �LR w and y �∼LR w, as
required. Finally, we immediately obtain the formula

φ(Cw) = Cw � 1J̃A
=

∑
d∈D̃

ñdCw � td =
∑

z∈W, d∈D̃,
z∼LRd

hw,d,zñdtz.

Since h1,d,z = δd,z, this yields φ(C1) = 1J̃A
; hence, φ is unital.

The unicity of φ is clear since the conditions on φ imply that φ(h)tw = h � tw for all
w ∈ W and, hence, φ(h) = φ(h)1J̃A

= h � 1J̃A
for all h ∈ H. �

Remark 5.3. Assume that (P1)–(P15) hold. Then γ̃x,y,z = γx,y,z for all x, y, z ∈ W

(see Proposition 2.5). Hence, J̃ is Lusztig’s ring J constructed in [20, Chapter 18]. Since
the identity element is uniquely determined, we can also conclude that D̃ = D and
ñd = nd for all d ∈ D, where D and nd are defined as in [20, Chapter 18]. Hence, the
above result is a combination of [20, Theorems 18.9 and 18.10].

Note that the formula for φ in [20, Theorem 18.9] looks somewhat different: there is
a factor n̂z instead of ñd = nd. However, by [10, Remark 2.10], one can easily see that
the two versions are equivalent. And in view of the above proof, the version here seems
more natural.
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Finally, we come to the construction of ‘cell data’ for H in the sense of Graham and
Lehrer [13]. By [13, Definition 1.1], we must specify a quadruple (Λ, M, C, ∗) satisfying
the following conditions.

(C1) Λ is a partially ordered set (with partial order denoted by �), {M(λ) | λ ∈ Λ} is a
collection of finite sets and

C :
∐
λ∈Λ

M(λ) × M(λ) → H

is an injective map whose image is an A-basis of H.

(C2) If λ ∈ Λ and s, t ∈ M(λ), write C(s, t) = Cλ
s,t ∈ H. Then ∗ : H → H is an A-linear

anti-involution such that (Cλ
s,t)

∗ = Cλ
t,s.

(C3) If λ ∈ Λ and s, t ∈ M(λ), then for any element h ∈ H we have

hCλ
s,t ≡

∑
s′∈M(λ)

rh(s′, s)Cλ
s′,t mod H(� λ),

where rh(s′, s) ∈ A is independent of t and where H(� λ) is the A-submodule of
H generated by {Cµ

s′′,t′′ | µ � λ; λ �= µ; s′′, t′′ ∈ M(µ)}.

We now define a required quadruple (Λ, M, C, ∗) as follows.
As before, Λ is an indexing set for the irreducible representations of W . For λ ∈ Λ,

we set M(λ) = {1, . . . , dλ}. We define a partial order on Λ as follows. Recall that, in
Remark 3.10, we have associated with λ ∈ Λ an ‘L-block’ Fλ of W . Now, given λ, µ ∈ Λ,
let x ∈ Fλ and y ∈ Fµ; then we define

λ � µ
def⇐⇒ λ = µ or x �LR y, x �∼LR y.

(This does not depend on the choice of x or y, since each L-block is contained in a
two-sided cell of W ; see (3.3).)

Remark 5.4. Assume that (P1)–(P15) in [20, § 14.2] hold. By Proposition 2.5, we then
have a(z) = aλ if ρ̄λ(tz) �= 0. Furthermore, by (P4) and (P11), we have the implication
‘x �LR y ⇒ a(y) � a(x)’, with equality only if x ∼LR y. Hence, we see that

λ � µ =⇒ λ = µ or aµ < aλ.

The partial order defined by the condition on the right-hand side is the one we used
in [9].

Finally, we define an A-linear anti-involution ∗ : H → H by T ∗
w = Tw−1 for all w ∈ W .

Thus, T ∗
w = T �

w in the notation of [20, 3.4]. We can now state the following result.

Theorem 5.5. (Geck [9, Theorem 3.1].) Assume that (P̃15) holds. Recall that R ⊆ C

is assumed to be an L-good subring (see Definition 4.8). Let (ρ̄λ
st(tw)) and (βλ

st) be as in
Proposition 4.10. For any λ ∈ Λ and s, t ∈ M(λ), define

Cλ
s,t =

∑
w∈W

∑
u∈M(λ)

βλ
tuρ̄λ

us(tw−1)Cw.
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Then Cλ
s,t is a ZW -linear combination of Kazhdan–Lusztig basis elements Cw, where

w ∈ Fλ. The quadruple (Λ, M, C, ∗) is a ‘cell datum’ in the sense of Graham–Lehrer [13].

Proof. In all essential points, the argument is the same as in the proof of [9, Theo-
rem 3.1]. Indeed, since (P̃15) holds, we have the existence of Lusztig’s homomorphism
φ : H → J̃A as in Theorem 5.2. The statements in Proposition 4.10 are completely
analogous to those in [9, Proposition 2.6]. Finally, by Theorem 5.2, we have the property
that φ(h)tw − h ∗ tw is an A-linear combination of terms ty, where y �LR and y �∼LR w.
This is precisely what is needed in order to make step 3 of the proof of [9, Theorem 3.1]
work with our stronger definition of the partial order � on Λ. �

The above result strengthens the main result of [9] in four ways:

• it works for finite Coxeter groups in general, and not just for Weyl groups;

• it only requires (P̃15) to hold, and not all of (P1)–(P15) in [20, § 14.2];

• it uses a slightly stronger partial order on Λ (see Remark 5.4);

• it shows that the data required to define the cellular basis can be extracted from
the balanced representations ρλ.

Corollary 5.6. Let (W, S) be any Coxeter system where W is finite. Let R ⊆ C be a
subring which is L0-good, where L0 is the ‘universal’ weight function in Example 1.3. Now
let L′ : W → Γ ′ be any weight function and H ′ the corresponding Iwahori–Hecke algebra
over A′ = R[Γ ′]. Then H ′ admits a cell datum in the sense of Graham–Lehrer [13].

Proof. Let Γ0, A0 and H0 be as in Example 1.3. As pointed out in [10, Corol-
lary 5.4], by combining all the known results about the validity of Lusztig’s conjec-
tures [20, § 14.2], we can choose a monomial order � on Γ0 such that (P1)–(P15) hold.
Hence, by Remark 5.1 and Theorem 5.5, the algebra H0 admits a cell datum. Now,
there is a group homomorphism α : Γ0 → Γ ′ such that α((ns)s∈S) =

∑
s∈S nsL

′(s). This
extends to a ring homomorphism A0 → A′, which we denote by the same symbol. Extend-
ing scalars from A0 to A′ (via α), we obtain H ′ = A′ ⊗

A0
H0. By [9, Corollary 3.2], the

images of the cellular basis elements of H0 in H ′ form a cellular basis in H ′. �

In type Bn, an alternative construction of a cell datum is given by Dipper et al . [5].

References

1. D. Alvis and G. Lusztig, The representations and generic degrees of the Hecke algebra
of type H4, J. Reine Angew. Math. 336 (1982), 201–212 (correction, J. Reine Angew.
Math. 449 (1994), 217–218).
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