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Quantifying transport by strongly stratified turbulence in low Prandtl number (Pr)
fluids is critically important for the development of better models for the structure and
evolution of stellar and planetary interiors. Motivated by recent numerical simulations
showing strongly anisotropic flows suggestive of a scale-separated dynamics, we perform
a multiscale asymptotic analysis of the governing equations. We find that, in all cases,
the resulting slow–fast systems take a quasilinear form. Our analysis also reveals the
existence of several distinct dynamical regimes depending on the emergent buoyancy
Reynolds and Péclet numbers, Reb = α2Re and Peb = PrReb, respectively, where α is the
aspect ratio of the large-scale turbulent flow structures, and Re is the outer-scale Reynolds
number. Scaling relationships relating the aspect ratio, the characteristic vertical velocity
and the strength of the stratification (measured by the Froude number Fr) naturally emerge
from the analysis. When Peb � α, the dynamics at all scales is dominated by buoyancy
diffusion, and our results recover the scaling laws empirically obtained from direct
numerical simulations by Cope et al. (J. Fluid Mech., vol. 903, 2020, A1). For Peb ≥ O(1),
diffusion is negligible (or at least subdominant) at all scales and our results are consistent
with those of Chini et al. (J. Fluid Mech., vol. 933, 2022) for strongly stratified geophysical
turbulence at Pr = O(1). Finally, we have identified a new regime for α � Peb � 1,
in which slow, large scales are diffusive while fast, small scales are not. We conclude
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by presenting a map of parameter space that clearly indicates the transitions between
isotropic turbulence, non-diffusive stratified turbulence, diffusive stratified turbulence and
viscously dominated flows, and by proposing parameterisations of the buoyancy flux,
mixing efficiency and turbulent diffusion coefficient for each regime.

Key words: stratified turbulence, turbulence theory, turbulent mixing

1. Introduction

Quantifying vertical transport (of heat, chemical tracers and momentum) in the stably
stratified regions of stars and gas giant planets is paramount to a better understanding
of their structure and evolution, as the transport rates required to match observations
are largely inconsistent with purely diffusive processes. The same challenge arises in the
modelling of stably stratified regions of the Earth’s atmosphere and oceans. The solution in
both cases is to include turbulent transport in the models, but this in turn requires reliable
parameterisations of small-scale fluxes as functions of the local properties of the fluid
and of its large-scale flow (Munk 1966; Pinsonneault 1997; Ivey, Winters & Koseff 2008;
Gregg et al. 2018; Aerts, Mathis & Rogers 2019; Caulfield 2021).

Relatively small-scale turbulent vertical mixing in a stably stratified region typically
incurs an energetic cost to raise dense fluid parcels irreversibly and correspondingly lower
buoyant parcels and thus can only be sustained on long time scales by mechanisms that
tap into some larger-scale energy reservoir. Fluid instabilities comprise one broad class
of such mechanisms, with different fluid instabilities accessing distinct sources of energy:
for instance, baroclinic and double-diffusive instabilities draw from the available potential
energy of the fluid, magnetic instabilities rely on the magnetic energy of a finite-amplitude
large-scale field and shear instabilities of a large-scale mean flow, or of the motions
associated with internal waves, can tap into the kinetic energy reservoirs of those flows.
The nature of the turbulence driven by each of these instabilities differs substantially, so
that it ‘still remains extremely difficult to say anything generic about [stratified] mixing’
(Caulfield 2021).

In this work, we restrict our attention to modelling stratified turbulence in stellar and
planetary interiors driven exclusively by shear. Astrophysical fluids generally have a low
Prandtl number Pr, where

Pr = ν∗

κ∗ , (1.1)

where ν∗ is the (dimensional) kinematic viscosity of the fluid, and κ∗ is the corresponding
(dimensional) buoyancy diffusivity (e.g. thermal or compositional diffusivity, depending
on the main source of stratification); see figure 7 of Garaud et al. (2015b). Here, and
throughout this work, dimensional quantities are starred, while non-dimensional quantities
are not. We ignore rotation, magnetic fields, externally driven large-scale internal waves
and the presence of multiple components contributing to the flow buoyancy. Although
these effects undoubtedly are important in most situations, the dynamics of purely
shear-driven stratified turbulence in low Pr fluids is still far from well understood,
justifying the apparently narrow scope of this study.

Under these simplifying assumptions, the principal remaining source of turbulent
vertical transport in our model is a vertical shear, expected to lead to ‘overturning’
horizontally aligned vortices. Balancing the potential energy cost and the kinetic energy
gain of adiabatic turbulent eddies in a vertically sheared flow, Richardson (1920)
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Stratified turbulence regimes at low Pr

concluded that turbulence can only be sustained provided

J = N∗2

S∗2 ≤ O(1), (1.2)

where N∗ is the typical value of the buoyancy frequency of the stratification, and S∗ is the
typical vertical shearing rate of the flow. Condition (1.2) is known today as the Richardson
criterion (where the non-dimensional parameter J is commonly referred to as a gradient
Richardson number, which can vary with the vertical position z∗). For linear normal mode
disturbances in an inviscid, non-diffusive parallel shear flow, Miles (1961) and Howard
(1961) formalised this argument to establish rigorously the necessary condition for linear
instability to be that J(z∗) < 1/4 somewhere within the flow.

The Richardson criterion can be relaxed when the flow disturbances are not purely
adiabatic, because the energy cost of vertical motions is reduced if the advected fluid
parcels radiatively (Townsend 1958; Dudis 1973) or diffusively (Zahn 1974; Jones 1977;
Lignières, Califano & Mangeney 1999) adjust their buoyancy to that of the background
stratification on a time scale comparable to, or shorter than, their turnover time scale. In
the diffusive case, this adjustment is sufficiently fast when the eddy Péclet number

Pe� ≡ u∗
��

∗

κ∗ ≤ O(1), (1.3)

where u∗
� is the characteristic velocity of an eddy of size �∗. Zahn (1974) heuristically

argued that an appropriate criterion for the instability of diffusive eddies of size �∗ in a
vertical shear flow is

JPe� ≤ O(1), (1.4)

provided (1.3) holds. According to his criterion, it ought to be possible to maintain
turbulence in strongly stratified shear flows (J � 1) provided eddies are small enough
to ensure that Pe� ≤ O(J−1).

The criterion (1.4) for these so-called ‘diffusive’ shear instabilities should not be used
in geophysical fluids where Pr ≥ O(1) because the condition Pe� ≤ O(1) equivalently
implies that Re� ≡ u∗

��
∗/ν∗ ≤ O(1), where Re� is the corresponding eddy Reynolds

number. As shear instabilities must have a relatively large Reynolds number to develop
(otherwise viscous energy losses are too great), the requirement that Re� � 1 is
incompatible with Pe� = PrRe� ≤ O(1) when Pr ≥ O(1). The situation is quite different
in stellar and planetary interiors, as first noted by Spiegel & Zahn (1970) and Zahn (1974),
because of their intrinsically small Prandtl number. With Pr � 1, and regardless of the
size of the outer-scale Reynolds and Péclet numbers

Re ≡ U∗L∗

ν∗ and Pe ≡ U∗L∗

κ∗ , (1.5a,b)

(where U∗ and L∗ are the system-scale characteristic flow velocity and length scale,
respectively), there is always an intermediate range of scales where turbulent eddies satisfy
Pe� � 1 � Re�, namely, where diffusion dominates their dynamics while viscous forces
remain negligible. This property naturally allows for the maintenance of diffusive stratified
turbulence provided the shear is large enough for (1.4) to hold (Zahn 1974).

An important question is the source of the vertical shear. Naively, one might expect
it to arise from the spatial gradients of a mean flow on large vertical scales, which are
commonly observed in geophysical and astrophysical fluids. However, these large-scale
‘mean’ gradients generally have corresponding Richardson numbers that are much larger
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than unity, especially in stellar or planetary interiors (Garaud 2021). This naive expectation
would also fail to explain observations of stratified turbulence in laboratory experiments
(Ruddick, McDougall & Turner 1989; Park, Whitehead & Gnanadeskian 1994; Holford &
Linden 1999; Oglethorpe, Caulfield & Woods 2013) and numerical experiments (Jacobitz
& Sarkar 2000; Basak & Sarkar 2006; Brethouwer et al. 2007; Maffioli & Davidson 2016;
Lucas, Caulfield & Kerswell 2017; Zhou, Taylor & Caulfield 2017; Zhou & Diamessis
2019; Cope, Garaud & Caulfield 2020; Garaud 2020; Yi & Koseff 2023), where the mean
flow has no vertical shear.

Instead, it is the emergent, instantaneous, local vertical shear that is responsible for
much of the vertical mixing in the flow (Riley & DeBruynkops 2003). The emergent
shear intermittently appears and disappears as different horizontal layers of the fluid move
past each other, driven by primarily horizontal and highly anisotropic large-scale flows.
Crucially, it has been shown that these vertically decoupled flow structures, which are
sometimes called ‘pancake eddies’, emerge even when the horizontal flow is forced in a
vertically invariant manner, as in the above-mentioned studies. Furthermore, in the stably
stratified regions of the ocean, there is increasing evidence that the emergent shear is often
marginally stable to vertical shear instabilities, with the minimum value of J(z∗) � 1/4
(Smyth & Moum 2013), suggestive of ‘self-organised criticality’ (Salehipour, Peltier &
Caulfield 2018; Smyth, Nash & Moum 2019; Mashayek, Caulfield & Alford 2022). Similar
results have recently been reported by Garaud, Khan & Brown (2024b) in numerical
simulations of strongly stratified turbulence at Pr = 0.1. As demonstrated by Chini et al.
(2022) at Pr = O(1), and in this paper at low Pr, this self-organised criticality seems to be
an inevitable outcome of the highly anisotropic nature of the layerwise large-scale flows
in strongly stratified fluids.

In the spirit of these previous studies, we further narrow our focus to studying vertical
mixing in primarily horizontal flows driven by a vertically invariant horizontal force, first
at Pr ≥ O(1), where most of the research on this topic has been focused, and then at
Pr � 1. First, however, we review the existing literature in some detail, in order to place
our work in context.

1.1. Stratified turbulence forced by horizontal flows at Pr ≥ O(1)

In studies of stratified turbulence forced primarily by horizontal flows, the effects of
stratification are generally quantified using the outer-scale Froude number, defined as

Fr = U∗

N∗L∗ . (1.6)

In this expression U∗ and L∗ are now specifically assumed to be the characteristic outer
scales for the horizontal velocity and horizontal length scale and over that outer scale there
is also a well-defined (implicitly constant) ‘background’ buoyancy frequency N∗. Ruddick
et al. (1989), Park et al. (1994) and Holford & Linden (1999) demonstrated experimentally
that regular horizontal motions of vertical rods in a salt-stratified fluid (having Pr =
O(1000)) with an initially constant stratification, characterised by a buoyancy frequency
N∗, can cause substantial vertical mixing even when the flow is ‘strongly’ stratified,
in the sense that Fr � 1. Furthermore, they often observed the formation of steps in
the density profile, with a characteristic vertical height H∗ ∝ U∗/N∗. Oglethorpe et al.
(2013) similarly found substantial mixing and the spontaneous formation and long-time
survival of a ‘staircase’ of relatively well-mixed layers with depth again proportional to
U∗/N∗, separated by significantly thinner interfaces of locally enhanced density gradient
in stratified Taylor–Couette flow experiments.
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Stratified turbulence regimes at low Pr

Direct numerical simulations (DNS) are arguably more practical for investigation of
Pr = O(1) fluids (such as thermally stratified air and water, due to the inherent difficulties
associated with conductive heat losses at the boundaries), and over the last 20 years
significant progress in quantifying stratified turbulence in this parameter regime has been
enabled by advances in supercomputing. In particular, access to the full three-dimensional
structure of the velocity and buoyancy fields has provided new insights into the nature
of turbulence at very large Reynolds numbers and very strong stratification, a regime
characteristic of stratified turbulence in the ocean and atmosphere.

Pioneering work by Brethouwer et al. (2007), for instance, has demonstrated that the
eddy field is highly anisotropic in this regime, with a vertical eddy scale once again
proportional to U∗/N∗. This emergent ‘layer’ length scale thus seems to be a universal
property of stratified turbulence at both moderate and high Pr at sufficiently high Reynolds
number, as theoretically predicted and experimentally demonstrated by Billant & Chomaz
(2000, 2001) (see also Caulfield (2021) for a review).

Using the insight gained from their DNS data, Brethouwer et al. (2007) proposed an
anisotropic rescaling of the governing equations, introducing the small vertical scale H∗ =
FrL∗ = U∗/N∗ and taking the asymptotic limit Fr → 0. Crucially, the horizontal scales
are assumed to remain O(L∗) in their work. Inspection of the rescaled equations reveals
the fundamental role of the so-called buoyancy Reynolds number

Reb ≡ Fr2Re =
(

H∗

L∗

)2

Re, (1.7)

which needs to be substantially greater than one for viscous effects to be negligible
(see Brethouwer et al. (2007), Bartello & Tobias (2013) and § 2 for further details). In
that case, the characteristic vertical velocities and buoyancy fluctuations are predicted to
scale as W∗ ∝ FrU∗ and B∗ ∝ FrL∗N∗2 = H∗N∗2, respectively. This flow regime where
Re � 1 and Fr � 1 such that Reb ≡ Fr2Re � 1 was referred to as the ‘strongly stratified
regime, sometimes abbreviated to stratified turbulence’ by Brethouwer et al. (2007).
The nomenclature ‘strongly stratified turbulence’ (SST) has become quite common in
the fluid dynamics literature, although ‘stratified turbulence’ is often (particularly in the
geosciences literature) used more broadly to refer to any disordered motions in a stratified
environment, as opposed to this particular asymptotic regime.

Interestingly and importantly, Brethouwer et al. (2007) presented an alternative
expression for Reb in terms of the kinetic energy dissipation rate ε∗, by assuming an
effective definition for the horizontal outer scale L∗ such that

ε∗ ≡ U∗3

L∗ → Reb ≡ ε∗

ν∗N∗2 . (1.8)

This expression reveals Reb to be an ‘intensity’ or ‘activity’ parameter for the turbulence
(Gibson 1980; Gargett, Osborn & Nasmyth 1984). Considered in this fashion, a particular
attraction of the SST nomenclature becomes apparent, as it succinctly describes the
necessary properties of the bulk flow, i.e. that the flow is ‘strongly stratified’ in the sense
that Fr � 1 when using global or bulk measures for the outer length and velocity scales
and the buoyancy frequency and yet the flow is also ‘turbulent’ in the sense that the
disorder is sufficiently ‘intense’ or ‘active’ to be considered turbulent.

However, there is emerging evidence that this classical inertial scaling may only be
applicable when the effects of buoyancy are sufficiently weak (Mashayek et al. 2022), also
perhaps calling into question whether it is appropriate to think of such flows as ‘strongly
stratified’.
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Fundamental to the arguments presented in Brethouwer et al. (2007) is the notion
that there is a single (large, outer) horizontal scale of significance (indeed they referred
to the assumption leading to (1.8) as ‘the perhaps most important assumption’ for the
forward cascade to small scales essential to their theory), with the implicit consequence
that spatio-temporal variability on smaller horizontal scales does not exert a controlling
influence on the dynamics. The supposition of a single dominant horizontal scale, however,
is not entirely self-consistent. Indeed, Brethouwer et al. (2007) demonstrated that an
inevitable consequence of their scaling is that J � O(1) at least somewhere in the
flow, thus implying that they are locally weakly stratified, and potentially unstable to
fast, small-scale isotropic perturbations. The coexistence of strongly stratified (J � 1)
quiescent regions and weakly stratified (J ∼ O(1)) turbulent regions in Fr � 1 flows has
led Falder, White & Caulfield (2016) to propose that this strongly stratified turbulent
regime rather be referred to as the ‘layered anisotropic stratified turbulence’ (LAST)
regime. This nomenclature has the twin advantage that it is specifically descriptive, as
the flow velocities are inherently anisotropic and layered, and also avoids ambiguity
concerning the actual sense in which the flow is ‘strongly’ stratified, in that a small
bulk or global value of Fr may well mask local regions in space and/or time where
the stratification is sufficiently ‘weak’ to allow such unstable, fast small-scale isotropic
perturbations to develop (see also Portwood et al. (2016), for further discussion). That
said, we acknowledge that ‘strongly stratified turbulence’ is more concise terminology and
does not refer to flow properties which are emergent, such as the emergent anisotropy
and inevitable spatio-temporal intermittency. Nevertheless, DNS results in Garaud et al.
(2024a) clearly do show two such emergent distinct flow behaviours as stratification
increases (see their figure 3), i.e. turbulent patches dominated by small-scale isotropic
motions and layer-like, quiescent flow outside these regions. It is this regime characterised
by the coexistence of large and small scales that we refer to as the LAST regime.

Later, Riley & Lindborg (2012) employed local but anisotropic energy cascade
arguments to deduce that W∗ actually peaks at small scales and is proportional to Fr1/2U∗
rather than FrU∗. Direct numerical simulations of SST by Brethouwer et al. (2007),
Augier, Billant & Chomaz (2015) and Maffioli & Davidson (2016) do, indeed, exhibit
spatio-temporally intermittent motions on small scales. Furthermore, the W∗ ∝ Fr1/2U∗
scaling law was tentatively verified by Maffioli & Davidson (2016).

More recently, Chini et al. (2022) leveraged the scale separation observed in these DNS
to propose a new multiscale asymptotic model of stratified turbulence at Pr = O(1), using
the concept of marginal stability to constrain the representative minimum values of the
gradient Richardson number to be O(1), thus determining key properties of ‘fast’ motions
associated with the presumed breakdown of these local shear instabilities. Importantly,
this model recovers the usual (and empirically observed) scaling law H∗ ∝ FrL∗ for the
vertical eddy scale, but predicts a characteristic vertical velocity scale W∗ ∝ Fr1/2U∗
and a characteristic buoyancy scale B∗ ∝ H∗N∗2. This scaling for W∗ differs from the
corresponding predictions of Brethouwer et al. (2007) as a direct consequence of relaxing
the assumption of a single horizontal length scale to allow for the idealised modelling
of certain important aspects of the spatio-temporally intermittent shear instabilities.
Moreover, the analysis by Chini et al. (2022) also differs from that of Riley & Lindborg
(2012) in three key aspects. First, in Chini et al. (2022), the scaling of W∗ arises from a
self-consistent asymptotic theory rather than by invoking heuristic Kolmogorov turbulence
arguments. Second, the scaling behaviour is associated with a spectrally non-local energy
cascade from large to small horizontal scales, whereas Riley & Lindborg (2012) rely on
spectrally local cascade arguments that presume α increases from its minimum value at
the large scale, α ∼ Fr, to unity at the Ozmidov scale, α ∼ 1, where isotropy is recovered.
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Stratified turbulence regimes at low Pr

Third, the vertical velocity scaling in Chini et al. (2022) is realised at horizontal scales of
O(H∗) = O(FrL∗), which is asymptotically larger than the Ozmidov scale l∗O ∝ Fr3/2L∗ at
which Riley & Lindborg (2012) conclude it arises. Data from recent DNS by Garaud et al.
(2024a) tentatively support the argument of Chini et al. (2022) that the vertical kinetic
energy spectrum of stratified turbulence peaks at a scale proportional to Fr.

1.2. Stratified turbulence forced by horizontal flows at Pr � 1
By contrast with geophysical applications, the study of stratified turbulence driven by
primarily horizontal flows in stellar and planetary interiors is still in its infancy. Most
of the early work on the topic is summarised in the seminal paper of Zahn (1992), who
had used arguments similar to those of Riley & Lindborg (2012) to estimate the vertical
turbulent diffusivity D∗ of momentum, or of a passive scalar, in terms of the kinetic energy
dissipation rate ε∗ and of the local fluid properties κ∗ and N∗:

D∗ ∝
(

ε∗κ∗

N∗2

)1/2

. (1.9)

To arrive at this conclusion, he made two assumptions: (i) the energy spectrum of the
anisotropic horizontal scales of the flow follows a classical inertial scaling, analogously to
(1.8) such that ε∗ ∝ u∗3

� /�∗; and (ii) the vertical diffusivity is primarily due to the largest
eddies whose emergent vertical shear S∗ is unstable according to (1.4), where S∗ = u∗

�/�
∗.

Lignières (2020) recently revisited Zahn’s argument, interpreting the relevant scale �∗ as
a ‘diffusive’ or ‘modified’ Ozmidov scale and explicitly writing it as

�∗
OM =

(
κ∗ε∗1/3

N∗2

)3/8

. (1.10)

Using critical balance theory, Skoutnev (2023) then argued that it is possible to relate �∗
OM

and u∗(�∗
OM) explicitly to properties of the larger-scale flow (U∗, W∗, H∗ and L∗), arriving

at the conclusion that

H∗ ∝
(

U∗κ∗

N∗2L∗3

)1/4

L∗ =
(

Fr2

Pe

)1/4

L∗ and W∗ ∝
(

Fr2

Pe

)1/4

U∗, (1.11a)

so

D∗ ∝ H∗W∗ ∝
(

Fr2

Pe

)1/2

U∗L∗ =
(

U∗3κ∗

L∗N∗2

)1/2

, (1.11b)

which is consistent with Zahn’s estimate (1.9) provided one further assumes that ε∗ ∝
U∗3/L∗.

As turbulence in stars cannot be directly observed, and experimentation with Pr � 1
fluids is particularly difficult, numerical simulations are best suited to provide insight into
the low Pr regime. Cope et al. (2020) and Garaud (2020) recently presented a series
of DNS of stratified turbulence driven by horizontal shear at low Pr, focusing on flows
where the outer-scale Péclet number Pe is low and high, respectively. They found, as
in the Pr = O(1) simulations of Brethouwer et al. (2007), that the turbulence becomes
highly anisotropic as stratification increases (Fr decreases), and identified three distinct
anisotropic regimes: (i) a fully turbulent regime, (ii) a regime where the turbulence is
spatially and temporally intermittent (as viscosity begins to affect the flow) and (iii) a
fully viscous regime (where viscosity completely controls the flow dynamics). In the fully
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turbulent and intermittent regimes, the horizontal motions contain well-separated large
and small scales.

When Pe � 1, diffusion is important at all scales, regardless of the stratification. Cope
et al. (2020) found empirically from their DNS that the vertical size and characteristic
velocity of eddies in the fully turbulent regime have the following apparent dependence on
non-dimensional parameters:

H∗ ∝
(

Fr2

Pe

)1/3

L∗, W∗ ∝
(

Fr2

Pe

)1/6

U∗, (1.12a,b)

for which a rigorous self-consistent theory has yet to be developed. In particular, (1.12a,b)
notably differs from the predictions of Skoutnev (2023). This discrepancy between the
DNS results of Cope et al. (2020) and Skoutnev’s theory needs to be explained and is one
of the principal motivations for this paper. Interestingly, the prediction for the turbulent
diffusivity D∗ ∝ H∗W∗ yields the same expression (1.11b) as in Zahn (1992), Lignières
(2020) and Skoutnev (2023), despite H∗ and W∗ satisfying different scaling laws.

It is important to note, however, that Zahn (1992) did not distinguish between viscous
and non-viscous regimes or diffusive and non-diffusive regimes, assuming instead that
the turbulence can always develop on scales where diffusion is important but viscous
effects are negligible. Yet, the results of Cope et al. (2020) and Garaud (2020) demonstrate
that viscosity always eventually begins to affect the turbulence as the stratification
increases. By analogy with Brethouwer et al. (2007) and Chini et al. (2022), one may
expect the buoyancy Reynolds number Reb to be the relevant bifurcation parameter
describing the impact of viscosity, a result that will be formally established in this paper.
Garaud (2020) also demonstrated numerically the existence of a regime of stratified
turbulence at Pe � 1 and Pr � 1 where diffusion is negligible. This is not surprising
in hindsight, but was not anticipated by Zahn (1992). She tentatively proposed that her
data are consistent with H∗ ∝ Fr2/3L∗, and W∗ ∝ Fr2/3U∗ as long as viscosity remains
negligible, which is perhaps surprising given that one might naively have expected to
recover the geophysical regime scalings in that case. She acknowledged, however, that
her simulations may not have been performed at a sufficiently high Reynolds number to
be in a meaningful asymptotic regime yet. Recently, Garaud et al. (2024a) revisited this
dataset and demonstrated that the inferred W∗ ∝ Fr2/3U∗ scaling is an artefact of the
coexistence of turbulent patches where W∗ ∝ Fr1/2U∗, and more quiescent regions where
W∗ ∝ FrU∗.

The results presented above illustrate the complexity of stratified turbulence at low Pr,
and motivate the need for additional work to determine how many regimes exist, how
salient flow properties scale with input parameters in each regime and, finally, where
the regime boundaries lie in parameter space. In this paper, we therefore approach the
problem systematically by adapting the multiscale asymptotic methodology developed by
Chini et al. (2022) for the Pr = O(1) regime to the low Pr regime. We begin in § 2 by
laying out the model equations and boundary conditions and performing the anisotropic
scaling analysis in Brethouwer et al. (2007) on the Pr � 1 case, explicitly comparing
it with the Pr = O(1) case. This analysis reveals the crucial role of the buoyancy Péclet
number (thus named by analogy with Reb), viz. Peb = PrReb. We then perform a slow–fast
decomposition of the governing equations in § 3. At high Peb, we recover the results
of Chini et al. (2022) and highlight the reason why this multiscale approach leads to a
different vertical velocity scaling from the single-scale one derived by Brethouwer et al.
(2007). We then present new results at low Peb. Our findings are discussed in § 4, where
we use this analysis to partition the parameter space into various regimes of stratified
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Stratified turbulence regimes at low Pr

turbulence at low Pr and explicitly provide scaling relationships for the vertical length
scale and velocity in each case. Implications and potential applications of our results are
presented in § 5.

2. Governing equations and anisotropic scalings

Consider a three-dimensional, non-rotating, incompressible flow expressed in a Cartesian
coordinate system where the vertical coordinate z∗ (with unit vector êz) is anti-aligned with
gravity (g∗ = −g∗êz). The fluid is stably stratified, with mean density ρ∗

0 and constant
background buoyancy frequency N∗. Buoyancy perturbations away from this mean state
are incorporated in accordance with the Boussinesq approximation (Spiegel & Veronis
1960). A vertically invariant divergence-free horizontal body force F ∗

h, which only varies
slowly with time and space, is applied to drive a mean horizontally sheared flow in a
domain of size (L∗

x , L∗
y , L∗

z ). The dimensional governing equations are

∂u∗

∂t∗
+ u∗ · ∇∗u∗ = − 1

ρ∗
0
∇∗p∗ + b∗êz + ν∗∇∗2u∗ + F ∗

h
ρ∗

0
, (2.1a)

∇∗ · u∗ = 0, (2.1b)

∂b∗

∂t∗
+ u∗ · ∇∗b∗ + N∗2w∗ = κ∗∇∗2b∗, (2.1c)

where t∗ is time, ∇∗ = (∂/∂x∗, ∂/∂y∗, ∂/∂z∗) where x∗ and y∗ are horizontal spatial
coordinates, u∗ = (u∗, v∗, w∗) denotes the velocity field, p∗ the pressure and b∗ the
buoyancy perturbation with respect to the background stratification. In accord with the
Boussinesq approximation, the fluid has a constant kinematic viscosity ν∗ and constant
diffusivity κ∗.

2.1. Anisotropic single-scale equations for Pr = O(1)

In the limit of strong stratification, vertical displacements are energetically costly, and
hence, as discussed in § 1, fluid motions become strongly anisotropic (with u∗, v∗ �
w∗). Therefore, it seems natural to non-dimensionalise the governing equations (2.1)
anisotropically. Billant & Chomaz (2001) and Brethouwer et al. (2007) have argued that
the (dimensional) horizontal and vertical length scales of turbulent eddies ought to be L∗
and H∗, respectively, with an aspect ratio

α ≡ H∗

L∗ � 1, (2.2)

where the dependence of α on the stratification (and other governing parameters) is
determined from the following asymptotic analysis. We then introduce a new vertical
coordinate ζ ∗ such that

z∗ = αζ ∗. (2.3)

Consequently, if the horizontal velocity scale is U∗, then the vertical velocity scale must
be αU∗ to respect the divergence free condition without overly restricting the allowable
types of flows. Time should be scaled by the turnover time of the horizontal eddies L∗/U∗
and pressure by ρ∗

0 U∗2. To ensure that the nonlinear terms balance the forcing, U∗ =
(F∗

0L∗/ρ∗
0 )1/2, where F∗

0 is the characteristic forcing amplitude. Finally, the buoyancy scale
is chosen to be H∗N∗2 to enable the vertical advection of the background stratification to
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K. Shah, G.P. Chini, C.P. Caulfield and P. Garaud

enter the buoyancy equation at leading order and to balance the horizontal advection of
the buoyancy fluctuations.

Denoting the horizontal components of the velocity as u⊥ = (u, v), and similarly the
horizontal gradient as ∇⊥ = (∂/∂x, ∂/∂y), the dimensionless system is given by

∂u⊥
∂t

+ (u⊥ · ∇⊥) u⊥ + w
∂u⊥
∂ζ

= −∇⊥p + 1
Reα2

(
α2∇2

⊥u⊥ + ∂2u⊥
∂ζ 2

)
+ F h, (2.4a)

∂w
∂t

+ (u⊥ · ∇⊥) w + w
∂w
∂ζ

= − 1
α2

∂p
∂ζ

+ b
Fr2 + 1

Reα2

(
α2∇2

⊥w + ∂2w
∂ζ 2

)
, (2.4b)

∇⊥ · u⊥ + ∂w
∂ζ

= 0, (2.4c)

∂b
∂t

+ (u⊥ · ∇⊥) b + w
∂b
∂ζ

+ w = 1
Peα2

(
α2∇2

⊥b + ∂2b
∂ζ 2

)
, (2.4d)

where all variables are now non-dimensional and

Re = U∗L∗

ν∗ , Fr = U∗

N∗L∗ , Pe = U∗L∗

κ∗ = PrRe, (2.5a–c)

are the usual Reynolds, Froude and Péclet numbers based on the characteristic horizontal
scales of the flow.

When the stratification is strong, Fr � 1, and the buoyancy term in the vertical
component of the momentum equation is unbalanced unless it is compensated by the
vertical pressure gradient. In other words, the flow anisotropy implies that hydrostatic
balance must be satisfied at lowest order, which then requires

α = Fr, (2.6)

implying that the characteristic vertical velocity W∗ = FrU∗ while the characteristic
vertical scale of the flow H∗ = U∗/N∗. As discussed in § 1, this scaling for H∗ is well
established, and has been observed in several laboratory and numerical experiments
(Holford & Linden 1999; Brethouwer et al. 2007; Oglethorpe et al. 2013).

Keeping only the lowest-order terms in an asymptotic expansion of (2.4) in α = Fr � 1
yields

∂u⊥
∂t

+ (u⊥ · ∇⊥)u⊥ + w
∂u⊥
∂ζ

= −∇⊥p + 1
Reb

∂2u⊥
∂ζ 2 + F h, (2.7a)

∂p
∂ζ

= b, ∇⊥ · u⊥ + ∂w
∂ζ

= 0, (2.7b,c)

∂b
∂t

+ (u⊥ · ∇⊥)b + w
∂b
∂ζ

+ w = 1
Peb

∂2b
∂ζ 2 , (2.7d)

where
Reb = α2Re, (2.8)

is the usually defined buoyancy Reynolds number and

Peb = PrReb = α2Pe, (2.9)

is the corresponding buoyancy Péclet number. Note that Pr = O(1), the condition Reb ≥
O(1), which is necessary for viscous effects to be small or negligible, implies that Peb =
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Stratified turbulence regimes at low Pr

PrReb ≥ O(1). As such, the effects of buoyancy diffusion are also small or negligible. The
set of equations (2.7), which will be referred to as the ‘anisotropic single-scale high-Peb’
equations hereafter (‘single-scale high-Peb’ equations for short), recovers the results of
Billant & Chomaz (2001) in the inviscid and non-diffusive limit and of Brethouwer et al.
(2007) when viscous and diffusive effects are incorporated.

2.2. Anisotropic single-scale equations for Pr � 1
When the Prandtl number is asymptotically small, it is possible to have a regime where
Peb � 1 ≤ Reb. In this extreme limit, the diffusion term on the right-hand side of (2.4d)
becomes unbalanced, unless the buoyancy field itself is much smaller than anticipated
by the scaling H∗N∗2 used in the previous section. The strongly diffusive limit has in
fact already been studied by Lignières (1999), who showed that the buoyancy equation
asymptotically reduces to a balance between the vertical advection of the background
stratification and the diffusion of the buoyancy fluctuations. In dimensional terms, we
therefore expect N∗2w∗ � κ∗∇2b∗. With this in mind, we let b = Pebb̂ in (2.4a)–(2.4d),
and anticipate that b̂ = O(1) (this is equivalent to scaling the dimensional buoyancy by
α3N∗2U∗L∗2/κ∗ instead of H∗N∗2). The resulting dimensionless system becomes

∂u⊥
∂t

+ (u⊥ · ∇⊥)u⊥ + w
∂u⊥
∂ζ

= −∇⊥p + 1
Reb

(
α2∇2

⊥u⊥ + ∂2u⊥
∂ζ 2

)
+ F h, (2.10a)

∂w
∂t

+ (u⊥ · ∇⊥)w + w
∂w
∂ζ

= − 1
α2

∂p
∂ζ

+ Peb

Fr2 b̂ + 1
Reb

(
α2∇2

⊥w + ∂2w
∂ζ 2

)
, (2.10b)

∇⊥ · u⊥ + ∂w
∂ζ

= 0, (2.10c)

∂ b̂
∂t

+ (u⊥ · ∇⊥)b̂ + w
∂ b̂
∂ζ

+ 1
Peb

w = 1
Peb

(
α2∇2

⊥b̂ + ∂2b̂
∂ζ 2

)
. (2.10d)

For sufficiently strong stratification (i.e. Fr2 � Peb), the vertical component of the
momentum equation must again be in hydrostatic balance, which requires

α2 = Fr2

Peb
= Fr2

α2Pe
→ α = FrM, where FrM =

(
Fr2

Pe

)1/4

(2.11)

is a modified Froude number (see Lignières 2020; Skoutnev 2023). We therefore find
that the characteristic vertical length scale should be H∗ = (Fr2/Pe)1/4L∗ and the
characteristic vertical velocity scale should be W∗ = (Fr2/Pe)1/4U∗, recovering the
results of Skoutnev (2023) albeit using a different argument.

In the limit FrM � 1 and Peb � 1, keeping only the lowest-order terms in
(2.10a)–(2.10d) yields

∂u⊥
∂t

+ (u⊥ · ∇⊥)u⊥ + w
∂u⊥
∂ζ

= −∇⊥p + 1
Reb

∂2u⊥
∂ζ 2 + F h, (2.12a)

∂p
∂ζ

= b̂, ∇⊥ · u⊥ + ∂w
∂ζ

= 0, w = ∂2b̂
∂ζ 2 . (2.12b–d)

These scaling laws and governing equations are the low Peb analogues of (2.7). In what
follows, we therefore refer to them as the ‘anisotropic single-scale low-Peb’ equations
(‘single-scale low-Peb’ equations for short).
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2.3. Motivation for considering multiscale dynamics
For strongly stratified flows, the reduced, anisotropic single-scale equations given by (2.7)
for Peb ≥ O(1) and (2.12) for Peb � 1 assume, by construction, that horizontal scales
are large, while the vertical scale is small (e.g. in the Peb ≥ O(1) case, for strongly
stratified flows, α ∼ Fr necessarily implies α � 1). As such, these equations describe the
dynamics of weakly coupled ‘pancake’ vortices or horizontal meanders of the mean flow.
They cannot, however, capture the small-scale turbulence that is expected to develop from
shear instabilities between these layerwise horizontal motions (Chini et al. 2022). Yet,
these instabilities are ubiquitous when Reb is sufficiently large, and have been observed
in laboratory experiments (Augier et al. 2014) and inferred from oceanographic in situ
measurements (Falder et al. 2016) as well as in DNS at Pr � O(1) (Riley & DeBruynkops
2003; Waite 2011; Augier, Chomaz & Billant 2012).

Indeed, recent DNS of stratified turbulence has confirmed the presence and importance
of flows on small horizontal scales. Small-scale features are clearly visible in figure 16
of Maffioli & Davidson (2016), figure 6 of Cope et al. (2020), figure 1 of Garaud (2020)
and figure 3 of Garaud et al. (2024a). Furthermore, Cope et al. (2020) empirically find
that H∗ ∝ (Fr2/Pe)1/3L∗ instead of H∗ ∝ (Fr2/Pe)1/4L∗ and that W∗ ∝ (Fr2/Pe)1/6U∗
instead of W∗ ∝ (Fr2/Pe)1/4U∗. These results thus call for further work to clarify the
conditions (if any) where the single-scale low-Peb equations (2.12) are relevant for
modelling stratified turbulence, at least at large buoyancy Reynolds number.

As discussed in § 1, Chini et al. (2022) have recently argued in the context of geophysical
stratified turbulence that one must take into account the fast, small horizontal scales and
study their (marginally stable) interaction with the slow, larger-scale anisotropic flow to
obtain a more complete and more accurate model of stratified turbulence. Accordingly,
we now hypothesise that a multiscale dynamics is the missing physics required to obtain
a self-consistent model of low Pr stratified turbulence and propose to extend their work
to the low Pr limit. The next section first outlines the work of Chini et al. (2022) for
pedagogical clarity, then extends the analysis to the low Pr regime.

3. Multiscale models for stratified turbulence

We consider the same model set-up as introduced in § 2. Here, however, we make
no assumption about the amplitude of the vertical motions when non-dimensionalising
the governing equations, and instead allow the appropriate scaling to emerge naturally
from the analysis. Accordingly, we non-dimensionalise the vertical velocity by U∗ and
correspondingly choose the buoyancy scale to be L∗N∗2. Then, the dimensionless system
is

∂u⊥
∂t

+ (u⊥ · ∇⊥)u⊥ + w
α

∂u⊥
∂ζ

= −∇⊥p + 1
Reb

(
α2∇2

⊥u⊥ + ∂2u⊥
∂ζ 2

)
+ F h, (3.1a)

∂w
∂t

+ (u⊥ · ∇⊥)w + w
α

∂w
∂ζ

= − 1
α

∂p
∂ζ

+ b
Fr2 + 1

Reb

(
α2∇2

⊥w + ∂2w
∂ζ 2

)
, (3.1b)

∇⊥ · u⊥ + 1
α

∂w
∂ζ

= 0, (3.1c)

∂b
∂t

+ (u⊥ · ∇⊥)b + w
α

∂b
∂ζ

+ w = 1
Peb

(
α2∇2

⊥b + ∂2b
∂ζ 2

)
. (3.1d)
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Stratified turbulence regimes at low Pr

These equations are the starting point for our analysis. We assume that Reb ≥ O(1), and
that Fr is sufficiently small to ensure that α � 1, but make no other a priori assumption
on the size of Peb at this stage.

3.1. Slow–fast decomposition
We now perform a multiscale expansion of the system in the limit of small aspect ratio α.
Following Chini et al. (2022), we assume the existence of two distinct sets of horizontal
length scales: the original large scales that are O(1) in the chosen non-dimensionalisation,
as well as much smaller horizontal scales that are O(α). With that choice, small-scale fluid
motions are isotropic by construction. We further assume that the flow has two distinct
time scales: a slow time scale associated with the turnover of the large horizontal eddies,
as before, and a fast time scale inversely related to the emergent vertical shearing rate of
the large-scale mean flow, U∗/H∗, that develops from the vertically decoupled horizontal
flows. In practice, we thus define the slow and fast horizontal coordinates as xs = x⊥
and xf = xs/α, respectively (henceforth, the subscript f denotes fast and s denotes slow).
Similarly, we split time into slow and fast variables, such that tf = ts/α where ts = t.
Consequently, the partial derivatives with respect to time and to the horizontal variables
become

∂

∂t
= 1

α

∂

∂tf
+ ∂

∂ts
, ∇⊥ = 1

α
∇f + ∇s. (3.2a,b)

All dependent variables (collectively referred to as q) are now assumed to be functions of
both fast and slow length and time scales: q = q(xf , xs, ζ, tf , ts;α).

Assuming the fast and slow scales are sufficiently separated, Chini et al. (2022) then
define a fast-averaging operator (·), such that

q̄(xs, ζ, ts;α) = 1
lxlyT

∫
T

∫
D

q(xf , xs, ζ, tf , ts;α) dxf dtf , (3.3)

where D is a horizontal domain of size (lx × ly) centred on xs where α � lx, ly � 1, and
T is a temporal domain of size α � T � 1 centred on ts. With this definition, q̄ depends
on slow variables only. Each quantity q can then be split into a slowly varying field q̄
and a rapidly fluctuating component q′ = q − q̄, which implies that the fast average of the
fluctuation field must vanish, i.e. q′ = 0. Note that q′ itself can still depend on the slow
length and time scales.

We first substitute the expressions (3.2a,b) for ∇⊥ and ∂/∂t into (3.1), and split each
field q into q̄ + q′. We then take the fast average of each of the four governing equations
to obtain the evolution equations for the mean flow, then subtract the mean from the total
to obtain the evolution equations for the fluctuations.

Starting with the continuity equation, we have

1
α

∇f · u′⊥ + ∇s · ū⊥ + ∇s · u′⊥ + 1
α

∂w̄
∂ζ

+ 1
α

∂w′

∂ζ
= 0, (3.4)

whose fast average reveals that

∇s · ū⊥ + 1
α

∂w̄
∂ζ

= 0 (3.5a)

for the mean flow and
1
α

∇f · u′⊥ + ∇s · u′⊥ + 1
α

∂w′

∂ζ
= 0 (3.5b)
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for the perturbations.
A similar procedure for the horizontal momentum equation yields

∂ū⊥
∂ts

+ ū⊥ · ∇sū⊥+ w̄
α

∂ū⊥
∂ζ

+ 1
α

(
u′

⊥ · ∇f u′
⊥ + w′ ∂u′

⊥
∂ζ

)
+ u′

⊥ · ∇su′
⊥

= −∇sp̄ + 1
Reb

(
∂2ū⊥
∂ζ 2 + α2∇2

s ū⊥
)

+ F̄ h, (3.6a)

for the mean flow (where the magnitude of the horizontal force is O(1) by construction),
and

1
α

∂u′
⊥

∂tf
+ ∂u′

⊥
∂ts

+ 1
α

ū⊥ · ∇f u′
⊥ + ū⊥ · ∇su′

⊥ + u′
⊥ · ∇sū⊥

+ 1
α

u′
⊥ · ∇f u′

⊥ + u′
⊥ · ∇su′

⊥ + 1
α

(
w̄

∂u′
⊥

∂ζ
+ w′ ∂ū⊥

∂ζ
+ w′ ∂u′

⊥
∂ζ

)

= − 1
α

∇f p′ − ∇sp′ + 1
Reb

(
∇2

f u′
⊥ + ∂2u′

⊥
∂ζ 2

)

+ α2

Reb
∇2

s u′
⊥ + 2α

Reb
∇s · ∇f u′

⊥ + 1
α

(
u′

⊥ · ∇f u′
⊥ + w′ ∂u′

⊥
∂ζ

)
+ u′

⊥ · ∇su′
⊥,

(3.6b)

for the fluctuations. Note that F̄ h = F h because the forcing is slowly varying in time and
space by assumption.

The mean buoyancy equation is

∂ b̄
∂ts

+ ū⊥ · ∇sb̄ + w̄
α

∂ b̄
∂ζ

+ 1
α

(
u′

⊥ · ∇f b′ + w′ ∂b′

∂ζ

)
+ u′

⊥ · ∇sb′ + w̄

= 1
Peb

(
∂2b̄
∂ζ 2 + α2∇2

s b̄
)

, (3.7a)

while the corresponding fluctuation equation becomes

1
α

∂b′

∂tf
+ ∂b′

∂ts
+ 1

α
ū⊥ · ∇f b′ + u′

⊥ · ∇sb̄ + 1
α

u′
⊥ · ∇f b′ + u′

⊥ · ∇sb′

+ 1
α

(
w′ ∂ b̄

∂ζ
+ w̄

∂b′

∂ζ
+ w′ ∂b′

∂ζ

)
+ w′ = 1

Peb

(
∇2

f b′ + ∂2b′

∂ζ 2

)

+ α2

Peb
∇2

s b′ + 2α

Peb
∇s · ∇f b′ + 1

α

(
u′

⊥ · ∇f b′ + w′ ∂b′

∂ζ

)
+ u′

⊥ · ∇sb′. (3.7b)

Finally, the mean vertical momentum equation is

∂w̄
∂ts

+ ū⊥ · ∇sw̄ + w̄
α

∂w̄
∂ζ

+ 1
α

(
u′

⊥ · ∇f w′ + w′ ∂w′

∂ζ

)
+ u′

⊥ · ∇sw′

= − 1
α

∂ p̄
∂ζ

+ b̄
Fr2 + 1

Reb

(
∂2w̄
∂ζ 2 + α2∇2

s w̄
)

, (3.8a)
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Stratified turbulence regimes at low Pr

while the fluctuations satisfy

1
α

∂w′

∂tf
+ ∂w′

∂ts
+ 1

α
ū⊥ · ∇f w′ + u′

⊥ · ∇sw̄ + 1
α

u′
⊥ · ∇f w′ + u′

⊥ · ∇sw′

+ 1
α

(
w′ ∂w̄

∂ζ
+ w̄

∂w′

∂ζ
+ w′ ∂w′

∂ζ

)
= − 1

α

∂p′

∂ζ
+ b′

Fr2 + 1
Reb

(
∇2

f w′ + ∂2w′

∂ζ 2

)

+ α2

Reb
∇2

s w′ + 2α

Reb
∇s · ∇f w′ + 1

α

(
u′

⊥ · ∇f w′ + w′ ∂w′

∂ζ

)
+ u′

⊥ · ∇sw′. (3.8b)

We see, as noted by Chini et al. (2022), that the effective Reynolds and Péclet numbers
of the fluctuation equations are Reb/α and Peb/α, respectively, which implies that the
fluctuations are formally much less viscous and less diffusive than the mean. This perhaps
counterintuitive conclusion is a direct consequence of the flow anisotropy, which enables
the fluctuations to evolve on a faster time scale than the mean.

3.2. Multiscale model at Peb ≥ O(1)

We begin by summarising the steps taken by Chini et al. (2022) to derive a reduced
multiscale model for stratified turbulence at Reb, Peb ≥ O(1), as much of the analysis
proves to be similar at low Prandtl number. As in that work, we posit the following
asymptotic expansions:

[b, p, u⊥, w] ∼ [b0, p0, u⊥0, w0] + α1/2[b1, p1, u⊥1, w1] + α[b2, p2, u⊥2, w2] + · · · .
(3.9)

The expansions start at O(1) to reflect the expectation that the dominant contributions
to the pressure and the horizontal velocity arise on large horizontal scales. Although the
expansions for b and w also start at O(1), we show below that w0 and b0 both vanish when
α → 0. Finally, the expansions proceed as asymptotic series in α1/2 following the results
of Chini et al. (2022). They demonstrated that, because the small-scale fluctuations are
isotropic, u′ and w′ are necessarily of the same order. Inspection of the mean horizontal
momentum equation then immediately reveals that both fields need to be O(α1/2) to ensure
that the Reynolds stresses feed back on u⊥0 at leading order (see below for further details.)

With these choices, we substitute (3.9) into the equations with multiscale derivatives
presented above, analysing in turn the continuity equation (3.5), the horizontal component
of the momentum equation (3.6), the buoyancy equation (3.7) and finally, the vertical
component of the momentum equation (3.8). At each step, we match terms at leading
order to infer their sizes and respective evolution equations, and thus derive a reduced
model for the flow.

Considering first the mean continuity equation (3.5a), we see that ∂ζ w̄0 = ∂ζ w̄1 =
0, implying w̄0 = w̄1 = 0 to suppress unphysical ‘elevator modes’ from our model.
Consequently,

∇s · ū⊥0 + ∂w̄2

∂ζ
= 0. (3.10a)

In the fluctuation continuity equation (3.5b), the second term is clearly much smaller than
the first and can therefore be neglected from the leading-order set of dominant terms.
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Substituting the asymptotic series (3.9) we then see that

∇f · u′⊥i + ∂w′
i

∂ζ
= 0, (3.10b)

for i = 0, 1 (for larger values of i, the slow derivative of u′⊥i−2 should be taken into
account).

We now turn to the mean horizontal component of the momentum equation (3.6a).
The Reynolds stresses must be O(1) to feed back on the mean flow, so u′ and w′ must
both be O(α1/2). Hence, u′

⊥0 = 0 and w′
0 = 0, yielding u⊥0 = ū⊥0 and that w0 = 0,

since w̄0 = 0, too. (See Chini et al. (2022), for a more detailed discussion of why
u′

⊥0 = 0.) In the horizontal momentum equation for the fluctuations, the fast dynamics
takes place at O(α−1/2) since u′ = O(α1/2). Ensuring that pressure is a leading-order
effect implies that p′

0 = 0, so p0 = p̄0, as expected. Many of the remaining terms are
formally higher order, including all fluctuation–fluctuation interactions, which are O(1)

or smaller. Of the nonlinear terms, the only ones that contribute at leading order are
quasilinear: α−1ū⊥ · ∇f u′

⊥ and α−1w′∂zū⊥. Therefore, after substituting (3.9) into (3.6)
and retaining only the leading terms, we obtain

∂ū⊥0

∂ts
+ ū⊥0 · ∇sū⊥0 + w̄2

∂ū⊥0

∂ζ
= −∇sp̄0 − ∂

∂ζ
(w′

1u′
⊥1) + 1

Reb

∂2ū⊥0

∂ζ 2 + F̄ h, (3.11a)

∂u′
⊥1

∂tf
+ ū⊥0 · ∇f u′

⊥1 + w′
1
∂ū⊥0

∂ζ
= −∇f p′

1 + α

Reb

(
∇2

f u′
⊥1 + ∂2u′

⊥1
∂ζ 2

)
, (3.11b)

where the formally higher-order Laplacian term has been retained to regularise the
fluctuation equation.

Next, we examine the buoyancy equation, which reveals the sizes of b̄ and b′. In the mean
equation (3.7a), w̄ = O(α), and the buoyancy flux term is formally also of that order (see
Chini et al. (2022), and also below). Thus, b̄ = O(α) as well, as long as Peb ≥ O(1), which
is implicit in the regime considered in this section, implying b̄0 = b̄1 = 0. The size of the
buoyancy flux can be confirmed by inspection of the buoyancy fluctuation equation (3.7b).
To be in a regime in which the stratification impacts the turbulent motions, the O(b′/α)

fast dynamics must be of the same order as the advection of the background stratification,
which is O(w′) = O(α1/2). This ordering implies that b′ = O(α3/2), so b′

0 = b′
1 = b′

2 = 0.
Consequently, b0 = b1 = 0, and b2 = b̄2. Fluctuation-fluctuation interactions in this
equation are again formally higher order, and the only remaining nonlinearities are
quasilinear. At leading order, using (3.9) in (3.7) shows that the mean and fluctuation
buoyancy equations are

∂ b̄2

∂ts
+ ū⊥0 · ∇sb̄2 + w̄2

∂ b̄2

∂ζ
+ w̄2 = − ∂

∂ζ
(w′

1b′
3) + 1

Peb

∂2b̄2

∂ζ 2 , (3.12a)

∂b′
3

∂tf
+ ū⊥0 · ∇f b′

3 + w′
1
∂ b̄2

∂ζ
+ w′

1 = α

Peb

(
∇2

f b′
3 + ∂2b′

3
∂ζ 2

)
, (3.12b)

where, as before, the diffusion term in the fluctuation equation has been retained for
regularisation.

Finally, we identify the leading-order terms in the vertical component of the momentum
equation. In the mean equation (3.8a), a hydrostatic leading-order balance requires α = Fr,
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Stratified turbulence regimes at low Pr

as in the anisotropic single-scale high-Peb model described in § 2.1. This specification,
when applied to the fluctuation equation (3.8b), is quite satisfactory as it implies that
the fluctuating buoyancy force b′/Fr2 arises at leading order. One implication of the
α = Fr scaling is that the largest horizontal scale to exhibit an isotropic dynamics is
predicted to be O(U∗/N∗), which is much larger than the Ozmidov scale (since �O =
O(Fr1/2U∗/N∗)). Physically, this prediction is consistent with the preferential excitation
of stratified shear instabilities having horizontal length scales comparable to the layer
thickness, as demonstrated theoretically in Chini et al. (2022) and numerically in Augier
et al. (2015). Nevertheless, the Ozmidov scale retains its significance as the largest
horizontal scale to be (largely) unaffected by buoyancy. It can also easily be shown that,
once again, fluctuation–fluctuation interactions are negligible at leading order, so the fast
dynamics is quasilinear. Substituting (3.9) into (3.8) and using all of the information
available, we obtain the leading-order mean and fluctuating components of the vertical
momentum equation:

∂ p̄0

∂ζ
= b̄2, (3.13a)

∂w′
1

∂tf
+ ū⊥0 · ∇f w′

1 = −∂p′
1

∂ζ
+ b′

3 + α

Reb

(
∇2

f w′
1 + ∂2w′

1
∂ζ 2

)
, (3.13b)

where the formally higher-order viscous term has been retained to regularise the
fluctuation equation.

The system of equations formed by (3.10) (with i = 1), (3.11), (3.12) and (3.13), is
equivalent to (2.28)–(2.35) in Chini et al. (2022), the only differences arising from
a different choice of non-dimensionalisation. Furthermore, we see that the mean flow
equations (3.11a), (3.12a) and (3.13a) recover the single-scale high-Peb equations in (2.7)
in the absence of fluctuations. The multiscale equations are fully closed and therefore
self-consistent. Crucially, the resulting system is quasilinear, and can be solved efficiently
by appealing to (plausible and empirically supported) marginal stability arguments for the
fluctuations as discussed by Michel & Chini (2019) and Chini et al. (2022).

These equations are valid whenever α � 1 (equivalently, Fr � 1 since α = Fr), and
the buoyancy Reynolds and Péclet numbers are both O(1) or larger, thus allowing for the
growth and saturation of the fluctuations via interactions with the mean. When Pr = O(1),
Reb ≥ O(1) necessarily implies Peb ≥ O(1), so the two conditions are equivalent. Since
Reb = α2Re, this condition is equivalent to Re, Pe ≥ O(Fr−2).

For small Pr, these reduced equations remain valid as long as Reb, Peb ≥ O(1).
However, for sufficiently small Pr it is possible to have an intermediate regime where
Reb ≥ O(1) while Peb = PrReb � 1, and that regime is not captured by the reduced
equations derived here and in Chini et al. (2022). Yet, this scenario is likely to be relevant
in stellar interiors, where Pr is asymptotically small (Garaud et al. 2015b). We now
perform a similar analysis to develop a multiscale model that is valid for low-Peb flows.

3.3. Multiscale model for Peb � 1
In the limit of small Peb, the arguments presented above continue to apply for the
continuity equation and the horizontal component of the momentum equation, neither
of which involve buoyancy terms. However, the procedure subsequently fails because
diffusive effects dominate in the buoyancy equation and are unbalanced unless b is much
smaller than expected, mirroring the argument made in § 2.2. To capture this correctly
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within the context of our proposed multiscale model, we must introduce a two-parameter
expansion for small α and small Peb in lieu of (3.9).

As in Chini et al. (2022), we assume that the asymptotic expansion in α proceeds in
powers of α1/2 and show the self-consistency of this choice below. Inspired by Lignières
(1999), we now also assume that each field can be expanded as a series in powers of Peb
as well. We therefore have

q = q00 + α1/2q01 + αq02 + · · · + Peb(q10 + α1/2q11 + αq12 + · · · ) + O(Pe2
b), (3.14)

for q ∈ {u⊥, p, w, b}, and assume that ū⊥00 = O(1) and p̄00 = O(1) to balance the forcing.
We then proceed exactly as before, substituting (3.14) in turn into the multiscale continuity
equation (3.5), the horizontal component of the momentum equation (3.6), the buoyancy
equation (3.7) and the vertical component of the momentum equation (3.8), to extract the
relevant reduced equations at leading order.

Starting with the mean continuity equation (3.5a), we find again that w̄ = O(α) and
hence w̄00 = w̄01 = 0. Equation (3.5b) further implies that O(u′

⊥) = O(w′), so

∇s · ū⊥00 + ∂w̄02

∂ζ
= 0, (3.15a)

∇f · u′
⊥01 + ∂w′

01
∂ζ

= 0. (3.15b)

From the mean horizontal component of the momentum equation (3.6a), u′⊥ and w′ must
both be O(α1/2) as before, hence u′

⊥00 = 0 and w′
00 = 0, so u⊥00 = ū⊥00 and w00 = 0.

The inferred sizes of the velocity fluctuations again shows that fluctuation–fluctuation
interactions are formally higher order, and the only remaining nonlinearities in the
corresponding fluctuation equation (3.6b) are quasilinear. Finally, for the fluctuating
horizontal pressure gradient to influence the fluctuations of horizontal velocity at leading
order, p′ = O(u′

⊥) = O(α1/2), hence p′
00 = 0. Substituting (3.14) into (3.6a) and (3.6b),

using these deductions and retaining only the lowest-order terms, shows that

∂ū⊥00

∂ts
+ (ū⊥00 · ∇s)ū⊥00 + w̄02

∂ū⊥00

∂ζ

= −∇sp̄00 − ∂

∂ζ
(w′

01u′
⊥01) + 1

Reb

∂2ū⊥00

∂ζ 2 + F̄ h, (3.16a)

∂u′
⊥01

∂tf
+ (ū⊥00 · ∇f )u′

⊥01 + w′
01

∂ū⊥00

∂ζ
= −∇f p′

01 + α

Reb

(
∇2

f u′
⊥01 + ∂2u′

⊥01
∂ζ 2

)
,

(3.16b)

where the viscous term in the fluctuation equation has been retained for regularisation.
Thus far, each step in the analysis has been identical to that taken in the previous section.

Rapid diffusion, however, affects the size of the mean and fluctuating buoyancy fields b̄
and b′, and does so in different ways because the effective Péclet number of the fluctuations
is larger than that of the mean flow. More specifically, having assumed in this section that
Peb � 1, we see that two possibilities arise when α � 1: either α � Peb � 1, in which
case diffusion is dominant in the mean buoyancy equation but negligible in the fluctuation
buoyancy equation, or Peb � α in which case diffusion is dominant at all scales. In what
follows, we investigate both cases in turn.

Before doing so, however, we note that the mean buoyancy equation (3.7a) in both cases
is unbalanced unless b̄ = O(αPeb) to match the w̄ term (again mirroring the arguments
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given in § 2.2). This implies b̄0i = 0, ∀i, and b̄10 = b̄11 = 0. At lowest order in Peb, the
only surviving terms in (3.7a) are therefore

1
α

(
u′

⊥ · ∇f b′ + w′ ∂b′

∂ζ

)
+ w̄ = 1

Peb

∂2b̄
∂ζ 2 , (3.17)

where the size of b′ is yet to be determined and differs depending on the relative sizes of
Peb and α. For this reason, we have retained the turbulent buoyancy flux for now.

3.3.1. Case 1: α � Peb � 1 (the intermediate regime)
We first consider a scenario in which α � Peb � 1 and henceforth refer to this part
of parameter space as the ‘intermediate regime’. While diffusion dominates the mean
buoyancy equation, the fact that α/Peb � 1 implies that it only formally enters the
buoyancy fluctuation equation (3.7b) at higher order. Because of this, the evolution of
b′ is very similar to that obtained in Chini et al. (2022). As in § 3.2, we ensure that the
background stratification influences the fast dynamics of b′ by requiring b′/α = O(w′) =
O(α1/2), so b′ = O(α3/2). This implies that b′

00, b′
01, b′

02 = 0, but b′
03 /= 0.

Substituting the ansatz (3.14) into the mean and fluctuation buoyancy equations and
using the information collected so far we therefore have

∂

∂ζ
(w′

01b′
03) + w̄02 = ∂2b̄12

∂ζ 2 , (3.18a)

∂b′
03

∂tf
+ ū⊥00 · ∇f b′

03 + w′
01 = α

Peb

(
∇2

f b′
03 + ∂2b′

03
∂ζ 2

)
, (3.18b)

where the diffusion term for the fluctuations can be retained to regularise the equation, but
is formally higher order.

We note that the reduced buoyancy fluctuation equation in this regime differs slightly
from the one derived by Chini et al. (2022) given in (3.12b), because it does not contain
a term of the form w′

01∂ b̄/∂ζ , which is formally higher order when Peb � 1. Also, we
see that the mean buoyancy equation in that regime differs from the asymptotic low Péclet
number (LPN) equation of Lignières (1999), and from the one derived by Skoutnev (2023),
which do not contain a turbulent flux term. This discrepancy arises because their derivation
assumes that all dynamics is diffusive, whereas in this intermediate regime the fluctuation
dynamics is not and can therefore influence the mean buoyancy field at leading order.

Finally, we examine the vertical component of the momentum equation. Based on
past experience in the Peb ≥ O(1) case (see § 3.2), one would naively expect to recover
hydrostatic equilibrium at leading order in the mean vertical momentum equation (3.8a).
Because b̄ = O(αPeb), this would imply α = (Fr2/Peb)

1/2 as in the single-scale low-Peb
equations of § 2.2. However, that choice leads to an irreconcilable inconsistency in the
fluctuation equation (3.8b): the fluctuation pressure gradient term is O(α−1/2), as is
the fast inertial dynamics of w′, but the fluctuation buoyancy term is O(α3/2/Fr2) =
O(α−1/2/Peb), which is formally much larger than any other term and is therefore
unbalanced. In other words, we cannot reconcile hydrostatic equilibrium at leading order
for the mean flow with a balanced equation for the fluctuation w′.

The solution to this conundrum is to insist instead that the equation for w′ be balanced, in
which case O(α−1/2) = O(α3/2Fr−2), thereby recovering the standard scaling relationship
α = Fr (Billant & Chomaz 2001; Brethouwer et al. 2007; Chini et al. 2022). With this
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choice, the leading-order vertical pressure gradient in the mean equation is asymptotically
small (e.g. as for the wall-normal pressure gradient in laminar boundary-layer theory of
Batchelor 1967). This perhaps unexpected result is discussed in § 4 and below. Substituting
(3.14) into (3.8), we obtain the reduced mean and fluctuating vertical component of the
momentum equation at leading order:

∂ p̄00

∂ζ
= 0, (3.19a)

∂w′
01

∂tf
+ ū⊥00 · ∇f w′

01 = −∂p′
01

∂ζ
+ b′

03 + α

Reb

(
∇2

f w′
01 + ∂2w′

01
∂ζ 2

)
, (3.19b)

where the higher-order viscous term is added to regularise the fluctuation equation.
The set of equations formed by (3.15), (3.16), (3.18) and (3.19) are the intermediate

regime analogues of the reduced model given in Chini et al. (2022). They are valid
as long as Reb ≥ O(1), and α � Peb � 1. Given that α = Fr in this regime, this
inequality constraint is equivalent to requiring that Fr � 1 (so α � 1), Re ≥ Fr−2 and
Fr−1 � Pe � Fr−2. It is evident that, in the absence of fluctuations, these equations
nearly recover the single-scale equations derived in § 2.2, except that ∂ p̄00/∂ζ = 0.
Considering higher-order terms in the vertical momentum equation, we successively
find that ∂ζ p̄01 = 0 as well; it is only at the next order that buoyancy influences the
mean flow, i.e. ∂ζ p̄10 = b̄12. By replacing p̄00 in the vertical mean momentum equation
with a composite pressure, p̄c = p̄00 + α1/2p̄01 + Pebp̄10, we recover (in the absence
of fluctuations) the single-scale low-Peb equations and those in Skoutnev (2023). For
consistency, the corresponding composite mean horizontal momentum equation should
be derived accurate to O(α1/2, Peb) in terms of a composite mean horizontal velocity
ū⊥c. This exercise, however, does not yield any structurally new terms that do not
involve fluctuations (but only higher-order corrections to existing mean terms in (3.16a)).
Consequently, in the singular limit of vanishing fluctuations, the multiscale model with
a composite mean pressure reduces to the single-scale low-Peb equations in § 2.2. The
physical implications of (3.15), (3.16), (3.18) and (3.19), and their potential caveats, are
discussed in § 4.

3.3.2. Case 2: Peb � α (the fully diffusive regime)
We now consider the regime where Peb � α, in which both mean and fluctuating
buoyancy fields are dominated by diffusion. Accordingly, we refer to this part of parameter
space as the fully diffusive regime. Inspection of (3.7b) shows that the diffusion term in
the fluctuation equation is unbalanced unless b′ = O(Pebw′). We previously found that the
vertical velocity fluctuations are O(α1/2), which implies here that b′ = O(α1/2Peb). We
conclude that b′

0i = 0 ∀i, and that b′
10 = 0 as well. Combined with the results obtained

from analysis of the mean buoyancy equation in the diffusive limit, we conclude that
b10 = 0 while b11 = b′

11.
Using this information and substituting (3.14) into (3.7), we obtain at lowest order

w̄02 = ∂2b̄12

∂ζ 2 , (3.20a)

w′
01 = ∇2

f b′
11 + ∂2b′

11
∂ζ 2 , (3.20b)
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which is as expected from the LPN dynamics central to this regime (Lignières 1999).
The buoyancy equation is linear and does not contain any time dependence, it instead
instantaneously couples the vertical velocity and buoyancy fields. The validity of
Lignières’ LPN equations was verified numerically by Cope et al. (2020), for instance.

As usual, the last step of the derivation involves analysis of the vertical component of
the momentum equation. As in § 3.3.1, requiring hydrostatic equilibrium for the mean flow
would imply α2 = Fr2/Peb (Lignières 2020; Skoutnev 2023), but leads to an inconsistency
in the fluctuation equation, where the buoyancy term would be unbalanced. To see
this, note that b′/Fr2 = O(α1/2Peb/Fr2) = O(α−3/2) with that choice for α, while the
fluctuating pressure term and all other dominant terms in the equation are only O(α−1/2).
As in the previous section, the resolution to this inconsistency is to insist that the buoyancy
term in the fluctuation equation for w′ should be balanced instead. Here, this implies

O
(

p′

α

)
= O

(
b′

Fr2

)
→ α = Fr2

Peb
, (3.21)

using the fact that p′ = O(α1/2) and b′ = O(α1/2Peb). Recalling that Peb = α2Pe, we then
recover the crucial scaling relationship

α =
(

Fr2

Pe

)1/3

= Fr4/3
M , (3.22)

which had originally been proposed by Cope et al. (2020) based on their DNS data. Our
multiscale analysis therefore provides a sound theoretical basis for their empirical results.

After substituting (3.14) into (3.8) and using the available information, we obtain
∂ p̄00

∂ζ
= 0, (3.23a)

∂w′
01

∂tf
+ (ū⊥00 · ∇f )w′

01 = −∂p′
01

∂ζ
+ b′

11 + α

Reb

(
∇2

f w′
01 + ∂2w′

01
∂ζ 2

)
, (3.23b)

which is very similar to the system obtained in the intermediate regime studied in § 3.3.1,
except for the appearance of the buoyancy fluctuation term b′

11 instead of b′
03. As before,

formally higher-order viscous terms are retained to regularise the fluctuation equation.
The set of equations formed by (3.15), (3.16), (3.20) and (3.23) are the fully diffusive

regime analogues of the reduced model derived by Chini et al. (2022). They are valid
as long as Reb ≥ O(1), and Peb � α � 1. Given that α = (Fr2/Pe)1/3 in this regime,
this parameter constraint is equivalent to requiring that Fr2 � Pe (to ensure α � 1),
Pe � Fr−1 (to ensure Peb � α) and Pe ≥ Pr3Fr−4 (to ensure that Reb ≥ O(1)). The three
conditions demarcate a triangle in logarithmic parameter space in which the equations
are valid – see § 4.2. As an important self-consistency check, we see that the Peb = α

transition between the fully diffusive and intermediate regimes is the same (Pe = Fr−1)
whether the transition is approached from the former or latter part of parameter space.
Here, too, (weak) buoyancy effects can be included in the mean dynamics by considering
higher-order pressure contributions to the vertical momentum equation. We successively
find that ∂ζ p̄01 = 0 and ∂ζ (w′

01w′
01) = −∂ζ p̄02 + b̄12. Hence, when fluctuations are absent

from the system of multiscale equations given above, the resulting equations with
an appropriately defined composite mean pressure p̄c = p̄00 + α1/2p̄01 + αp̄02 recover
hydrostatic balance and the single-scale low-Peb equations given in § 2.2. In the next
section (§ 4), we consider the physical implications of equations (3.15), (3.16), (3.20) and
(3.23) as well as potential caveats on their applicability.
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4. Discussion

In this study, we have extended the results of Chini et al. (2022) by performing a multiscale
asymptotic analysis of stratified turbulence at low Prandtl number. Our work demonstrates
the existence of several different regimes depending on the strength of the stratification
(quantified by the inverse Froude number) and the rate of buoyancy diffusion (quantified by
the inverse Péclet number). In each regime, the asymptotic analysis self-consistently yields
a slow–fast system of quasilinear equations describing the concurrent evolution of a highly
anisotropic, slow, large-scale mean flow and isotropic, fast, small-scale fluctuations. The
small scales are self-consistently excited by an instability of the emergent, local vertical
shear. When they are not, the equations for the large-scale anisotropic flow recover exactly
those obtained in § 2 (with a composite mean vertical momentum equation in the low Peb
case).

The large-scale anisotropy is characterised by the aspect ratio α (the ratio of the vertical
to horizontal scales of the large-scale flow), whose functional dependence on Fr and
Pe naturally emerges from the analysis. The various regime boundaries are locations in
parameter space where relevant Reynolds and Péclet numbers arising in the mean flow
and fluctuation equations are O(1), signifying transitions between a viscous and (formally)
inviscid dynamics, and/or a diffusive and non-diffusive dynamics. We now summarise our
findings in each regime and then discuss the model assumptions as well as the implications
of our results for low Prandtl number fluids.

4.1. Synopsis of multiscale equations and their validity
The first regime is characterised by Fr � 1 and Peb, Reb ≥ O(1), where Reb = α2Re and
Peb = α2Pe. In this regime, we recover the reduced model of Chini et al. (2022) and
confirm that α = Fr. Recalling that, at leading order, w′

1 = w′/α1/2, b′
3 = b′/α3/2, etc.,

that ∂/∂tf = α∂/∂t (and similarly ∇f = α∇⊥), and finally that ∂/∂ζ = α∂/∂z, we can
rewrite (3.10), (3.11), (3.12) and (3.13) as the following quasilinear system for mean and
fluctuations, expressed in the original variables (x, y, z, t).
Mean flow equations:

∂ū⊥
∂t

+ ū⊥ · ∇⊥ū⊥+w̄
∂ū⊥
∂z

= −∇⊥p̄ − ∂

∂z
(w′u′⊥) + 1

Re
∂2ū⊥
∂z2 + F̄ h, (4.1a)

∂ p̄
∂z

= b̄
Fr2 , ∇ · ū = 0, (4.1b)

∂ b̄
∂t

+ ū⊥ · ∇⊥b̄ + w̄
∂ b̄
∂z

+ w̄ = − ∂

∂z
(w′b′) + 1

Pe
∂2b̄
∂z2 . (4.1c)

Fluctuation equations:

∂u′
⊥

∂t
+ ū⊥ · ∇⊥u′

⊥ + w′ ∂ū⊥
∂z

= −∇⊥p′ + 1
Re

∇2u′
⊥, (4.1d)

∂w′

∂t
+ ū⊥ · ∇⊥w′ = −∂p′

∂z
+ b′

Fr2 + 1
Re

∇2w′, (4.1e)

∇ · u′ = 0, (4.1f )

∂b′

∂t
+ ū⊥ · ∇⊥b′ + w′ ∂ b̄

∂z
+ w′ = 1

Pe
∇2b′. (4.1g)
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This system, which is equivalent to (2.28)–(2.35) in Chini et al. (2022), is valid
when Fr � 1, and Re, Pe ≥ O(Fr−2), corresponding to Reb, Peb ≥ O(1). Noting that
the overbar denotes an intermediate-averaging operation (see (3.3)), our reduced model
has a generalised quasilinear (GQL) form (Marston, Chini & Tobias 2016; Marston &
Tobias 2023), albeit here derived in physical space (whereas the GQL reduction usually
is performed in Fourier space). When slow horizontal variation is suppressed and the
overbar denotes a strict horizontal average, the above reduced equations have the same
form as an ad hoc quasilinear (QL) reduction of the Boussinesq equations (e.g. Garaud
2001; Fitzgerald & Farrell 2018, 2019). In this work, we have demonstrated that this
(G)QL form is in fact a natural outcome of the slow–fast asymptotic expansion and is
therefore asymptotically exact in the given distinguished limit. As detailed in Chini et al.
(2022), in two dimensions the fluctuation equations without diffusion can be reduced
to the Taylor–Goldstein equation (see for example Craik 1985) as the mean fields are
independent of the fast variables x⊥f and tf and hence are effectively frozen during
the fast evolution of the fluctuations. Thus, the fluctuation equations admit as solutions
all of the ‘classical’ stratified shear instabilities of parallel shear flows, including in
particular Kelvin–Helmholtz instabilities. This mathematical reduction thus may explain
the occurrence of Kelvin–Helmholtz billows within fully turbulent but strongly stratified
flows.

Dimensionally, this regime has a characteristic vertical scale H∗ = αL∗ = U∗/N∗. The
characteristic vertical velocity is W∗ = α1/2U∗ = (U∗3/N∗L∗)1/2, and w is dominated by
small-scale fluctuations. The characteristic buoyancy scale is N∗2H∗, and b is dominated
by large scales. Note that the horizontal field u⊥ is predominantly large scale, by
assumption, but contains small scales with (dimensional) amplitudes O(Fr1/2U∗). The
scaling law for H∗ has been validated in numerical and laboratory experiments (e.g.
Holford & Linden 1999; Brethouwer et al. 2007; Oglethorpe et al. 2013), with at least
suggestive observational evidence of this LAST regime being obtainable from seismic
oceanography surveys, as already noted above (Falder et al. 2016). The scaling law
for W∗ was first tentatively identified by Maffioli & Davidson (2016). More recently
Garaud et al. (2024a) measured the root-mean-squared vertical velocity of the flow
in DNS of strongly stratified simulations where the turbulence is spatio-temporally
intermittent. Using different weight functions to distinguish averages taken within and
outside turbulent regions of the flow, they confirmed that W∗ ∝ Fr1/2U∗ within turbulent
patches. In quiescent regions of the flow outside these turbulent patches, where small-scale
fluctuations are suppressed, Garaud et al. (2024a) found that W∗ ∝ FrU∗, consistent with
the predictions of Billant & Chomaz (2001) and Brethouwer et al. (2007).

The scenario in which Fr � 1, Reb ≥ O(1) and α � Peb � 1 is an intermediate regime
where the mean flow is diffusive while the fluctuations are not. In this regime, we also find
that α = Fr. The slow–fast system of (3.15), (3.16), (3.18) and (3.19), expressed in the
original variables (x, y, z, t), becomes the following QL system.
Mean flow equations:

∂ū⊥
∂t

+ ū⊥ · ∇⊥ū⊥ + w̄
∂ū⊥
∂z

= −∇⊥p̄ − ∂

∂z
(w′u′⊥) + 1

Re
∂2ū⊥
∂z2 + F̄ h, (4.2a)

∂ p̄
∂z

= 0, ∇ · ū = 0, (4.2b,c)

w̄ = − ∂

∂z
(w′b′) + 1

Pe
∂2b̄
∂z2 . (4.2d)
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Fluctuation equations:

∂u′
⊥

∂t
+ ū⊥ · ∇⊥u′

⊥ + w′ ∂ū⊥
∂z

= −∇⊥p′ + 1
Re

∇2u′
⊥, (4.2e)

∂w′

∂t
+ ū⊥ · ∇⊥w′ = −∂p′

∂z
+ b′

Fr2 + 1
Re

∇2w′, (4.2f )

∇ · u′ = 0, (4.2g)

∂b′

∂t
+ ū⊥ · ∇⊥b′ + w′ = 1

Pe
∇2b′. (4.2h)

These equations are valid for Re ≥ Fr−2 (so Reb ≥ O(1)) and Fr−1 � Pe � Fr−2 (so
α � Peb � 1). By writing them in the original isotropic variables, we now see that the
correct QL equations at this order are almost the same as in the Chini et al. (2022)
regime, except that terms in b̄ are dropped (in the mean hydrostatic balance and in the
buoyancy perturbation equation) because they are formally of higher order. In addition,
the mean buoyancy equation takes the LPN form of Lignières (1999), modified by the
fluctuation-induced buoyancy flux. Given that the mean fields are independent of fast
variables, the fluctuation subsystem again can be treated as a (two-dimensional) eigenvalue
problem on fast scales that, in this case, admits as solutions linear instability modes of
low-Pr parallel shear flows (e.g. Jones 1977; Lignières et al. 1999).

Dimensionally, the vertical length scale and vertical velocity scale are the same as in the
non-diffusive regime. The buoyancy field, however, is now dominated by large scales if
Peb ≥ α1/2 and by small scales if Peb ≤ α1/2. Testing these scaling laws numerically will
be very difficult, unfortunately, because the range of the intermediate region is very small
(holding Pe constant while varying Fr−1 or vice versa) unless Pr is itself very small.

Finally, the case where Fr � 1, Reb ≥ O(1) and Peb � α corresponds to a fully
diffusive regime in which both the mean flow and fluctuations are dominated by diffusion
and satisfy the LPN balance derived by Lignières (1999). In this regime, we have
demonstrated that α = (Fr2/Pe)1/3. The slow–fast system of (3.15), (3.16), (3.20) and
(3.23), written in the original variables (x, y, z, t), is given below.
Mean flow equations:

∂ū⊥
∂t

+ ū⊥ · ∇⊥ū⊥ + w̄
∂ū⊥
∂z

= −∇⊥p̄ − ∂

∂z
(w′u′⊥) + 1

Re
∂2ū⊥
∂z2 + F̄ h, (4.3a)

∂ p̄
∂z

= 0, ∇ · ū = 0, (4.3b,c)

w̄ = 1
Pe

∂2b̄
∂z2 . (4.3d)

Fluctuation equations:

∂u′
⊥

∂t
+ ū⊥ · ∇⊥u′

⊥ + w′ ∂ū⊥
∂z

= −∇⊥p′ + 1
Re

∇2u′
⊥, (4.3e)

∂w′

∂t
+ ūf⊥ · ∇⊥w′ = −∂p′

∂z
+ b′

Fr2 + 1
Re

∇2w′, (4.3f )

∇ · u′ = 0, (4.3g)

w′ = 1
Pe

∇2b′. (4.3h)
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This system is valid for Reb ≥ O(1), and Peb � α � 1. As α = (Fr2/Pe)1/3, these
constraints are equivalent to Fr2 � Pe (so that α � 1), Pe � Fr−1 (so that Peb � α)
and Pe ≥ Pr3Fr−4 (so that Reb ≥ O(1)).

Dimensionally, the characteristic vertical length scale H∗ = αL∗ = (Fr2/Pe)1/3L∗ =
(U∗κ∗/N∗2)1/3. The characteristic vertical velocity W∗ = α1/2U∗ = (Fr2/Pe)1/6U∗ =
(U∗7κ∗/N∗2L∗3)1/6 and is dominated by small-scale fluctuations. The characteristic
buoyancy scale is Pe(Fr2/Pe)5/6L∗N∗2 = (U∗11/6κ∗−1/6N∗−5/3L∗−3/2)L∗N∗2 and is
dominated by small-scale fluctuations as well. These scalings have been validated by the
DNS of Cope et al. (2020) in fully turbulent flows. Garaud et al. (2024a) showed that they
also remain valid within turbulent patches for DNS that are in the intermittent regime of
Cope et al. (2020). In quiescent regions outside of the turbulent patches, predictions from
the single-scale equations apply (cf. § 2.2 and Skoutnev 2023).

Crucially, we find that in all three regimes the characteristic vertical velocity W∗ =
α1/2U∗ is significantly larger than that predicted from the single-scale equations given in
§§ 2.1 and 2.2, where W∗ = αU∗. This larger scaling has implications for turbulent vertical
transport of buoyancy and passive scalars in stellar interiors (see § 5).

Finally, note that, in all of these regimes, we have assumed Reb ≥ O(1), which then
implies that Reb � α since α � 1. Recalling that the fluctuation equations have an
effective Reynolds number Reb/α, this condition is necessary to ensure that the small-scale
fluctuations can develop without being suppressed by viscosity, and is therefore key to the
multiscale expansions derived here. When Reb < 1, viscous effects become important and
could strongly affect our conclusions. We do not pursue this issue further here, deferring
discussion of viscous regimes to future work. However, we note that Garaud et al. (2024a)
confirmed that Reb = O(1) correctly predicts the boundary of the region of parameter
space where the multiscale equations and their predicted scalings apply.

While this study focuses on the scaling relationships that emerge from the derivation of
these multiscale equations and their implications for turbulence regimes (see § 4.2 below),
solving these equations is, of course, also an area of interest not just from a scientific
but also an algorithmic standpoint. Accordingly, using existing algorithms for slow–fast
systems (Michel & Chini 2019; Chini et al. 2022; Ferraro 2022), our ongoing work involves
numerically solving the multiscale partial differential equations for a range of values of
Reb, which will allow numerical identification of the parameter values at which these
behaviours are realised (Shah 2022).

4.2. Regimes of stratified stellar turbulence
Our findings partition parameter space into various regimes of stratified turbulence, which
are illustrated in figure 1 for (a) a Pr = 1 fluid , (b) a Pr = 10−2 fluid and (c) a Pr =
10−6 fluid. Panel (b) is typical of liquid metals and the bottom of some stellar interiors
(see Garaud 2021). In all panels, the horizontal axis shows the inverse Froude number
Fr−1, so that stratification increases to the right. The vertical axis shows the outer-scale
Péclet number Pe, so that diffusive effects decrease upward. In both panels, the grey region
shows where α = O(1), so the large-scale flow is isotropic and effectively unstratified;
this regime is not the focus of our study. For stronger stratification, the large-scale flow
becomes anisotropic, and the possible regimes of stratified turbulence depend on Pr.

For Pr = O(1), shown in the upper plot, the partitioning of parameter space for Fr−1 �
1 is straightforward. When Peb, Reb ≥ O(1) (green region), viscosity and diffusion play a
secondary role in both the mean and fluctuation dynamics. Billant & Chomaz (2001) and
Lindborg (2006) put forward the basis for this regime, for which asymptotic theory was
developed by Chini et al. (2022). By contrast, if Peb, Reb � 1 (white region) then both
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Figure 1. Regime diagram for a fluid with (a) Pr = 1, (b) Pr = 10−2 and (c) Pr = 10−6. The Péclet number
is on the vertical axis and inverse Froude number is on the horizontal axis (such that stratification increases to
the right). The unstratified regime is shown in grey. Regions in white are viscously controlled. The Peb ≥ O(1)

regime is marked in green. In each panel, the blue dashed line marks the transition Peb = O(1) where the mean
flow becomes diffusive, and the red solid lines mark the viscous transition where Reb = O(1). With Pr � 1
(b,c), the solid blue line marks Peb = O(α) where the small-scale fluctuations become diffusive. A region
of parameter space opens up between Peb = O(1) and Reb = O(1), where the two new regimes identified in
this work exist: the intermediate regime (yellow), and the fully diffusive regime (purple). (c) A parameter set
indicative of the solar tachocline is marked with a black circle, using typical parameters given by Garaud (2020)
(Pe = 108, Fr−1 = 103).
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effects strongly influence the flow dynamics. The transition takes place when Re, Pe ≈
Fr−2.

At low Pr, diffusion becomes important long before viscosity does, so the Peb = O(1)

transition is distinct from the Reb = O(1) transition. This distinction opens up parameter
space to the two new regimes discussed in this work: the intermediate regime (yellow
region, the dynamics of which is described in § 3.3.1) and the fully diffusive regime
(purple region, the dynamics of which is described in § 3.3.2). We now clearly see that
the fully diffusive regime is confined to a triangle in log–log parameter space for a given
Prandtl number. It is delimited from above by the intermediate regime (yellow region),
from below by the isotropic regime (grey region), and from the right by the viscous
regime (white region). More specifically, it is bounded by the points A (Fr−1 = 1, Pe =
1), B (Fr−1 = Pr−1, Pe = Pr−1) and C (Fr−1 = Pr−1/2, Pe = Pr) and thus becomes
increasingly wide as Pr decreases, but shrinks towards the point A as Pr → 1 (e.g.
compare (b,c)). Note that the isotropic (grey) region in (b,c) contains an additional
triangular area which arises from the scaling relationship (3.22): α = 1 corresponds to
Pe = Fr2 there, in contrast to the Pr � O(1) case in (a) where α = 1 implies Fr = 1. In
all panels, the non-turbulent regime where Re < 1 is marked by Pe < Pr, which has been
left white.

A major implication of our results is that, depending on the choice of Pe, different
regimes are encountered as the stratification increases. We now discuss horizontal
transects through figure 1(c), for different values of Pe. We first consider the case
Pr < Pe < 1, which is the regime discussed in Cope et al. (2020). As Fr−1 increases
(while holding Pe and Re constant), our model predicts that the turbulence ought to be
isotropic until Fr−1 = Pe−1/2 (interestingly, because diffusion partially relaxes the effects
of stratification when Pe � 1). As Fr−1 continues to increase, the turbulence enters the
fully diffusive anisotropic regime, and remains in that regime until Fr−1 = (Pe/Pr3)1/4,
at which point viscosity begins to affect the mean flow. This series of regime transitions is
qualitatively consistent with that observed in the low Prandtl number DNS of Cope et al.
(2020).

At the other extreme, let us consider a transect for Pe > Pr−1, which is the case
considered by Garaud (2020), who primarily analysed simulations for which Pe = 60 and
Pr = 0.1. This regime is relevant for strongly sheared layers in stellar interiors, such as the
solar tachocline. For moderate stratification, namely 1 ≤ Fr−1 ≤ Pe, our analysis shows
that the turbulence is expected to be both anisotropic and non-diffusive, and its properties
should be captured by the model of Chini et al. (2022). As stratification increases past
Fr−1 = Pe, the turbulence is predicted to enter the intermediate regime, where the mean
flow is dominated by diffusion but the fluctuations are not. Beyond Fr−1 = √

Pe/Pr,
viscous effects should become important. Note how, at these large values of the Péclet
number, the fully diffusive inviscid regime discussed in § 3.3.2 is not accessible. Instead,
viscosity begins to influence the mean flow before diffusion influences the fluctuations.

This series of regime transitions is qualitatively consistent with the simulations reported
in Garaud (2020). Specifically, she found that the turbulence is mostly isotropic for
Fr−1 < 1, then becomes anisotropic with little effect of diffusion for intermediate values
of Fr−1. However, her empirically derived scaling laws (H∗ ∝ Fr2/3L∗, W∗ ∝ Fr2/3U∗)
do not match those predicted by the Chini et al. (2022) theory. Garaud et al. (2024a) have
now resolved this discrepancy by showing that the apparent W∗ ∝ Fr2/3U∗ scaling law
is an artefact of the coexistence of turbulent patches where W∗ ∼ Fr1/2U∗ and laminar
regions where W∗ ∼ FrU∗, whose volume fraction respectively decreases and increases
as stratification increases.
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For even larger values of Fr−1, Garaud (2020) found that diffusion becomes important,
and that the dynamics is governed by the LPN equations. However, at this point
the turbulence is also viscously affected, a situation qualitatively consistent with the
right-most regime transition in figure 1.

The case where 1 < Pe < Pr−1 is relevant for weaker shear layers in stellar interiors. As
Fr−1 increases, our multiscale analysis predicts that the turbulence ought to be isotropic
until Fr−1 = 1, at which point the regime analysed by Chini et al. (2022) sets in and
both the mean and fluctuation dynamics are non-diffusive. As the stratification continues
to increase, the vertical eddy scale decreases gradually until the mean flow becomes
dominated by diffusion at Fr−1 = √

Pe and the intermediate regime is manifest. The
flow dynamics remains essentially unchanged in that regime until diffusion also begins
to affect the fluctuations as well, at Fr−1 = Pe, at which point the turbulence becomes
fully diffusive. Finally, viscous effects begin to be important when Fr−1 = (Pe/Pr3)1/4.
To date, no DNS have been published probing this range of Pe. Verifying the existence of
these successive transitions with DNS is one of our areas of active work.

4.3. Mathematical considerations
Having constructed a map of parameter space based on the results of our multiscale
analysis, we now discuss important consequences and caveats of the resulting reduced
models. As in Chini et al. (2022), we find that the reduced equations in each regime
form a closed set describing the concurrent evolution of a highly anisotropic large-scale
mean flow together with isotropic small-scale fluctuations. Crucially, the fluctuation
equations derived in all regimes identified are linear in the fluctuation fields, but feed
back nonlinearly on the mean flow evolution. The reduced models thus all have a QL
form, which emerges self-consistently from the asymptotic analysis rather than being
imposed a priori. This emergent quasilinearity in the slow–fast limit therefore appears
to be an inherent property of stratified turbulence regardless of the Prandtl number. Our
findings can be used as a theoretical basis not only for using the QL approximation to
create reduced models of stratified turbulence, but also to know precisely which terms to
keep in each region of parameter space (see e.g. Marston & Tobias 2023). Of course, the
fundamental premise upon which the analysis is predicated is that the stratification drives
a scale-separated dynamics characterised by anisotropic large-scale and roughly isotropic
small-scale flow structures. To the extent that spectrally non-local interactions between
these disparate scales of motion play a crucial role in stratified turbulence, the conclusions
and predictions of our multiscale analysis are likely to be valid.

In QL systems subject to fast instabilities, nonlinear saturation requires the feedback
from the finite-amplitude fluctuations to render the mean fields marginally stable to
disturbances of any horizontal wavenumber. It is straightforward to verify that this
condition of approximate marginal stability indeed characterises each regime. This
deduction is consistent with the empirical observation of ‘self-organised criticality’ noted
in § 1, giving further credence to the appropriateness of the multi-scale approach used here.
In the Peb ≥ O(1) and intermediate regimes, the fluctuation equations are non-diffusive
at leading order, and therefore describe the growth (or decay) of perturbations due to a
standard vertical shear instability. The dimensional vertical shear S∗ of the mean flow
(which emerges once velocity layers develop) can be estimated to be roughly U∗/H∗ since
|ū| = O(1). The gradient Richardson number

J = N∗2

S∗2 = O
(

N∗2H∗2

U∗2

)
= O

(
α2

Fr2

)
= O(1) (4.4)
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in these regimes, which is indicative of marginal stability according to the Richardson and
Miles–Howard criteria (Richardson 1920; Howard 1961; Miles 1961). Note that Garaud
et al. (2024b) recently verified that J is indeed O(1) in DNS of stratified turbulence at
Peb = O(1).

In the Peb � α regime, by contrast, the fluctuation equations are inherently diffusive,
and one therefore expects the vertical shear instability to be of the diffusive kind (Zahn
1974; Jones 1977; Lignières et al. 1999). It has been shown, at least for sinusoidal shear
flows (Garaud, Gallet & Bischoff 2015a), that the condition for marginal linear stability
is JPeS = O(1) where PeS = U∗H∗/κ∗ is the Péclet number based on the vertical shear
profile. We can easily check that the scalings found in § 3.3.2 satisfy this criterion. Indeed

JPeS = O
(

N∗2H∗2

U∗2
U∗H∗

κ∗

)
= O

(
α3 Pe

Fr2

)
= O(1), (4.5)

as required. Taken together with the empirical scaling laws obtained from the DNS data
of Cope et al. (2020), this evidence confirms that (3.22) is the correct expression for α in
stratified turbulence at very low Peb.

A somewhat less intuitive result of our analysis is the requirement that ∂ p̄00/∂ζ = 0,
while p̄00 = O(1), in both the intermediate and fully diffusive regimes. Physically, this
condition can be understood by noting that in the Peb � 1 scenario, departures from
the mean background stratification formally are exceedingly small (owing to the strong
thermal diffusion), which explains why they do not affect the assumed background
hydrostatic balance. Furthermore, recalling that ζ has been rescaled by the vertical length
scale H∗ = αL∗ with α � 1, we note that ∂ζ p̄00 = 0 only applies on that scale, and does
not preclude p̄00 from potentially varying on larger scales. Indeed, the possibility exists
that two vertical scales may be incorporated into the dynamics, with the leading-order
mean pressure being hydrostatically coupled to the leading-order mean buoyancy on the
larger vertical scale, although we leave exploration of that possibility for future work.
Alternatively, as discussed in § 3.3, higher-order mean pressure terms, which couple to
the mean buoyancy, can be incorporated using a composite mean vertical momentum
equation. Then, in the singular limit of no fluctuations, the sets of multiscale equations for
the intermediate (4.2) and fully diffusive (4.3) regimes recover the single-scale equations
in § 2.2. Regardless, we emphasise that buoyancy anomalies do affect the fluctuation
dynamics, which in turn modifies the mean flow.

5. Conclusions

In this study, inspired by numerical evidence of scale separation and flow anisotropy,
we have conducted a formal multiscale asymptotic analysis of the Boussinesq equations
governing the dynamics of SST at low Prandtl number. A key outcome of our work is
a new map of parameter space, shown in figure 1, that demarcates different regimes of
stratified turbulence. Crucially, we find that new regions of parameter space open up at
low Prandtl number in which diffusive turbulent flows exist, scenarios that are not possible
at Pr = O(1). For each of these new regimes, scaling laws for the vertical velocity and
vertical length scale of turbulent eddies naturally emerge from the analysis. These scaling
laws are summarised in § 4.2 and recover previous findings by Chini et al. (2022) and
Cope et al. (2020) in appropriate distinguished limits. Finally, recent work by Garaud et al.
(2024b) has demonstrated numerically that the presence of a mean vertical shear (ignored
in this work) has little impact on these scalings as long as its amplitude is smaller than
the small-scale emergent vertical shear U∗/H∗. This finding can be proved more formally
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using the asymptotic tools developed here, suggesting that the new regime diagram is
robust (at least if other effects such as rotation and magnetic fields are absent; see below).

These results have important implications for low Pr fluids, such as liquid metals (where
Pr ∼ 0.01–0.1), planetary interiors (where Pr ∼ 0.001–0.1) and stellar interiors (where
Pr ∼ 10−9–10−2). In particular, the derived scaling laws enable us to propose simple
parameterisations for the turbulent diffusion coefficient (D∗) of a passive scalar in each
identified regime by multiplying the characteristic vertical length and vertical velocity
scales.

(i) In the Peb ≥ O(1) and the intermediate regimes

D∗ ∝ H∗W∗ ∝ Fr3/2L∗U∗ ∝ U∗ 5/2/(L∗ 1/2N∗3/2). (5.1)

(ii) In the fully diffusive regime

D∗ ∝ H∗W∗ ∝ (Fr2/Pe)1/2L∗U∗ ∝ U∗ 3/2κ∗1/2/(L∗ 1/2N∗). (5.2)

As such, our work challenges current understanding of stratified turbulence in stars.
Indeed, the most commonly used model for stratified turbulence in stellar evolution
calculations is the model of Zahn (1992), which proposes a vertical turbulent diffusivity
equivalent to (5.2). However, we have demonstrated that this expression is only valid
in a relatively small region of the parameter space (see figure 1). In particular, Zahn’s
model assumes that the turbulence is always fully diffusive, but this is not the case in the
intermediate and Peb ≥ O(1) regimes, which are appropriate for more strongly sheared
fluid layers such as the solar tachocline. Zahn’s model also assumes that viscosity is
negligible, which is not the case for sufficiently stratified flows.

Our multiscale analysis can also be used to estimate the magnitude of the dimensional
turbulent buoyancy flux B∗ = |w′b′|N∗2U∗L∗, using the characteristic sizes of w′ and b′
found in each regime.

(i) In the Peb ≥ O(1), Reb � 1 regime, w′ = O(α1/2) and b′ = O(α3/2) with α = Fr,
so

B∗ ∝ α2N∗2U∗L∗ ∝ U∗3/L∗. (5.3)

(ii) In the Peb � α, Reb � 1 regime, w′ = O(α1/2) and b′ = O(Pebα
1/2) with α =

(Fr2/Pe)1/3 so we also find in this case that

B∗ ∝ PebαN∗2U∗L∗ ∝ Peα3N∗2U∗L∗ ∝ U∗3/L∗. (5.4)

This demonstrates that both regimes have a flux coefficient Γ = B∗/ε∗ (where ε∗ ∝
U∗3/L∗ estimates the kinetic energy dissipation rate) and a mixing efficiency η =
B∗/(B∗ + ε∗) that are O(1) and independent of stratification (provided the stratification is
sufficiently strong that α � 1). This conclusion is consistent with the analysis of Maffioli,
Brethouwer & Lindborg (2016) and with the DNS of Cope et al. (2020) at Pr � 1.

Further work is needed to investigate the effects of rotation and magnetisation, which
are also important in stellar and planetary interiors. Both effects are likely to stabilise
the horizontal turbulence to some extent, which will therefore affect the emergent vertical
shear instability as well.

Nonetheless, this work has already demonstrated the power of formal multiscale
asymptotic analysis for discovering and validating the existence of new regimes of
stratified turbulence in stellar and planetary interiors.

Acknowledgements. The authors gratefully acknowledge the Geophysical Fluid Dynamics Summer School
(NSF 1829864), particularly the 2022 program.
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