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Simulating complex gas flows from turbulent to rarefied regimes is a long-standing
challenge, since turbulence and rarefied flow represent contrasting extremes of
computational aerodynamics. We propose a multiscale method to bridge this gap.
Our method builds upon the general synthetic iterative scheme for the mesoscopic
Boltzmann equation, and integrates the k–ω model in the macroscopic synthetic equation
to address turbulent effects. Asymptotic analysis and numerical simulations show that
the macroscopic–mesoscopic coupling adaptively selects the turbulence model and the
laminar Boltzmann equation. The multiscale method is then applied to opposing jet
problems in hypersonic flight surrounding by rarefied gas flows, showing that the
turbulence could cause significant effects on the surface heat flux, which cannot be
captured by the turbulent model nor the laminar Boltzmann solution alone. This study
provides a viable framework for advancing understanding of the interaction between
turbulent and rarefied gas flows.
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1. Introduction

Numerical simulation of aerodynamics has two distinct branches. When the Reynolds
number (Re = ρuL/μ) is large, the Navier–Stokes (NS) equations are used to study
turbulence. When the Knudsen number (Kn, the ratio of the molecular mean free path
λ to the characteristic flow length L) is large, the Boltzmann equation is employed to study
rarefied flows. The Reynolds number and the Knudsen number are connected through the
Mach number (Ma = u/

√
γ RT) as

Re =
√

πγ

2
Ma
Kn

, (1.1)
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where u is the flow velocity, γ , R, μ, p and ρ are the specific heat ratio, gas constant, shear
viscosity, pressure and density of the gas, respectively. Therefore, it is generally believed
that the turbulent and rarefied flows do not coexist (Tennekes & Lumley 1972).

From the physical perspective, the Boltzmann equation is elemental, as the NS equations
can be derived from it when Kn is low (Chapman & Cowling 1990). When Kn increases,
the gas flow gradually falls into the transition and free-molecular flow regimes, where
the constitutive relations in the NS equations become inapplicable, necessitating the use
of the Boltzmann equation. However, from the numerical perspective, since the velocity
distribution function (VDF) is defined in the six-dimensional phase space, the Boltzmann
equation, which is solved by the stochastic direct simulation Monte Carlo (DSMC) method
(Bird 1994) or deterministic discrete velocity method (Aristov 2001), is typically applied
in laminar rarefied flows.

There are many length scales in a turbulent flow. If L is chosen to be the smallest
Kolmogorov length scale, the local Knudsen number can be large, and the NS equations
may fail to describe the multiscale turbulence. Tennekes & Lumley (1972) estimated
the turbulent Mach number and Reynolds number based on fluctuation velocity and
Kolmogorov length scale, and suggested that except under extreme conditions such as
large-scale hydrogen nebula, the smallest eddies in turbulence still run in a continuum.
Due to the growth in computational capabilities, many researchers have been trying to find
the rarefaction effects in turbulent flows. For instance, Stefanov & Cercignani (1993) used
the DSMC method to simulate the two-dimensional Taylor–Couette flow of a rarefied gas,
and found that ‘the gas clearly exhibits an instability for a Taylor number of the order of the
critical value for fluids governed by the NS equations; beyond that value, a new instability
and a transition to chaotic dynamics is witnessed’. Komatsu et al. (2014) conducted
molecular dynamics simulations of freely decaying turbulence, but ‘the energy spectrum
is observed to scale reasonably well according to Kolmogorov scaling, even though the
Kolmogorov length is of the order of the molecular scale’. Gallis et al. (2017) simulated the
Taylor–Green vortex flow by the DSMC method, and found it ‘reproduces the Kolmogorov
law and agrees well with the turbulent kinetic energy and energy dissipation rate obtained
from direct numerical simulation (DNS) of the NS equations’. Li (2018) simulated the
decaying isotropic turbulence by solving the Boltzmann kinetic equation deterministically,
and found that the kinetic equation predicts the energy-decaying exponent about 10 %
larger than the NS equations. However, the difference in statistical quantities is only a
few per cent. McMullen et al. (2022) discovered that the sole divergence in the energy
spectrum from the DSMC and NS simulation results occurs at large wave numbers, where
thermal fluctuations induce the energy spectrum to scale proportionally to the square of
wave number. (This is also observed in the molecular dynamics simulation by Komatsu
et al. (2014), and can be predicted by the fluctuating NS equations (Landau & Lifshitz
1959). Therefore, these results cannot be attributed to the rarefaction effects in turbulence.)
They also reported that ‘thermal fluctuations have little impact on the large-scale evolution
of the flow’.

To date, no evidence of coexisting turbulence and rarefied flows with engineering
significance have been identified. There might be two reasons for the absence of such
cases. First, the DNS based on the Boltzmann equation is computationally intensive, which
limits the range of flow scenarios and parameters explored. Second, in previous studies the
rarefaction effects are searched on the Kolmogorov scale. Even if such rarefaction effects
do exist, their effect on the overall macroscopic flow phenomena is limited since they
occur in the smallest scale. Therefore, in this paper, we are not going to search for the
rarefaction effects inside the bulk turbulent flow, but instead study a turbulent flow inside
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a bulk rarefied flow. In such a scenario, the intense turbulent flow is confined to a relatively
small region, whereas the weaker rarefied flows extend over a much larger area. This spatial
distribution ensures that their respective powers or influences are on par with each other.
Consequently, their interaction could potentially result in substantial deviations from the
expected behaviour of isolated turbulent and rarefied flows in simulations. Such scenarios
emerge with the rapid advancement of trans-atmospheric hypersonic vehicle technology,
where new challenges in fluid dynamics have arisen, particularly in active flow control
of aerodynamic force and heat. In higher-altitude and higher-Mach-number rarefied flow,
employing a high-density jet may be the only feasible approach for thermal management
and flight control. However, there is a current lack of understanding of the interactions
between high-Mach-number rarefied flows and high-density turbulence.

This paper is dedicated to developing a multiscale method to simulate the gas
flow spanning from the turbulent to rarefied conditions, and to identifying engineering
scenarios where turbulence and rarefaction coexist and interact within a single flow
configuration.

2. A multiscale model from the turbulent to rarefied flows

Although the Boltzmann equation encapsulates the gas dynamics across turbulent to
rarefied regimes, the computational demands of DNS are overwhelming. In regions of
high Re, the spatial grid must be finely resolved, whereas in regions of high Knudsen
number Kn, the discrete velocity grid requires dense sampling. Given that the DNS of
NS equations is already a time-intensive process for simulating turbulence, the prospect
of performing the DNS of the Boltzmann equation in scenarios where turbulence and
rarefaction coexist is beyond the reach of current computational capability. To address this
challenge, we introduce a multiscale modelling approach that offers a viable alternative.
Our idea is to couple the Reynolds-averaged Navier–Stokes (RANS) turbulence model into
the Boltzmann equation, to ease the requirement of fine spatial grids in turbulent regime.
The coupling should process the asymptotic-preserving property, i.e. it automatically
recovers the RANS model when Re is high, and the Boltzmann equation when Kn is large.
Moreover, from the numerical perspective, since the RANS produces the time-averaged
steady state, the Boltzmann equation will also be solved by the general synthetic iteration
scheme (GSIS) tailored to efficient steady-state simulations (Su et al. 2020a; Zhang et al.
2024).

In the following, we first introduce the Boltzmann kinetic model which describe the
gas dynamics from the continuum to rarefied flow regimes. Second, we introduce the
two-temperature NS equations derived from the kinetic equation when the Knudsen
number is small, and describe the RANS model for efficient simulation of turbulence on
a coarse spatial grid. Third, we couple the GSIS and RANS to efficiently find the solution
of the kinetic equation from the turbulent to rarefied regimes.

2.1. The gas kinetic model
While the dynamics of monatomic gases is described by the Boltzmann equation, that
of the polyatomic gas is described by the Wang-Chang & Uhlenbeck (1951) equation.
To reduce the computational cost, simplified kinetic equations are usually adopted (Wu
et al. 2015; Li et al. 2021). Here, two reduced VDFs f0(t, x, ξ) and f1(t, x, ξ) are used
to describe the translational and rotational states of molecular gas, where t is the time,
x = (x1, x2, x3) is the spatial coordinate and ξ = (ξ1, ξ2, ξ3) is the molecular velocity.
The rotational degree of freedom is a constant dr, and it is assumed that the vibrational
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and electronic energy levels are not excited, although the model can be easily extended
to include these non-equilibrium and even multiphysics effects such as radiation (Li et al.
2023). Macroscopic quantities, such as the density ρ, flow velocity u, deviatoric stress σ ,
translational and rotational temperature Tt and Tr and translational and rotational heat flux
qt and qr, are obtained by taking the moments of VDFs:(

ρ, ρu, σ ,
3
2
ρRTt, qt

)
=

∫ (
1, ξ , cc − c2

3
I,

c2

2
,

c2

2
c
)

f0 dξ , (2.1a)

(
dr

2
ρRTr, qr

)
=

∫
(1, c) f1 dξ , (2.1b)

where c = ξ − u is the peculiar (thermal) velocity and I is the identity matrix. The
total temperature T is defined as the equilibrium temperature between the translational
and internal modes T = (3Tt + drTr)/(3 + dr). The pressure related to the translational
motion is pt = ρRTt, whereas the total pressure is p = ρRT .

The evolution of VDFs is governed by the following Boltzmann kinetic equations:

∂f0
∂t

+ ξ · ∇f0 = g0t − f0
τ

+ g0r − g0t

Zrτ
, (2.2a)

∂f1
∂t

+ ξ · ∇f1 = g1t − f1
τ

+ g1r − g1t

Zrτ
, (2.2b)

where τ = μ/pt and Zrτ are the elastic and inelastic collision characteristic time,
respectively, with Zr being the rotational collision number and μ being the shear viscosity.
The elastic collision conserves the kinetic energy, whereas the inelastic collision exchanges
the translational and rotational energies. In order the make the kinetic model mimic
the behaviours (such as recovering the shear viscosity, bulk viscosity, translational and
internal heat conductivities) of the Wang-Chang & Uhlenbeck (1951) equation as closely
as possible, the reference VDFs to which the gas system will relax are designed as follows:

g0t = ρ

(
1

2πRTt

)3/2

exp
(

− c2

2RTt

) [
1 + 2qt · c

15RTtpt

(
c2

2RTt
− 5

2

)]
, (2.3a)

g0r = ρ

(
1

2πRT

)3/2

exp
(

− c2

2RT

) [
1 + 2q0 · c

15RTp

(
c2

2RT
− 5

2

)]
, (2.3b)

g1t = dr

2
RTrg0t +

(
1

2πRTt

)3/2 qr · c
RTt

exp
(

− c2

2RTt

)
, (2.3c)

g1r = dr

2
RTg0r +

(
1

2πRT

)3/2 q1 · c
RT

exp
(

− c2

2RT

)
, (2.3d)

with q0, q1 being linear combinations of translational and internal heat fluxes (Li et al.
2021), [

q0
q1

]
=

[
(2 − 3Att)Zr + 1 −3AtrZr

−ArtZr −ArrZr + 1

] [
qt
qr

]
, (2.4)

where A = [Att, Atr, Art, Arr] is determined by the relaxation rates of heat flux. For
nitrogen, we choose Zr = 3.5 and A = [0.786, −0.201, −0.059, 0.842].

The gas kinetic model describes the gas–gas interaction; in order to fully determine the
gas dynamics in wall-bounded problems, the gas–surface interaction should be specified.
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Coexisting turbulent and rarefied gas flows

In this work, we adopt the Maxwell gas–surface boundary condition, where the gas
molecules hitting the solid wall will be reflected diffusely.

2.2. The NS equations and the RANS model
Exploiting the relation between macroscopic quantities and mesoscopic VDFs in (2.1), the
macroscopic moment equations can be derived from the kinetic equation (2.2) as follows:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.5a)

∂ρu
∂t

+ ∇ · (ρuu) = −∇ · (ρRTtI + σ ), (2.5b)

∂ρe
∂t

+ ∇ · (ρeu) = −∇ · (ρRTtu + σ · u + qt + qr), (2.5c)

∂ρer

∂t
+ ∇ · (ρeru) = −∇ · qr + drρR

2
T − Tr

Zrτ
, (2.5d)

where e = (3RTt + ‖u‖2)/2 + drRTr/2, er = drRTr/2. The first three equations in (2.5)
describe the conservation of mass, momentum and total energy, respectively, whereas the
fourth equation accounts for the exchange between translational and rotational energies.

Equation (2.5) is not closed, since the stress and heat fluxes have not been
expressed in terms of the density, velocity, temperature and their spatial gradients. The
Chapman–Enskog expansion of the kinetic equation to the first order of Kn yields the
following NS constitutive relations (Chapman & Cowling 1990):

σNS = −μ(∇u + ∇uT − 2
3∇ · uI), (2.6a)

qNS
t = −κt∇Tt, qNS

r = −κr∇Tr, (2.6b)

where the (laminar or physical) shear viscosity is obtained as μ = ptτ , whereas the
translational and rotational thermal conductivities κt and κr are (Li et al. 2021)

[
κt
κr

]
= μ

2

[
Att Atr
Art Arr

]−1 [
5
dr

]
= μ

[
3.546
1.435

]
. (2.7)

Theoretically, turbulence can be investigated by the DNS of (2.5) with the NS
constitutive relations (2.6). However, its prohibitive numerical cost prompts the use of
turbulence models. Though the RANS models are derived on coarse grids under multiple
assumptions, they are widely accepted in engineering due to the low computational
cost and good accuracy on capturing the flow pattern. Here, the popular k–ω shear
stress transport (SST) model, which combines the advantages of both the low- and
high-Reynolds-number k–ω models and embeds Bradshaw’s assumption for the boundary
layer, is considered (Menter 1994). It is good at predicting flows with adverse pressure
gradients and separation.

In the SST model, the moment equations (2.5) are used, but the constitutive relations
not only contains the physical viscosity (heat conductivity), but also the turbulent ones.
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That is, μ and κ (irrespective of translational or rotational) in (2.6) are modified as

μ = μlam + μturb, (2.8a)

κ = κlam + κturb = μlamcp

Prlam
+ μturbcp

Prturb
=

(
μlam + μturbPrlam

Prturb

)
cp

Prlam
, (2.8b)

where the subscript turb denotes the turbulent parts, and the laminar to turbulent Prandtl
number ratio is set to 0.8, with the value of cp/Prlam for κt and κr obtained with (2.7)
accordingly.

The dimensionless turbulent viscosity in (2.8) is given by (here aR is a constant from the
Bradshaw assumption, Fμ is a blending function that takes the value of one for boundary
layer flows and zero for free shear flows, Fφ is the blending function which transforms
the model and its coefficients from k–ω model in near-wall region (Fφ = 1), to the k–ε

model in the main flow area (Fφ = 0), the model coefficient φ = (σk, σω, β, β∗, κφ, γ ) is
blended as φ = Fφφ1 + (1 − Fφ)φ2; these model functions and coefficients are given in
Menter (1994))

μturb = aRρk/max
(

aRω,
‖Ω‖Fμ

Reref

)
, (2.9)

where k represents the turbulent kinetic energy, ω = ρk/μt is the turbulent dissipation
frequency, with ‖Ω‖ being the vorticity magnitude. They can be calculated by the
following equations (to be consistent with the normalisation in GSIS (Zhang et al. 2024),
reference quantities are defined based on free flow properties denoted by subscript 0, i.e.
density ρref = ρ0, temperature Tref = T0, velocity vref = √

RT0, pressure pref = ρ0RT0,
heat flux qref = pref vref , viscosity μref = ρref vref L, turbulent kinetic energy kref = v2

ref
and turbulent dissipation frequency ωref = ρref v

2
ref /μref ):

∂ρk
∂t

+ ∂ρujk
∂xj

= 1
Reref

∂

∂xj

[
(μlam + σkμturb)

∂k
∂xj

]
+ Prod − Reref β

∗ρωk︸ ︷︷ ︸
Dissk

, (2.10)

∂ρω

∂t
+ ∂ρujω

∂xj
= 1

Reref

∂

∂xj

[
(μlam + σωμturb)

∂ω

∂xj

]
+ γ

ρ

μturb
τturb,ij

∂ui

∂xj

− Reref βρω2 + 2(1 − Fφ)

Reref

ρσω2

ω

∂k
∂xj

∂ω

∂xj
.

(2.11)

Note that τ turb = μturb(∇u + ∇uT − 2
3∇ · uI) − 2

3ρkI is the Favre-averaged Reynolds
stress computed under the Boussinesq eddy-viscosity hypothesis. To eliminate certain
erroneous spikes of μturb rooted in two-equation turbulence models (Menter 1993), the
production term in (2.10) is Prod = min(τturb,ij(∂ui/∂xj), 20Dissk). At solid surface, k = 0
and ω = (60μlam)/(Reref β1ρD2

1) are specified, with D1 being the distance of the first cell
centre to the wall.

The SST model, originally developed for incompressible flows, does not account for
density fluctuations. However, in hypersonic or high heat transfer scenarios, three terms
in the density-weighted Favre-averaged equation for turbulent kinetic energy are not
modelled: pressure-dilatation, pressure work, and curl-free dilatation dissipation. These
terms are crucial as they contribute to the reduction of turbulent kinetic energy in flows
with Ma > 5. In this study, the pressure-dilatation and dilatation dissipation terms are
taken into account as per Sarkar (1992), while the pressure work is discarded due to the
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lack of satisfactory correction model and proof of correctness for coupling differently
established correction models of different terms. The final form of the implemented SST
model reads:

∂ρk
∂t

+ ∂ρujk
∂xj

= 1
Reref

∂

∂xj

[
(μlam + σkμturb)

∂k
∂xj

]
+ Prod − Reref β

∗ρωk︸ ︷︷ ︸
Dissk

− Reref β
∗ξ∗M2

t ρωk︸ ︷︷ ︸
Dilatation dissipation

+α2τturb,ij
∂ui

∂xj
Mt + Reref α3β

∗ρωkM2
t︸ ︷︷ ︸

Pressure dilatation

, (2.12)

∂ρω

∂t
+ ∂ρujω

∂xj
= 1

Reref

∂

∂xj

[
(μlam + σωμturb)

∂ω

∂xj

]
+ γ

ρ

μturb
τturb,ij

∂ui

∂xj

− Reref βρω2 + 2(1 − Fφ)

Reref

ρσω2

ω

∂k
∂xj

∂ω

∂xj
+ Reref β

∗ξ∗M2
t ρω2︸ ︷︷ ︸

Dilatation dissipation

, (2.13)

where Mt = √
2k/

√
γ RT is the turbulent Mach number. Such corrections work fine for

jets and free shear flow at low Reynolds number. Other model coefficients (α2, α3, ξ
∗) are

summarised by Wilcox (2006).

2.3. The GSIS-SST model for coexisting turbulent and rarefied flows
To investigate the rarefied gas dynamics, the kinetic equation (2.2) should be solved
numerically. However, since the VDFs are defined in six-dimensional phase space, the
computational cost is much higher than the NS equations. Fortunately, since in most
engineering problems the rarefied gas flows are laminar, only the steady states are
considered. Therefore, the implicit iteration methods are normally used. Here, we first
briefly introduce the recently developed GSIS for efficiently simulating the rarefied
laminar flows, and then propose the GSIS-SST model for coexisting turbulent and rarefied
flows.

The GSIS is a multiscale method that alternatively solves the mesoscopic kinetic
equation and macroscopic synthetic equation (Su et al. 2020a; Zhang et al. 2024). The
synthetic equation is given by (2.5), but now the stress and heat flux are constructed as

σ = −μ

(
∇u + ∇uT − 2

3
∇ · uI

)
+ HoTσ , (2.14a)

qt = −κt∇Tt + HoTqt , qr = −κr∇Tr + HoTqr , (2.14b)

where the high-order terms (HoTs) describing the rarefaction effects are constructed as

HoTσ =
∫ (

cc − c2

3
I

)
f0 dξ − σNS, (2.15a)

HoTqt =
∫

c
c2

2
f0 dξ − qNS

t , HoTqr =
∫

cf1 dξ − qNS
r , (2.15b)

with σNS, qNS
t and qNS

r calculated based on (2.6) using the macroscopic properties from
the moments of the VDFs as well.

As sketched in figure 1, the kinetic solver provides HoTs (it must be emphasised that,
as shown in figure 1, (2.14) and (2.15) are solved at different iteration steps, thus the NS
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f k
Kinetic solver

1 2 3 4 m – 1 m

f k+1/2

f k+1

Wk+1

Macroscopic solver

GSIS: GSIS-SST:

VDF

update
Wk+1/2, HoTk+1/2

σij = –μlam × 2(∂u<i/∂xj>) + HoTσij

q = –κlam∇T  + HoTq

σij = –(μlam + μturb) × 2(∂u<i/∂xj>) + HoTσij

q = –(κlam + κturb)∇T  + HoTq

Figure 1. Schematic of the GSIS and GSIS-SST. The kinetic equation is solved by the discrete velocity method
iteratively (here k is the iteration step). Between each iteration, the HoTs extracted from the kinetic solver are
fed into the macroscopic synthetic equation, which is solved to the steady state for m ≈ 200 steps. Then, the
updated macroscopic quantities are fed into the kinetic solver through the modification of VDFs. Detailed
implementation of GSIS are given by Liu et al. (2024a). Different to the pure GSIS, in GSIS-SST the turbulent
viscosity and heat conductivities are added in the macroscopic synthetic equation.

constitutive relations cannot cancel each other out until the converged solution is found)
to the synthetic equation (2.5), whereas the solution of synthetic equation, when solved
to the steady state, steers the evolution of VDFs towards the steady state. As has been
demonstrated in various numerical simulations, this kind of treatment facilities the fast
convergence in the whole range of gas rarefaction (Su et al. 2020a; Liu et al. 2024a; Zhang
et al. 2024). Furthermore, according to the Chapman–Enskog expansion, in the continuum
limit, the HoTs are proportional to Kn2 (Su, Zhu & Wu 2020b), such that the constitutive
relation (2.14) asymptotically preserves the NS limit when Kn is low.

To effectively simulate turbulence, even within the scope of the NS equations, it is
essential to employ turbulence models. Given the significantly higher computational cost
associated with the kinetic solvers, the incorporation of turbulence models is in high
demand. Thanks to the explicit inclusion of the NS constitutive relations in (2.14), the
RANS model can be integrated seamlessly into the GSIS framework. That is, once the
turbulence viscosity from the SST model is obtained, it is superimposed into the physical
viscosity in the NS equations. Consequently, the stress and heat fluxes are formulated as
follows:

σ = −(μlam + μturb)(∇u + ∇uT − 2
3∇ · uI) + HoTσ , (2.16a)

qt = −(κt,lam + κt,turb)∇Tt + HoTqt , qr = −(κr,lam + κr,turb)∇Tr + HoTqr . (2.16b)

The general algorithm of the GSIS-SST is sketched in figure 1.
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Figure 2. (a) Geometry and the computational grid in the turbulent boundary layer problem (unit: metres).
Red line on the left-hand side stands for in-flow condition, blue lines on the top, bottom and right-hand side
are out-flow condition, whereas green lines are stationary isothermal wall. (b) Velocity ux and Mach number.
Experimental data are sampled at x1 = 0.076 m on the upper flat surface (Marvin, Brown & Gnoffo 2013).
Reference solutions are obtained from conventional CFD solver. Here Yn is the vertical distance normalised by
the boundary layer thickness.

3. Validation of the GSIS-SST model

In this section, we validate the GSIS-SST model deep into the turbulent and rarefied
flow regimes, respectively. In addition, we show that the GSIS-SST provides reasonable
modelling of the crossover between turbulent and rarefied conditions.

3.1. High Reynolds number
According to the Chapman–Enskog expansion (Su et al. 2020b; Su, Zhang & Wu 2021),
when Kn is low, the HoTs are proportional to Kn2, such that the GSIS-SST with the
constitutive relation (2.16) asymptotically preserves the pure SST model. This is validated
in the boundary layer problem in turbulent flows, which is a standard problem included in
the NASA turbulence modelling resource for model development and benchmarking.

As shown in figure 2, we consider the hypersonic flow of Ma = 9.22 passing through
a wedge. Taking 1 m as a reference length and the free flow temperature of 64.5 K as
a reference temperature, the Reynolds number is 4.7 × 107 and the Knudsen number is
2.91 × 10−7. The solid wall temperature is 295 K. A total of 31 284 nonuniform spatial
grids are used, where the height of the first layer of cells is 1 μm. The two-dimensional
velocity space is discretised uniformly into 60 × 40 quadrilaterals in the range of |ξ1| ×
|ξ2| = 30 × 20. In the SST model, initial conditions on free flow boundary are specified
using a turbulence intensity It = 0.3 % and a turbulent to laminar viscosity ratio μr =
μturb/μlam = 15. Then k and ω are derived as k = 1.5(It‖u‖)2 and ω = ρk/μturb.

Figure 2 shows that the boundary layer velocity and Mach number obtained from
GSIS-SST fit well with the experimental data. Furthermore, the pure SST model is solved
by the conventional CFD solver, which also agrees with the GSIS-SST result. Thus, the
asymptotic behaviour of the GSIS-SST in turbulence modelling is confirmed.
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Figure 3. Geometry and simulation results from the GSIS and GSIS-SST in the hypersonic flow of Ma = 25
passing over a blunt leading edge, where the Knudsen number is Kn = 1: (a) geometry and grid (unit: metres);
(b) total temperature; (c) velocity and viscosity at x1 = 0.014 m; and (d) surface heat flux.

3.2. High Knudsen number
At high Kn, the turbulent viscosity μturb will be negligible compared with the physical
viscosity μlam, so that the GSIS-SST becomes the pure GSIS which exactly solves the
Boltzmann kinetic equation. To prove this, we simulate the hypersonic flow of Ma = 25
passing over a two-dimensional flat plate with blunt leading edge, by both the GSIS and
GSIS-SST. The computational geometry is shown in figure 3(a). The thickness of the
plate is 0.03 m, and it is chosen as the reference length. The physical domain (−0.9 m ≤
x1 ≤ 0.09 m, |x2| ≤ 0.9 m) is discretised into 136 240 cells, with 381 nodes along and 360
normal to the model surface. The determination of velocity space follows the 5σ criteria of
the standard normal distribution, where σ = √

RT0 is calculated based on the stagnation
temperature of free flow. The final range and grid spacing is adjusted based on a grid
convergence study in velocity space. The refined velocity space is finally defined in the
range of −90 ≤ ξ1 ≤ 90 and −70 ≤ ξ2 ≤ 70, and is cut into 360 × 280 uniform cells.

The nitrogen gas flow of Mach number 25 is coming from the left boundary, with a
temperature equal to the plate temperature. Turbulent conditions on free flow boundary
stay the same as the flat plate case. The Knudsen number is 1 under the free stream
condition.

Figure 3(b) shows the temperature contours, where the shock width is a few mean
free paths (λ = 0.03) and is comparable to the plate thickness. The GSIS and GSIS-SST
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Figure 4. (a) Relative difference in the surface heat fluxes between the GSIS and GSIS-SST solutions, i.e.
(qGSIS-SST/qGSIS − 1), when Kn = 0.01 (solid line), 0.001 (dash-dotted line) and 0.0001 (dashed line). (b,c)
Normal heat flux q2 obtained from GSIS-SST at x1 = 0.014 m when Kn = 0.01 and Kn = 0.0001, respectively.
Contributions from the laminar (solid lines) and turbulent (dashed lines) parts, as well as the HoTs (circles),
are compared. (Since there is a cold wall, when Knudsen number drops and the temperature jump near the
wall diminishes, μlam experiences a sharp decrease. Therefore, a peak of q2,lam is produced even though the
temperature gradient increases near the wall.)

solutions overlap perfectly, enlightening that the turbulence model loses its effect in highly
rarefied flows. The velocity ux at x1 = 0.014 m is plotted in figure 3(c), which exhibits a
large slip at the solid surface and changes rather smoothly over quite a long distance,
indicating the absence of turbulent boundary layer and the dominance of the rarefaction
effects. This subfigure also shows that the turbulent viscosity μturb is nearly zero, which is
much lower than the physical viscosity μlam. This is because, in such highly rarefied flow
environment and small velocity gradients, the density of near-wall flow and the production
of turbulent kinetic energy are both small, leading to insignificant level of μturb as per
(2.9). Therefore, the GSIS-SST degenerates to the pure GSIS for highly rarefied flows. This
is further supported by the results in figure 3(d), where the surface heat fluxes predicted by
GSIS and GSIS-SST overlap. Meanwhile, the pure NS and NS-SST results overlap, again
proving the absence of turbulent effects in such low Reynolds number (i.e. Re ≈ 25). in
this way, the difference between the NS and GSIS results shows that the rarefaction effects
are important when Kn = 1, where the NS constitutive relations lose validity.

3.3. Crossover between turbulent and rarefied flows
Having analysed the asymptotic behaviour of GSIS-SST well into the turbulent and
rarefied regimes, it is interesting to test its performance at intermediate Knudsen numbers.
Since the pure GSIS solves the Boltzmann kinetic equation in the steady state, it is
expected that it is inaccurate above certain Reynolds number. By comparing the solutions
of GSIS with GSIS-SST, this critical Re can be roughly identified.

Thus, three additional Knudsen numbers (Kn = 0.01, 0.001 and 0.0001) are simulated
in the hypersonic flow passing over a blunt leading edge. The relative error in surface
heat fluxes are compared between the GSIS and GSIS-SST in figure 4(a). It is seen that
the two methods start to depart from each other sensibly at Kn ≈ 0.001, where the largest
relative error reaches around 7 % (slightly higher than the engineering accepted range of
5 %). At Kn = 0.0001, the relative error reaches 30 %, indicating the turbulent effects are
significant. This example shows that the influence of the SST model on surface quantities
is effectively off in the GSIS-SST when Re � 25 000.

We further compare in figure 4(b,c) the three components of heat flux obtained from
GSIS-SST, i.e. q2,lam from the NS constitutive relations, q2,HoT from the high-order
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Figure 5. (a–c) Contours of horizontal heat flux q1: (a) q1,lam, (b) q1,turb and (c) q1,HoT . (d–f ) Contours of
vertical heat flux q2: (d) q2,lam, (e) q2,turb and ( f ) q2,HoT . The contour levels are limited in the range of −40 to
40 for a better view. The Knudsen number is Kn = 0.001.

terms for rarefaction effects and q2,turb from the turbulence modelling. At Kn = 0.01,
the laminar part constitutes most of the heat flux, whereas the turbulent part is zero.
A small contribution from the HoT, which represents the rarefaction effects, is seen in
the vicinity of the solid wall. When Kn is reduced to 0.0001, the laminar part of heat
flux still dominates. The turbulent part of heat flux arises from zero at the wall as per the
boundary condition of the SST model, quickly reaches a peak value of about one-third
of the translational heat flux, and then decay to zero away from the wall. Since the HoT
vanishes (which is consistent with the Chapman–Enskog analysis), the rarefaction effects
are absent, and the GSIS-SST is effectively the SST model.

In the intermediate region, e.g. Kn = 0.001, figure 5(a–c) shows that, along the blunt
head, the laminar part dominates the surface heat flux q1, the turbulent part also plays
a noticeable role, whereas the HoT has negligible contribution around the blunt head,
as the high-density stagnation point is not that rarefied. Since the GSIS does not take
the turbulent effects into account, it predicts a surface heat flux 7 % smaller than that of
the GSIS-SST at the stagnation point, see figure 4(a). Along the plate, the laminar and
turbulent parts are absent due to the absence of horizontal temperature gradient, however,
the HoT exists due to the rarefaction effects. This is because this region is downstream the
flow expansion, it is much more rarefied than the stagnation region. As for q2, figure 5(d–f )
shows that the laminar and turbulent parts still make up most of the heat flux along the
blunt head. Along the plate, the laminar part also contributes greatly to q2, whereas the
turbulent part is still absent, due to the reduction in density and turbulence production
in this expansion region. The HoT part makes a constant presence on the whole model
surface.

In summary, the asymptotic analysis and numerical simulations show that the GSIS-SST
can automatically select the SST model and the laminar Boltzmann equation based on the
flow conditions.

4. Opposing jet in a rarefied environment

We now employ the proposed GSIS-SST to identify engineering scenarios where
turbulence and rarefaction phenomena coexist. Since the flow quantities do not change
significantly (except in the shock region) in § 3.3, the coexisting turbulent and rarefied
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flows only occurs around the blunt edge. This is probably also the reason why rarefaction
effects are not observed with significant difference from the NS equations (Komatsu
et al. 2014; Li 2018; McMullen et al. 2022). We believe a strong evidence of the
coexisting turbulent and rarefied flows is most likely to arise during trans-atmospheric
hypersonic flight, when the active jet technology is used to reduce the drag and surface
heat flux (Hayashi & Aso 2003; Daso et al. 2009). In this case, the strong turbulent flow
and the weak rarefied flow occupies a small and large area, respectively, so that their
powers/influences are comparable, and their interaction might lead to significant deviations
from the simulation for the turbulent flow and rarefied flow alone.

Numerical research on opposing jets is abundant, where turbulence models are always
present, especially the k–ω SST model (Ou et al. 2018). On the other hand, kinetic solvers
are used to study the rarefied jet flows, e.g. the opposing jet at an altitude of over 70 km is
simulated by DSMC (Raeisi, Mohammadi-Amin & Zakeri 2019; Guo, Luo & Wu 2024),
and the microscale jets into quiescent space and vacuum plume are solved by the hybrid
NS-DSMC solver (Virgile, Albert & Julien 2022; Liu, Yue & Lin 2024b), where only
laminar flows are considered. Here, we apply the GSIS-SST model to investigate the
interaction of turbulent and rarefied flows for the first time.

4.1. Numerical configurations
The physical model is shown in figure 3(a), except that a 0.004-m-wide slot is now placed
at the head of the blunt leading edge, from which pressurised nitrogen is injected towards
the incoming free-stream flow of Mach number 25. The jet is characterised by the pressure
ratio Pratio between the jet flow and the post-shock value of free flow (a constant pressure
ratio could ensure a quite similarly located jet flow field, even if all free flow conditions
change significantly (Tian, Duan & Chen 2023)):

Pratio = pj,0

pf ,s,0
= 2.5, (4.1)

where pj,0 is the stagnation pressure of the jet and pf ,s,0 is the stagnation pressure of the
incoming shock in the downstream (calculated with the normal–shock relation based on
free-stream quantities). The jet has a static temperature of 250 K and an exit Mach number
of 1. As a consequence, the jet density is about 800–1000 times higher than the incoming
free-stream density. The turbulent boundary condition for free flow is the same as that used
in § 3.1. A characteristic length scale lt = 0.118 (non-dimensionalised) is provided to the
jet, and It = 3 % for the jet. Then k and ω are derived as k = 1.5(It‖u‖)2 and ω = √

k/lt.
We consider the hypersonic flow at altitudes of 80 and 62 km, where the Knudsen

numbers are 0.125 and 0.01, respectively, when the reference length is chosen as the
diameter of the model leading edge. The velocity grid is the same as that used in the
validation section. Since in the jet problem complex flow structures exist ahead of the
model, much higher grid density is required. To benefit from symmetry and reduce the
total cell count, the spatial domain for the jet study is half (x2 ≥ 0) that in figure 3(a).
A study on spatial grid independence is carried out using the coarse (comprising 68 210
quadrilateral cells), moderate (with 119 682 cells) and fine (containing 162 797 cells) grids.
The primary distinction among these grids is the number of nodes in the wall-normal
direction and along the flat section of the model. The results for surface quantities are
found to be consistent across all grids. Considering both computational cost and accuracy,
the moderate grid resolution of 119 682 cells (with 20 nodes for jet boundary, 200 for wall
and 550 normal to wall) was selected for further analysis.
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Figure 6. Temperature contours from GSIS (upper half) and GSIS-SST (lower half) and velocity streamlines
in GSIS-SST: (a) Kn = 0.01 and (b) Kn = 0.125.

4.2. Jet flow field under a rarefied environment
We use the GSIS and GSIS-SST to investigate the role of a turbulent jet in a rarefied
environment. The NS and NS-SST equations are not used since they do not describe the
rarefaction effects, e.g. see figure 3(d).

Figure 6 shows the temperature contours when Kn = 0.01 and 0.125. The
under-expanded jet is injected into the flow field from the nozzle at x1 = −0.0150 m and
is confined by the barrel shock. It expands and accelerates vigorously until it encounters
the free flow, resulting in a pronounced Mach disk. The Mach disk acts to compress and
decelerate the now over-expanded jet flow. Beyond the Mach disk, the jet flow achieves
a local equilibrium with the post-shock free flow, subsequently flowing laterally and in
reverse, reattaching to the model surface. A recirculation zone is present between the barrel
shock, the reversed jet flow and the model surface. This zone arises from two separation
phenomena: the first caused by the jet’s expansion at the nozzle and the second induced by
the reversed jet flow’s reattachment to the model surface. The reattachment stimulates
the development of a recompression shock, and the change in surface curvature from
the blunt to the flat section leads to flow expansion near x1 = 0 m. The jet displaces
the high-temperature post-shock region, creating a low-temperature sheath that exists
between the hot outer shock and the model. This cool sheath is roughly delineated by
the streamlines emanating from the jet exit. Consequently, this cool sheath is also known
as the jet-controlled area.

When Kn increases, the outer shock gets thicker due to the increased rarefaction effects.
In the jet-controlled area, flow structures are sharp and clear. The position of Mach disk
moves slightly closer to the jet exit, while the shape of Mach disk becomes flatter. When
Kn = 0.01, the post-shock stagnation pressure of the free flow is actually lower than lateral
positions, since the oblique outer shock is weaker laterally, thus a curved Mach disk is
formed. However, when Kn = 0.125, the rarefaction effect weakens the outer shock and
reduces such lateral difference, thus producing a flatter Mach disk.

Figure 7 reveals another change of flow pattern under the rarefied environment: the
production of an additional inflection point (around x1 = −0.027 m) along the centreline.
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Figure 7. (a) Contour of horizontal velocity with streamlines from GSIS at Kn = 0.01 (with x2 ≤ 0 mirrored
from upper half). (b) Horizontal velocity along the centreline at Kn = 0.01 and 0.125, obtained from the GSIS
and GSIS-SST. Inset: enlarged view showing the diffusion layer.

The free flow coming from the left experiences a drop in ux, whereas the under-expanded
jet flow coming from x1 = −0.015 m experiences an increase of magnitude in ux.
Normally, this change of velocity is monotonic. However, figure 7(b) shows ux follows
a decrease–increase–decrease process. Such effect becomes stronger when Kn increases.
We believe this counterintuitive change of velocity profile is the outcome of a microscopic
mixing process, in which molecules from both directions flow into each other for a certain
range without sufficient collision when Kn is large. In contrast, in a continuum regime
such layer is too thin to be noticed.

On the influence of turbulence, GSIS and GSIS-SST contours and plots in figures 6
and 7 look alike in general shape under the same Kn condition. Since the introduced
turbulence functions as an extra viscosity, structures with steep changes are generally
smoothed in GSIS-SST. Another alternation is the shift of Mach disk, which stands slightly
closer to the model in GSIS-SST. Due to the enhanced mixing of the jet and free flow, the
thickness of the low-temperature layer normal to the wall shrinks; see the blue regions
around the model surface in figure 6. These changes finally build up the difference on
surface quantities distributions, as analysed in the following.

4.3. Interaction between turbulent and rarefied flows

4.3.1. Velocity and viscosity profiles
The boundary layer is examined to study the interaction between the jet, the rarefaction
effect and the turbulence in the near-wall region. Furthermore, the turbulent viscosity μturb
is calculated to understand how the turbulence shapes the flow field.

When Kn = 0.01, figure 8(a) shows that the velocity profile from GSIS is well layered.
From top to bottom, the free flow region, outer shock, free-flow-dominated post-shock
layer, shear/mixing layer between the free and jet flow, jet-flow-dominated layer and
near-wall boundary layer could be identified. The typical boundary layer still exists, where
the flow velocity increases from 0 across the boundary layer to 2 and remains at the jet
flow velocity until x2 ≈ 0.019 m. Then, the jet flow starts to mix with free flow and ux
keeps increasing. After a turning point at x2 ≈ 0.035 m, the free-flow-dominated layer is
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Figure 8. Profiles of horizontal velocity and viscosity at x1 = 0.006 m: (a) Kn = 0.01, (b) Kn = 0.01,
(c) Kn = 0.125 and (d) Kn = 0.125. Inset: velocity and viscosity in the vicinity of a solid wall.

reached and the rate of increase of ux slows down. Through the outer shock with large
gradients, ux finally reaches the undisturbed free flow velocity of 29.6 (Mach number
25). The GSIS-SST result shows generally the same pattern as GSIS, but the transitions
between layers are smoothed. In addition, ux from GSIS-SST increases faster inside the
boundary layer than the GSIS.

It is the turbulence viscosity that shapes this difference. The viscosity profile from
GSIS-SST at Kn = 0.01 is depicted in figure 8(b), which shows that μturb increases from
0 at the wall, rises up and crosses the physical viscosity μlam curve around x2 = 0.0155 m;
within this range μturb is produced due to large velocity gradient of ux in x2 direction.
A small peak of μturb is found at x2 ≈ 0.016 m, this portion of μturb is produced from
the vortex in the recirculation region and is transported downstream. The turbulence
viscosity dominates over the physical viscosity in the range of 0.0155 < x2 < 0.0308 m
(turbulent jet flow and shear/mixing layer) as the jet flow is a source of turbulence. It
also forms a local peak at around x2 ≈ 0.05 m (right behind the outer shock) due to large
velocity gradients across shock. The high turbulence viscosity in these regions boosts
the momentum and energy exchange. High-speed and high-temperature post-shock free
flow introduce more kinetic and internal energies through intense turbulent mixing into
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Figure 9. Contour of turbulent viscosity μturb (top half) and the turbulent to laminar viscosity ratio μr from
GSIS-SST (bottom half): (a) Kn = 0.01 and (b) Kn = 0.125. The initial jet, the post-Mach disk region and the
reattachment region are the main sources of turbulence effect.

the lower layers (shear/mixing layer and subsequently the jet flow). Therefore, the abrupt
transitions around x2 ≈ 0.0225 m and x2 ≈ 0.035 m in GSIS’s horizontal velocity profile
is smoothed in GSIS-SST, see figure 8(a).

When Kn goes up to 0.125, velocity profiles from GSIS and GSIS-SST become
smoother, so that the transition of different velocity layers in figure 8(a) is now blurred in
figure 8(c). This is the result of rarefaction effects: since the free flow is rather rarefied and
the density of the jet flow is also decreased (as the pressure ratio Pratio in (4.1) is fixed), the
diffusion between different layers is intensified, disturbance travels further into each other,
leading to higher temperature and momentum around the model. In GSIS-SST, adding
together the rarefaction effects and turbulence, the velocity profile is no doubt smoother.
The viscosity profiles figure 8(d) show similar pattern as those of Kn = 0.01, yet the
turbulence-viscosity-dominated area in GSIS-SST is now restricted to jet-flow-dominated
area, i.e. when x2 < 0.0243 m. The local peak of μturb at x2 ≈ 0.05 in Kn = 0.01 still
exists at x2 ≈ 0.0675 in Kn = 0.125, but is now now sharper than that at lower Kn, and
smaller than the corresponding laminar viscosity for a wider range as x2 increases. This
is the result of the higher level of rarefaction at Kn = 0.125, since μturb is proportional to
density.

Figure 9 further depicts the ratio between the turbulent and laminar viscosities in
GSIS-SST. When Kn = 0.01, μturb exhibits a pronounced concentration towards the Mach
disk, the outer shock (around x1 = −0.035 m) and the recompression shock (around x1 =
−0.01 m). These structures are associated with high-velocity gradients which promotes
production of turbulent kinetic energy and, hence, μturb. Unlike μturb, the viscosity ratio
μr has only high values in the cooler jet-controlled area. Since the jet temperature is much
lower and, hence, lower μlam, μturb could be dominant in these regions. When Kn = 0.125,
μturb still shows high concentration in the region between the outer shock and the Mach
disk, although the recompression shock contributes now less to the formation of μturb
compared with the Kn = 0.01 case. The viscosity ratio μr at Kn = 0.125 shows similar
distribution as that at Kn = 0.01, yet the high μr region shrinks at Kn = 0.125. It is clear
that the high μturb region (both at Kn = 0.01 and Kn = 0.125) behind the outer shock does
not turn into actual effect, as μr there is quite low. This is because the high post-shock
temperature largely increases μlam, diluting the influence from μturb.
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Figure 10. (a,b) Three contributions of shear stress σ12 at x1 = 0.006 m from GSIS-SST, namely, σ12,lam from
molecular viscosity, σ12,HoT from rarefaction effects and σ12,turb from turbulence model: (a) Kn = 0.01 and (b)
Kn = 0.125. The plot of Kn = 0.125 is limited to x2 < 0.1 m as the shear stress decays to zero above this point.
(c–h) Contours of the three contributions of σ12 at Kn = 0.01 and 0.125, respectively: (c) σ12,lam, (d) σ12,turb,
(e) σ12,HoT , ( f ) σ12,lam, (g) σ12,turb and (h) σ12,HoT . The arrow marks the σ12 sampling location x1 = 0.006 m.

4.3.2. Three contributions to shear stress
Figure 10 shows the three contributions of shear stress in GSIS-SST simulation.
At Kn = 0.01, σ12,lam starts from 0 in the free flow region and rises at x2 ≈ 0.07 m,
reaching rapidly to its peak at the core of outer shock (x2 ≈ 0.065 m). Its magnitude then
falls quickly to 0 in the free-flow-dominated post-shock layer. Then σ12,lam rises again
when x2 drops below 0.04 m to the shear layer. With a secondary peak in the centre
of shear layer, σ12,lam drops again and stays near 0 in the jet flow layer. Finally, in the
boundary layer, σ12,lam exhibits absolute dominance, especially in the viscous sublayer.
Here σ12,HoT , which measures the rarefaction effects, is significant in the shock layer. In
addition, a slight positive peak around 0.0315 m in the shear layer could be identified.
The profile of σ12,turb runs in a similar manner as σ12,lam. Notably, σ12,turb dominates
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Figure 11. Contours of the three contributions of heat fluxes at Kn = 0.01: (a) q1,lam, (b) q1,turb, (c) q1,HoT ,
(d) q2,lam, (e) q2,turb and ( f ) q2,HoT .

over σ12,lam below x2 ≈ 0.03 m and above boundary layer, respecting the assumption of
turbulence domination in jet-controlled area.

The contour of three contributions in the second row of figure 10 shows that the laminar
part concentrates to locations with high velocity gradients, such as shock, shear layer and
boundary layer. It is biased towards free flow in the shear layer due to higher temperature.
The turbulent part looks similar to the laminar part but with higher magnitude, especially
in the jet-controlled area. The HoT is negligible when compared with the laminar and
turbulent parts, as it is proportional to Kn2 in the bulk flow as per the Chapman–Enskog
expansion.

When Kn increases from 0.01 to 0.125, the pattern of rise and drop remains similar for
σ12,lam. However, the near-zero parts of σ12,lam curves (at Kn = 0.01, x2 ≈ 0.05) disappear
now at Kn = 0.125, due to the increased mean free path so that the two peaks in σ12,lam
mix. The σ12,turb-dominated area is reduced, representing the degraded influence from
turbulence at high Kn, even in the less-rarefied jet layer. In contours at Kn = 0.125 shown
in the third row of figure 10, the laminar part is less concentrated compared with that
at Kn = 0.01, as the whole flow field is more rarefied. The largest difference is that the
relative magnitude of HoT compared with the other two components increases sensibly,
and it also takes effect more at the outer shock (x1 = −0.035 m).

4.3.3. Three contributions to heat flux
Figure 11 reveals the three contributions of heat flux in the jet-controlled area when
Kn = 0.01. The laminar part is significant in the shear layer, Mach disk and boundary
layer. It also has noticeable magnitude around the recirculation region. In contrast to
the laminar part, the high-magnitude turbulent part occupies a larger area. Therefore,
significant change on heat flux is expected on the blunt head. The HoT is relatively lower
than in the turbulent part, but outmatches the laminar part in certain regions, such as the
barrel shock. It also produces a large negative contribution just before the jet flow enters
the shear layer, where the laminar and turbulent parts are positive.
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Figure 12. Same as figure 11, except that here Kn = 0.125: (a) q1,lam, (b) q1,turb, (c) q1,HoT , (d) q2,lam,
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Figure 13. (a) Surface pressure. Results from GSIS and GSIS-SST remain constant after x1 = 0.02 m and,
hence, are not shown. (b) Surface heat flux.

When Kn = 0.125, figure 12 shows that the pattern of laminar heat flux is close to
that at Kn = 0.01, except being more dispersed. The turbulent part loses its influence
in most of the area. It gathers now only around the jet exit, Mach disk and shear layer.
The recirculation region is cleared of turbulent component. The reattachment point is
under the influence of a turbulence contribution from the shear layer rather than that from
recirculation zone at Kn = 0.01. The HoT becomes more visible especially in the boundary
layer.

4.4. Changes in surface quantities
Surface pressure and heat flux are of great engineering significance, and the differences
between the GSIS and GSIS-SST are analysed here. Figure 13(a) shows that, when the
Knudsen number is fixed, the surface pressure is small around the jet nozzle, grows
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through the barrel shock and drops in the recirculation region, increases again to the
peak value at the reattachment point and decreases almost monotonically after the peak.
When the Knudsen number increases from 0.01 to 0.125, the shape of the pressure profile
barely changes, but its magnitude increases. Comparison between the GSIS and GSIS-SST
results show that the turbulence model increases the surface pressure, e.g. surface pressure
from GSIS-SST is higher than that of GSIS by 10 % and 7 % at Kn = 0.01 and 0.125,
respectively.

Figure 13(b) shows the distributions of surface heat flux q. When Kn = 0.01, q obtained
from the GSIS is small in the recirculation region near the nozzle exit, and increases to
peak value at the reattachment point (around x1 = −0.008 m). After the peak, q drops fast
along the surface of the blunt leading edge, and then stays nearly constant along the flat
plate. When Kn = 0.125, the variation of q curve, obtained from the GSIS, is similar to
that at Kn = 0.01, except that when x1 > 0 m the surface heat flux from GSIS continues to
drop, first sensible and then stays around a constant (from x1 ≈ 0.05 m) when approaching
the end of the model.

When the turbulence is considered, large deviation in surface heat flux between the GSIS
and GSIS-SST could be spotted on the blunt part. At Kn = 0.01, the GSIS-SST curve
shows >20 % higher reattachment peak heat flux than the GSIS around x1 = −0.01 m.
On the flat part of the model with x1 > 0.02 m, GSIS-SST predicts a increasingly higher
heat flux of 20–70 % as x1 increases. At Kn = 0.125, the GSIS-SST presents a 12 % higher
reattachment peak heat flux and it greatly deviates from the GSIS one when x1 > 0 m.
The q curve of GSIS-SST climbs almost linearly with x1 on the flat part of the model,
and resulting in a maximum relative deviation as high as 370 %. This implies a large
degradation of the thermal protection effect, e.g. figure 6 shows that the low-temperature
jet flow layer is much more limited in GSIS-SST than GSIS. With more dispersed jet flow
layer and hotter environment at Kn = 0.125, the rest of the model (from x1 = 0 m) in
GSIS-SST is thus heated quickly.

5. Conclusions and outlook

A multiscale method, which is built upon the Boltzmann kinetic equation to describe the
rarefied gas dynamics and the k–ω SST model to capture the turbulence effect, has been
established to simulate gas flows from highly rarefied regime down to the fully turbulent
continuum regime. Asymptotic analysis and numerical simulations have shown that the
GSIS-SST adaptively selects the SST model, the laminar NS equations and the laminar
Boltzmann equation. It should be noted that, while GSIS exactly solves the Boltzmann
kinetic equation for laminar rarefied gas flows, the SST is an approximate model for
turbulence viscosity. Therefore, the overall accuracy is affected by the SST model.
Fortunately, the turbulence models are well studied, where abundant models/parameters
can be optimised for specific problems.

With the proposed GSIS-SST model, the interaction between turbulent and rarefied
gas flows has been analysed. That is, for opposing jet problem under hypersonic rarefied
flows, the turbulence effect predicted by the SST model promotes the momentum and
energy exchange between the jet and the free flow, considerably enhancing the jet diffusion
and reducing the heat reduction range of the jet. For example, the surface heat flux
predicted by the GSIS-SST may be approximately four times higher than that of the
GSIS. The predicted turbulence also increases reattachment surface pressure and heat
flux significantly, and such differences increase when the Kn number decreases. These
findings underscore the necessity of considering the turbulence effect of the jet even under
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rarefied free flow conditions, which is critical for optimising thermal protection systems
and aerodynamic control strategies in hypersonic vehicles.

The significance of this study is twofold. First, despite many researchers’ unsuccessful
attempts to find the rarefaction effects in turbulence, our research has presented, for the first
time, numerical evidence of coexisting turbulent and rarefied gas flows in a single flow
configuration. These flows defy characterisation by conventional turbulence models and
cannot be accurately represented by laminar Boltzmann solutions. Second, this study has
provided a viable framework for advancing our understanding of the interaction between
turbulent and rarefied gas flows, based on which more new flow phenomena can be
explored.

While the current model provides valuable insights into the interaction between
turbulent and rarefied gas flows, there are also opportunities for further refinement.
Although we have assumed that the jet is fully turbulent before interacting with the laminar
rarefied flow, we acknowledge that incorporating a transition model could improve the
spatial accuracy of predicting where the GSIS and GSIS-SST solutions diverge. However,
based on our analysis, we anticipate that although this addition might enhance spatial
predictions, its effect on the magnitude of surface quantities, such as pressure or heat
flux, would likely be modest, as the turbulent mixing primarily affects the higher-density
jet flow, leading to its rapid dispersion in the GSIS-SST solution, while the influence
of the low-density free flow on surface quantities remains limited. Nevertheless, the
observed significant differences suggest that the current model adequately capture key
flow behaviours, even in the absence of a transition model. Moving forward, we plan to
integrate more advanced, unsteady, high-fidelity turbulence modelling approaches with
the ability to predict transition, to further enhance the accuracy and robustness of the
GSIS-SST in capturing complex flow dynamics. In addition to its application in hypersonic
aerodynamics, the GSIS-SST may be applied in inertial confinement fusion to understand
the interaction of turbulence in low-temperature high-density region and rarefied flows in
high-temperature region with large mean free path of electron/ions (Rinderknecht et al.
2018).
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