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Internal tides and the inviscid dynamics
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A boundary integral representation is derived for the translational oscillations of a triaxial
ellipsoid in a uniformly stratified fluid. The representation is of single-layer type, a
distribution of sources and sinks over the surface of the ellipsoid. The added mass
tensor of the ellipsoid is deduced from it and, from this tensor, the impulse response
function together with the energy radiated away as internal waves. Horizontal oscillations
correspond to the generation of an internal or baroclinic tide by the oscillation of the
barotropic tide over ellipsoidal topography at the bottom of the stratified ocean. Such
topography is unconditionally supercritical, namely of slope larger than the slope of
the wave rays, irrespective of the frequency of oscillation. So far, analytical work on
supercritical topographies has been limited, for the most part, to two-dimensional set-ups.
Here, for the ellipsoidal seamount, the orientation of the barotropic tide and the anisotropy
of the topography have their effects analysed in detail. As the height of the seamount
increases, the rate of conversion of barotropic energy into baroclinic form is seen to first
increase according to the square law expected for a topography of small slope, then saturate
and eventually decrease.

Key words: internal waves, stratified flows, topographic effects

1. Introduction

Internal or baroclinic tides are an important natural manifestation of internal waves,
generated by the oscillation of the barotropic tide over topography at the bottom of the
ocean (Vlasenko, Stashchuk & Hutter 2005; Morozov 2018). The dissipation of internal
tides into turbulence is now believed to play a significant role in ocean mixing and,
therefore, affect the climate (St. Laurent & Garrett 2002; Wunsch & Ferrari 2004; Garrett
& Kunze 2007; Ferrari & Wunsch 2009; Ferrari et al. 2016; Sarkar & Scotti 2017;
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B. Voisin

Whalen et al. 2020). In that context, a relevant quantity is the radiated wave power,
representing the rate of conversion of barotropic energy into baroclinic form.

The most flexible theoretical approach of the conversion is based on the
weak-topography approximation, namely the assumption that the topographic slope is
much smaller than the slope of the wave rays, set by the frequency. On this assumption,
the bottom boundary condition may be applied at a fictitious flat ocean bottom (Cox
& Sandstrom 1962; Bell 1975a,b; Llewellyn Smith & Young 2002; Khatiwala 2003;
Bühler & Muller 2007). For barotropic oscillation at the velocity (U,V) exp(−iωt) over a
topography of height h(x, y) above the bottom z = 0 of a semi-infinite uniformly stratified
ocean of density ρ0 and buoyancy frequency N, with ω < N, the conversion rate follows
as

P = ρ0(N2 − ω2)1/2

8π2

∫∫
(Ukx + Vky)

2

(k2
x + k2

y)
1/2 |h(kx, ky)|2 dkx dky, (1.1)

with

h(kx, ky) =
∫∫

h(x, y) exp(−ikxx − ikyy) dx dy, (1.2)

or equivalently

P = ρ0(N2 − ω2)1/2

4π

∫∫
dx dy

(
U
∂

∂x
+ V

∂

∂y

)
h(x, y)

×
∫∫

dx′ dy′

[(x − x′)2 + ( y − y′)2]1/2

(
U
∂

∂x′ + V
∂

∂y′

)
h(x′, y′). (1.3)

The formulae used in practice account for the elliptic polarization of the barotropic tide
(so that U and V are no longer in phase), its finite excursion (so that (U2 + V2)1/2/ω is no
longer small compared with the width of the topography), the finite depth of the ocean and
the vertical structure of its stratification (so that the waves decompose into vertical modes)
and the rotation of the Earth.

Nycander (2005), who derived the convolution integral (1.3), allowing a local
computation of the conversion, applied it to the calculation of the total conversion over
the global ocean. Later, based on the study of a vertical knife edge by Llewellyn Smith
& Young (2003), he pointed out that this integral, giving a conversion rate proportional
to the square of the topographic height, overestimated this rate for supercritical slopes,
namely slopes larger than that, ω/(N2 − ω2)1/2, of the wave rays (Nycander 2006). Such
saturation was accounted for, in the calculations of the global conversion by Green &
Nycander (2013), Melet et al. (2013), Falahat et al. (2014) and Vic et al. (2019), by dividing
the contribution of each supercritical topography by the square of the ratio of its maximum
slope to the ray slope, then capping the outcome at 1 W m−2. As a result, the prediction
of the global conversion decreased by 20 % to 30 %.

Other theories exist that do not rely on the weak-topography approximation. In rough
chronological order, the first theory uses mode matching for step changes of the ocean
depth or bottom slope (Rattray, Dworski & Kovala 1969; Prinsenberg, Wilmot & Rattray
1974; Prinsenberg & Rattray 1975; Stigebrandt 1980; St. Laurent et al. 2003), and mode
coupling for continuous changes (Griffiths & Grimshaw 2007; Maugé & Gerkema 2008;
Papoutsellis, Mercier & Grisouard 2023). Another theory is based on characteristics
and represents the barotropic tide either as a body force (Baines 1973, 1974, 1982;
Garrett & Gerkema 2007) or a bottom boundary condition (Sandstrom 1976; Craig 1987;
Vlasenko 1987; Vlasenko & Cherkesov 1990; Vlasenko et al. 2005, chapter 2), with the
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Dynamics of an ellipsoid in a stratified fluid

potential to lead to functional equations (Dai et al. 2011; Maas 2011; Wunsch & Wunsch
2022). A third theory assumes the topography to be subcritical and periodic (Balmforth,
Ierley & Young 2002). A fourth theory implements the boundary integral method, either
analytically (Gabov & Krutitskii 1987; Krutitskii 1988; Llewellyn Smith & Young 2003)
or numerically (Pétrélis, Llewellyn Smith & Young 2006; Balmforth & Peacock 2009;
Echeverri & Peacock 2010; Mathur, Carter & Peacock 2016). The predictions of the
global conversion by Sjöberg & Stigebrandt (1992) and Gustafsson (2001) use the modal
approach, and the predictions by Baines (1982) and Morozov (1995, 2006, 2018, chapter 8)
the method of characteristics.

All these approaches, save the weak-topography approximation, assume the topography
to be two-dimensional; that is, an infinite ridge, not an isolated seamount. The only
exception to this rule is the study of a vertical pillbox by Baines (2007), using mode
matching.

Experimental and numerical investigations have been performed as well. Experimentally,
the topography is mounted on an oscillating base plate at the top or bottom of a stratified
tank. Numerically, both in-house codes have been used and general-purpose codes, either
coming from the turbulence community such as CDP, or coming from the oceanographic
community such as the Princeton ocean model (POM), the regional ocean modelling
system (ROMS) and the MIT global circulation model (MITgcm). These codes differ by
their numerical schemes, their adoption of the hydrostatic approximation, of a turbulence
model, and their treatment of the bottom boundary using terrain-following coordinates
or immersed boundaries. Either experimentally or numerically, two-dimensional ridges
with flat tops (Lamb 2004; Tabaei, Akylas & Lamb 2005; Korobov & Lamb 2008), or
with polynomial (Di Lorenzo, Young & Llewellyn Smith 2006), Gaussian (Legg & Huijts
2006; Legg & Klymak 2008; Peacock, Echeverri & Balmforth 2008; Echeverri et al. 2009;
Dossmann et al. 2011; Floor, Auclair & Marsaleix 2011; Wang et al. 2018), triangular
(Dettner, Swinney & Paoletti 2013; Rapaka, Gayen & Sarkar 2013; Jalali, Rapaka & Sarkar
2014; Jia et al. 2014; Wang et al. 2015; Jalali et al. 2017) or circular (Winters & Armi
2013) cross-sections, have all been considered, together with a vertical knife edge (Görtler
1943; Peacock et al. 2008; Lee et al. 2014). In three dimensions, Gaussian seamounts
either axisymmetric (Beckmann & Haidvogel 1993; Haidvogel et al. 1993; King, Zhang &
Swinney 2010; Zhang et al. 2017) or not (Holloway & Merrifield 1999; Munroe & Lamb
2005) have been considered.

Another set-up, introduced for internal waves but applied later to internal tides, consists
in oscillating a vertically symmetric body horizontally in a stratified tank. The horizontal
midplane through the body acts as the rigid ocean bottom. A horizontal circular cylinder
(Mowbray & Rarity 1967; Thomas & Stevenson 1972; Peters 1985; Zhang, King &
Swinney 2007; Ermanyuk & Gavrilov 2008), a sphere (King, Zhang & Swinney 2009;
Ermanyuk, Flór & Voisin 2011; Voisin, Ermanyuk & Flór 2011) and a prolate spheroid
with vertical or horizontal axis (Shmakova, Ermanyuk & Flór 2017) have been studied in
this way.

A prominent feature of these investigations is the presence, when ω < N/2, of a
second harmonic wave of frequency 2ω. The fundamental wave propagates at the angle
arccos(ω/N) to the vertical, and the second harmonic at the angle arccos(2ω/N).
Also present, for three-dimensional set-ups, is a transverse mean flow. Theoretically,
as discussed by Zhang et al. (2007) and Ermanyuk et al. (2011), two mechanisms can
produce a second harmonic: for barotropic excursion larger than the horizontal size of the
topography, the dominant mechanism is advection of the boundary forcing; for smaller
excursion, the dominant mechanism is the interaction of the wave rays emanating from
the topography, either within themselves, or with the rays reflected at the bottom and the
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surface, or with the boundary layer. Consistent with this analysis, the second harmonic
rays visible in the experiments by Zhang et al. (2007), and the simulations by Tabaei
et al. (2005) and Korobov & Lamb (2008), all with supercritical topographies, are seen
to emanate from the points where the critical rays (or their reflections) either intersect
themselves or are tangential to the topography.

Therefore, the modelling of a second harmonic wave requires prior understanding of the
fundamental wave and of the boundary layer. The circular cylinder and the sphere, used in
the laboratory, exhibit the interesting property of being always supercritical. Accordingly,
critical rays always exist that are tangential to them. To vary the curvature at the points
of tangency, and hence the local structure of the boundary layer, Shmakova et al. (2017)
switched to a spheroid. In this respect, Sutherland & Linden (2002), who had considered
the vertical oscillations of a horizontal elliptic cylinder, had acted as a precursor. Both
investigations were experimental. In a rotating fluid, for the similar inertial waves, Le
Dizès & Le Bars (2017) considered a librating spheroid of vertical axis, numerically
and theoretically. Using local analysis for generic two-dimensional boundary forcing, Le
Dizès (2024) pointed out, for both internal and inertial waves, a dependence of the wave
amplitude on the curvature of the boundary at the critical points.

The present paper is a follow-up to the application of the boundary integral method
to the oscillations of an elliptic cylinder and a spheroid by Voisin (2021), and to the
interpretation of the outcome in terms of added mass by Voisin (2024). The analysis is
extended here to a triaxial ellipsoid, with the same limitation to translational motions.
Given the complexity of the analysis, the presentation of the background is kept to a
minimum and the reader is referred to Voisin (2021, 2024) for details. The waves, to
be compared with the observations of Shmakova et al. (2017), are not calculated at this
stage. The calculation will arise later, by extension of the two-dimensional approach of
Voisin (2020) to three dimensions. For now, attention is focused on added mass and its
consequences, regarding the force acting on the ellipsoid and the energy radiated away
from it. For horizontal oscillations, the conversion rate is obtained for barotropic tidal flow
over ellipsoidal topography at the bottom of a semi-infinite uniformly stratified ocean.

Mathematically, the exposition relies on the presentation of ellipsoidal harmonics by
Dassios (2012), with one additional result taken from Hobson (1931, chapter 11). The
relevant formulae are gathered in Appendix A. Section 2 develops the approach for the
potential flow of a homogeneous fluid, obtaining the added mass tensor of the ellipsoid
and comparing it with the literature. Section 3 extends this approach to the oscillations of
the ellipsoid in a stratified fluid. Particular attention is paid to the transition from three to
two dimensions, namely from a spheroid to an elliptic cylinder, which are both limits of the
ellipsoid. Section 4 deduces the memory force exerted on a moving ellipsoid, expressed
in terms of its impulse response function, together with the power radiated away from an
oscillating ellipsoid. Section 5 investigates the conversion rate of ellipsoidal topography.
The results are compared with the literature, either analytical (Llewellyn Smith & Young
2002) or numerical (Munroe & Lamb 2005), in both cases for Gaussian topography. The
effects of the weak-topography approximation used by Llewellyn Smith & Young (2002),
and of the supercritical correction introduced by Green & Nycander (2013), Melet et al.
(2013), Falahat et al. (2014) and Vic et al. (2019), are discussed in detail. The main
conclusions are summarized in § 6.

2. Homogeneous fluid

A body of surface S and outward normal n, moving at the velocity U in a homogeneous
fluid, generates an irrotational flow of potential φ and velocity u = ∇φ, with ∇ the
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Dynamics of an ellipsoid in a stratified fluid

del operator. The potential satisfies the Laplace equation

∇2φ = 0, (2.1)

together with the boundary condition

∂φ

∂n
= Un (x ∈ S+), (2.2)

where ∂/∂n = n · ∇ denotes the normal derivative, Un = n · U the normal velocity, x the
position and S+ the side of S in contact with the fluid.

2.1. Representation
We look for a representation of the body as the single layer, namely the surface distribution
of sources and sinks,

q(x) = ∇ · u = σ(x)δS(x), (2.3)

with δS the Dirac delta function of support S. This distribution appears as a source term
on the right-hand side of (2.1) and generates the potential

φ(x) = − 1
4π

∫
S

σ(x′)
|x − x′| d2S′. (2.4)

The boundary condition is turned into an integro-differential equation

Un(x) = − 1
4π

∂

∂n

∫
S

σ(x′)
|x − x′| d2S′ (x ∈ S+), (2.5)

to be solved for the layer density σ given the normal velocity Un.
The body is taken to be a triaxial ellipsoid of semi-axes a > b > c, represented in

figure 1, with

x2

a2 + y2

b2 + z2

c2 = 1 (2.6)

in Cartesian coordinates (x, y, z). We introduce the ellipsoidal coordinates (ρ, μ, ν),
defined in (A3). The ellipsoid becomes the surface ρ = a, and the boundary condition
becomes

Un(μ, ν) = − bc
4π

∂

∂ρ

∫
ρ′=a

σ(μ′, ν′)
|x − x′|

(a2 − μ′2)1/2(a2 − ν′2)1/2

(a2 − μ2)1/2(a2 − ν2)1/2
d	 ′ (ρ = a + 0),

(2.7)

with d	 the solid angle element (A8). Further introduction of the eccentric angles (ϑ, ϕ),
related to (μ, ν) by (A9), parametrizes the ellipsoid as

x = a cosϑ, y = b sinϑ cosϕ, z = c sinϑ sinϕ, (2.8a–c)

with 0 < ϑ < π and 0 < ϕ < 2π, transferring the integration onto the unit sphere, with
solid angle element d	 = sinϑ dϑ dϕ. The boundary condition becomes

Un(μ, ν) = − bc
4π

∂

∂ρ

∫ 2π

0

∫ π

0

σ(μ′, ν′)
|x − x′|

(a2 − μ′2)1/2(a2 − ν′2)1/2

(a2 − μ2)1/2(a2 − ν2)1/2
sinϑ ′ dϑ ′ dϕ′, (2.9)

where ρ′ = a and ρ = a + 0.
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y
b

z

c

a

x

Figure 1. Ellipsoid of aspect ratios ε1 = c/b = 1/2 and ε3 = b/a = 2/3.

The problem is solved in ellipsoidal harmonics, combining the Lamé functions Em
l (ρ),

the elliptic integrals Im
l (ρ) and the surface harmonics sm

l (ϑ, ϕ), presented in §§ A.2
and A.3, with the degree l taking the values 0, 1, 2, . . . and the index m the values
1, 2, . . . , 2l + 1. The known Un(μ, ν) is expanded as

(a2 − μ2)1/2(a2 − ν2)1/2Un(μ, ν) =
∞∑

l=0

2l+1∑
m=1

Ulmsm
l (ϑ, ϕ), (2.10)

and the unknown σ(μ, ν) as

(a2 − μ2)1/2(a2 − ν2)1/2σ(μ, ν) =
∞∑

l=0

2l+1∑
m=1

σlmsm
l (ϑ, ϕ). (2.11)

Expansion (A37) of the kernel 1/|x − x′| yields, for ρ′ = a and ρ = a + 0,

∂

∂ρ

1
|x − x′| = −4π

bc

∞∑
l=0

2l+1∑
m=1

[1 − bcEm
l (a)E

m ′
l (a)Im

l (a)]s
m
l (ϑ, ϕ)s

m
l (ϑ

′, ϕ′). (2.12)

In view of the orthonormality relation (A31), we obtain

σlm = Ulm

1 − bcEm
l (a)E

m ′
l (a)Im

l (a)
, (2.13)

and the representation of the ellipsoid follows as

q(x) = 1
abc

δ

[(
x2

a2 + y2

b2 + z2

c2

)1/2

− 1

] ∞∑
l=0

2l+1∑
m=1

σlmsm
l (ϑ, ϕ), (2.14)

with δ the Dirac delta function.
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Dynamics of an ellipsoid in a stratified fluid

2.2. Spectrum
The spectrum

q(k) =
∫

S
σ(x) exp(−ik · x) d2S (2.15)

is also of interest, with later application to waves in mind. We note for now that the source
and dipole strengths

S =
∫

S
σ(x) d2S, D =

∫
S

xσ(x) d2S, (2.16a,b)

respectively, may be deduced from the small-wavenumber expansion

q(k) ∼ S − ik · D. (2.17)

We thus need to calculate the integral

q(k) =
∞∑

l=0

2l+1∑
m=1

σlm

∫ 2π

0

∫ π

0
exp(−ik · x)sm

l (ϑ, ϕ) sinϑ dϑ dϕ, (2.18)

where x is related to (ϑ, ϕ) by (2.8).
In spherical geometry, the natural basis for expanding a function of the spherical angles

(ϑ, ϕ) is the surface harmonics

Yn
l (ϑ, ϕ) =

√
2l + 1

4π

(l − n)!
(l + n)!

Pn
l (cosϑ) exp(inϕ), (2.19)

with Pn
l an associated Legendre function, of degree l = 0, 1, 2, . . . and order n = −l,−l +

1, . . . , l − 1, l. See for example Jackson (1999, § 3.5). Then, Gegenbauer’s finite integral∫ π

0
exp(iκ cosϑ cosϑk) Jn(κ sinϑ sinϑk)Pn

l (cosϑ) sinϑ dϑ = 2il−n jl(κ)Pn
l (cosϑk),

(2.20)

derived by Watson (1944, § 12.14), where Jn denotes a cylindrical Bessel function and jl a
spherical Bessel function, leads to the Funk–Hecke formula

∫ 2π

0

∫ π

0
exp(−ik · x)Yn

l (ϑ, ϕ) sinϑ dϑ dϕ = 4π(−i)l jl(κ)Y
n
l (ϑk, ϕk), (2.21)

with (ϑk, ϕk) the spherical angles in Fourier space, such that

k · x = κ[cosϑ cosϑk + sinϑ sinϑk cos(ϕ − ϕk)]. (2.22)

See for example Martin (2006, § 3.6).
In ellipsoidal geometry, Hobson (1931, §§ 280–281) pointed out that each surface

spherical harmonic Yn
l (ϑ, ϕ), with (ϑ, ϕ) the eccentric angles, is a linear combination of

the 2l + 1 ellipsoidal harmonics sm
l (ϑ, ϕ) of the same degree l. Conversely, each surface

ellipsoidal harmonic sm
l (ϑ, ϕ) is a linear combination of the spherical harmonics Yn

l (ϑ, ϕ)

999 A59-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

96
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.961


B. Voisin

of the same degree. Accordingly, the Funk–Hecke formula generalizes to ellipsoidal
harmonics in the form∫ 2π

0

∫ π

0
exp(−ik · x)sm

l (ϑ, ϕ) sinϑ dϑ dϕ = 4π(−i)l jl(κ)s
m
l (ϑk, ϕk), (2.23)

where the angles (ϑk, ϕk) are defined in Fourier space by

kxa = κ cosϑk, kyb = κ sinϑk cosϕk, kzc = κ sinϑk sinϕk, (2.24a–c)

with κ = (k2
xa2 + k2

yb2 + k2
z c2)1/2.

We thus have

q(k) = 4π

∞∑
l=0

(−i)l jl[(k
2
xa2 + k2

yb2 + k2
z c2)1/2]

2l+1∑
m=1

σlmsm
l (ϑk, ϕk), (2.25)

generalizing Voisin (2021, (6.28)), obtained for a spheroid.

2.3. Monopolar motion
The analysis is applied first to the radial expansion or contraction of the ellipsoid at the
velocity U = Ux/(abc)1/3, with U a constant. Such forcing is of degree l = 0, with

U01 =
√

4πU(abc)2/3 = σ01. (2.26)

It has the representation

q(x) = U
(abc)1/3

δ

[(
x2

a2 + y2

b2 + z2

c2

)1/2

− 1

]
(2.27)

and the spectrum

q(k) = 4πU(abc)2/3 j0[(k2
xa2 + k2

yb2 + k2
z c2)1/2], (2.28)

corresponding to a source of strength S = 4πU(abc)2/3.

2.4. Dipolar motion
The translation of a rigid ellipsoid at the velocity U = Uex + Vey + Wez, with (U,V,W)
constants, is of degree l = 1, such that

U11 =
√

4π

3
bcU, U12 =

√
4π

3
acV, U13 =

√
4π

3
abW. (2.29a–c)

The equivalent source has coefficients

σ11 = U11

1 − A
, σ12 = U12

1 − B
, σ13 = U13

1 − C
, (2.30a–c)

where A, B and C are related to the Legendre integrals (A18) by

A = abcI1
1(a) = abc

a2 − b2
F(α, β)− E(α, β)
(a2 − c2)1/2

, (2.31a)

B = abcI2
1(a) = abc

a2 − b2
E(α, β)/(1 − β)− F(α, β)

(a2 − c2)1/2
− c2

b2 − c2 , (2.31b)

C = abcI3
1(a) = b2

b2 − c2 − abc
b2 − c2

E(α, β)
(a2 − c2)1/2

, (2.31c)
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Dynamics of an ellipsoid in a stratified fluid

with

α = arccos
( c

a

)
, β = a2 − b2

a2 − c2 . (2.32a,b)

These A, B and C are identical to α0/2, β0/2 and γ0/2, respectively, in Lamb (1932, § 114)
and Milne-Thomson (1968, § 17.52), and A0/2, B0/2 and C0/2 in Kochin, Kibel’ & Roze
(1964, §§ 7.2 and 7.8) and Korotkin (2009, § 3.1), all expressed as gravitational potentials.
See also Dassios (2012, § 13.5).

Forcing is of the dipolar type, in direct space

q(x) =
(

U
1 − A

x
a2 + V

1 − B
y
b2 + W

1 − C
z
c2

)
δ

[(
x2

a2 + y2

b2 + z2

c2

)1/2

− 1

]
, (2.33)

and in Fourier space

q(k) = −4iπabc
(

Ukx

1 − A
+ Vky

1 − B
+ Wkz

1 − C

) j1[(k2
xa2 + k2

yb2 + k2
z c2)1/2]

(k2
xa2 + k2

yb2 + k2
z c2)1/2

, (2.34)

with strength

D = 4
3
πabc

(
U

1 − A
ex + V

1 − B
ey + W

1 − C
ez

)
. (2.35)

The bodies considered by Voisin (2021, 2024) are recovered as particular cases. These
include: the oblate spheroid, for which

A = B = 1 − D(ε)
2

, C = D(ε) = 1
1 − ε2

[
1 − ε arccos ε

(1 − ε2)1/2

]
, (2.36a,b)

where ε = c/a < 1, corresponding to a = b, namely β → 0; the prolate spheroid, for
which

A = D(ε) = 1
1 − ε2

[
1 − ε arccosh ε

(ε2 − 1)1/2

]
, B = C = 1 − D(ε)

2
, (2.37a,b)

where ε = a/b > 1, corresponding to b = c, namely β → 1; and the elliptic cylinder, for
which

A = 0, B = ε

1 + ε
, C = 1

1 + ε
, (2.38a–c)

where ε = c/b < 1, corresponding to a → ∞, namely (α, β) → (π/2, 1). More specific
cases are the sphere, for which

A = B = C = 1
3 , (2.39)

corresponding to a = b = c, and the circular cylinder, for which

A = 0, B = C = 1
2 , (2.40a,b)

corresponding to a → ∞ and b = c.
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B. Voisin

2.5. Added mass
The dynamics of a rigid body in an inviscid fluid is governed by its added mass,
representing the additional inertia imparted to it by the motion of the fluid (Batchelor
1967, § 6.4; Lighthill 1986, § 8.3; Landau & Lifshitz 1987, § 11). The added mass tensor
of the ellipsoid is diagonal, and the ratios Cx, Cy and Cz of its elements to the mass of the
displaced fluid are related to the components Dx, Dy and Dz of the dipole strength by

Cx = Dx

VU
− 1, Cy = Dy

VV
− 1, Cz = Dz

VW
− 1, (2.41a–c)

with V = (4/3)πabc the volume of the ellipsoid. We obtain

Cx = A
1 − A

, Cy = B
1 − B

, Cz = C
1 − C

. (2.42a–c)

Introducing the aspect ratios ε1 = c/b and ε3 = b/a, both smaller than 1, we have

A(ε1, ε3) = ε1ε
2
3

1 − ε2
3

F(α, β)− E(α, β)

(1 − ε2
1ε

2
3)

1/2
, (2.43a)

B(ε1, ε3) = ε1ε
2
3

1 − ε2
3

E(α, β)/(1 − β)− F(α, β)

(1 − ε2
1ε

2
3)

1/2
− ε2

1

1 − ε2
1
, (2.43b)

C(ε1, ε3) = 1
1 − ε2

1
− ε1

1 − ε2
1

E(α, β)

(1 − ε2
1ε

2
3)

1/2
, (2.43c)

where

α = arccos(ε1ε3), β = 1 − ε2
3

1 − ε2
1ε

2
3
. (2.44a,b)

The variations of the added mass coefficients with ε1 and ε3 are plotted in figure 2. They
are in agreement with figures 150–152 of Kochin et al. (1964) and 3.1–3.2 of Korotkin
(2009), representing the variations of the coefficients with ε1 for specific values of 1/ε3.

3. Stratified fluid

The analysis is now adapted to linear internal waves in a uniformly stratified fluid of
buoyancy frequency N. The formulation is based on Voisin (2021, 2024), to which the
reader is referred for further detail. The waves are assumed to vary with time through the
factor exp(−iωt), which is suppressed in the following, and to be analytic in the upper half
of the complex ω-plane, consistent with causality. They are represented by the internal
potential ψ , yielding the velocity u = (N2∇h − ω2∇)ψ , with ∇ = (∂/∂x, ∂/∂y, ∂/∂z)
the del operator, ∇h = (∂/∂x, ∂/∂y, 0) its horizontal projection and z the upward vertical
coordinate. The potential satisfies the wave equation

(N2∇2
h − ω2∇2)ψ = 0, (3.1)

together with the boundary condition(
N2 ∂

∂nh
− ω2 ∂

∂n

)
ψ = Un (x ∈ S+), (3.2)

where ∂/∂n = n · ∇ and ∂/∂nh = n · ∇h.
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Figure 2. Added mass coefficients for the translation of an ellipsoid of semi-axes a > b > c along the
associated directions (a) x, (b) y and (c) z in a homogeneous fluid. The coefficients are determined by the
aspect ratios ε1 = c/b and ε3 = b/a.

3.1. Representation
The single layer (2.3) generates the potential

ψ(x) = 1
4π(ω2 − N2)1/2

∫
S

σ(x′) d2S′

[(ω2(x − x′)2 − N2(z − z′)2]1/2 , (3.3)
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B. Voisin

where the determination of the square roots is set by cuts, extending vertically downwards
away from the branch points ±N and ±N|z − z′|/|x − x′| in the ω-plane. The boundary
condition becomes

Un(x) = 1
4π(ω2 − N2)1/2

(
N2 ∂

∂nh
− ω2 ∂

∂n

)

×
∫

S

σ(x′) d2S′

[(ω2(x − x′)2 − N2(z − z′)2]1/2 (x ∈ S+). (3.4)

We follow the approach introduced by Bryan (1889) for inertial waves, Pierce (1963) for
acoustic-gravity waves and Hurley (1972) for internal waves; namely, we consider real
evanescent frequencies ω > N first, stretching the coordinates anisotropically so as to
transform the wave equation into the Laplace equation, then we continue the solution
analytically to the upper half of the complex ω-plane.

The coordinates are stretched according to

x� = ω

N
x, y� = ω

N
y, z� =

(
ω2

N2 − 1
)1/2

z. (3.5a–c)

This transforms the boundary condition into

Un(x) = 1
4πN(ω2 − N2)1/2

(
N2 ∂

∂nh
− ω2 ∂

∂n

)∫
S

σ(x′)
|x� − x′

�|
d2S′ (x ∈ S+), (3.6)

and the ellipsoid (2.6) into another, with semi-axes

a� = ω

N
a, b� = ω

N
b, c� =

(
ω2

N2 − 1
)1/2

c. (3.7a–c)

We assume that a > b > c, so that a� > b� > c�, and we introduce two systems of
ellipsoidal coordinates: one (ρ, μ, ν) in unstretched space, with semi-axes (a, b, c) and
semi-focal distances (h1, h2, h3), such that ρ = a on the ellipsoid; and another (ρ�, μ�, ν�)
in stretched space, with semi-axes (a�, b�, c�) and semi-focal distances (h1� , h2� , h3�), such
that ρ� = a� on the ellipsoid. The boundary condition becomes

Un(μ, ν) = −b�c�
4π

∂

∂ρ�

∫
ρ′=a

σ(μ′, ν′)
|x� − x′

�|
(a2 − μ′2)1/2(a2 − ν′2)1/2

(a2 − μ2)1/2(a2 − ν2)1/2
d	 ′ (ρ = a + 0).

(3.8)

The difficulty lies in the fact that differentiation is performed in stretched coordinates,
while integration is performed in unstretched coordinates.

However, even though the coordinates (μ, ν) and (μ�, ν�) are distinct on the ellipsoid,
the eccentric angles (ϑ, ϕ) are not, since

x
a

= x�
a�

= cosϑ,
y
b

= y�
b�

= sinϑ cosϕ,
z
c

= z�
c�

= sinϑ sinϕ, (3.9a–c)

with two consequences. First, the boundary condition becomes

Un(μ, ν) = −b�c�
4π

∂

∂ρ�

∫ 2π

0

∫ π

0

σ(μ′, ν′)
|x� − x′

�|
(a2 − μ′2)1/2(a2 − ν′2)1/2

(a2 − μ2)1/2(a2 − ν2)1/2
sinϑ ′ dϑ ′ dϕ′,

(3.10)

where ρ′
� = a� and ρ� = a� + 0. Second, the same surface harmonics sm

l (ϑ, ϕ) are
involved, on the one hand in the expansions (2.10) and (2.11) of Un(μ, ν) and σ(μ, ν),
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Dynamics of an ellipsoid in a stratified fluid

respectively, and on the other hand in the expansion of 1/|x� − x′
�|, yielding, for ρ′

� = a�
and ρ� = a� + 0,

∂

∂ρ�

1
|x� − x′

�|
= − 4π

b�c�

∞∑
l=0

2l+1∑
m=1

[1 − b�c�Em
l (a�)E

m ′
l (a�)Im

l (a�)]s
m
l (ϑ, ϕ)s

m
l (ϑ

′, ϕ′).

(3.11)

Accordingly, the only change in the results of §§ 2.1 and 2.2 is the replacement of a, b and
c by a�, b� and c� in the relation between σlm and Ulm, consistent with the rule of affine
similitude put forward by Ermanyuk (2002). We obtain

σlm = Ulm

1 − b�c�Em
l (a�)E

m ′
l (a�)Im

l (a�)
. (3.12)

Analytic continuation to the upper half of the ω-plane allows the extension of this solution
to other values of ω and other orderings of a, b and c.

3.2. Dipolar oscillations
Monopolar oscillations are unaffected by the stratification, but dipolar oscillations are. The
relevant geometrical parameters are the horizontal aspect ratio εh = b/a and the vertical
aspect ratio εv = c/b, and the relevant physical parameter is the frequency ratioΩ = ω/N.
We introduce

Υv = c�
b�

= εv

(
1 − 1

Ω2

)1/2

, (3.13)

generalizing the notation Υ of Voisin (2021, 2024). Equations (2.33)–(2.35) for the
equivalent source and dipole strength remain valid, with

A(Υv, εh) = ε2
hΥv

1 − ε2
h

F(α, β)− E(α, β)

(1 − ε2
hΥ

2
v )

1/2
, (3.14a)

B(Υv, εh) = ε2
hΥv

1 − ε2
h

E(α, β)/(1 − β)− F(α, β)

(1 − ε2
hΥ

2
v )

1/2
− Υ 2

v

1 − Υ 2
v

, (3.14b)

C(Υv, εh) = 1
1 − Υ 2

v

− Υv

1 − Υ 2
v

E(α, β)

(1 − ε2
hΥ

2
v )

1/2
, (3.14c)

where

α = arccos(εhΥv), β = 1 − ε2
h

1 − ε2
hΥ

2
v

. (3.15a,b)

The limit εh → 1 corresponds to a spheroid of vertical z-axis and gives

A = B = 1 − D(Υv)
2

, C = D(Υv) = 1
1 − Υ 2

v

[
1 − Υv arccosΥv

(1 − Υ 2
v )

1/2

]
, (3.16a,b)

while the limit εh → 0 corresponds to an elliptic cylinder of horizontal x-axis and gives

A = 0, B = Υv

1 + Υv
, C = 1

1 + Υv
. (3.17a–c)

Both limits are consistent with Voisin (2021, 2024).
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B. Voisin

3.3. Added mass
In the presence of density stratification, the added mass coefficients vary with the
frequency. For a body having the horizontal x- and y-axes and the vertical z-axis as
principal directions, the coefficients have been shown by Ermanyuk (2002) and Voisin
(2024) to be

Cx(ω) = Dx

VU
− 1, Cy(ω) = Dy

VV
− 1, Cz(ω) =

(
1 − N2

ω2

)( Dz

VW
− 1

)
,

(3.18a–c)

yielding for the ellipsoid

Cx(ω) = A
1 − A

, Cy(ω) = B
1 − B

, Cz(ω) =
(

1 − 1
Ω2

)
C

1 − C
. (3.19a–c)

The variations of these coefficients are plotted in figures 3–5, for several values of εh
and εv between 1/5 and 5. The same trends are observed as for the spheroid of Voisin
(2024), corresponding to εh = 1. For the inertial coefficients, finite values εh of Re Cx(ω)
and 1/εh of Re Cy(ω) are obtained at Ω = 0, and a logarithmic divergence of Re Cz(ω).
The coefficients are zero at Ω = 1, then they increase towards their values C∞

x , C∞
y

and C∞
z in the absence of stratification, reached for Ω → ∞. The damping coefficients

Ω Im Cx(ω), Ω Im Cy(ω) and Ω Im Cz(ω) are zero not only at Ω = 0 and 1, but also for
all the frequencies Ω > 1 at which the waves are evanescent.

A transition is observed, as εh decreases down to 0, from the three-dimensional ellipsoid
to the two-dimensional elliptic cylinder. As εh → 0, all three added mass coefficients,
once normalized by their values in the absence of stratification, have the same limiting
behaviour

Cx(ω)

C∞
x

= Cy(ω)

C∞
y

= Cz(ω)

C∞
z

=
(

1 − 1
Ω2

)1/2

, (3.20)

with C∞
x = 0, C∞

y = εv and C∞
z = 1/εv . This behaviour is characterized not only by

the absence of wave damping at the evanescent frequencies Ω > 1, but also by the
absence of inertial effects at the propagating frequenciesΩ < 1. The transition is shown in
figures 6–8 for several values of εh between 0 and 10. The normalized coefficients undergo
little change as εh increases above 1.

4. Applications

The implications of these results are now discussed for the force exerted on a moving body,
and the wave energy radiated away from an oscillating body. The body is assumed to have
the x-, y- and z-axes as principal directions, and to displace a mass mf = ρ0V of fluid, with
ρ0 the fluid density and V the body volume.

4.1. Impulse response function
When the body moves at the velocity U(t) = U(t)ex + V(t)ey + W(t)ez, the fluid exerts
on it a hydrodynamic force of x-component

Fx(t) = −mf C∞
x

dU
dt
(t)− mf N

∫ ∞

0
CM

x (t
′)

dU
dt
(t − t′) dt′, (4.1)
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Figure 3. Frequency variations of (a,c,e) the inertial coefficient Re Cx(ω) and (b,d, f ) the damping coefficient
Ω Im Cx(ω) of an ellipsoid of horizontal aspect ratio εh and vertical aspect ratio εv , oscillating along the
horizontal x-axis in a stratified fluid, for (a,b) εh = 0.2, (c,d) εh = 1 and (e, f ) εh = 5.

and similarly for the y- and z-components, with

CM
x (t) = 1

2πN

∫
[Cx(ω)− C∞

x ] exp(−iωt) dω (4.2)

the impulse response function (Cummins 1962; Ogilvie 1964). Accordingly, the force
acting on the body combines the same acceleration reaction as in a homogeneous fluid,
plus a memory integral representing, in the stratified fluid, the effect of internal wave
radiation. As stated by Newman (2017, § 6.19) for surface gravity waves, when the body
moves, ‘waves will be generated [. . . ]. As time increases, these waves will propagate
outward from the body, but they will continue to affect the fluid pressure and hence the
body force for all subsequent times. Thus memory effects are introduced.’
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Figure 4. Same as figure 3 for oscillations along the horizontal y-axis.

Owing to causality, and to the Hermitian property Cx(−ω) = Cx(ω), where the overbar
denotes a complex conjugate, the impulse response function may be written as

CM
x (t) = 2

π

H(t)
N

∫ N

0
Im[Cx(ω)] sin(ωt) dω, (4.3)

with H(t) the Heaviside step function, and the integral evaluated numerically as, say,

CM
x (t) = 2

π
H(t)

∫ π/2

0
Im[Cx(N cos θ)] sin(Nt cos θ) sin θ dθ. (4.4)

The same applies to CM
y (t) and CM

z (t). The variations of these functions are presented in
figure 9, normalized by C∞

x , C∞
y and C∞

z , with time normalized by the buoyancy period
T = 2π/N. As for added mass in figures 6–8, a transition is observed, as εh → 0, to the
response for the elliptic cylinder, identical in all directions and given by

CM
x (t)
C∞

x
= CM

y (t)

C∞
y

= CM
z (t)
C∞

z
= H(t)

∫ t

0
J1(Nτ)

dτ
τ
, (4.5)
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Figure 5. Same as figure 3 for oscillations along the vertical z-axis.

where∫ t

0
J1(Nτ)

dτ
τ

= Nt J0(Nt)
[
1 − π

2
H1(Nt)

]
− J1(Nt)

[
1 − π

2
NtH0(Nt)

]
, (4.6)

with Jn a Bessel function and Hn a Struve function.
The properties already observed for the spheroid of Voisin (2024) are confirmed. The

impulse response function is positive for vertical motion, implying that the memory force
always opposes the vertical acceleration of the body, consistent with the inhibition of
vertical motions by the stratification. For horizontal motion, the response function is
alternatively positive and negative, meaning that the force alternatively opposes and fosters
horizontal acceleration.

The response function starts from 0 at t = 0, increases steadily to a maximum after
approximately half a buoyancy period, then decreases slowly for vertical motion and
faster for horizontal motion, while also performing decaying oscillations at the buoyancy
frequency. For horizontal motion, the decrease vanishes above a threshold value of εv .
For the spheroid, the asymptotics of Voisin (2024) showed the threshold to be εv = 2.40,
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Figure 6. Transition to two-dimensionality for (a,c,e,g,i) the inertial coefficients and (b,d, f,h, j) the damping
coefficients as εh decreases down to 0 for oscillations along the x-axis, and (a,b) εh = 0, (c,d) εh = 0.01,
(e, f ) εh = 0.1, (g,h) εh = 1 and (i, j) εh = 10.
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Figure 7. Same as figure 6 for oscillations along the y-axis.

and the decrease to be algebraic and as t−1 for vertical motion, exponential for horizontal
motion and the buoyancy oscillations to decay as t−3/2. Accordingly, the memory effect
is delayed by half a buoyancy period and operates over a smaller time range than that, as
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Figure 8. Same as figure 6 for oscillations along the z-axis.

t−1/2, associated with the Basset–Boussinesq force and caused by viscous boundary-layer
dissipation in a homogeneous fluid.

The situation changes as εh gets smaller and the ellipsoid transitions to an elliptic
cylinder. In that event, the decrease of the response function slows down until eventually,
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Dynamics of an ellipsoid in a stratified fluid

for εh = 0, the response function (4.5) of the cylinder is obtained, identical for all
directions of motion, always positive and tending to 1 as Nt → ∞. When this happens, the
whole past history of the cylinder affects equally the reaction of the fluid at any subsequent
time, and this reaction always opposes the acceleration of the cylinder.

4.2. Energy radiation
When the body oscillates at the velocity U exp(−iωt), with U = Uex + Vey + Wez, and
U, V and W real, the waves radiated in the fluid carry away the average power

P = 1
2 mfω{U2 Im[Cx] + V2 Im[Cy] + W2 Im[Cz]}, (4.7)

becoming, for the ellipsoid of volume V = (4/3)πabc,

P = 2
3
πρ0NΩabc

{
U2 Im

[
A

1 − A

]
+ V2 Im

[
B

1 − B

]
+
(

1 − 1
Ω2

)
W2 Im

[
C

1 − C

]}
,

(4.8)

with A, B and C given in (3.14).
The variations of this power with Ω at fixed excursion A = |U |/(NΩ) are represented

in figure 10, normalized by P0 = ρ0VN3A2, separately for the three directions of
oscillation, for aspect ratios εh and εv between 1/5 and 5. The same general shape is
observed in all cases, similar to that reported by Voisin (2024) for the spheroid, namely
zero energy radiation at Ω = 0 and Ω � 1, and in between a single maximum at a
frequency ratio Ωm. The variations of Ωm are plotted in figure 11 for εh and εv between
10−2 and 102, yielding values between 0.78 and 1, the lower values being reached when
εv is small, and the higher values when εh and εv are moderate or large.

5. Conversion rate

Conversion rate is the name given to the average wave power when the waves are generated
by barotropic tidal oscillations over topography at the bottom of the stratified ocean. Three
investigations will be our focus in the following: the analytical work by Llewellyn Smith
& Young (2002), based on the weak-topography approximation, and the numerical works
by Holloway & Merrifield (1999) and Munroe & Lamb (2005), using the Princeton ocean
model. In these, the barotropic tide has an elliptic polarization, instead of the present linear
polarization; the hydrostatic approximation is made, namely the tidal frequency is assumed
small compared with the buoyancy frequency, so that the vertical acceleration of the fluid
is neglected; the ocean is rotating, so that the waves are affected by the Coriolis force; the
depth is finite and the buoyancy frequency varies vertically, so that the waves decompose
into vertical modes. All these differences are of secondary importance for the aspects
considered here; we will come back to them later in § 6. Accordingly, we investigate the
oscillatory flow at the velocity (Uex + Vey) exp(−iωt), with U and V real, over topography
h(x, y) at the bottom z = 0 of a semi-infinite non-rotating uniformly stratified fluid of
buoyancy frequency N. The tidal frequency is assumed to satisfy ω < N, so that the waves
propagate at the angle arccos(ω/N) to the vertical.
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Figure 11. Frequency of maximum energy radiation for oscillations along (a) the x-axis, (b) the y-axis and
(c) the z-axis.

5.1. Conversion by ridges
In two dimensions, namely for a ridge along the y-axis, with cross-section h(x) and
spectrum

h(kx) =
∫

h(x) exp(−ikxx) dx, (5.1)

the weak-topography approximation (WTA) assumes that the steepness ratio

γ = max |h′(x)|
(

N2

ω2 − 1
)1/2

, (5.2)

comparing the topographic slope to the slope of the wave rays (Balmforth et al. 2002;
Balmforth & Peacock 2009), is small. The conversion rate follows, per unit length in the
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Topography h(x) h(kx) P

Gaussian c exp
(

− x2

2a2

)
(2π)1/2ac exp

(
− k2

x a2

2

)
1
2
ρ0(N2 − ω2)1/2c2U2

Ellipse c
(

1 − x2

a2

)1/2

πc
J1(kxa)

kx

π

4
ρ0(N2 − ω2)1/2c2U2

Table 1. Conversion rates of two-dimensional ridges.

y-direction, as

P = ρ0(N2 − ω2)1/2U2

4π

∫
|ky| |h(ky)|2 dky. (5.3)

See for example Bühler & Muller (2007).
The rates for Gaussian and elliptic ridges of height c and width a are given in table 1.

For the Gaussian ridge, the WTA has been used. For the elliptic ridge, identical results are
obtained using the WTA, or complementing the ridge with its image through the bottom
(to account for the waves emitted downwards then reflected at the bottom), applying the
limit (3.17) to (4.8), interchanging the x- and y-axes, dividing the outcome by the volume
of the ellipsoid, multiplying it by the cross-section of the cylinder, then taking half the
result (to account for wave radiation in the half-space z > 0).

The variation of the conversion rates as c2 is consistent with (5.3), as is their
independence of a: Bühler & Muller (2007) pointed out that one consequence of (5.3) is
the invariance of the conversion upon horizontal stretching of the topography. Accordingly,
the same rate is obtained here for the elliptic ridge, as for the vertical knife edge of
Llewellyn Smith & Young (2003) and the circular ridge of Voisin et al. (2011). All this
hints at an applicability of the WTA far beyond its expected range of validity, at least in
two dimensions.

5.2. Conversion by seamounts
In three dimensions, for a seamount h(x, y) of spectrum (1.2), the steepness ratio becomes

γ = max |∇h(x, y)|
(

N2

ω2 − 1
)1/2

, (5.4)

and the WTA conversion rate is given by (1.1). Bühler & Muller (2007) deduced from it
an invariance of the conversion, upon shrinking the topography horizontally by a given
factor, provided the topography is also stretched vertically by the square root of this factor.

The conversion rates for Gaussian and ellipsoidal seamounts of height c, and horizontal
radii a and b are given in table 2. Following Llewellyn Smith & Young (2002), they
have been separated into two factors: one, Paxi, representing the effect of an axisymmetric
seamount of equivalent radius d = (ab)1/2; and the other, P/Paxi, representing the effect
of asymmetry, with ε′h = a/b the horizontal aspect ratio and χ the angle of the barotropic
velocity (U,V) to the x-axis. Also relevant for the ellipsoid are the vertical aspect ratio
ε′v = c/d and the quotient

Υ ′
v = ε′v

(
1
Ω2 − 1

)1/2

(5.5)
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Figure 12. Equivalent (a) Gaussian and (b) ellipsoidal seamounts, having the same height and horizontal
aspect ratio 2/3, and producing the same conversion in the WTA.
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0.6

0.8

1.0

Γ

Υ ′
v

Figure 13. Ratio Γ between the conversion of a spheroidal seamount and its WTA prediction, as a function
of Υ ′

v .

of this ratio by the slope of the wave rays, with

D(iΥ ′
v) = 1

1 + Υ ′ 2
v

[
1 − Υ ′

v

(1 + Υ ′ 2
v )

1/2

(
i
π

2
+ arcsinhΥ ′

v

)]
. (5.6)

The WTA conversion for both topographies is proportional to dc2, consistent with the
above observation by Bühler & Muller (2007). Its value for the ellipsoid differs only by
a factor 2

√
π/3 from that for the Gaussian. Accordingly, the conversion for a Gaussian

seamount may be compared with that for an ‘equivalent’ ellipsoidal seamount having
the same height and 3/(2

√
π) ≈ 0.846 times its radii. The two seamounts are shown in

figure 12.
In the axisymmetric case, for the ellipsoid (in that event, a spheroid), the ratio of the

exact conversion to its WTA approximation is

Γ = 4
(1 + Υ ′ 2

v )
3/2 |1 + D(iΥ ′

v)|2
. (5.7)

This ratio depends only on Υ ′
v , with variations plotted in figure 13. Supercriticality

becomes significant for Υ ′
v = 1, say, at which point, the conversion is reduced to 82 %

that for a weak topography. For Υ ′
v = 2 this percentage gets down to 37 %, and for Υ ′

v = 5
to 3 %.
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Gaussian

Ellipsoid Υ ′
v = 1

Ellipsoid Υ ′
v = 2

Ellipsoid Υ ′
v = 5

0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

P/
P a

xi

ε′h
Figure 14. Minimum and maximum asymmetry factors P/Paxi for barotropic oscillations along the major
and minor axes, respectively, of a weak Gaussian seamount and ellipsoidal seamounts of Υ ′

v = 1, 2 and 5, as
functions of ε′h.

Llewellyn Smith & Young (2002) applied their results to a Gaussian seamount
of radius a = 16 km and aspect ratio ε′h = 1/3, representative of the deep ocean
around the Hawaiian islands, based on Holloway & Merrifield (1999). Taking further
c = 4000 m, among the heights considered by Holloway & Merrifield (1999), together
with ω = 1.4053 × 10−4 s−1, corresponding to the M2-tide, and N = 1.75 × 10−3 s−1,
corresponding to one cycle per hour, based on figure 2(c) of Holloway & Merrifield
(1999), we obtain Υ ′

v = 2.1, and hence Γ = 0.33, for the equivalent ellipsoidal seamount.
So supercriticality reduces the conversion to one-third its WTA prediction.

The effects of asymmetry in the WTA are the same for Gaussian and ellipsoidal
seamounts. They were analysed in figures 6 and 7 of Llewellyn Smith & Young (2002). At
ε′h < 1, P/Paxi was seen to increase monotonically from its value for χ = π/2, when the
barotropic oscillation was along the major axis of the topography, to its value for χ = 0,
when the oscillation was along the minor axis. The gap between these values increased
as ε′h decreased, namely as the topography became more two-dimensional. For the above
seamount, the lower value was 0.39 and the upper value 2.07.

The present figures 14 and 15, modelled after those, show that the same effects remain
present for supercritical topography and get amplified as Υ ′

v increases, namely as the
ellipsoid gets steeper and the wave rays flatter. The amplification is especially visible in
figure 15(d), together with the shrinking of the region of parameter space in which the
conversion is diminished by the asymmetry. For the ‘equivalent’ ellipsoid, the lower value
of P/Paxi is 0.30 and the upper value 4.09.

Munroe & Lamb (2005) investigated numerically the departures from the WTA as
the seamounts become supercritical. Their figures 9 and 10 presented the evolution
of the conversion rate for a Gaussian seamount of minor radius a = 4.56 km and
horizontal aspect ratio between ε′h = 0.1 and 1, by steps of 0.1, as the height c of
the seamount varied between 300 and 3000 m. The barotropic tide had the frequency
ω = 1.4053 × 10−4 s−1, the current amplitude U = 2.5 cm s−1 and was directed along
the x-axis. The buoyancy frequency was N = 1.0 × 10−3 s−1. Figure 9 presented the
variations of the conversion with c in log-log representation and figure 10 the associated
slopes. As long as the seamount was subcritical, the conversion followed the WTA
prediction as c2. At c = 1000 m, the seamount became supercritical and the slope of the
log-log plot jumped to 2.5 for ε′h < 0.5 and to higher values for 0.5 < ε′h < 1, up to 3.5 for
ε′h = 1. At c = 1500 m, the slope started to fall down, a saturation all the more pronounced
that ε′h was close to 1.
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Figure 15. Variations of the asymmetry factor of (a) a weak Gaussian seamount and ellipsoidal seamounts
of (b) Υ ′

v = 1, (c) Υ ′
v = 2 and (d) Υ ′

v = 5, with the direction of barotropic oscillation and with the horizontal
aspect ratio of the seamount.

The present figure 16(a) shows the WTA prediction for this seamount, and figure 16(b)
the exact prediction for the equivalent ellipsoid, taking ρ0 = 1025 kg m−3, typical of sea
water. In both cases, the order of magnitude of the conversion is similar to that obtained
numerically, consistent with the prediction by Baines (2007) of an energy flux of order
1 MW for barotropic tidal flow of 1 cm s−1 amplitude over a pillbox-shaped seamount.
Saturation is seen to be all the more pronounced, and to happen all the sooner, when the
ellipsoid is close to axisymmetric. Therefore, supercriticality appears as a decisive factor
in the occurrence of saturation, even in the absence of nonlinear effects.

5.3. The weak-topography approximation revisited
Nycander (2005) introduced an original method for calculating the conversion on a global
scale, based on the WTA. The conversion was written as (1.1) in spectral space and (1.3)
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Figure 16. Conversion rate for the seamount in figure 9 of Munroe & Lamb (2005), modelled as (a) a
weak Gaussian seamount, (b) an ellipsoidal seamount and (c) a weak Gaussian seamount corrected for
supercriticality. The seamount has fixed radius a = 4.56 km along the x-axis, and variable aspect ratio ε′

h = a/b
and height c.
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in direct space, and the finite ocean depth was taken into account in a heuristic way, based
on the WKB analysis of Llewellyn Smith & Young (2002), by multiplying the integrand of
(1.1) by a high-pass filter excluding the contribution of the topographic scales larger than
the horizontal wavelength of the first internal wave mode, and changing the kernel of (1.3)
accordingly. Approximately half the global conversion came from supercritical slopes and
was known to be overestimated. Green & Nycander (2013) came out with an improved
numerical scheme and dealt with supercriticality by capping the conversion at 1 W m−2.

Melet et al. (2013) and Falahat et al. (2014) built upon this work, for the former by
comparing direct- and spectral-space approaches, and for the latter by comparing the
heuristic approach of finite depth with a full calculation in vertical modes, allowing
also N(z) to vary. Both introduced a two-tier correction to the WTA, dividing first the
contribution of supercritical slopes by the squared steepness ratio γ 2, then capping the
outcome at 1 W m−2 in shallow seas. As a result, the global conversion was reduced by
20 %–30 %. Vic et al. (2019, Supplementary note 1) looked at the two corrections more
closely, and found that the first is at work at depths shallower than 2000 m, while the
second only affects regions shallower than 700 m.

For the Gaussian seamount in table 2, the maximum slope for a < b is c/(a
√

e), reached
at (x = ±a, y = 0), such that γ = c/(a

√
e)(N2/ω2 − 1)1/2. Applying the first correction

above, namely dividing Paxi by γ 2 when γ > 1, gives

π3/2e
8

ρ0
ω2

(N2 − ω2)1/2
a5/2b1/2(U2 + V2). (5.8)

The conversion is now independent of c, yielding the saturation in figure 16(c). The
second correction, taking πab = πa2/ε′h as the horizontal area of the seamount, caps the
conversion at 65.3/ε′h MW and does not play a role in the parameter range of the figure.

Comparison with the ellipsoid in figure 16(b) shows that the corrections account for the
saturation that arises as the seamount becomes supercritical, but not for the decrease of the
conversion afterwards. They also do not account for the delayed occurrence of saturation as
the topography gets two-dimensional, namely as ε′h decreases. This may be a consequence
of the simplistic way in which the corrections to the WTA have been applied, considering
the seamount as a single entity and applying the corrections to it as a whole. A better
comparison would require the implementation of the numerical scheme described in the
appendix of Green & Nycander (2013), and then to proceed as for the diagonal ridge there;
namely, to consider a domain that is large compared with the size of the seamount (say of
50 times its radii in the x and y directions), subdivide this domain into cells that are small
compared with that size (say of 1/10th the radii), then apply the corrections only to the
cells where the slopes are supercritical. This falls outside the scope of the present study.

6. Conclusion

This paper has dealt with two aspects of the generation of internal waves by oscillating
bodies. The first aspect is the modelling of the generation process. Voisin (2021) developed
a representation of the bodies by the boundary integral method, and Voisin (2024)
investigated the link of this representation to added mass, providing immediate access
to the impulse response function of the bodies and to their radiated energy. The method
was implemented for an elliptic cylinder of horizontal axis, using elliptic coordinates and
circular harmonics, and for a spheroid of vertical axis, using spheroidal coordinates and
spherical harmonics.
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The present paper has extended this approach to a triaxial ellipsoid, using ellipsoidal
coordinates and ellipsoidal harmonics, based on the presentations of these harmonics by
Hobson (1931, chapter 11) and Dassios (2012). The extension, in §§ 2–4, has confirmed the
behaviours already observed for the spheroid, and clarified the transition from three to two
dimensions. The peculiar behaviours observed for the cylinder – no inertial added mass
in the frequency range of propagating waves and an everlasting memory for the impulse
response function, all independent from the direction of motion – emerge as limits of the
behaviours observed for the ellipsoid. The radiated power exhibits, for fixed oscillation
amplitude, a maximum at 0.8 to 1 times the buoyancy frequency, for ellipsoids that are
horizontally flat and vertically elongated, respectively.

The second aspect is the application of the analysis to the conversion of barotropic
tidal energy into baroclinic form, when tidal oscillations take place over topography at
the bottom of the stratified ocean; a problem amenable, for small tidal excursion, to the
generation of internal waves by the oscillations of the topography in a stratified ocean
at rest. In actuality, the waves form beams affected by viscous and turbulent effects as
they propagate away from the topography (see Voisin et al. 2011 and Voisin 2020, and
the references therein), and the interactions of these beams with themselves and with the
boundary layer generate sub- and superharmonics (see Korobov & Lamb 2008). However,
the radiated wave power, called conversion rate in this context, depends only on the
coupling of the barotropic and baroclinic oscillations by the free-slip condition at the
topography, modelled by the boundary integral method.

A fundamental difference arises between sub- and supercritical topographies, namely
topographies of slopes smaller and larger than the slope of the wave rays, respectively.
For the former, Llewellyn Smith & Young (2002) developed a model based on the
weak-topography approximation, assuming the topographic slope to be much smaller than
the ray slope, and predicting a variation of the conversion as the square of the topographic
height. This model formed the basis of the global calculations of the conversion by
Nycander (2005), Green & Nycander (2013), Melet et al. (2013), Falahat et al. (2014)
and Vic et al. (2019), who introduced a two-tier heuristic correction for supercriticality.
The present § 5 is the first analytical study of three-dimensional supercritical topography,
since the study of a vertical pillbox in a finite-depth ocean by Baines (2007) and a spherical
seamount in a semi-infinite ocean by Voisin et al. (2011). The conclusions of Llewellyn
Smith & Young (2002) on the effect of the horizontal anisotropy of the seamount have
been confirmed, and shown to be amplified by supercriticality. Application in figure 16
to the seamount considered numerically by Munroe & Lamb (2005), representative of
the topography near the Hawaiian islands, shows a saturation of the conversion, then a
decrease, as the height of the seamount increases. The heuristic correction to the WTA, at
least in the simple form used in § 5.3, reproduces these effects only partially and does not
account for their disappearance as the topography gets two-dimensional.

A limitation of the analysis is the unrealistic representation of the ocean, assumed
to be of infinite depth and uniformly stratified, and to a lesser extent, the neglect of
the rotation of the Earth. With finite depth and non-uniform stratification, the waves
decompose into vertical normal modes. The inclusion of these modes has been discussed
by Llewellyn Smith & Young (2002) for isolated seamounts and Falahat et al. (2014)
for global bathymetry, in the context of the weak-topography approximation. Stronger
topographies may lead to mode coupling, discussed by Papoutsellis et al. (2023) who also
provide an up-to-date bibliography on the internal tide. Finally, it must be noted that the
attention of the oceanographic community, focused for approximately two decades on the
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total conversion, has recently moved to the direction of the energy flux (Pollmann et al.
2019).
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Appendix A. Ellipsoidal harmonics

This appendix is based on Hobson (1931, chapter 11) and Dassios (2012). Compared with
the latter, the surface harmonics have been normalized.

A.1. Ellipsoidal coordinates
The reference ellipsoid has, in Cartesian coordinates (x, y, z), the equation

x2

a2 + y2

b2 + z2

c2 = 1, (A1)

the semi-axes a > b > c and the semi-focal distances

h1 = (b2 − c2)1/2, h2 = (a2 − c2)1/2, h3 = (a2 − b2)1/2, (A2a–c)

with h2 > h1 and h2 > h3. The ellipsoidal coordinates (ρ, μ, ν) are defined by

x = ρμν

h2h3
, (A3a)

y = (ρ2 − h2
3)

1/2(μ2 − h2
3)

1/2(h2
3 − ν2)1/2

h1h3
, (A3b)

z = (ρ2 − h2
2)

1/2(h2
2 − μ2)1/2(h2

2 − ν2)1/2

h1h2
, (A3c)

where the coordinates and square roots on the right-hand sides take positive values, with
ρ > h2 > μ > h3 > ν, save for

sign ν = sign x, sign(h2
3 − ν2)1/2 = sign y, sign(h2

2 − μ2)1/2 = sign z. (A4a–c)

The surfaces of constant ρ are confocal ellipsoids, and the surfaces of constant μ and ν are
confocal hyperboloids of one and two sheets, respectively. Accordingly, ρ acts as a radial
coordinate and (μ, ν) as angular coordinates.
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The metric coefficients are

hρ = (ρ2 − μ2)1/2(ρ2 − ν2)1/2

(ρ2 − h2
2)

1/2(ρ2 − h2
3)

1/2
, (A5a)

hμ = (ρ2 − μ2)1/2(μ2 − ν2)1/2

(h2
2 − μ2)1/2(μ2 − h2

3)
1/2
, (A5b)

hν = (ρ2 − ν2)1/2(μ2 − ν2)1/2

(h2
2 − ν2)1/2(h2

3 − ν2)1/2
. (A5c)

The unit vectors (eρ, eμ, eν) are related to those (ex, ey, ez) for the Cartesian system by

eρ = ρ

hρ

(
x
ρ2 ex + y

ρ2 − h2
3

ey + z

ρ2 − h2
2

ez

)
, (A6a)

eμ = μ

hμ

(
x
μ2 ex + y

μ2 − h2
3

ey + z

μ2 − h2
2

ez

)
, (A6b)

eν = ν

hν

(
x
ν2 ex + y

ν2 − h2
3

ey + z

ν2 − h2
2

ez

)
. (A6c)

The gradient operator is

∇ = eρ
hρ

∂

∂ρ
+ eμ

hμ

∂

∂μ
+ eν

hν

∂

∂ν
. (A7)

On an ellipsoid of constant ρ, the solid angle element is

d	 = μ2 − ν2

(h2
2 − μ2)1/2(μ2 − h2

3)
1/2(h2

2 − ν2)1/2(h2
3 − ν2)1/2

dμ dν. (A8)

Introduction of the eccentric angles (ϑ, ϕ), such that

cosϑ = μν

h2h3
, (A9a)

sinϑ cosϕ = (μ2 − h2
3)

1/2(h2
3 − ν2)1/2

h1h3
, (A9b)

sinϑ sinϕ = (h2
2 − μ2)1/2(h2

2 − ν2)1/2

h1h2
, (A9c)

transforms the ellipsoid into the spherical domain (0 < ϑ < π, 0 < ϕ < 2π), and the
solid angle element into

d	 = sinϑ dϑ dϕ, (A10)

its familiar expression in the spherical direction (ϑ, ϕ). Ellipto-spherical coordinates
(ρ, ϑ, ϕ) follow, defined by

x = ρ cosϑ, y = (ρ2 − h2
3)

1/2 sinϑ cosϕ, z = (ρ2 − h2
2)

1/2 sinϑ sinϕ. (A11a–c)

In contrast to the ellipsoidal system, the ellipto-spherical system is not orthogonal.
Accordingly, ellipsoidal coordinates are better suited for calculating gradients and normal
derivatives, and ellipto-spherical coordinates for evaluating surface integrals.
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The reference ellipsoid is the surface ρ = a, with the outward normal

n = abc
(a2 − μ2)1/2(a2 − ν2)1/2

( x
a2 ex + y

b2 ey + z
c2 ez

)
, (A12)

the normal derivative

∂

∂n
= bc
(a2 − μ2)1/2(a2 − ν2)1/2

∂

∂ρ
, (A13)

and the surface area element

d2S = (a2 − μ2)1/2(a2 − ν2)1/2 d	. (A14)

In terms of the eccentric angles, we have, on the reference ellipsoid,

x = a cosϑ, x = b sinϑ cosϕ, x = c sinϑ sinϕ, (A15a–c)

bringing out the analogy with the eccentric angle for an ellipse in two dimensions.

A.2. Lamé functions
The solution of the Laplace equation with respect to the coordinate ρ involves the Lamé
functions, which are either interior, Em

l (ρ), varying as ρl at infinity, or exterior, Fm
l (ρ),

varying as 1/ρl+1. The two types of functions are related by

Fm
l (ρ) = (2l + 1)Em

l (ρ)I
m
l (ρ), (A16)

where

Im
l (ρ) =

∫ ∞

ρ

dt

[Em
l (t)]

2(t2 − h2
2)

1/2(t2 − h2
3)

1/2
. (A17)

The degree l takes the integer values 0, 1, 2, . . ., and the index m the values 1, 2, . . . ,
2l + 1.

The elliptic integrals Im
l (ρ) may be expressed in terms of the Legendre integrals

E(α, β) =
∫ α

0
(1 − β sin2 θ)1/2 dθ, F(α, β) =

∫ α

0

dθ

(1 − β sin2 θ)1/2
, (A18a,b)

for which the definition by Abramowitz & Stegun (1972, chapter 17) has been used,
involving the parameter β, rather than the definition by Olver et al. (2010, chapter 19),
involving the modulus β1/2. This was done to avoid the complications that would arise
otherwise with the determination of the square root β1/2 in (3.15). This is also the
definition implemented by MATHEMATICA. For α = π/2, the Legendre integrals have
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the complete forms

E(β) = E
(π

2
, β
)
, K(β) = F

(π

2
, β
)
. (A19a,b)

For β → 0, they expand as

E(α, β) ∼ α − β

4
(α − sinα cosα), F(α, β) ∼ α + β

4
(α − sinα cosα), (A20a,b)

and for β → 1, as

E(α, β) ∼ sinα + 1 − β

2
[arctanh(sinα)− sinα], (A21a)

F(α, β) ∼ arctanh(sinα)+ 1 − β

4

[
arctanh(sinα)− sinα

cos2 α

]
. (A21b)

For l = 0, we have

E1
0(ρ) = 1, I1

0(ρ) = F(α, β)
h2

, (A22a,b)

where

α = arcsin
(

h2

ρ

)
, β = h2

3

h2
2
. (A23a,b)

For l = 1, we have

E1
1(ρ) = ρ, E2

1(ρ) = (ρ2 − h2
3)

1/2, E3
1(ρ) = (ρ2 − h2

2)
1/2, (A24a–c)

together with

I1
1(ρ) = F(α, β)− E(α, β)

h2h2
3

, (A25a)

I2
1(ρ) = E(α, β)/(1 − β)− F(α, β)

h2h2
3

− 1
h2

1ρ

(ρ2 − h2
2)

1/2

(ρ2 − h2
3)

1/2
, (A25b)

I3
1(ρ) = 1

h2
1ρ

(ρ2 − h2
3)

1/2

(ρ2 − h2
2)

1/2
− E(α, β)

h2
1h2

. (A25c)

A.3. Surface harmonics
The solution of the Laplace equation with respect to the coordinates μ and ν involves the
surface harmonics

Sm
l (μ, ν) = Em

l (μ)E
m
l (ν)√

γm
l

, (A26)

with the normalization constant

γm
l =

∫
ρ=a

[Em
l (μ)E

m
l (ν)]

2 d	. (A27)
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The surface harmonics are orthogonal over any ellipsoid of constant ρ. They are
normalized over the reference ellipsoid ρ = a, where they satisfy∫

ρ=a
Sm

l (μ, ν)S
m′
l′ (μ, ν) d	 = δll′δmm′, (A28)

with δij the Kronecker delta symbol. Any function g(μ, ν) may be expanded in the form

g(μ, ν) =
∞∑

l=0

2l+1∑
m=1

glmSm
l (μ, ν), (A29)

with

glm =
∫
ρ=a

g(μ, ν)Sm
l (μ, ν) d	. (A30)

Alternatively, the surface harmonics may be expressed in terms of the eccentric angles.
We denote this expression as sm

l (ϑ, ϕ) = Sm
l (μ, ν). The orthonormality relation (A28)

becomes ∫ 2π

0

∫ π

0
sm

l (ϑ, ϕ)s
m′
l′ (ϑ, ϕ) sinϑ dϑ dϕ = δll′δmm′, (A31)

and the expansion (A29) becomes

g(μ, ν) =
∞∑

l=0

2l+1∑
m=1

glmsm
l (ϑ, ϕ), (A32)

where

glm =
∫ 2π

0

∫ π

0
g(μ, ν)sm

l (ϑ, ϕ) sinϑ dϑ dϕ. (A33)

For l = 0, we have

s1
0(ϑ, ϕ) =

√
1

4π
, (A34)

and for l = 1, we have

s1
1(ϑ, ϕ) =

√
3

4π
cosϑ, (A35a)

s2
1(ϑ, ϕ) =

√
3

4π
sinϑ cosϕ, (A35b)

s3
1(ϑ, ϕ) =

√
3

4π
sinϑ sinϕ. (A35c)
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A.4. Green’s function
Together, the Lamé functions and the surface harmonics form solid ellipsoidal harmonics.
For two points x and x′ of respective ellipsoidal coordinates (ρ, μ, ν) and (ρ′, μ′, ν′), the
Green’s function of the Laplace equation has the expansion

1
|x − x′| = 4π

∞∑
l=0

2l+1∑
m=1

Em
l (ρ<)E

m
l (ρ>)I

m
l (ρ>)S

m
l (μ, ν)S

m
l (μ

′, ν′), (A36)

or equivalently, in ellipto-spherical coordinates (ρ, ϑ, ϕ) and (ρ′, ϑ ′, ϕ′),

1
|x − x′| = 4π

∞∑
l=0

2l+1∑
m=1

Em
l (ρ<)E

m
l (ρ>)I

m
l (ρ>)s

m
l (ϑ, ϕ)s

m
l (ϑ

′, ϕ′), (A37)

where ρ< = min(ρ, ρ′) and ρ> = max(ρ, ρ′).
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