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The Ekedahl-Oort stratification and the
semi-module stratification

Ryosuke Shimada

Abstract. In this paper, we compare the J-stratification (or the semi-module stratification) and the
Ekedahl-Oort stratification of affine Deligne-Lusztig varieties in the superbasic case. In particular,
we classify the cases where the J-stratification gives a refinement of the Ekedahl-Oort stratification,
which include many interesting cases such that the affine Deligne-Lusztig variety admits a simple
geometric structure.

1 Introduction

Affine Deligne-Lusztig varieties were introduced by Rapoport [34], which play an
important role in understanding geometric and arithmetic properties of Shimura
varieties. The uniformization theorem by Rapoport and Zink [33] allows us to describe
the Newton strata of Shimura varieties in terms of Rapoport-Zink spaces, whose
underlying spaces are special cases of affine Deligne-Lusztig varieties.

Let F be a non-Archimedean local field with finite residue field I, of prime
characteristic p, and let L be the completion of the maximal unramified extension
of F. Let ¢ denote the Frobenius automorphism of L/F. Further, we write O (resp. OF)
for the valuation ring of L (resp. F). Finally, we denote by @ a uniformizer of F (and
L) and by vy, the valuation of L such that v; (@) = 1.

Let G be an unramified connected reductive group over Of. Let B c G be a Borel
subgroup and T ¢ B a maximal torus in B, both defined over Op. For y, ' € X.(T)
(resp. X.(T)q), we write y' <y if y -y’ is a nonnegative integral (resp. rational)
linear combination of positive coroots. For a cocharacter y € X,.(T), let @ be the
image of @ € G, (F) under the homomorphism y:G,, - T.

Set K = G(0O). We fix a dominant cocharacter y € X, (T), and b € G(L). Then the
affine Deligne-Lusztig variety X, (b) is the locally closed reduced F,-subscheme of
the affine Grassmannian Gr = G(L)/K defined as

X, (b) = {xK € Gr | x'bo(x) e Ka*K}.

Received by the editors January 25, 2024; revised August 11, 2024; accepted September 30, 2024.

This work was supported by the WINGS-FMSP program at the Graduate School of Mathematical
Sciences, the University of Tokyo. This work was also supported by JSPS KAKENHI Grant number
JP21J22427.

AMS subject classification: 14G35, 20G25.

Keywords: Affine Deligne-Lusztig varieties, the Ekedahl-Oort stratification, the semi-module strat-
ification.

Check f¢
https://doi.org/10.4153/50008414X24000932 Published online by Cambridge University Press Updates


http://dx.doi.org/10.4153/S0008414X24000932
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0001-7477-9553
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X24000932&domain=pdf
https://doi.org/10.4153/S0008414X24000932

2 R. Shimada

The closed affine Deligne-Lusztig variety is the closed reduced F,-subscheme of Gr
defined as

X<u(b) = U X (b).
u

’S,u

Both X, (b) and X.,(b) are locally of finite type in the equal characteristic case and
locally perfectly of finite type in the mixed characteristic case (cf. [19, Corollary 6.5],
(18, Lemma L1]). Finally, the affine Deligne-Lusztig varieties X, () and X<, (b) carry
a natural action (by left multiplication) by the o-centralizer of b

Jo(F) = {geG(L) | g"'bo(g) = b}

The geometric properties of affine Deligne-Lusztig varieties have been studied by
many people. For example, the non-emptiness criterion and the dimension formula
are already known for the affine Deligne-Lusztig varieties in the affine Grassmannian
(see [8], [42] and [17]). Let B(G) denote the set of o-conjugacy classes of G(L).
Thanks to Kottwitz [28], a g-conjugacy class [b] € B(G) is uniquely determined by
two invariants: the Kottwitz point k(b) € 7;(G)/((1- 0)m(G)) and the Newton
point v, € X,.(T)q,+. Set B(G,u) = {[b] € B(G) | k(b) = k(@*), vy < u°}, where
#° € X.(T)q,+ denotes the o-average of u. Then X, (b) # @ if and only if [b] €
B(G, p). If this is the case, then we have

1
dim X, (b) = (p, u — vp) - > def(b),

where p is the half sum of positive roots and def(b) is the defect of b. Moreover,
the parametrization problem of the set of irreducible components Irr X, (b) is also
known. Let G be the Langlands dual of G defined over @, with [ # p. Surprisingly,
there exists a natural bijection between J, (F)\Irr X, (b) and a certain weight space
of the crystal basis B, of the irreducible G-module V, of highest weight u. This is
conjectured by Chen and Zhu, and proved in general by Nie [32] and Zhou-Zhu [47].

Via the relationship to Shimura varieties, or more directly to Rapoport-Zink
spaces, the results on the geometry of affine Deligne-Lusztig varieties have numerous
applications to number theory (e.g., the Kudla-Rapoport program [29], Zhang’s
Arithmetic Fundamental Lemma [46], ...). Many of these applications make use of
the special cases where X, (b) admits a simple description. The fully Hodge-Newton
decomposable case, introduced by Gortz, He and Nie [13], is one of such cases. They
proved that (G, ) is fully Hodge-Newton decomposable if and only if X, (7,) is
naturally a union of (classical) Deligne-Lusztig varieties (in fact, they studied the
cases with arbitrary parahoric level). This stratification is the so-called weak Bruhat-
Tits stratification, a stratification indexed in terms of the Bruhat-Tits building of
J»(F) (which exists only in the fully Hodge-Newton decomposable case). The case
of Coxeter type is a special case of this case such that each Deligne-Lusztig variety
appearing in this stratification is of Coxeter type (cf. [14, Section 2.3]). In this case,
we drop the “weak” above. For example, the cases of Coxeter type include the case for
certain unitary groups of signature (1, n — 1) studied in [44] by Vollaard and Wedhorn,
which has been used in [29] and [46].
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To give a conceptual way to explain the relationship between the geometry of
affine Deligne-Lusztig varieties and the Bruhat-Tits building of J,(F) indicated by
above examples, Chen and Viehmann [2] introduced the J-stratification, where J
stands for J,(F). The J-strata are locally closed subsets of Gr. By intersecting each
J-stratum with X, (b), we obtain the J-stratification of X, (b) (see Section 2.4 for
details). In [9], Gortz showed that the Bruhat-Tits stratification coincides with the
J-stratification. In fact the Bruhat-Tits stratification is a refinement of the Ekedahl-
Oort stratification (see Section 2.2 for the latter). So the J-stratification is also a refine-
ment of the Ekedahl-Oort stratification when (G, ) is of Coxeter type. This does not
hold in general even if y is minuscule. See [2, Example 4.1] for a counterexample in
the case G = GLy. Therefore, the cases when the J-stratification is a refinement of the
Ekedahl-Oort stratification should be special cases, which are of particular interest.

Usually it seems very difficult to study the J-stratification. However, in the case
that G = GL,, and b is superbasic (i.e., k(b) € Z is coprime to n), the J-stratification
coincides with a stratification by semi-modules [2, Proposition 3.4]. The notion of
semi-modules was first considered by de Jong and Oort [3] (see Section 3.1) for
minuscule cocharacters. Later Viehmann [42] introduced a notion of extended semi-
modules for arbitrary cocharacters, which generalizes the notion of semi-modules. It
played a crucial role to prove the dimension formula (for split groups) and the Chen-
Zhu conjecture mentioned above. This is because for these problems, we can reduce
the general case to the case that G = GL, and b is superbasic.

The aim of this paper is to compare the Ekedahl-Oort stratification and the semi-
module stratification (for G = GL,,). To state the main results, we need some notation.
Let W be the (finite) Weyl group of T in G and let W be the Iwahori-Weyl group of T in
G.Then W = X, (T) x W,. We denote the projection W — W, by p. For u € X,.(T),,
we denote by Adm(u) the admissible subset of W. Let SAdm(u) be a certain subset
of Adm (), which is the index set of the Ekedahl-Oort stratification of X<, (7,) (see
Section 2.2). We fix (a representative in G(L) of a) length 0 element 7, € W whose o-
conjugacy class in G(L) is the unique basic element in B(G, y). Finally, let LP(w) ¢
Wy be the length positive elements for w (see Section 2.5).

Theorem A (See Theorem 7.2) Let G = GL,, and let y € X, (T),. Assume that 1, is
superbasic. Then the following assertions are equivalent.

(i) The J-stratification (or the semi-module stratification) of X<, (7,)(# @) gives a
refinement of the Ekedahl-Oort stratification.
(ii) For any w € SAdm(u) whose corresponding Ekedahl-Oort stratum is nonempty,
there exists v € LP(w) such that v='p(w)v is a Coxeter element.
(iii) The cocharacter y has one of the following forms modulo Zw,:

w1, Wp-1, (n>1),
w2, 201, Wp-zy,  20p-1, (odd n > 3),
Wy + Wpo1, 201+ Wy1 @1+ Wnz, W1+2Wn_1, (n>3),
w3, Wp-3, (n=7,8),
3w, 3w, (n=4,5),
W) + w3, w3+ Wy, (n=5),
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4w;, w;+3wy, 4wy, 3w+ w,, (n=3),
mw; with m odd, (n=2).

Here, wy, denotes the cocharacter of the form (1,...,1,0,...,0) in which 1 is repeated k
times. Moreover, if one of the above conditions holds, then each J-stratum is universally
homeomorphic to an affine space.

See Section 2.4 for the reason why we choose 7,,. In fact, this choice is the reasonable
one suggested in [2, Remark 2.1], which is unique in this case.

Although the cocharacters w; and w,_; are of Coxeter type for any n, the cochar-
acters 2w; and w, are of Coxeter type only when #n =2 and n = 4 respectively (cf.
[14, Theorem 1.4]). In Theorem A, these two cocharacters are no longer exceptional
cases. Note also that the condition (ii) works in more general setting. In [38], we
study this condition for GL,, without the superbasic assumption. It turns out that if
u satisfies (ii), then the J-stratification of X, (7, ) gives a refinement of the Ekedahl-
Oort stratification, and each J-stratum is universally homeomorphic to the product
of a classical Deligne-Lusztig variety and an affine space. This simple description can
be considered as a natural generalization of the Bruhat-Tits stratification. Moreover,
in a joint work [37] with Schremmer and Yu, we proved that (ii) implies a simple
geometric structure on each Ekedahl-Oort stratum of X, (7, ) for general G. In fact,
the condition (ii) for GL, is also a generalization of Coxeter type [37, Theorem 4.12].
So Theorem A tells us that the two conditions which contain the cases of Coxeter type
are actually equivalent at least in the superbasic case.

If y is minuscule and ch F = 0, then X, (7, ) (= X<,(7,)) for GL,, is the perfection
of the special fiber of the Rapoport-Zink space attached to (GL,, 4, 7,) (cf. [14,
Section 5]). These Rapoport-Zink spaces are moduli spaces of p-divisible groups,
which have been studied in [43]. Especially in the superbasic case, each J-stratum
of X, (7,) is known to be isomorphic to an affine space (before perfection). However,
even in this case, there is no good description of the closure of each J-stratum in
general. On the other hand, it turned out in [38] that if y is a minuscule cocharacter
appearing in the list (iii) above, then each J-stratum of X, (7,) can be written as
a certain union of J-strata. It is also worth mentioning that the condition (i) in
Theorem A is essential to describe this union explicitly because we need to attach
w € SAdm(p) to each J-stratum in a natural way (cf. [38, Section 2.3]).

In [1], Chen-Tong compared the Newton stratification and the Harder-
Narashimhan stratification of the flag variety attached to (G, ) under the assumption
that g is minuscule. As a result, they showed that the former gives a refinement
of the latter if and only if (G, ) is weakly fully Hodge-Newton decomposable [1,
Definition 2.4]. Recently, Schremmer informed the author that there is an upcoming
work with He and Viehmann which also aims at generalizing the fully Hodge-Newton
decomposable case. For a pair (G, u), they define a nonnegative rational number
depth(G, p). Then it is known that (G, u) is fully Hodge-Newton decomposable if
and only if depth(G, g) <1 (cf. [13, Definition 3.2]). They classified the cases where
1 < depth(G, ) < 2. The classifications of these works have similarities, and most
cocharacters in Theorem A appear in these works (see also [38, Section 1]). Moreover,
the nice stratification in [38] suggests that these cases would be new cases such that
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X<u(7,) admits a simple description (as already predicted in [1, Remark 2.16]). Thus,
for general G, both (i) and (ii) are also reasonable conditions to find such simple cases
which would have many applications as the Bruhat-Tits stratification.

Itis worth mentioning that there are some other (G, u) such that the corresponding
basic affine Deligne-Lusztig variety admits a certain simple description. For example,
the works by Fox-Imai [7] (see also [6]) and Trentin [41] are such cases. Interestingly,
both cases have depth(G, p) = 2. It is also interesting to compare the J-stratification
and the Ekedahl-Oort stratification in these cases because the result will be useful to
find new simple cases.

Cyclic semi-modules are certain simple elements in the set of extended semi-
modules. It is easy to see that if there exists a noncyclic semi-module for y, then the
semi-module stratification of X,(7,) never gives a refinement of the Ekedahl-Oort
stratification (Corollary 3.10). Along the way of proving Theorem A, we also prove
the following classification theorem, which ensures that there exists a noncyclic semi-
module in many cases.

Theorem B (See Theorem 4.17) Every top extended semi-module (the semi-module
whose corresponding stratum is top dimensional) for y is cyclic if and only if u has one
of the following forms modulo Zw,:

(i) w; with1< i< n—1such thatiis coprime to n.
(if) w1+ w; Or Wy_1 + Wp—; with1 < i < n —1such that i + 1 is coprime to n.
(iil) (nr+i)w; or (nr +i)w,—y withr > 0and 1< i < n—1such that i is coprime to n.
(iv) (nr+i-jloy+wjor(nr+i— jlwy_1+ wu_jwithr >1,2< j<n—-land1<i<
n — 1 such that i is coprime to n.

The key ingredient of the proof of Theorem B is an explicit construction of top
extended semi-modules from crystal bases via the natural map in the Chen-Zhu con-
jecture, which was established in [40] by the author. This method is a completely new
way of studying the affine Deligne-Lusztig varieties. Since the Chen-Zhu conjecture
holds for arbitrary G, it is an interesting question in general to investigate the affine
Deligne-Lusztig varieties by crystal bases.

The paper is organized as follows. In Section 2, we introduce the affine Deligne-
Lusztig variety and stratifications of it. We also recall the length positive elements
and the non-emptiness criterion of the affine Deligne-Lusztig variety in the affine flag
variety. In Section 3 and Section 4, we recollect known results on semi-modules and
crystal bases respectively. Also in Section 4, we prove Theorem B using combinatorics
on Young tableaux. In Sections 5 and 6, we examine the semi-module stratification
and the Ekedahl-Oort stratification respectively by an explicit calculation of semi-
modules and elements in S Adm(u). In particular, using the non-emptiness criterion
mentioned above, we show that Theorem A (ii) does not hold for many y. Finally,
in Section 7, we prove the main theorem, combining Theorem B and the results in
Section 5 and Section 6.

2 Preliminaries

Keep the notations in Section 1.
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2.1 Notation

Let ® = ®(G, T) denote the set of roots of T in G. We denote by @, (resp. @_) the set
of positive (resp. negative) roots distinguished by B. Let A be the set of simple roots and
AY be the corresponding set of simple coroots. Let X, (T') be the set of cocharacters,
and let X,.(T), be the set of dominant cocharacters.

The Iwahori-Weyl group W is defined as the quotient Ng (1) T(L)/T(0). This can
be identified with the semi-direct product Wy x X, (T), where Wj is the finite Weyl
group of G. We denote the projection W — W}, by p. We have a length function £: W —
Z3 given as

lwed*) = > [ My+1+ > [ ),
acd , woacd_ acd  ,woaed
where wo € Wy and A € X, (T).

Let S ¢ W, denote the subset of simple reflections, and let S ¢ W denote the subset
of simple affine reflections. We often identify A and S. The affine Weyl group W, is
the subgroup of W generated by S. Then we can write the Iwahori-Weyl group as a
semi-direct product W = W, x Q, where Q c W is the subgroup of length 0 elements.
Moreover, (W,, S) is a Coxeter system. We denote by < the Bruhat order on W. For
any J ¢ §,let/ W be the set of minimal length representatives for the cosets in W;\W,
where W} denotes the subgroup of W generated by J.

Let w € W. There exists a positive integer k such that wk = @* for some A € X, (T).
We set vy, = A/k € X.(T)gq. This is independent of the choice of k.

Forw € W,, we denote by supp(w) ¢ S the set of simple affine reflections occurring
in every (equivalently, some) reduced expression of w. Note that 7€ Q acts on S
by conjugation. We define the o-support supp,(w) of w as the smallest T¢-stable
subset of § which contains supp(w).

For w,w’ € W and s € S, we write w—,w’ if w' = swo(s) and £(w') < /(w). We
write w -, w' if there is a sequence w = wg, wy, ..., wg = w' of elements in W such
that for any i, w;_j—>,w; for some s; € S. If w -, w’ and w’ —, w, we write w ~, W'

For a € @, let U, € G denote the corresponding root subgroup. We set

1=T(0) T] Ua(@0) [T Up(0) € G(L),

acd Ped_

which is called the standard Iwahori subgroup associated to the triple T c B c G.

In the case G = GL,, we will use the following description. Let T be the torus of
diagonal matrices, and we choose the subgroup of upper triangular matrices B as Borel
subgroup. Let y;; be the character T — G, defined by diag(t, t2,...,ts) = titj’l.
Thenwe have @ = {x;; | i # j}, @y = {xij | i <j}, O ={xij | i>j}and A = {xi s |
1< i< n}. Through a natural isomorphism X, (T) = Z", X.(T), can be identified
with the set {(my,...,m,) € Z" | my > .-+ > m,}. The finite Weyl group is the sym-
metric group of degree n. Let us write s; = (12),5, = (23),...,54-1 = (n—1n). Set
so = @%n (1 n), where xy., is the unique highest root. Then S = {s1,55, ..., 5,1} and
S = S U {so}. The Iwahori subgroup I c K is the inverse image of the lower triangular

matrices under the projection K - G(F,) induced by @ + 0. Set 7 = (1 0 (3) We
n-1
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often regard 7 as an element of W, which is a generator of Q = Z. Note that b € GL,, (L)
is superbasic if and only if [b] = [7™] in B(GL,) for some m coprime to 7.

2.2 Affine Deligne-Lusztig varieties

For w e W and b € G(L), the affine Deligne-Lusztig variety X,, () in the affine flag
variety G(L)/I is defined as

X, (b) = {xI e G(L)/I| x'ba(x) € IwI}.

For y € X, (T)4 and b € G(L), the affine Deligne-Lusztig variety X, () in the affine
Grassmannian Gr = G(L)/K is defined as

Xu(b) = {xK e Gr|x'bo(x) e K*K}.

The closed affine Deligne-Lusztig variety is the closed reduced F,-subscheme of Gr
defined as

Xeu(8) = U Xy (0).
u=p
Left multiplication by ¢! € G(L) induces an isomorphism between X,(b) and
Xu(g7'bo(g)). Thus, the isomorphism class of the affine Deligne-Lusztig variety only
depends on the o-conjugacy class of b. Moreover, we have X, (b) = X1 (@*b) for
each central A € X,.(T).
The admissible subset of W associated to y is defined as

Adm(u) = {we W |w < @"°* for some wy € Wp}.

Note that Adm(p') € Adm(g) if 4’ < . Indeed if w < @"°¥" and p’ < p, then w <
@"°¥ by [16, Lemma 4.5]. Set SAdm(u) = Adm(u) n SW. Then by [11, Theorem 3.2.1]
(see also [15, Section 2.5]), we have

Xaq)= || #(Xu(b)),

weSAdm(u)

where m:G(L)/I - G(L)/K is the projection. This is the so-called Ekedahl-Oort
stratification.
For any w € SW, set

Z(w) ={wo € Wy | wow = wa(wy)}.

Lemma2.1 Let@"y e SW with u dominant and y € Wy. Assume that Z(@* y) = {1}.
Then the projection map m: Xqu, (b) — X, (b) is injective.

Proof The proof is similar to [23, Lemma 5.4]. We may assume that Xou,(b) # @.
Let gI,g'I € Xquy(b) such that n(gl) = m(g'I). Then ¢""'g € K and hence g’ 'g ¢
IxI for some x € Wj. Since (¢'"'¢)(g7'ba(g)) = (¢ 'ba(g"))(a(g"'g)), we have
(IxI)(Io*yI) n (Io* yI)(Io(x)I) # @. Note that (IxI)(Io* yI) = Ix@* yI because
@"y e SW. This implies that x@* y = @* yo(x). By our assumption, we must have
x =1and hence g'"'g € I as desired. ]
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Example 2.2 Let G = GL, and let @* y € W with y dominant and y € W. If y is an
n-cycle and {sy,s,-1} ¢ Z(@"), then we have Z(@* y) = {1}. Indeed, for any x € W,
x@*y = @* yx implies that xyx~! = y and x € Z(@*). Thus, x = y* for some 0 < k <
n—1and y*u = p. Since {s),5,.1} ¢ Z(@"), we must have k = 0.

2.3 Deligne-Lusztig reduction method

The following Deligne-Lusztig reduction method was established in [10, Corol-
lary 2.5.3].

Proposition 2.3 Letw € W and let s € S be a simple affine reflection. Ifch(F) > 0, then
the following two statements hold for any b € G(L).

(i) If £(swa(s)) = £(w), then there exists a ], (F)-equivariant universal homeomor-
phism Xw(b) - Xswa(s)(b)-

(ii) If€(swa(s)) = £(w) — 2, then there exists a decomposition X,,(b) = X; U X, such
that

o X, is open and there exists a J, (F)-equivariant morphism X; — X, (b), which
is the composition of a Zariski-locally trivial G,-bundle and a universal homeo-
morphism.

« X, is closed and there exists a J,(F)-equivariant morphism X — X,,0(5) (D),
which is the composition of a Zariski-locally trivial A'-bundle and a universal
homeomorphism.

If ch(F) = 0, then the above statements still hold by replacing A' and G, by

ALPI gnd GP™ respectively.

The following result is proved in [22, Theorem 2.10], which allows us to reduce the
study of X,,(b) for any w, via the Deligne-Lusztig reduction method, to the study of
X, (b) for w of minimal length in its o-conjugacy class.

Theorem 2.4 For each w € W, there exists an element w' which is of minimal length
inside its o-conjugacy class such that w —, w'.

Following [23, Section 3.4], we construct the reduction trees for w by induction
on {(w).

The vertices of the trees are elements of W. We write x — y if x, y € W and
there exists x' € W and se S such that x ~, x', £(sx’0(s)) =£(x') -2 and ye
{sx’,sx"a(s)}. These are the (oriented) edges of the trees. A reduction tree of w is
a tree with these vertices and edges whose unique starting point is w and whose end
points are of minimal length in its o-conjugacy class of W.

The existence of a (not necessarily unique) reduction tree of w can be proved as
follows. If w is of minimal length in its o-conjugacy class of W, then the reduction tree
for w consists of a single vertex w and no edges. Assume that w is not of minimal length
and that a reduction tree is given for any z € W with £(z) < £(w). By Theorem 2.4,
there exist w’ and s € S with w ~, w’ and £(sw’c(s)) = £(w') — 2. By our assumption,
there exist reduction trees of sw’ and sw’o (s). Then a reduction tree of w consists of
the given reduction trees of sw’ and sw'c (s) and the edges w — sw’ and w — sw’a (s).

Let T be a reduction tree of w. Recall that an end point of T is a vertex in T of
minimal length. A reduction path in T is a path p:w — w; =~ .-+ — w,,, where w,
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is an end point of T. Set end(p) = w,,. We say that x — y is of type I (resp. II) if
0(x) - €(y) =1(resp. £(x) — £(y) = 2). For any reduction path p, we denote by ¢;(p)
(resp. £1;(p)) the number of type I (resp. II) edges in p. We write X, for a locally
closed subscheme of X,, (b) which is J, (F)-equivariant universally homeomorphic
to an iterated fibration of type (£;(p), £11(p)) over Xena(p)(b).

Let B(W, o) be the set of g-conjugacy classes in W. Let ¥: B(W,0) — B(G) be
the map sending [w] € B(W,0) to [w] € B(G), where w € G(L) is a lift of w. It is
known that this map is well-defined and surjective, see [21, Theorem 3.7]. By [23,
Proposition 3.9], we have the following description of X,, (b).

Proposition 2.5 Let w e W and T be a reduction tree of w. For any b € G(L), there
exists a decomposition
Xw(b) = |_| Xg-

p is a reduction path in T;
¥ (end(p))=[b]

In the case that G = GL, and b = 7™ with m coprime to n, we can count the
number of top irreducible components and rational points of X,, (b)° = {gI € X,,(b) |
k(g) = vr(det(g)) = 0} using the reduction tree for w. By [22, Proposition 3.5], the
o-conjugacy class of 7™ in W is the unique element in B(W, o) which maps to
[t"] € B(G) under ¥. Note also that " is the unique minimal length element in
its o-conjugacy class. We define a polynomial as

Fup =2 (q-1)"®q® e N[q-1],
?

where p runs over all the reduction paths in T with end(p) = 7.

Proposition 2.6  Assume that G = GL,, and b = t™ with m coprime to n. Let w € W
and let T be a reduction tree of w. Then the number of top irreducible components of
X, (b)° is equal to the leading coefficient of F,, , (as a polynomial in q — 1). Moreover,
we have

|Xw(b)0’0| = Fyblg=g-

Proof Note that each J,(F)-orbit of an irreducible component of X, (b) can be
represented by an irreducible component of X,,(b)°. Moreover, it is known that the
stabilizer in J, (F) is a parahoric subgroup (cf. [47, Proposition 3.1.4]), i.e., J,(F) N
I={geJy(F)|k(g)=0}. Then the statement follows from [23, Theorem 3.4 and
Proposition 3.5] and [24, Corollary 4.4]. [ ]

Remark 2.7 'The polynomials F,, ;, are called class polynomials. However, the defini-
tion above is an ad hoc one. See [23, Section 3] for the definition in general and the
connection to reduction trees.

2.4 The J-stratification

For any g, h € G(L), let inv(g, h) denote the relative position, i.e., the unique domi-
nant cocharacter such that g™'h € Ko™ (&) K. By definition, two elements gK, hK €
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G(L)/K lie in the same J-stratum if and only if for all j € J, (F), inv(j, ) = inv(j, h).
Clearly, this does not depend on the choice of g, k. By [2, Proposition 2.11], the J-strata
are locally closed in Gr. By intersecting each J-stratum with X, (b) (resp. X<, (b)), we
obtain the J-stratification of X, (b) (resp. X<, (b)).

As explained in [2, Remark 2.1], the J-stratification heavily depends on the choice
of bin its o-conjugacy class. So we need to fix a specific representative to compare the
J-stratification on X, (b) (or X<, (b)) to another stratification. It is pointed out in loc.
cit that if [b] is a basic class in B(G, y), then a reasonable choice of b is the unique
length 0 element 7. Also, for any w € W, the J,, (F)-stratification is independent of
the choice of a lift in G(L). See [9, Lemma 2.5].

In the case where G = GL, and b = 7™ with m coprime to #, there is a group-
theoretic way to describe the J-stratification, which we will call the semi-module
stratification. Indeed, by [2, Remark 3.1 and Proposition 3.4], the J-stratification on
Gr coincides with the stratification

G(L)/K= || Io*K/K.
AeX.(T)
So in this case, each J-stratum of X, (b) (resp. X<, (b)) coincides with Xz (b) (resp.
X;‘H(b)) for some A€ X,(T), where Xﬁ(b) =X, (b) nI@*K/K (resp. Xiﬂ(b) =
X<u(b) N I10*K/K). Set Jy(F)® = Jo(F) n K = J,(F) n I. Note that X} (b) = X;*(b)
and J,(F)/Jy(F)° = {t*J,(F)° | k € Z}. Thus,
J(F)X(b) = LI X (b) and Jo(F)X2,(b) = L X2, (0).

keZ keZ

See Section 3.1 for the precise definition of (extended) semi-modules. As we will
explain in Section 3.2, the set {A € X, (T) | Xﬁ(b) + @} can be regarded as semi-
modules for y. Let wpayx be the longest element in W;. Then we have

{(AeX (T)| X, (b7 # B} = {-wmax) € X.(T) | X3(b) # 2}

~Wmax

Indeed it is easy to check that the image of X ﬁ (b) under the automorphism of Gr by

gK m wh . g 'K is XZyme< (b™"). This gives the description of “dual” semi-modules
for y.

2.5 Length positive elements
We denote by §* the indicator function of the set of positive roots, i.e.,

1 (aed,)

07 @~ {0.1}, “H{o (acd_).

Note that any element w € W can be written in a unique way as w = x@"y with p
dominant, x, y € Wy such that @y € SW. We have p(w) = xy and £(w) = £(x) +
(u,2p) — £(y). We define the set of length positive elements by

LP(w) = {ve Wy | (va, yu) + 8" (var) = 8" (xyvar) > 0 for alla € D, }.
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Then we always have y~' € LP(w). Indeed y satisfies the condition that (a, u) >
8*(-y'a) for alla € @, . Since 8" (a) + 8 (~a) = 1, we have

(y7la y " u) + 87 (y ) - 8" (xa) = (&, p) = 07 (~y ') + 8" (-xa) 2 0.
Lemma 2.8 Foranyw = x@"y € W as above, we define
D, = {aed, |{a,u)-0 (y'a)+d8 (xa) =0}

Here 6~ denotes the indicator function of the set of negative roots. Then we have
yLP(w) = {r™' e Wy | r(®,\D,,) c @, or equivalently, r '®, c &, u-D,,}.
Proof Let r € Wy such that r(®,\®,,) c ®,.Leta e .. If r'a € ®_, then we can
check that y~'r™! € LP(w) similarly as the case r = 1above. If ¥ 'a € ®_, then we must

have r'a € —~®,,. Since §~(-a) = 8 («), it follows that
(e y ) + 8T () = 67 (27 )
== (e ) =8 (—y ' ta) + 8 (—xr ') = 0.

Thus, y~'r~! € LP(w). This shows {r™' € Wy | r(®,\®,,) c ®,} € yLP(w).

Letv e LP(w) and let o € @,. If yva € @_, then

(—yva, u) — 8 (—va) + 6 (—xyva) = —((va, y ') + 8" (va) — 8" (xyvax)) < 0.
On the other hand, by the characterization of y above, we have

(—yva, u) = 8 (—va) + 8 (—xyva) = (—yva, u) — 6" (va) + 6" (xyva) > 0.

Thus, (-yva, pu) -0 (—va)+ 0 (—xyva) =0 and hence yva € —®,,. This shows
yLP(w) c {rt e Wy | r(®,\®,,) c @, }. The proof is finished. ]

The notion of length positive elements is defined by Schremmer [35]. The descrip-
tion of LP(w) in Lemma 2.8 is due to Lim [30].

We say that the Dynkin diagram of G is o-connected if it cannot be written as a
union of two proper o-stable subdiagrams that are not connected to each other. The

following theorem is a refinement of the non-emptiness criterion in [12], which is
conjectured by Lim [30] and proved by Schremmer [36, Proposition 5].

Theorem 2.9  Assume that the Dynkin diagram of G is o-connected. Let b € G(L) be

a basic element with k(b) = k(w). Then X,,(b) = @ if and only if both of the following

two conditions are satisfied:

() [Weupp, (w)l s not finite.

(i) There exists v € LP(w) such that supp,(c~'(v) ' p(w)v) & S.

Remark 2.10 1f k(b) # k(w), then X, (D) = @.

Remark 2.11 Letw € W, wy € Wy and let J € A such that J = ¢(J). Then we say that

wisa (J, wy, 0)-alcove element if the following conditions are both satisfied:

(1) wolwa(wo) € Wy = X,.(T) » Wy, and

(2) For any a € wo(®,\®j), Uy n"I € U, NI, where ®; denotes the root system
generated by J.

In [36, Proposition 5], the condition (ii) in Theorem 2.9 is written as
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(i) There exist J ¢ A and wy € Wy such that wis a (], wy, 0)-alcove element.

The equivalence of (ii) and (ii)’ follows from [30, Lemmas 3.7 and 3.9] (see also [37,
Definition 2.3] and the comment right after it).

In the case G = GL,, there exists a length-preserving automorphism ¢ of W
defined as

wo@* wmaxwow;llaxw_w‘““)‘, wo € Wy, A e X.(T).

Note that ¢(7™) = 77", ¢(sp) = sp and ¢(s;) =s,—; for1<i<n—1 Let w = x@*y be
as above. For any a € ®, and v € LP(w), we have

(67) (W) 6™ ) (Wimaet)) + 8 (6() (“Wimas)) = 8 (S(2)6() (~Wmaxt®)
= (v(x,y_ly) + 8+(Voc) - 8+(xywx) > 0.

Thus, LP(¢(w)) = ¢(LP(W)) = Wmax LP(w)wy,. In particular, there exists v e
LP(w) such that v~'p(w)v is a Coxeter element if and only if the same is true for
¢(w) and LP(g(w)).

3 Semi-modules

From now and until the end of this paper, we set G = GL, and b = 7™ with m coprime
to n. For p € X, (T),, let u(i) denotes the i-th entry of y. Then [7] € B(G, u) if
and only if m = u(1) + - -+ + u(n). We assume this from now. Also, without loss of
generality, we may and will assume that y(n) = 0. Recall that wp,yx is the longest
element in Wj.

3.1 Extended semi-modules

Here we recall the definition of extended semi-modules in a combinatorial way from
[42]. Note that although we choose the subgroup of upper triangular matrices B as a
Borel subgroup in this paper, the fixed Borel subgroup in [42] is the subgroup of lower
triangular matrices.

Definition 3.1 A semi-module for m, n is a subset A c Z that is bounded below and
satisfles m + Ac A and n+ A c A. Set A= A\(n + A). The semi-module A is called
normalized if ¥, s a = @

For a semi-module A, there exists a unique ¢’ € N" satisfying the following condi-
tion: Let a9 = min A and let inductively a; = a;_y + m - p'(i)nfori=1,...,n. Then
ag = a, and {ag, ay,...,a,-1} = A. We call i’ the type of A.

Lemma 3.2 There is a bijection between the set of normalized semi-modules for m, n
and the set of possible types ' € N" with v, < wiaxp'.

Proof This is [42, Lemma 3.3]. [

Definition 3.3 An extended semi-module (A, ¢) for y € X.(T), is a normalized
semi-module A for m, n together with a function ¢:Z — Nu {-oco} satisfying the
following properties:

https://doi.org/10.4153/50008414X24000932 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X24000932

The Ekedahl-Oort stratification and the semi-module stratification 13

(1) ¢(a) = —ooifand onlyifa ¢ A.

(2) p(a+n)2¢(a)+1forallacZ.

(3) ¢(a) <max{k|a+m—-kneA}forallac A. If b € Aforall b > a, then the two
sides are equal.

(4) There is a decomposition of A into disjoint union of sequences a}, ...»aj with
j € N and the following properties:
(@) ¢(aj,) = g(aj) +1

(b) If go(a} +n)= (p(a}) +1, then a}H = a;- + n. Otherwise aj-ﬂ

> aj. + 1.

(c) The n-tuple (¢(al)) is a permutation of y.
An extended semi-module such that the equality holds in (3) for all a € A is called
cyclic.

Forany A € X, (T), we denote by A4om the dominant conjugate of A. Let y’ be the
type of a semi-module for m, n. Let ¢ be a function such that (1) and the equation
in (3) hold. Then it is easy to check that (4, ¢) is a cyclic semi-module for y . In
general, the following lemma holds.

Lemma 3.4 Let (A, @) be an extended semi-module for y and let y' be the type of
A. Then pj,, < u and (A, ¢) is cyclic if and only if y' € Wou. In particular, if y is
minuscule, then all extended semi-modules for y are cyclic.

Proof See [42, Lemma 3.6 and Corollary 3.7]. See also [17, Lemma 5.9]. [ ]

Let e, ..., e,—1 be the standard basis of L". Then the lattice O" is generated by
€0, ...>en1. For i € Z, we define e; by e;., = ®e;. Note that we have 7e; = e;,; for any
i. In the sequel, we identify Gr and {M c L" lattice} by gK — gO".

Let X,(b)° be a Fy-subscheme of X, (b) defined as X, (b)° = {gK € X,(b) |
r(g) = 0}. We associate to M € X, (b)° an extended semi-module for . Let v € L.

Then we can writev = ¥,z [a; ]e; with a; € ﬁq and «; = 0 for sufficiently small i. Here,
[a;] denotes the Teichmiiller lift of «; if ch F = 0 and [a;] = &; if ch F > 0. Let

J:L"\{0} > Z, v~ min{i|a;+0}.
For M e Gr, we define the set
A(M) ={I(v) | v e M\{0}}.

It is easy to check that if M € X, (b)°, then A(M) is a normalized semi-module for
m, n. We also define ¢(M):Z -~ Nu {-oo} by

- {max{k | 3v e M\{0} with I(v) = a, @ Fbo(v) e M} (a e A(M))
—o00 (a¢ A(M)).

Lemma 3.5 Let M€ X,(b)". Then (A(M),9(M)) is an extended semi-module
for .
Proof See [42, Lemma 4.1]. [ |

For an extended semi-module (A4, ¢) for g, let

Sap ={M|A(M) = A, ¢(M) = ¢}  Gr.
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Lemma 3.6 The set Su,, is a locally closed subscheme of X,,(b)°.
Proof See [42, Lemma 4.2]. [

Let A, be the set of extended semi-modules for u. Set A,F = {(A,¢) €A, |
dim S,y = dim X, (b)}. By Proposition 3.7 below, J,(F)\Irr X,,(b) is parametrized
by ALOP. In the sequel, we also use the symbol A to denote the affine space as usual.
We hope our notation will not cause confusions.

For an extended semi-module (A4, ¢) for y, let

V(A ,¢)={(a,c) e AxA|c>a,p(a)>¢(c)>¢(a-n)}.
Proposition 3.7 Let (A, ¢) be an extended semi-module for y. There exists a nonempty
open subscheme Uy, © AV and a morphism Ua,p = Sa,p which is bijective
on Fy-valued points. In particular, Sa,, is irreducible and of dimension |V(A, ¢)|.
Moreover, if (A, @) is a cyclic extended semi-module, then Uy o = AV

Proof See [42, Theorem 4.3]. [

—|v(4,
Here we briefly describe Uy, and the map Uy, — S4,. For any x ¢ IF‘q ol

AV we denote the coordinate of x by x,,.. We associate to every x a set of
elements {v(a) € L" | a € A} which satisfies the following equations.
If a = max A, then

v(a) =e,; + Z [xa,c]v(c)'

(a,c)eV(A,9)

For any other element a € A, we want

v(a) =y + Z [Xa,c]v(c),

(a,c)eV(A,9)

where v = @ (@) bg(v(a')) for a’ being minimal satisfying a’ + m — ¢(a’)n = a.
For a € n + A, we want

v(a)=ov(a—n)+ Yo [xaelv(e).
(a,0)eV(A,9)

Here [x,,. ] denotes the Teichmiiller lift of x, . if ch F = 0 and [x,,.| = x,,c if ch F > 0.
The set {v(a) € L" | a € A} is uniquely determined by the equations above. Hence,
the map AIV(A9l 5 Gr, x s (v(a))gea is well-defined. By applying ¢ on the above
equations for x, we can easily check that this map is compatible with the action of 0, i.e.,
o(x) = (xd ) mapsto 6(v(a))aca. Let Ua,, be the preimage of S, under this map.
Then Sy, and hence Uy, are stable under o (because o(b) = b). In particular, we
have [S3 | = |Ug |- Soif (A, ¢) is cyclic, then [S] | = gV (49l Although not needed
in this paper, it is also worth mentioning that if (A, ¢) is noncyclic, then Sy, is never
universally homeomorphic to an affine space.

Proposition 3.8 If (A, ¢) is noncyclic, then [Sy | < gV AP In particular, Sa, is
never universally homeomorphic to an affine space.

Proof Letx ¢ AV(49) Note that if x, . = 0 for all (a,c) € V(A, ¢), thenv(a) = e,
forall a € A. Set M = (e,)4ea. Then it is easy to check that (A(M), p(M)) is a cyclic
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semi-module for the dominant conjugate of the type of A(M). So if (A, ¢) is not cyclic,
then M ¢ S4,4 and hence [S | = |U7 | < g1V (49l The last statement follows from
[4, Propositions 4.1.12 and 8.1.11 (ii)]. [ ]

3.2 The stratification by extended semi-modules

For any A€ X, (T), set A" = {(i-1)+A(i)n+kn|1<i<n keN}. It is easy to
check that for a lattice M € I@*K/K, we have A(M) = A*. Thus, we have the following
lemma, which relates the semi-module stratification to the stratification by extended
semi-modules.

Lemma 3.9 LetAe X,(T) withA(1) + --- + A(n) = 0. Then Xﬁ(b) + @ if and only
if there exists an extended semi-module (A*, @) for u. If this is the case, we have

X5 (b) =S p
[

where ¢ runs over all the functions 7. - N U {~oo} such that the pair of A* and the
function is an extended semi-module for p.

For A€ X.(T) with X;(b)#@, let 1<ig<n such that (ig—1)+A(ig)n =
min A}, Let 1< mg < n be the residue of m modulo 7, and let A4 gom be (L =]+
1)(mo) | m |(n=m0)) Then

n

(io — 1) + A(ig)n + m — (A(ig) + Ap.dom(c™ (i0)) — A(c™ (ip)))n
=" (ip) =1+ A(c™(ig))n € A},

where ¢ = s, - - -5,_1. Repeating the same argument, we can check that the type of A*
isa conjugate of bA — A = ¢™A + A}, gom — A. By Lemma 3.4, an extended semi-module
(A%, 9) for u is cyclic if and only if bA — X € Wy u.

Corollary3.10 Let y € X, (T),. If there exists a noncyclic semi-module for u, then the
semi-module stratification of X<, (b) is not a refinement of the -Oort stratification.

Proof Let (A%, @) beanoncyclic semi-module for y. Then we have (bA — 1) gom < #
by Lemma 3.4. On the other hand, there always exists a cyclic semi-module (A%, ¢")
for (bA — 1) dom. By Lemma 3.9, Xiy(b) intersects both X, (b) and X(y1-1),,. (D).
This implies that X2 ,(b) is not contained in any set of the form 7( X, (b)) withw € W,
which finishes the proof. [ ]

For u=(pu(1),....,u(n-1),0) € X, (T)s, set u*=(p(1),u(1) —pu(n-1),...,
#(1) = 4(2),0) and b* = "#M=" 1f (A}, ¢) is an extended semi-module for y, then
there exists ¢":Z — N U {~co} such that (A™"m=1, ') is an extended semi-module
for u* (see Section 2.4). Clearly, bA — A € Wou if and only if b* (—WmaxA) + WmaxA €
—Wou*. Thus, we have the following lemma.

Lemma 3.11 There exists a noncyclic extended semi-module for y if and only if the
same is true for p*.

https://doi.org/10.4153/50008414X24000932 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X24000932

16 R. Shimada
3.3 The minuscule case

In this subsection, we treat the minuscule case. Consider G¢ with a Frobenius
automorphism o, given by

(81-82>--->8a) = (§2>--->8a-0(&1))-

For pe = (p1,...»pha) € Xo(T)9 and be = (1,...,1,b) € G*(L) with be G(L), we
define X, (be) c G = G*(L)/K* as

X, (bs) = {xeK9 € Gr? | x.'be0a(x.) € K @ K7},

Let us denote by Irr X, (b,) the set of irreducible components of X, (b.).
Through the identification J,(F) = J,, (F) given by g~ (g,...,g), this set is
equipped with an action of J, (F).

For minuscule y, € X*(T)f_ and b, = (1,...,1,b) € G4 (L), we define

AP = {de € X (T)" | dim X2 (bs) = dim X, (bs ) }.
Here, Xﬁ: (be) denotes X, (be) N I?@* K9 /K. For Ao, A, € .A;O.P, we write Ao ~ A, if
Ao =7FA, = (7%A], ..., 7%))) for some k € Z. Let A;ﬁp denote the set of equivalence
classes with respect to ~, and let [A.] € A;j’.p denote the equivalence class represented

by Ae € A,Y. Then J;, (F)\Irr X,,, (bs) is parametrized by A" as follows.

Proposition 3.12 Assume that pe € X, (T)? is minuscule. Then the map Ao ~

X,’}: (be) induces a bijection
AL = 1, (F)\Ire X, (ba).
Proof See [18, Proposition 1.6]. Note that we have Stabj, gy (X3 (ba)) = J,(F)°. =
We also define
Al = {A e X (T)* | dim X}z (ba) = j},

for1< j < dim Xy, (bs). We can similarly consider the equivalence relation ~ as above.

Ifd =1, then A{, = Af‘ |/ ~ can be identified with (extended) semi-modules for 4 whose
corresponding stratum has dimension j, see Lemma 3.4 and Lemma 3.9.
Proposition3.13  Set y = w;. Then we always have |, | = |AQ| = 1Ifi =2,n -2, then
|A%| =1forall 0 < j<dimX,(b).Ifi=3,n-3,then |Ailmx"(b)_l| =2,

Proof We can easily check the equalities in the proposition using [18, Theorem 4.16]
(cf. [3, Remark 6.16]), which gives a combinatorial way of computing |A7,|. In fact, all
of the assertions except the last assertion follow from [43, Proposition 5.5]. [

Example 3.14 We always have A), = {[0]}.

4 Crystal bases

Keep the notations and assumptions in Section 3.
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4.1 Crystals and young tableaux

In this subsection, we first recall the definition of @—crystals from [45, Definition 3.3.1].

Definition 4.1 A (normal) G-crystal is a finite set B, equipped with a weight map
wt: B — X, (T), and operators é,, f,: B — B U {0} for each a € A, such that
(i) for every b € B, either é,b = 0 or wt(é,b) = wt(b) + «", and either fub =0or
wt(fyb) = wt(b) — a”,
(ii) for allb,b’ € B one hasb’ = é,b if and only if b = fab', and
(iii) if €4, Po:B - Z, a € A are the maps defined by

£4(b) = max{k | &b # 0} and ¢,(b) = max{k | f*b = 0},
then ¢, (b) — e4(b) = {a, wt(b)).

Fora G-crystal B, let B* = {b* | b € B} be the dual G-crystal. Setting 0* = 0, the maps
are given by

wt(b*) = —wt(b), éa(b*) = (fyb)*, and fu(b*) = (éab)".

For A € X, (T), we denote by B(1) the set of elements with weight A for G, called
the weight space with weight A for G. Let B, and B, be two G-crystals. A morphism
B, — B, is a map of underlying sets compatible with wt, é, and f,.

In the sequel, we write &; and f; (resp. &; and ¢;) instead of €y, and mel (resp.
&y, and ¢, ) for simplicity.

Example 4.2 Let B, be the crystal basis of the irreducible G-module of highest
weight y € X, (T),. Then B, is a crystal. We call B, a highest weight crystal of highest
weight p (cf. [45, Definition 3.3.1(3)]). There exists a unique element b, € B, satisfying
éab, = 0 forall @, wt(b,) = y, and B, is generated from b, by the operators f-

We give a realization of B, by Young tableaux. This allows us to treat it in a
combinatorial way.

Definition4.3 A Young diagram is a collection of boxes arranged in left-justified rows
with a weakly decreasing number of boxes in each row. For a dominant cocharacter y €
X, (T),,we denote by Y, the Young diagram having u (i) boxes in the ith row. A skew
Young diagram is a diagram obtained by removing a smaller Young diagram from a
larger one that contains it. For dominant cocharacters y, v € X, (T), with v(i) < u(i),
we denote by Y/, the skew Young diagram obtained by removing Y, from Y,,.

| |
L] L]

Definition4.4 A tableau is a (skew) Young diagram filled with numbers, one for each
box. A semi-standard tableau is a tableau obtained from a (skew) Young diagram by
filling the boxes with the numbers 1,2, ..., n subject to the conditions

(i) the entries in each row are weakly increasing from left to right,
(ii) the entries in each column are strictly increasing from top to bottom.
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’»#N»—‘
w
w
w

[4]

Let K/, (1) be the number of all semi-standard tableaux b of shape Y, , such that
the number of [ i | appearing in b is A(i) for 1< i < n. This is sometimes called the
Kostka number. In Section 4.3, we need the following well-known result.

Proposition4.5 LetA, A" € X, (T),.IfA < X, then K, (A") < Ky, (A). In particular,

Kuy(A') # 0 implies K/, (1) # 0.

Proof See [5, Proposition 1.2] and the remark right after the proposition. [ ]
We denote by B(Y) the set of all semi-standard tableaux of shape Y.

Theorem 4.6 Let p = (u(1),...,u(n)) € X, (T),\{0} with u(n) = 0. Then B(Y,)
has a crystal structure. Moreover, the crystal B(Y),) is isomorphic to B,,.

Proof This is [25, Theorems 7.3.6 and 7.4.1]. [

In the sequel, we identify B, and B(Y) by Theorem 4.6. For a semi-standard
tableau b € B, let k; denote the number of i’s appearing in b. Then the weight map wt
on B, is given by wt(b) = (ky, ..., k). The following result is an explicit description
of the actions of ¢; and f; on B,.

Theorem 4.7  The actions of &; and f; onb € B, can be computed by following the steps
below:

(i) In the Far-Eastern readingb; ® --- ® by of b, we identify i (resp. by + (resp.
—) and neglect other boxes.
(ii) Letu;(b) = u'u?---u' (u/ € {+}) be the sequence obtained by (i). If there is “+-"
in u(b), then we neglect such a pair. We continue this procedure as far as we can.
(iii) Let u;j(b)reqa = —- - — +- - -+ be the sequence obtained by (ii). Then é; changes the
rightmost — in u;(b)eq to +, andfi changes the leftmost + in 11; (b)) eq to —. If there
is no such — (resp. +), then é;b = 0 (resp. f,-b =0).

Moreover, €;(b) (resp. ¢;(b)) is equal to the number of — (resp. +) in u; (b)req-

Proof The first statement is [27, Theorem 3.4.2]. The second statement follows
immediately from this. u

Next we recall the Weyl group action on crystals. Let B be a G-crystal. For any
1<i<n-landbeB, weset

b= fi(Xi,m,wt(b))b if()(i,i+1>wt(b)> 20
s$ib = ~—(xi,i+1>wt(b))b if (x; b
e; if (xi,i+1, wt(b)) <0.

Then we have the obvious relation

wt(s;b) = s; (wt(b)).
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By [26, Theorem 7.2.2], this extends to the action of the Weyl group W, on B, which is
compatible with the action on X, (T'). For example, wmaxb, € B, has the lowest weight
Wmax . It is well-known that the dual of B, is isomorphicto B_,,_ . , (see for example
[25, Lemma 3.5.2]).

Lemma 4.8 Let w,w' € Wy andb € B. If w(wt(b)) = w'(wt(b)), then wb = w'b.
Proof Thisis [40, Lemma 3.10]. [ ]

Let be B(A). If A’ is a conjugate of A, i.e., there exists w € Wy such that A’ = wA,
then we call wb the conjugate of b with weight A’. By Lemma 4.8, this does not depend
on the choice of w.

Finally we consider the minuscule case. If 4 € X, (T is minuscule, then wt: B, —
X..(T) gives an identification between B, and the set of cocharacters which are con-
jugate to u. Suppose pe = (f15. .., ta) € X.(T)? is minuscule. We can also identify
Bgd =By, x -+ x B, with the set of cocharacters in X, (T) which are conjugate to
,“o.

For1< k < n, let wy be the cocharacter of the form (1,...,1,0,...,0) in which 1is
repeated k times. Assume that each y; is equal to wy, for some 1< k; <nand i< jif
and onlyif k; < k. In the rest of paper, we call such u, Far-Eastern. If u, is Far-Eastern,

then [ye| == gy + - -+ + g is dominant and its last entry is 0. Let FE: B, | — Baj bea
map defined by decomposing b € B, into its columns from right to left. We call FE the
Far-Eastern reading.

4.2 Construction of extended semi-modules

In this subsection, we recall from [40, Section 4.2] the way of constructing extended
semi-modules. See [40, Section 4.3] for some examples of computation. Let y, €
X, (T)? be a Far-Eastern cocharacter. Set g = |ua|-

Let 1, denote the cocharacter whose i-th entry is | 2%] - [%J Set AP =
WmaxAp. Forany b € B, (1), we denote by b°P the conjugate of b with weight A,”. Let
1 < my < n be the residue of m modulo 7. Note that each entry of A is | = | or | 2 | +1

and Ay (i) =Ap(n+1-i)forany2<i<n-1Letig=1<i;<ip< -+ <i,, =nbe

the integers such that A (i1) = Ay (i2) = -+ = Ap(im,) = [ 2| + 1. Then
AZP = W:naxkh’ Wherew;nax = (Sfmo—l o 'S"—l) T (Sil T Siz—l)(sl o 'Si1—1)'

Here Ay (i) = [ 2] (resp. Ap(i +1) = [ ]) if and only if s;_ys; < wy .. (resp. s;si1 <
wl ). By Lemma 4.8, it follows that b°? can be computed by the action of the
Coxeter element w; . In this computation, each s; acts as the action of &; because

max*

=] = (%] +1) = -1 Therefore, if we write
FE(b) = (by,...,bys)
then there exists (wy, ..., wy) € W¢ such that
FE(b°?) = (w;by,...,wyby)

and each simple reflection appears exactly once in some supp(w;).
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Lemma 4.9 The tuple (wl, owy) € Wi as above is uniquely determined by b. In
particular, w(b) = -wj" is a Coxeter element uniquely determined by b.

Proof 'Thisis [40, Lemma 4.3]. [ |

Set  w(b)=w'---w;! and Y(b)={veW,|v'c"v=w(b)}, where
¢ =515y Sp-1. Clearly [Y(b)| =
For any b’ € B, set

EB) = (') + -+ + e, (b'), e2(b") + -+ +&,1(b"),...,e,1(b),0).

Let A, be the anti-dominant conjugate of A, and let b be the conjugate of b with
weight A;. For any b € B, (1;) and v € Y(b), we define &,(b,v) € X, (T)? by

Ei(b,v) =v&(vb)+ Y vw ~-w17,1_1 wt(by) (1<j<d).
1<j'<j
Let C € Irr X,,(b)°. By Proposition 3.7, C = S4,, for some (A, ¢) € Ay?. On the
other hand, by Proposition 3.12 and [32, Proposition 3.13], there exists a unique A, €
AP with A,(1) + -+ + Ai(n) = 0 such that C = pr(Xpe(b.)). Here pr : Gr? - Gr
denotes the projection to the first factor. The following theorem is established in [40,
Theorem 4.4] by the author.

Theorem 4.10 Wehave vg b,y = vw; " -- ~w]111 and £,(b,v) € AP Ifv' is an element
in Y (b) different from v, then &, (b, v ) & (b, v"). Let E2(b) be the unique cocharacter
in [£.(b,v)] such that E(b)(1) + -+ + &(b)(n) = 0. Then for any (A, ¢) € Amp

there exists a unique b € B, (Ay,) such that S4,4 = pr(XE X205, (bs)).
Proof This is [40, Theorem 4.4]. [ |

This correspondence between Awp and B,(A;) is compatible with the natural

bijection in the Chen-Zhu conJecture constructed by Nie in [32].
Corollary 4.11 Let (A, ) € A;,Op. Let be B, (Ay) such that Sy, = pr(Xf,g.(b)(b.)).
Then (A, @) is cyclic if and only if

Z Wl—l .. .wj__l1 Wt(bJ) € W()‘u.

1<j<d

Proof By Lemma 3.9, we have A = AS®) Recall that (A, @) is cyclic if and only
if b&)(b) — &) (b) € Wypu. Since b&) (b) — &) (b) is a conjugate of b&; (b, v) — & (b, v),
this is also equivalent to v™'b&; (b, v) — v™'& (b, v) € Wou. By Theorem 4.10,

v'b& (b, v) v E(bv) = Y witwil wi(b).

1<j<d
This finishes the proof. [ ]
We say that an element b € B, (A,) is cyclic if

Ab) = > wl’l-~~wj’_11wt(bj) € Wop.
1<j<d
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Now we give another interpretation of Lemma 3.11. Recall that B}, is isomorphic to
B,+. We denote by b* € B+ the dual of b € B,. Note that we have (wb)* = wb* for
any w € Wy. Soif b € B, (1), then b = wyo,b* € B (Ap ).

Lemma 4.12 We have A(b°?*) = -w(b)'A(b) +(d,...,d). In particular, b e
By (Ap) is cyclic if and only if b°P* € B« (Ap ) is cyclic.

Proof Note thatif (p1,...,uq) is Far-Eastern, then (u, ..., yi) is Far-Eastern. So
if we write

FE(b)=b;® ---®b; and FE(b?)=wb; ® --- ® wyby,
inB, ® --- ®B,,, then we have
FE(b*)=b;® --- ®b; and FE(b®*")=w;b;® --- ® w;b;,
inB,:® - ®B,.. Thus w(b®") = wy---wi = w(b)™,Y(b®") = Y(b) and
A(BPT) = wt(wyb}) + wawt(wg_ibj_)) + -+ + wg - wywt(wby)
=-w(b)"'A(b) + (d,...,d),

as desired. [
4.3 Noncyclic semi-standard tableaux

The goal of this section is to specify the dominant cocharacters y such that every b €
B, (Ap) is cyclic. Set d = u(1).

Lemma 4.13  Assume that n>3. We have d >2[ ]+ [22¢|+1 or d > 2[”‘1:'"] +
|2mo) |4,
n

Proof It suffices to show that d <2|™ |+ [Z%J is equivalent to d > 2[””’;"’] +

|20=m) | 41, Note that | 2 | = o, | adom | _ ndomelnzm) gq g ¢ | m |4 | 2m |

n n n

is equivalent to (n —2)d <2(m —d - mg) + n| 22 |, and d > 2| 2 | + [@J

1 is equivalent to (n—2)d <2(m—d —mg) +n(1- [@J) Then the assertion
follows from the fact that | 222¢ | = 0 (resp. 1) if and only if [MJ =1(resp.0). m

+

Lemma 4.14 Assume that n>3. Let p e X,(T), such that d>2|™ ]+ |22 |+
Lu(2) >2and [ %] > 2. Then B, (Ay) contains at least one noncyclic element.

Proof First we consider the case n = 3. In this case, we have 2 < u(2) < [ | because
#(3) = 0. Let b be the unique element in B, (1, ) whose second row contains exactly

one . Then w(b) = 5251 and s; € supp(wg-| = ).

1 [2]3]]3]
2023

Since 2 < u(2) < [ 2], we have

wit e wgl oy Wh(bg_u(2)e1) = (0,11) and  wit--wgl wi(bg) = (1,0,1).

Thus A(b) ¢ Wou because p(n) = 0. This proves the case n = 3.
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In the rest of the proof, we assume that n > 4. Let A be a conjugate of 1, such that
A AR).A3)) = (2L 12] + 2], | 2] +1) and A(4) > -+ > A(n). Set

n

Ho = (ﬂJ " 12$J 1= min{(2), |- |}, min{u(2), L%J},o,...,o) € X.(T)-

and Ag = (A(1),1(2),A(3),0,...,0) € X,(T). Note that we have u(1)+pu(2)>
3[ 2]+ |22 |11 Indeed if p(1)+u(2)<3[Z]+[222], then by u(1)>
2[2]+ 22| +1, we have p(2) <[Z]-1 This implies u(3)+ - +u(n-1)<
(n=3)(|%]-1), or equivalently 3[%|+n+mo—3<pu(l)+u(2), which is a
contradiction. Thus Y, contains Y.

Let by be the unique element in B, (1) whose second row contains exactly one
. We will show that there exists b’ € B, (1) that contains by. It is easy to check
that y(n —1) <[ | and p(n - 2) < po(1). So each column in Y, ,,, has at most n — 3
boxes. By filling each column with the numbers 1,...,# — 3 so that the entries are
starting with 1 and increasing by one from top to bottom, we obtain a skew Young
tableau of shape Y,/,,. Let k; be the number of E in this tableau. Clearly we have
ky> - >kyos.

1......123~~3| ‘

2101...1213 1~-|1‘
1 ||1 2
2

By (A(4),...,A(n)) < (ky,...,k,—3) and Proposition 4.5, there exists at least one
skew Young tableau of shape Y/, such that the number of E is A(i +3) for each
1<i<n-3.Byreplacingl,...,n —3by4,..., nrespectively, we obtain a skew Young
tableau of shape Y,/,, such that the number of@ is A(i) foreach 4 < i < n. Let b’ be
the tableau obtained by joining by and this skew tableau. Clearly we have b’ € B, (1),
which shows our claim.

Letb’ € B, (1) containing by, and letb € B, (1; ) be the conjugate of b’. Then s,5; <
w(b) and s; € supp(wy_| = ). Let k(b") be the number of in the second row of b’.
If k(b") < | ], then we have

O Wil min(uzy 121 WHBa-mingu( L2131)) (2) = 1
and
(wi'- - wilywi(bg))(2) = 0.

Thus, A(b) ¢ Wou and hence b is noncyclic. If k(b”) # 0, then A(b)(1) = [ 2] - L

n

Assume that ¢(3) <[ | - 1. Then b is always noncyclic by the above argument.
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Assume that ¢(3) > 2. Let b; : be the leftmost box in the third row of b’, and let
b’ = be the box right to by. Clearly 4 < j < j'.

1l e f1l213]-- 3| ‘
210..-121314]1|---]4
jlJ

Theninb’, all are in the first or second row. Since the number of| j |in the first or

second row is less than wt(b")(j — 1), there exists at least one such that there is
no box beneath it or the number in the box beneath it is greater than j. So the tableau
obtained by replacing b] by the rightmost one among such is semi-standard.
Repeating the same argument, we may assume j = 4. Similarly, if | * | > 3, we may also
assume j' = 4. Indeed if j' > 6 and the leftmost column in b’ contains but does

. > 7 . . m :
not contain , we replace b by this . In other cases, by | ™ | > 3, there exists at

3}

least one | -1 |such that there is no box beneath it or the number in the box beneath it

is greater than j/, and we replace b), by the rightmost among such . Then the

obtained tableau is semi-standard. Thus, if | 2 | > 3, there exists b’ containing by such
that k(b") <™ |, which is noncyclic by the above argument. If | | = 2 and #n = 4,
then b is noncyclic because k(b") < 2.If | ™ | = 2and n > 5, we may also assume j' = 4

and hence b is noncyclic unless the third row of b’ contains three . If|%]=2,n>5
and the third row of b’ contains three , then

(Wi owgly wi(bg))(4) =1 and - (wi' - wyly wi(bg))(4) = 0.
Thus, A(b) ¢ Wou and hence b is noncyclic.

1]1]2]3]3 |\
344
5(5(5

Assume that | | = 2and 4(3) = 1. By the same argument as above, we may assume
that the leftmost column of b’ contains . So b is noncyclic when A(4) = 2. If u(1) >
5+ | 20 |, we may assume that the first row of b’ also contains . This can be checked
easily as above using 4(3) = 1. Thus, if u(1) > 5 + | 22¢ |, we obtain a noncyclic b.

1]2]3]3]4 |\
34

’|>-I>N>—'
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Ifu(l) =5+ [Z%J, then we have n = 4 or 5. More precisely, we have
u=(6,4,1,0),(5,5,1,1,0), (6,5,1,1,0), (6,6,1,0,0), or (6,6,1,1,0),

and b’ contains one of the following smaller Young tableaux when 1(4) = 3.

1233\
3044

1223|3\
3

N
=N =

We can easily check that b is noncyclic in every case.
Putting things together, we have proved the lemma. [ ]

Lemma 4.15 Assume that n > 4. Let y € X,.(T), such that d >3+ [ ],u(2) > 2
and [ ™| = 1. Then B, (Ay) contains at least one noncyclic element.

Proof Let A be a conjugate of A, such that (A(1),A(2),A(3)) = (Ap(1),
Ap(2),45(3)) and A(4) > --+ > A(n). Assume that (1,(1),A5(2),4,(3)) = (1,2,2)
and p(2) > 3. Similarly as the proof of Lemma 4.14, we can easily show that there
exists b’ € B, (1) containing the following smaller Young tableau.

1234\
2134

Let beB,(1;) be the conjugate of b'. If u(3) <2, then b is noncyclic because
A(b)(2) = 2. If u(3) > 2, then similarly as the proof of Lemma 4.14, we may assume
that the second row of b does not contain [ 5]. In this case, the conjugate b € B, (1;)
of b’ is noncyclic because

(i wtawt(ba2))(3) = 1 and  (wil - wilywi(ba)) (3) = 0.

Assume that (1,(1),15(2),45(3)) = (1,2,2) and p(2) = 2. Then there exists b’ €
B, (1) containing one of the following smaller Young tableaux.

1]2 3|3|4\

1 3|4\
2|4 2
3

It is easy to check that the conjugate b € B, (1) of b is noncyclic.
Assume that (15(1),15(2),45(3)) # (1,2,2). Then there exists b’ € B, (1) con-
taining one of the following smaller Young tableaux.

123|4\ 133|4\ 134\
2|4 2|4 2|4

Letb € B, (1) be the conjugate of b’. Since A(b)(1) =1, b is noncyclic if u(3) = 0. If
¢(3) > 2, then similarly as the proof of Lemma 4.14, we may assume that the second
row of b’ does not contain . In this case, b is noncyclic because

(v wgly wi(ba))(3) =1 and (wi' - wi wi(by))(3) = 0.

https://doi.org/10.4153/50008414X24000932 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X24000932

The Ekedahl-Oort stratification and the semi-module stratification 25

If 4(3) =1and u(1) > 3 + [ 22 |, then we may also assume that the second row of b’
does not contain | 5 |and hence b is noncyclic. If #(3) = 1and (1) = 3 + | 222 |, then

n

we may assume that the leftmost column of b’ contains . We can easily check that
b is noncyclic by an easy calculation.

314
5

’|U‘Il\)n—t

’|U‘IN>—‘

BENE
N
w

This finishes the proof. L

Lemma 4.16  Assume that n > 5. Let p € X, (T), such that | ™| = 0. If (1) u(2) > 2 or
(2) d >3,u(2) =1, then B, (Ay) contains at least one noncyclic element.

Proof Let 1<ij<ip< -+ <i,, =n be the integers such that A,(i;) = 1, (iz) =
-+ = Ap(im,) = 1. Let b be the Young tableau in B, (A;) obtained by filling Y, with

i1, ., im, from top to bottom, starting from the leftmost column.
i |ike| | im
iz ik+2
ik

If (1) holds, then b is noncyclic because
wt(b))(im) =1 and (w;'---wj wt(by)) (i) = 0.
Let k = max{i | u(i) # 0}. If (2) holds, then the Young tableau ¢ € B, (A;) obtained

by replacing| iy |by in b is noncyclic because A(¢) (i) = 2.

i | g |ike2| | im

This finishes the proof. [ ]
Theorem 4.17  Everyb € B, (Ay) is cyclic if and only if u has one of the following forms:

(i) w; with1<i<n—1such thatiis coprime to n.
(i) w1+ w; or wy_1 + Wy_; With1< i < n—1such that i +1is coprime to n.
(ili) (nr+i)wyor (nr+i)w,_y withr > 0and1<i < n—1such that i is coprime to n.
(iv) (nr+i-jloy+wjor(nr+i— jlwy_1+ w,_jwithr >1,2< j<n—-land1<i<
n — 1 such that i is coprime to n.
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Proof Itis easy to check that every b € B, (1;) is cyclic if 4 is one of the cocharacters
in (i), (ii), (iii) and (iv). It remains to show that if 4 does not belong to the list above,
then B, (1) contains at least one noncyclic element. By Lemmas 4.12 and 4.13, we
may assume that d > 2|2 |+ | 22| +1. Then this follows from Lemmas 4.14, 4.15
and 4.16. |

Remark 4.18 Even if every top extended semi-module for y is cyclic, there might be
a noncyclic extended semi-module for y. In fact, such cases exist, see Section 5.4.

5 The semi-module stratification

Keep the notations and assumptions in Section 3.

5.1 The semi-module stratification for w;

Recall that if ¢ is minuscule, then every extended semi-module is cyclic.
Lemma 5.1 Forany1< j<"33(=dimX,,(1%)), we have
Aj _ {[X}/,n—l + XZ,n—3 toee s X}'/,n—j+1]} (] even)
’ {[XY,H + X\3/,n72 +oot X}/,n—j+1:|} (] Odd)

Proof By (the proof of) [43, Proposition 5.5], each normalized semi-module for 2, n
is of the form A = (2N - j) U (N + j +1) for some 1 < j < #22. It is easy to check that

ANzt Xanst " X (j even)
A=
T AN a2t Hinmin (jodd).

Let (A}, ¢;) be the cyclic semi-module for w,. Then n—2-jn—1+jeA; and
¢j(n=2-j)=¢j(n-1+j)=1 It is also easy to check that [V(Aj, ¢;)| = j. This
finishes the proof. |

Lemma 5.2 Assume that n = 7. Then dim X,,, (7*) = 3 and

Ay, ={l0s1h AL ={le) Daslh AL ={l6s])-

Assume that n = 8. Then dim X, (7°) = 4 and

Ay, = {lnslh AL = {0n] Doslh
Ai)3 = {26l 1571} Aiu ={[ns + x50}
Proof Using Lemma 3.2, we can easily check the lemma by an easy calculation. =
5.2 The semi-module stratification for w; + w,_,
Throughout this subsection, we set ¢ = w; + w,_3. Also we assume that n > 4.

Lemma 5.3 Every extended semi-module for u is cyclic. For any 0<j<n-2
(= dim X, (b)), we define A, similarly as in Section 3.3. Then we have A, = @ and
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|AL| = j. More precisely, if j is odd, then Ai, is equal to

{[XY,n—ﬁ—l]’[X;/,n—j-!-S + X;/,n—j+2:|’ e

Vv Vv A\
X+ Xaa ® e + Xist oo

2

i1 ]’ e [X}/—Z,n + X'\i/—l,n—l]’ [Xy,n]}’
and if j is even, then A{, is equal to

{[Xin— '+1:|’[X¥,n— ji+3 + X\Z/,n— '+2]’ cee
J J J
PO R D SN ] NEPN PR dR PN P}

Proof Let (A, ¢)bean extended semi-module for u. Let i’ be the type of A. If (A, ¢)
is noncyclic, then by Lemma 3.4, y}_ . < p, i.e., g}, = Wn—1. By Lemma 3.2, we have
A={0,1,...,n-1,...}. By Definition 3.3 (3), ¢(a) = max{k |a+n - 1—kn € A} for
all a € A. This contradicts to the assumption that (A, ¢) is noncyclic. Thus, (4, ¢) is
cyclic.

Since p' satisfies v, < W', it is easy to check that

4
Wmax$ = S[+1° " Sn-3Sn-25k-1"""S251}4»

forsomel<k<n-2andk<l<n-2 Let A={ap,a...,a,1} with ag = min A.
Then we have ¢(ap) =0, ¢(a,-;-1) =0,¢(a,_x) =2and ¢(a;) =1fori+0,n-1-
1, n — k. Thus,

V(A, @) ={(an-k>n-121+ 1), (an—k> An-1)> (An—k> An-i+1)> - - -» (An—t> An-k-1) }
U{(an7k+1) an,l,l), (ankarZa an,l,l), R (an—l) an,l,l)},

and |V(A, ¢)| = I. Then by Proposition 3.7, the description of AL for each [ in the
lemma follows from direct computation. [ ]

5.3 The semi-module stratification for w; + w,_3

Throughout this subsection, we set ¢ = w; + w,_3. Also we assume that n > 7.

Lemma 5.4 Every extended semi-module for u is cyclica. for any 1<j< %(:
dzm X”gb))’ we define A, similarly as in Section3.3. Then |A,* | =n—3and|A,* | <
2(n-4).

Proof Using Lemma 5.1, we can show the first assertion similarly as the proof of
Lemma 5.3. Indeed, for any semi-module A" in Lemma 5.1, there exists a unique ¢
such that (A%, ¢) is an extended semi-module for some y € X, (T),. The equality
|A;nTg| = n — 3 follows from the Chen-Zhu conjecture.

Let (A, ¢) be an extended semi-module for p with type p'(e¢ Wou). Let 0 < k; < k,
be integers such that y’(1) = p'(k; +1) = p’ (k2 +1) = 0, and let ! be an integer such
that p'(I +1) = 2. Assume that vj < WpaxSk,+14" Let (B, ) be an extended semi-
module for y with type si, ;144" Let ag = min A (resp. by = min B) and let inductively
aj=aj1+n-2-y'(i)n (resp. by =b;_1+n-2— (sg,up’)(i)n) for i=1,...,n.
Then ag = a, (resp. by = b,) and {ag, ai, ..., an_1} = A (resp. {bo, by, ..., b1} = B).
We will show that if I >k, +1 (resp. I =k, +1), then [V(B,y)| <|V(A, ¢)| (resp.
[V(B,y)| < |V(A, ¢)| - 1). Moreover, the equality does not hold if k, — k; < 3.
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Note that we have ¢(ag) = ¢(ax,) = ¢(ax,) =0,¢(a;) =2,y(bo) = y(by,) =
W¥(bg,+1) = 0,9 (b;) = 2. Note also that
V(A, ¢) ={(a,a’) | a € Awithgp(a) =1,a’ = ay,oray,}
w{(as,a’) | a;<a’,p(a") <2},

and

V(B,y) ={(b,b") | b e Bwithy(b) = 1, b’ = by, orby,1}
u{(b;,b") | by <b',w(b") <2}.

Let V(A, ¢); (resp. V(B, y)1) be the first subset in V(A, ¢) (resp. V(B, v)) above, and
let V(A, ¢), (resp. V(B, ¥)3) be its complement.
If I > k, + 1, then it follows that

by = ap +1 (k+ky+1) (be) = o(ag) (k # ky, ky +1)
Narsl-n (k=k+1)" "V 0a) (k=k ks +1).

In particular, bg,+1 — 1= ag, — 2. So |[V(B,y)1] > |V(A, ¢)1| implies that [V(B, y),| =
IV(A,¢)|+1 and by, < bg,. By the fact (ay,ax,+1) € V(A, ¢)2, we always have
IV(B,v)2| <|V(A, 9)2|- Thus, |V(B,v)| < |V(A, ¢)|. Moreover, if k — k; < 3, then the
equality does not hold because by, > by, .

If | = k, + 1, then it follows that

b = arp+2 (k¢k2+1) (b)— (p(ak) (kikz,k2+1)
T lag+2-2n (k=ko+1)" "V T2 0(ar)  (k=kp ks +1).

In particular, by, —2 = ag, — 2 — n. By v < WmaxSk,+14’> we have k; < "T’S Using
this, we can easily check that |[V(B,y)| < |V(A, ¢)1| and V(A, ¢)2 = {(ak,+1> g, +
n)}. Thus, [V(B,y)| < |[V(A, ¢)| - 1.

Assume that v, < WmaxSk,14’. Let (C, x) be an extended semi-module for p
with type si, 14 Similarly as above, we can show that if I > k; + 1, then |V(C, x)| <

[V(A, ¢)|. Therefore, [V(A, ¢)| > 2% holds onlyif k; = 2or I > k; = 3. From this and

3n—9 3n-11
|A,* | =n -3, weobtain [A,* | <2(n-4). .
5.4 The semi-module stratification for w; + w,, ws + w,_;

Lemma 5.5 Assume that n =5. Set y = w, + w,. Then every extended semi-module
for w is cyclic. For any1< j < 3(= dim X, (b)), we define Ay, similarly as in Section 3.3.
Then

AL =2, AL =0, A% = {0 s b A% = (X530 X5}

Proof The first assertion follows similarly as the proof of Lemma 5.3. The second
assertion follows from direct computation. ]

Lemma 5.6 Assume that n =7 or 8. Let y be w1 + w3 or w4 + wy_1. Then there exists
a noncyclic extended semi-module for .
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Proof As described in Lemma 5.2, there exists a unique top cyclic extended semi-
module (A%, ¢) for ws. We define ¢": Z — N U {~oo} by setting

ooy _Jela) (a#1)
¢ (a) = {0 (a=1).

Then it is straightforward to check that (A%, ¢') is a noncyclic extended semi-module
for wy + w;. The proof for w4 + w,-; is similar. [ ]

6 The Ekedahl-Oort stratification

Keep the notations and assumptions in Section 3. For y € X, (T),, set
SAdm(u)cye = {w € SAdm(u) | p(w)isn-cycle}.
By Theorem 2.9, X,, (b) # @ if w € SAdm(p) cyc.
6.1 The Ekedahl-Oort stratification for w;

Throughout this subsection, we set 4 = w; and ¢ = s;S;41 -+ Sy_18i-1 - - - S251. By [23,
Theorem 2.7], we have dim Xq«(b) = dim X, (b) = (4, p) - %5*.

Note that [Wyupp_(w)| is finite if and only if supp, (w) # S. Since 7™ acts transitively
on S, supp, (w) # S if and only if w € Q.

Lemma 6.1 Assumethatn >9and4 <i<n-4.Sety=cs;s;y8i-1=(li+1i+3i+
4. nii-2---32)(i-1i+2). Then we have @"y € SAdm(u) and Xou,(b) + @.

Proof Under the assumption in the lemma, we have ¢(@*y) = (u,2p) — £(y)(> 0)
and hence @#y € SAdm(u) (cf. [31, (2.4.5)]). So, by Lemma 2.8 and Theorem 2.9,
Xouy(b) # @ is equivalent to saying supp(ryr™') ¢S for any re W, such that
r(®\Douy) c ®,. It is easy to check that

(D‘D”J’ = ®{XI,Z>X2,3>---»Xi,i+1} U q){)(i,i+1»)(i+1,i+z ----- Xn-1n} Y {Xi—2>i+2’ Xi-1,i+2> Xi—l,i+3}'

In particular, we have x1,i12, Yi-1,n € ©+\Pou,. Note that we can decompose ryr!

into disjoint cycles as
(r)r(i+D) r(i+3)r(i+4) - r(n)r(i)r(i—-2) --- r(3) r(2))(r(i -1) r(i +2)),

for any r € Wy. So if ryr™ € Ujgs Wy, then (r(i—1) r(i+2)) =(12) or (n-1n).
This implies that ry;;12 or ryi_1,» is negative and hence that r does not satisfy
r(®\Dauy) c ®,. Thus, we have Xou, (b) # . ]

Lemma 6.2 Assume that n>9 and i =3 (resp. i = n—3). Set y = 5354555652 (resp.
Y = CSp_3Sn_4Sn_55n_6Sn_2). Then we have @y € SAdm(u) and Xouy(b) # @.

Proof We only treat the case i = 3. The proof for the case i = n — 3 is similar.

The first assertion is easy. To show the second assertion, by Lemma 2.8 and
Theorem 2.9, it suffices to check that ryr™ ¢ Ujgs Wy for any r e Wy such that
r(®\Pauy) c D, By an explicit calculation, it follows that y; 7, 2,0 € @ \Pouy and

ryr™ = (r(1) r(4) 7(6) r(8) r(9) --- r(n) r(3))(r(2) r(5) r(7)).
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If ryr™ € Ujes W), then (r(2) r(5) (7)) is equal to (12 3) or (n—2 n—1n). This
implies that r does not satisfy r(®,\@qu,) c O,. Thus, we have Xou, (b) #* 2. [

Lemma 6.3 Assume that n >9 and i =3 (resp. i = n—3). Let y be cs;si_1 O €S;Si41.
Then we have ®*y € SAdm(u) and Xouy(b) # @.

Proof The proofissimilar to the proof of Lemmas 6.1 and 6.2. Note that y is a n-cycle
in this case. u

Proposition 6.4  Assume that n > 9 and 3 < i < n — 3. Then the semi-module stratifi-
cation of X, (b) is not a refinement of the Ekedahl-Oort stratification.

Proof Firstassume that n >9and 4 < i < n—4.Let @y € SW be as in Lemma 6.1.
Let T be a reduction tree of @* y. By Proposition 2.6, we have

[Xary ()] = Y (g - 1) g @,
p

where p runs over all the reduction paths in T with end(p) = 7™. Setd = dim X, (b) =

(1, p) — =*. Suppose that the semi-module stratification of X, (b) is a refinement of

the Ekedahl-Oort stratification. Note that Z(®@#c) = Z(@*y) = {1}. By Lemma 2.1,
Proposition 2.3 and dim Xqu.(b) = d, we have £;(p) + {1;(p) < dim Xguy(b) <d -1
for any p. On the other hand, we have ¢;(p) + 2¢1;(p) = £(@*y) = 2d - 3. Thus, we
have ¢;(p) + €11(p) = d —1and ¢;(p) =1 for any p. It follows that

[7(Xany (6)°)°] = |Xan, ()| = k(g - 1)q* 2,

where k>1 is the number of irreducible components of Xou,(b)°. Again by
Lemma 2.1 and the fact that each Sy ,, is locally closed, we have |{(A, ¢) | dim S4 4 =
d—=1,84,9 S 1(Xauy(b)°)}| = k. By Lemma 3.4, it follows that |m(Xqu,(b)°)] >
kq?~!, which is a contradiction. This implies the proposition in this case.

Next assume that n>10 and i =3,n-3. Let @*ye€ SW be as in Lemma 6.2.
Suppose that the semi-module stratification of X, (b) is a refinement of the Ekedahl-
Oort stratification. Similarly as above, we can check that

dim Xcsisi—l(b) = XCSiSiH(b) =d-1L

Note that Z(@*c) = Z(@¥cs;si-1) = Z(@*cs;isi41) = Z(@* y) = {1}. By Lemma 2.1
and Proposition 3.13, we have dim Xqu, (b) < d — 2. Similarly as above, it follows that
[m(Xany (£)°)] = k(g —1)g?~® and |7 (Xan, (b)°)°| > kq*~2. This is a contradiction,
which finishes the proof. u

The following proposition is the complement of Proposition 6.4.
Proposition 6.5 We have
sAdm(wl)cyC ={1},
SAAM(W2) eye = {17, 50Sn-1T75 S0Sn-15n-25n-3T"> ++ +»S0Sn-1° " * S554T° } (n>5),
sAdm(wg)Cyc = {12, 50565 50565150 T > 5056555175 S05655515056 T } (n=7),
SAdm(a)3)cyC = {17, 50517, 50575655 50575651 T » 505756555150 T »

50575651505713,505756555150575613} (n=238).

https://doi.org/10.4153/50008414X24000932 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X24000932

The Ekedahl-Oort stratification and the semi-module stratification 31

Let @*y € SW be one of the elements above. Then there exists v € LP(@* y) such that
v~'yv is a Coxeter element. Moreover, X,,(b) = @ for any w € S Adm(p)\’ Adm(p) cyc,
and the semi-module stratification of X,(b) is a refinement of the Ekedahl-Oort
stratification.

Proof The equalities in the proposition follow from easy calculations. For other
statements, we only prove the case for w,. Other cases can be checked similarly.
Setd = "7_3 For0< j<d,wesetwj=s¢5,_1" -s,,,zjﬂ'rz. Then ¢(w;) = 2j and
p(wj)=(Q135---n-2jn-2j+1---n24---n-2j-1).
Also it is easy to check that
(D+\(Dw,- = {Xl,n—2j+1> <o X1,n—1> Xl,n}-

Clearly there exists r € Wy with 7(®,\®,,,) c @, such that rp(w;)r™" is a Coxeter
element (cf. [40, Lemma 5.1]).

For an integer j, let 0 < [j] < #n denote its residue modulo n. For a,b € N with a -
b € 27, we define t, ,, = s[p_2] " * S[a+2]5[a]- Set

-1 -1
Wj0 = Wi Wit = Lo,n-2j+1Wjto n—2jr1> Wj2 = tn-1n-2j+2Wj1t, -1 n-2j4+2>
-1
o Wij = Inejrtn= Wi 1ty jitn-j-
It is easy to check that the simple reflections in to 4_2ji1> tno1,n-2j42> - - > tnejitnj
define
2 2
Wi =Wjo g Wil = Sn-15n-2"""Sn-2j+2T ¢ Wj2 = Sn-25n-3 """ Spn-2j+3T
g " g Wj,j = T2.
Let p be the reduction path (in a suitable reduction tree) defined by this reduction.
=i
Using Lemma 2.1, Propositions 2.5, 2.6 and 3.13, we can check that X,, (7*) = X, and
-
X, (1) = @foranyw € SAdm(w;)\*Adm(w; ).y by counting the number of rational
points of X,,(72)° (note that X,2(7*)° = {I}). It is easy to check that
Ctnjern-j taetn-2jr2ton-2j1) = L(tnjern-j) + - + L(tn_1,n-2j+2)
+0(to,n-2j41)-

Thus by Proposition 2.3 (cf. [39, Section 3.3]), each element gI in ij(‘rz)0 is con-
tained in a Schubert cell associated to ¢,_j41,n—j - - tn_1,n-2j+2t0,n-2j+1- By Lemma 5.1,
it follows that 77(X,, (b)) is equal to the unique semi-module stratum of dimension j.
This shows that the semi-module stratification of X, (b) is a refinement of the
Ekedahl-Oort stratification. ]

6.2 The Ekedahl-Oort stratification for w; + w,_,

Throughout this subsection, we set y = w; + w,—,. Also we assume that n > 4. Note
that the unique dominant cocharacter y’ with y’ < p is y’ = w,_;. Clearly, we have
SAdm(wy—1)cye = {7"'} and the semi-module stratification of X,, ,(z"™") is a
refinement of the Ekedahl-Oort stratification.
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Proposition 6.6 For any 1< j<n—2(=dim X, (b)), there exist exactly j elements
of length 2j in SAdm(p)g, = SAdm(p)ey\{7"'}. Let @*y e SW be one of such
elements. Then there exists v € LP(@* y) such that v=' yv is a Coxeter element. Moreover,
Xy (b) = @ for any w € $Adm(u)\ Adm(p)cye, and the semi-module stratification of
X, (b) is a refinement of the Ekedahl-Oort stratification.

Proof We first prove by induction on 7 that there exist at least j elements of length
2jin ®Adm(u)g,., each of which has finite part y such that yr~" is a Coxeter element
for some r € Wy, s, ,y satisfying r(®,\®gauy) c @, (cf. Lemma 2.8). Note that if
y € W, satisfies

) y'(2) <y (3) < - <y H(n-2)andy (n-1) < y ! (n),

then by [39, Lemma 4.4], we have @*y € SAdm(u). In particular, since /(@*) =
3n -5, ®*y is an element of length 2 in SAdm(,u)gyc for any n-cycle y of length 3n —
2j—5.1f n = 4, then 515,53, 525351 and 15253515, are 4-cycles satisfying (*). Moreover,
$2(5152838152)$2 = $15253 is a Coxeter element and s,(DP 1\ D pug,s,s555,5,) € P+- So the
claim is true for n = 4.

Suppose that n >5 and the claim is true for n—1. Let y be a (n—1)-cycle in
Wisi50,.5n0} SUch that y1(2) < y'(3) < -+ <y (n-3)and y ' (n-2) < y'(n -
1). Then y' :=5(12 --- n)y(12 --- n)™" satisfies (*) and ¢(y’) = £(y) +1. So by
the induction hypothesis, there exist at least j—1 elements in Wy which are n-
cycles of length 31 — 2j - 5 satisfying (). Note that for any r € Wy, ¢ .1, we have
'y rt=5512 - n)ryr*(12 .- n), where ' =(12 -+ n)r(12 --- n)le
,,,,, sn_s}+ S0 again by the induction hypothesis, it is easy to verify that there exists
r€ Wig,,....s,} such that r'y'r""!is a Coxeter element and ' (@, \@guyr) c @, Set
€ =Sp_2Sy_154—3 - - $251. It is easy to check that if # is odd (resp. even), then

.....

C, CSp—28n-3> -+« > CSp—2Sn-3"°"52,CSp—25n-3" 5253545 ...,
CSp—28p-3- 5253854 Sp-25n-1
(resp. Cy CSp—28n—35 «vo 5 CSp_28y—3°°°83,CSy_28p—3"°°535283, ...,

CSp—28Sp—3" 535283 " 'Sn—zsn—1),

are n-cycles satisfying (*). If y” is one of the elements above, then @, - .+ n
@, c ®guy and there exists r' € Wy, . 1 such that #/y’r'~" is a Coxeter element.
Thus, the claim is also true for n. By induction, our claim is true for any n > 4.
Clearly v,, = v;, for any w € $ Adm( #)Zyc- Since b = 7771 is superbasic, the unique
minimal length element in the o-cojugacy class of w is 7"~* (cf. [22, Proposition 3.5]).
By Theorem 2.4, there exist a reduction tree J for w and a reduction path p in

T such that end(p) = "' and /;(p) = 0. Thus by Lemma 2.1 and Proposition 2.6,

(X, (0)9)] > qLZW) for any w € SAdm(y)gyc. By the comparison of | Uies Adm ()2,
(X, (b)>7)|and | X, (b)*7], it follows from Lemma 5.3 and the claim we have shown
above that there exist exactly j elements of length 2j in SAdm(y)ﬁ_’yc. Moreover, it
follows that 77(X,, (b)) is irreducible of dimension @ forany w € SAdm(‘u)iyc and
that X,,(b) = @ for any w € SAdm(p)\* Adm(p) cyc.
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It remains to show that the semi-module stratification of X,(b) is a refinement
of the Ekedahl-Oort stratification. We prove that for any w ¢ SAdm(y)iyc, there
exists an extended semi-module (A*, ¢) for  such that (X, (b)°) = S , (= Xﬁ (b)
by Lemmas 3.9 and 5.3). We argue by induction on £(w). If {(w) =2, i.e, w=
@ CSp—pSn—3"" 528354 *Sp—2Sn-1 = SoSp—1T" "}, then w —4 sowsg = 7" 1. It easily fol-
lows from Theorem 2.9 that X,-15,(b) = @. So by Proposition 2.3, we have X, (b)° =

IsoI/I and hence n(X,,(b)°) = Xﬁl’" (D).

Suppose that £(w) > 4 and the claim is true for any w' € SAdm(y)Eyc with £(w") <
{(w). Since (X, (b)°?) is irreducible of dimension @, there exists a unique
extended semi-module (A%, ¢) for u such that dim(7(X, (b)°)n Sarg) = @.
Also, 71(X,,(b)°) NS, is open in both 7(X,,(b)°) and S ,. So the closure of
(X (b)) NS, in X, (b) is equal to both the closure of 7(X,,(b)°) and S, in
X, (b). By [20, Proposition 2.6] (see also [11, Section 3.3]), the closure of (X, (b)°)

is contained in

L (X (0))-

w/eSAdm(p)g ., w'<sw
Here we write w' <s w if there exists x € W, such that xw’x™' <w. By the above
description of the finite part of each element in S Adm( 1) ye» it is easily checked that
ifw' e sAdm(y)gyc and £(w) = £(w"), then there is no x € W such that xwx™' = w’.
So if w' € *Adm(u) ¢, w' <s w and £(w') = £(w), then w = w'. Thus, by the induc-
tion hypothesis, we have S, , € 7(X,,(b)°). By [2, Propositions 2.11(5) and 3.4],
the closure of Sy, is contained in a union of semi-module strata T such that
dim(Ty\Sar,y) < dim S ,. Thus, by the induction hypothesis and Lemma 5.3, we
have 7(X,,(b)°) € S, Therefore, it follows that 7(X,, (b)) = Sa,,, which com-
pletes the proof. [ ]

6.3 The Ekedahl-Oort stratification for w; + w,_3

Throughout this subsection, we set y = w; + w,_3. Also we assume that n > 7. Note
that the unique dominant cocharacter y’ with y’ < yis ' = w,_,.

Proposition 6.7 There exist at least 2(n—4) elements of length 3n—-11 in
SAdm(y)zyc = SAdm(¢)cyc\SAdm(wy—2)cyc. There also exists an element w of length

3n —14in S Adm(u) such that p(w) is not a n-cycle and X,, (b) # @. Moreover, the semi-
module stratification of X, (b) is not a refinement of the Ekedahl-Oort stratification.

Proof For any 1<j<n-—4, set Cj = Sn-3Sn-2Sn-1Sn—4 """ Sj+28j+181 " " - Sj-15j. For
j=n-3,set c,_3 =515, --5,-1. Then we have @¥c; € sAdm(y)zyc and ((@¥cj) =
3n-9 forany 1< j<n-3.If1<j<n->5, then ¢js,_35,-2 and c¢js,_35,_4 are n-
cycles of length 3n — 11 satisfying @*¢;s,_35p—2, @ Cjsn_35n-4 € *Adm(u)g, . Fur-
ther ¢,_45,-35,—2 and c,_35,_45,_3 are also n-cycles of length 3n — 11 satisfying
¥ Cy_ySp_3Sn—2, D" Cy_3Sy_4Sn_3 € SAdm(‘u)é’Yc. Thus, we have found 2(n —4) dis-

tinct elements of length 31 — 11 in $ Adm(p)g..
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Sety = cy_s5Sn-3Sn—25n-aSn—6Su—5 = (12---n—-6n-2nn-3)(n—-4n-5n-1).
Then @*y e SAdm(u) and y1,u-1, Xn-5,n € +\DPory. By Theorem 2.9, Xqu,(b) #
@. This shows the second assertion. We can easily check the last assertion using
Lemma 5.4, similarly as the proof of Proposition 6.4. ]

6.4 The Ekedahl-Oort stratification for w; + w,, ws + w,_;

Note that the unique dominant cocharacter y’ with ' < w; + w; is w3. By an explicit
calculation, it is easy to verify the following statements (cf. Proposition 6.5).

Proposition 6.8 Assume that n = 5. Set ¢ = w; + w,. Forany1< j < 3(=dim X, (b)),
set sAdm(,u)gyc = SAdm(¢)cyc\*Adm (w3 )cyc. Then we have

S o 3 3 3 3
Adm(y)cyc = {505453525150T 5505154535084 T ,850545352T , 505154837 }

Let @y € SAdm(u)¢y . Then there exists v € LP(@* y) such that v™'yv is a Coxeter

element. Moreover, X,,(b) =@ for any w € SAdm(p)\SAdm(u)cye, and the semi-
module stratification of X, (b) is a refinement of the Ekedahl-Oort stratification.

Lemma 6.9 Assume that n=7 or 8. Let y be w; + wy (resp. wy + wy_1). Set ¢ =
$152+ - Sp_1. Then @*csysys3 € SAdm(p) and Xoucss,s,(b) # @ (resp. @¥c 'sssys3 €
SAdm(p) and Xgu-15.6,5,(b) # @). Further csys;s3 (resp. ¢ 'sssys3) is not n-cycle.

6.5 The Ekedahl-Oort stratification for w, + w,_3

We set p = w; + wy,—3. Also we assume that n > 5.

Lemma 6.10 If n is odd (resp. even), set y =s3S3---Sy_351S2+--Sn_3 (resp. y =
2537+ S,_38152**Sy_2). Then @*y € SAdm(u), Xony(b) # @ and y is not a n-cycle.

Proof If n is odd (resp. even), then y=(13 --- n-2)(24 --- n—1n) (resp.
(13- n-1)(24 -+ n)) and @*y € SAdm(u). Note that 1., x2,n-1 € D\ D .
So by Lemma 2.9, Xquy (b) # @. The proof is finished. ]

7 Comparison of two stratifications
Keep the notations and assumptions in Section 3 .
7.1 Known cases

The following results are known in (the proof of) [39, Corollary 5.5 and Theorem 5.9].

Proposition 7.1 Let = denote a universal homeomorphism.

(i) Assume that n > 3. Set y = 2w, w = @515+ - Sy and

v v v
1= {XZ,n—l T Xan—3t 0 F XnTﬂ)n;S (

Vv Vv Vv
Xl,n +X3,n—2+ +XnT—l’n3-3

Then we have X,,(b)0 = Xﬁ(b) = (X, (b)) = A
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(ii) Assumethatn > 3.Sety = 2wy + Wy_1,Wj = @¥sy_1Sp_2+**Sp_j415152 - Sp_j and

Vv Vv Vv H n
A= {Xl,zj tX22j1t T X jn (<5

Vv Vv vV . n
X2jsromn + Xajrzonmma * 0 T X (G2 3)-

for j=1,2,...,n -1 Then we have X,(b)" = Llicjcn_1 Xﬁj(b) and Xﬁj(b) =
(X, ()°) = A" for each}j.

(iii) Assumethatn =5.Set y = 3w, w = @s1535354 and A = xy, + x3 4. Then we have
X, (0)° = X, (b) = m(X,, (b)) = A*.

(iv) Assume that n=4. Set y=3w;,w=®"s;s;s3 and A= yj,. Then we have
X, ()" = Xy (b) = m(X,, (b)°) = A°.

(v) Assume thatn = 3. Set y = 4wy, w = @*s15, and A = x¥ ;. Then we have X, (b)° =
Xy (b) = m(Xw (b)) = A,

(vi) Assume that n=3. Set u=3w;+ wy,w =015, Wy =581, = X¥,3
and Ay =yx3, Then we have X,(b)°= X,’}‘(b) L Xﬁz(b) and Xﬁ"(b) =
(X, ()°) = A® for each}.

(vii) Assume that n =2. Set y = mw; with m > 1, w = @¥s; and

A= mT_lXi/,z (mT_l odd)
mlyy (%5 even).

2 X2,1

Then we have X, (b)° = Xﬁ(b) = (X, (b)) 2 AT,
7.2 Proof of the main theorem

Theorem 7.2 Let y € X, (T),. The following assertions are equivalent.

(i) The semi-module stratification of X, (b) gives a refinement of the Ekedahl-Oort
stratification.
(ii) For any weSAdm(u) with X, (b) # @, there exists v € LP(w) such that
v p(w)v is a Coxeter element.
(iii) The cocharacter y has one of the following forms:

Wi, Wp-1, (n>1),
w2, 2w, Wy, 2Wy-1, (oddn >3),
Wy + Wy_1, 201+ Wy_1 W+ Wp_2, W1+20,_1, (n>3),
w3, Wp-3, (n=7,8),
3wy, 3wu_1, (n=4,5),
w1+ Wy, W3+ Wy, (n=5),
4w, w;+3wy, 4w, 3w+ ws, (n=3),
mw; with m odd, (n=2).

If one of the above conditions holds, then for any w € SAdm(y)cye, there exist y' €
X, (T), with ' <y and a cyclic extended semi-module (A, @) for u' such that
7(X, (6)°) = X2, (b) = Sga,o. Moreover, n(X,, (b)°) 2 AVA"9),
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Proof For any w = @y e SW with u dominant, set w* = @ ¥ #W)¢() (cf.
Section 2.5 and Section 3.2). Then w* € SW and p(w*) = Wiax yWmyy (cf. Section 2.5
and Section 3.2). Note that the arguments and results in Section 5 and Section 6 for
(¢, w,b) also hold for (p*, w*, b*). Thus, in this proof, it suffices to treat the case for
either y or u*.

First assume that n > 6. Let 1 < m( < n be the residue of m modulo n. If 4 < m <
n —4,then wy,, + | % |w, < y.Soby Lemma 6.1 and Proposition 6.4, u satisfies neither
(i) nor (ii). If n > 10 and my = 3, then by Lemma 6.2, y satisfies neither (i) nor (ii). If
n =7,8 and mq = 3, then by Proposition 6.5, y = ws satisfies (i) and (ii). If, moreover,
p# w3, then w; + wy + | 2 Jw, < porwy + wyy + (| %] -1)w, < p. Soby Lemma 5.6
and Lemma 6.9, y satisfies neither (i) nor (ii). If mo = n — 2, then w; + w,_3 + [%an <
p unless y = w, 5 Or 20,1 If mg = n—1, then w, + w, 3 + | |w, < y unless p =
Wy_1, W] + Wy—3 OF Wy + 2w,_;. Thus, the equivalence of (i), (ii) and (iii) for mg = n —
2, n —1follows from Theorem 4.17, Proposition 6.5, Proposition 6.7, Proposition 6.10
and Proposition 7.1.

Assume that n=5. If mg=3, then w;+ws+ws+[%]w, <y unless =
w3, 24, @) + Wy or 3wy. If mg = 4, then 2w, + | Jw, <y unless y = wg, W) + w3 or
W) + 2wy. Set ys = (153)(24). Then it is easy to check that @1 *“**%4 y5 ¢ S Adm(w, +
w3 + wy) and X@w1+w3+w4},5(18) + @. Assume that n = 4. If my = 3, then 2w, + w3 +
[ % |w, < punless 4 = w3, wy + wa, @1 + 203 or 3w;. Set y4 = (13)(24). Then it is easy
to check that @*“>"®>y, € SAdm(2w; + w3) and Xg,+as ), (77) # @. Assume that
n=3.1f mg = 2, then 2w; + 3w, + | |w, < p unless 4 = wz, 2wy, W + 202, 3w; + W,
or 4w,. Set y; = (13). Then it is easy to check that @*“1*3%2y; € S Adm (2w, + 3w,)
and Xoror+3es y, (TS) # . Thus, the equivalence of (i), (ii) and (iii) for n = 2, 3,4, 5 also
follows from Theorem 4.17, Proposition 6.5, Proposition 6.10 and Proposition 71. The
case for n = 1is trivially true.

Assume that y satisfies one of the conditions in the theorem, which is equivalent to
each other as we have just proved. Except the cases where y or p* is w; + wp—2 (1 2 4)
or w; + wy (n=05), it follows from [43, Theorem 5.3] and Proposition 71 that each
X,’}(b)(:t @) is universally homeomorphic to an affine space. Here we will treat the
case y = wy + wy—z. The proof for y = w; + w, is similar.

Set y = w; + wy—p and pe = (Y1, 42) = (W1, Wn—2). By [32, Theorem 1.5] and the
Cartesian square right after it, pr induces a bijection between pr~'(X,(b))(c
Xy, (bs)) and X, () (cf. [40, Lemma 3.11]). Since pr is proper, it induces a universally
homeomorphism onto its image. Thus by Theorem 3.12, it suffices to show that for any
fixed1<j<n-2and [A] € A{,, there exists a unique A, = (A1, 1,) €A%, such that

M=AIfA, € .A{t., then by [32, Proposition 2.9], we have

/\2 - /\1 € W()(U], b)tl - /\2 € W()wn_z.

By Lemma 5.3, we may assume that [1] € AL has one of the following forms:

@ A=(...,1,0,...,0,-1,...,-1,0,...,0),
2 A=(0,...,0,1,...,1,0,...,0,-1,...,-1),
G) A=(1,...,1,0,...,0,-1,...,-1).
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Here the numbers of 1 and -1 are equal. In the case (1) (resp. (2)), let i=
max{i’ | A(i") = -1} (resp. min{i’ | A(i") =1}). Then (A, —A)(i) =1,(i) +1 and
(DA =A3) (i) =1=A,(i) (resp. (A, = A)(i—1) =A,(i—1) and (DA - A;)(i-1) =2 -
Aa(i—1)). Soif A, — 1 € Wow; and bA — A, € Wyw,,—,, then A,(i) =0 (resp. A,(i —
1) = 1). Hence, the i-th (resp. (i — 1)-th) entry of A, — A is equal to 1, and other entries
are equal to 0. So A, is uniquely determined by A. In the case (3), wehave (A, - 1) (n) =
Ary(n) +1land (bA - 1;)(n) =1-Ay(n).Soif A, — A € Wow; and bA — A, € Wow,—2,
then A,(n) = 0. So A, is also uniquely determined by A.

Other statements follow from the results (and proofs) in Section 5 and
Section 6. [ |
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