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Abstract. We give a new proof of the fact that an area-preserving monotone twist
map of the annulus with one p/q-periodic orbit on which the map preserves the
ordering on the angular coordinate (i.e. Birkhoff or monotone periodic orbits)
actually has a second such orbit distinct from the first.

1. Introduction
In this note we give a new proof of the following:

THEOREM 1 ([3], [10] and [11]). Iffis an area-preserving monotone twist map of an
annulus onto itself with a monotone periodic orbit of rotation number pi q, then f
actually has two distinct monotone periodic orbits of rotation number p/q.

The hope is to give a proof of the above theorem which will generalize to
higher-dimensional analogues of area-preserving monotone twist maps. The proof
we give here relies on the classical theorem of Birkhoff (see [4] and particularly
[5]), which states that an area-preserving twist map of the annulus actually has two
distinct periodic orbits for any possible rotation number. This theorem has a
higher-dimensional analogue recently proven by Conley and Zehnder [7].

The other ingredient in theorem 1 is that monotone and non-monotone orbits for
annulus maps have very distinct topological characteristics, i.e. they can be isolated
from each other in a strong sense. This allows one to build a modification of a given
area-preserving monotone twist map which destroys all non-monotone periodic
orbits, but which does not introduce any new periodic orbits of the given rotation
number (see also [2]). Then Birkhoff's theorem implies that the modified map has
two distinct and necessarily monotone orbits which must also be orbits of the original
map. What is missing for the higher-dimensional versions is a definition of
'monotone' or ordered orbits which allows this sort of isolation from non-ordered
orbits.

The above theorem 1 can be used as the crucial step in a proof of the theorem
of Aubry [3] and Mather [11] which states that all area-preserving monotone twist
maps have orbits of all possible rotation numbers on which the angular order is
preserved. We give an outline of this proof in the final section. It is very similar to
the proof of the Aubry-Mather theorem given in [8].
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2. Notations and definitions
We let A = {(x, y): x e R, 0 == y < 1} be the strip, the universal cover of the annulus;
we let

and

be the usual projections; and we make the following:

Definition. An area-preserving twist map is a diffeomorphism/: A -* A which satisfies:
(1) / preserves orientation, boundary components and area;
(2) V(x,y)eA,f(x+l,y)=f(x,y) + (l,Q);
(3) the rotation number of /|{(x,0)}<rotation number of/|{(xl)}.

Also,/is called an area-preserving monotone twist map if/satisfies (1), (2) above and

(3') ( , y ) , ^
dy

Finally, a point z 6 A is called a p/q-periodic point if p, q are relatively prime and

We recall the theorem of Birkhoff.

THEOREM 2 ([4] and [5]). Iff:A-*A is an area-preserving twist map with rotation
number o//|{(x>0)} —P/^— rotation number off\{M)), then f has at least two distinct
p/q-periodic orbits.

Remark. We will use the fact that this holds for continuous maps.

We will also use the following theorem of Moser [12] which allows us to suspend
a given area-preserving monotone twist map in a very useful way, i.e. we can give
the map as the time one map of a non-autonomous Hamiltonian system or a flow
on A x R, the extra variable denoting time.

THEOREM 3 [12]. Iff:A->A is an area-preserving monotone twist map, then there
exists a function H:AxR->R such that H is periodic of period 1 in x and t, d2H/dy2 > 0
and if (/>:AxRxR-* AxR is the solution of the Hamiltonian system

dx dH, N dy dH, , dt ,
-T = —(.x,y,t), -f=-—(x,y,t), —=1
ds dy as dx ds

satisfying <f>(z,t,O) = (z,t) for all (z,t)eAxR, then /(z) = 7r,(^(z,0,1)),
TT2(<^(Z, 0,1)). (That is, any area-preserving monotone twist map is the time one map
of a time periodic Hamiltonian system satisfying a Legendre condition.)

Remark. We will prove theorem 1 for maps which arise as the time one map of C2

Hamiltonians as above.

From now on we think of f:A->A as a given area-preserving monotone twist
map with associated flow <f> on AxR. We can use this flow to help describe the
topological nature of periodic orbits of/
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Definition. A p/ q- periodic point r e A is called monotone (or Birkhoff) if for any
wx, w2e{f >(z) + (j,0): ij in Z},

7r1(»v1)<7r1(w2) implies 7r,(/(w,)) <-"-,(/(w2)).

The condition on the second partial of H with respect to y implies that for a
monotone orbit 7r,(w,)< iri(w2) implies •7T1(</>(H'I,0, O ) < " " I ( 0 ( M ' 2 , O , *)) for all t.
This follows from the Legendre condition 92H/d2y>0, which implies that dx/ds
increases as y increases. So if one orbit 'passes' the other in the x direction, the
'faster' orbit must have the larger y value. Hence we may informally say that a
periodic orbit is monotone if the braid associated with it by the flow <f> is trivial.
Notice that the monotone twist condition implies that if this braid is non-trivial
then it must be 'positive', i.e. any two strands wrap in the same direction (see [8]
and figure 1).

r 1 T j I = 1 f f r r ••

t = 0

Monotone Non-monotone

FIGURE 1

The following easy lemma is crucial to the proof of theorem 1.

LEMMA. Suppose/: A -* A is an area-preserving monotone twist map withp/q-monotone
periodic point z and p/q-non-monotone periodic point w. Then there exist zxe
{/'(z) + U 0 ) : i,jeZ} and w1e{f(w) + (j,0): i,jeZ} such that ir,(z1)<ir,(w1) but
T\(f{z\))a f i ( / (wi)) (i.e. the braid given by the <f> orbit of z must link with the braid
given by the 4> orbit ofw).

Proof of the lemma. Suppose not. Then the monotone twist condition implies that
"•.(z,)**,^,) for all z,e{/'(z) + a o ) : 4 j e Z } and wle{fi(w) + (j,0): i,jeZ}.
Moreover, for any such w, there exists zx, z2e{f'(z) + (j, 0): i,jeZ} with •n1(zx)<
7T,(M'1)<77-,(Z2) and no point zie{fi(z) + (j,0): iJeZ} with TTX{ZX)<TTX{Z3)<

IT\{Z2). But then 7Ti(/i(z1))<7r1(/I(H'1))<ir1(/i(z2)) for all i and, since the sets
{/"'(z) + (j, 0): i,j 6 Z} and {/'(w) + (j, 0): 1,7 e Z} both have exactly q elements with
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x coordinates in [0,1), we see that w must be monotone. But this contradicts the
assumption that w is non-monotone, hence the proof is complete. •

Proof of theorem 1. Fix an area-preserving monotone twist map/with associated
Hamiltonian H and Hamiltonian flow <j> as above. We assume that z0 e A is a
pi g-monotone periodic point for / and we must sh£>w that / has another pi q-
monotone periodic point not on the orbit of z0.

For each point (z,t)eAxR and e > 0 we let

C+(z, t, e) = {(w, t): (n2(w) - TT2(Z))>(l/e)\irl(w) - 77,(2)!}

and

C-(z,t,e) = {(w,t):(ir2(z)-ir2(w))>(l/e)\ir1(w)-irl(z)\}

(see figure 2). Note that when e is suflBciently small, the left boundary of C+(z, t, e)~
(z, t) and the right boundary of C~(z, t, e )~ (z , t) are entrance set, while the right
boundary of C+(z, t, e) ~ (z, t) and the left boundary of C~{z, t,e)~ (z, t) are exit
set for <f> (see [6]).

f = 1

I = t

C-(z,/,e)

, . ' = 0

FIGURE 2

The idea of the proof is to construct a new area-preserving twist map g: A -> A
which agrees with / on a large set including the orbit of z0, which has no p/q-
monotone periodic orbits except those of /and such that g has no pi q-non-monotone
periodic orbits. The map g will be far from /—in particular g will not be a monotone
twist map. However, g will still be a twist map and will still be the time one map
of a Hamiltonian flow, so it will be area-preserving. We construct g by altering the
Hamiltonian H on the sets C+(<f>(z 0, t), e). In particular we alter H so that for
most of the flow the set {(w, t): ir\(w) = 7r,(<£(z0,0, t))} is invariant; hence no orbits
will be able to link with the orbit of z0.
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Multiplicity of monotone periodic orbits 113

Fix K larger than the C2 norm of H. Then we define a function He on the cone
in R2 as follows:

He:{(x,y):ey>\x\ or-e>->|x|}^R

He:(x,y)^(4K/e2)x2.

The level sets of Hc are pictured in figure 3. In particular we notice that dHJdx < 0
for x<0, dHJdx>0 for x > 0 and HE(0,y) = 0 for all y, so the Hamiltonian flow
for He will flow up on the left of x = 0 and down on the right.

FIGURE 3

Let t/», be a bump function as pictured in figure 4. For each t e [0, q] let
{4>(zo,0, t)) = (w,s), where TT^W) and s are the fractional parts of iri(<^(zo,O, t))
and t respectively and TT2(W) = 7r2(<^(zo,0, t)). Hence the set {(</>(zo,0, /)): <e[0, q]}
is as pictured in figure 5.

FIGURE 4
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l\iff 11 t i l t :

FIGURE 5

We now define our new Hamiltonian H ] e : / 4 x R - > R for (w, t)e
[0,1] x [0,1] x [0,1] by first letting

' = H(w, t) if (w, t) £ C ± « 0 ( z o , 0, t)), e) for t e [0, q],

if (w, r)e C±«0(zo,O, r)>, e) for re[0, 4],

where x = 7r,(w) - 7rj«0(zo, 0, r)» and y = v2(w)

i.e. H and H l e agree except in prisms with edge along the orbit of z0 under <t> (see
figure 6). By the choice of He the orbits of the Hamiltonian flow for Hle which
enter C±((cl>(z0,0, t)), e) will reach C±«^>(z0,0, t)), e/2). The level sets of H M in
a C±((<^(z0,0, 0), e) are as pictured in figure 7. Finally we need to make HUe equal
to H again in one of the prisms so that the resulting time q map from this Hamiltonian
will have the boundary twist condition, i.e. we let

= H(w, t) if (w, t)i C±«<^(z0,0, r)>, e) for re [0,1],

v, r){ =(l-t/>1(r))H, e(w, r) + i/»!(r) • H(w, r)

We can extend H, e to all of A x R by periodicity in x and t.
Let <I>E: /4 x R x R -» A x R be the flow generated by the Hamiltonian HUe. Away

from the <f> orbit of z0, H, e is C"° so Oe is well defined and area-preserving (i.e.
for any set not containing a point on the orbit of z0,4>e preserves the area), and
the vector field given by H, e is continuous along the orbit of z0 so the resulting
time one map is continuous. (Since the vector field is only C1 at z0, we need to
worry about the uniqueness of solutions; however, this follows from the definition
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t=i

f = 0

FIGURE 6

of Hle since no flow lines of <£,, hit the orbit of z0 by construction. In fact, the
vector field given by Hle is Lipschitz.) We may fix e > 0 so small that if (w,0)e
C*(z0,0, e) ~ (z0,0) then <&£(w, 0, \)i C±(<^(z0,0,1), e). This follows from the fact
that d2H/dy2>0 (i.e. the monotone twist condition fo r / ) and the fact that H and
H M agree on C±{(<f>(z0,0, <)), e) for f e [g, | ] . We fix such a small e, we let Ht = H1>£

and $ = «!>,, and we define g(z) = <&(z, 0,1).
We claim the following:
(1) The orbit of z0 under <I> is the same as the orbit of z0 under <f>.
(2) The map g has no p/ g-non-monotone periodic orbits.
(3) Any p/^-monotone periodic orbit of g is a /?/<jr-monotone periodic orbit of/
(4) The map g has at least two pi q-periodic orbits.

FIGURE 7
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Claim (1) follows immediately from the construction of <I>. Claim (2) follows
from the lemma of the last section which says a non-monotone p/q-periodic orbit
must link with the orbit of z0. The construction of 4> breaks any p/q-periodic orbits
of <f> which link with the orbit of z0 since no 4> orbit can pass completely around
the <I> orbit of z0. Claim (3) is clear since no />/g-periodic orbit of <t> may enter the
set U(e[o<,] C±(((/>(z0,0, t)), e) or any of the translates of this set in x, and the flows
<f> and 3> agree off this set. Claim (4) follows from Birkhoff's theorem (theorem 2
above) applied to the twist map gq. Note that g will not in general be a monotone
twist map since we have not made any effort to control the second partial of H,
with respect to y; however, by leaving H unaltered on C±({<l>(zo,0, t)), e) for
' e [!»!]» we guarantee that the map gq will advance the boundary y = \ strictly
more to the right than it does the boundary y = 0. Hence we can apply Birkhoff's
theorem.

This completes the proof since the two p/q-periodic orbits of g must be p/q-
Birkhoff periodic orbits and also orbits of/ So / has two p/q-Birkhoff periodic
orbits as we wished to show. •

3. The Aubry-Mather theorem
Using theorem 1 we can give a proof of the theorem of Aubry and Mather (see
[3], [4] and also [10]) similar to the proof in [8].

THEOREM 4 ([3] and [4]). Iff:A->A is an area-preserving monotone twist map and
a € R is between the rotation numbers off on the inner and outer boundary components
of A, then there is a point zeA such that f restricted to the set {/'(z) + (j, 0): i,j e Z}
preserves the ordering in the x coordinate and the rotation number off at z is a.

Proof. When a=p/q the point z may be chosen to be a p/q-monotone periodic
point, and when a £ Q we obtain a minimal set on which / preserves the ordering
of the x coordinate with rotation number a.

Katok [10] has shown that the orbits on which the x coordinate ordering is
preserved by / may be used in limit procedures to obtain other such orbits, and
that the rotation number function behaves continuously on these orbits; hence it
suffices for us to prove theorem 4 for a =p/q rational. So fix a rational p/q.

Given an area-preserving monotone twist map / with associated Hamiltonian H,
we let Hs, se[0,1] be a one-parameter family of Hamiltonians periodic in x and
t with H, = H and H0(x,y, t) =\cy2 for some constant c with the time one map of
Hs having p/<j-periodic points for all se[0,1]. For s sufficiently small the p/q-
periodic points of/ will all be monotone, and it follows easily from arguments of
Katok [10] that the set s where/ has a p/q-monotone periodic orbit is a closed
set in [0,1]. We claim that the set se[0,1] where/ has a p/q-monotone periodic
orbit is also open. Suppose s0 is on the boundary of this set. Then /^ has p/q-
monotone periodic orbits. If any of these orbits, say the orbit of z0, is isolated, then
we may apply theorem 1, using it to obtain a map having no p/q-non-monotone
periodic orbits. Away from the orbit of z0 we may perturb this map to eliminate all
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other p/g-monotone orbits by replacing H^ by HSo+e. This gives a twist map with
only one p/ g-periodic orbit, contradicting Birkhoff's theorem.

If f^ has no isolated pi q-monotone periodic points, then we show that the set of
monotone p/q-periodic points is fairly well behaved. Again, as above, fix a p/q-
monotone periodic point z0 for /^ and repeat the construction above, creating a
new area-preserving twist map g with the property that no p/g-periodic orbit has
a suspension which links with the suspension of the oribt of z0. If z0 is not an
isolated p/g-periodic point for g, then all the p/g-periodic points of /^ sufficiently
close to z0 have orbits under the suspension of f^ which do not link with the
suspension of the orbit of z0. We claim that the p/g-periodic points in a neighbour-
hood of z0 will therefore lie on the graph of a smooth function. To see this we note
that (d/dy)(vif^0(z0)) # 0, so applying the implicit function theorem to the equation
fi(./To(z))-wi(z)~P = 0 we see the points satisfying this equation near zo lie on
the graph of a smooth function y = </»(x).

Next we note that if the set of pi q-periodic points separates A, then this set
actually lies on the graph of a smooth function. (That it lies on the graph of a
Lipschitz function follows from a theorem of Birkhoff (see Fathi in [9]); that the
graph is actually smooth follows from the preceding paragraph.) In this case /^
could have no non-monotone pi q- periodic points since the suspension of such an
invariant circle of points would separate AxR so no piq-periodic orbit could link
with any other.

In the case that the pi q- monotone periodic points do not separate A, we may
surround z0 with a neighbourhood such that g has no p/q-periodic points on the
boundary of the neighbourhood and all the pi q-periodic points of g lie on the
graph of a smooth function y = </<(*), where TTI(/70(JC, </>(*)))-x-p = 0. Since for
any e > 0 sufficiently small we have assumed thatfSo+e has no monotone pi q-periodic
points, we see that the image of the graph of i/» under/?0()-(p,0) cannot cross
itself transversally (or even topologically transversally) but must lie either above or
below the graph of tfi with points of tangency at the pi q-monotone periodic points
(see figure 8).

By perturbing the Hamiltonian within the shaded region of figure 8, we may
perturb g to eliminate all piq-periodic points (except z0) in this region. As above,
we may perturb g away from z0 to eliminate any remaining p/q-periodics and we
have an area-preserving twist map with only one pi q-periodic orbit. This contradicts
Birkhoff's theorem.

Hence we see that in any case the set of parameter values for which fs has a
piq-monotone periodic point can have no boundary points, so the original map /
must have a p/g-monotone periodic point, thus completing the proof. •

Remark. The technicalities of the last four paragraphs can be avoided if we take a
'generic' one-parameter family of Hamiltonians to produce the one-parameter family
of maps fs. By 'generic' we mean that each fs has no more than one degenerate
p/g-periodic point. Since theorem 1 implies that each fs must have at least two
monotone p/q-periodic points, each fs would have to have at least one non-
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FIGURE 8

degenerate, hence structurally stable, p/q-monotone periodic point. See [1] for the
technicalities of producing such a generic family.
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