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UNDEFINABILITY OF MULTIPLICATION IN PRESBURGER
ARITHMETIC WITH SETS OF POWERS

CHRIS SCHULZ

Abstract. We begin by proving that any Presburger-definable image of one or more sets of powers
has zero natural density. Then, by adapting the proof of a dichotomy result on o-minimal structures by
Friedman and Miller, we produce a similar dichotomy for expansions of Presburger arithmetic on the
integers. Combining these two results, we obtain that the expansion of the ordered group of integers by
any number of sets of powers does not define multiplication.

§1. Introduction. In this paper, we consider expansions of Presburger arithmetic,
the structure Z = (Z, <,+),1 by sets of the form aN = {ai : i ∈ N}, where a ∈ Z>1.

Expansions of Z occupy a great many possibilities in terms of tameness. On the
one hand, Z itself is well-understood to be quite tame: it admits effective quantifier
elimination upon expansion by the (definable) relations ≡n of equivalence modulo
n for each integer n > 1 and thus has a decidable theory, and additionally it satisfies
model-theoretic tameness conditions like Shelah’s NIP [13]. On the other hand,
the expansion of Z by the multiplication function, i.e., the ring of integers,2 is
sufficiently complex to perform Gödel coding and hence defines any arithmetical
set. In a previous paper, Hieronymi and Schulz [9] show that (Z, <,+, aN1 , a

N

2 ) does
not have a decidable theory provided that a1 and a2 are multiplicatively independent,
i.e., their powers are all distinct except in the trivial case a0

1 = a0
2 . Here we will show

that these structures however do not define the multiplication function.

Theorem A. Let a1, ... , an ∈ Z>1. Then (Z, <,+, aN1 , ... , a
N
n ) does not define

multiplication.

Theorem A has been open since 1996; it is part of Question 9 in [10]. The
context behind the consideration of this particular class of structures deserves
several paragraphs of explanation, as Theorem A is only the latest in a long
trail of results about the arithmetic of sets of powers in Z. We note that without
the ordering relation, (Z,+, aN1 , ... , a

N
n ) is superstable of U-rank �, as shown by

Conant [5]; hence, without < there can be no definition of multiplication. Conant’s
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1Typical treatments of Presburger arithmetic instead focus on N = (N,+). In this paper, it is more

convenient to use Z. The change makes no difference for tameness; note that N defines a subset Z of
N2 and relations thereon that form an isomorphic copy of Z along with the inclusion map N ↪→ Z; and
likewise the subset N is definable in Z.

2In the integer ring, < is definable via Lagrange’s four-square theorem.
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2 CHRIS SCHULZ

methods, however, do not readily transfer to the case where ordering is included.
The introduction of< instead places us within the realm of k-automatic expansions
of Z, which usually do not satisfy NIP or NTP2 as defined in [13] but may still enjoy
decidable theories.

A k-automatic set (of arity d ∈ N) is a subset of Zd whose base-k representations
form a regular language.3 It is shown by Bruyère et al. [2] that a set is k-automatic
if and only if it is definable in Zk = (Z, <,+, Vk), where Vk : Z → kN maps n to the
largest power of k dividing n, or 0 if n = 0. The expansion Zk is known as Büchi
arithmetic. Moreover, it is shown by Bès [1] that if S ⊆ Zd is a k-automatic set not
definable in Z, then (Z, <,+, S) defines the set kN. This set is not definable in Z,4 so
these results taken together establish the status of Vk as a “maximal” k-automatic
set and kN as a “minimal” (non-Presburger-definable) k-automatic set.

By Büchi’s theorem, the theory of Zk is decidable. Hence, so is the theory
of any expansion of Z by k-automatic sets for a fixed k. Let a1, a2 ∈ Z>1 be
multiplicatively independent. A natural next step is then to examine the properties
of (Z, <,+, Sa1 , Sa2 ) where Sai for i = 1, 2 is an ai -automatic set not definable in
Z. The first major result in this direction is the Cobham–Semënov theorem, which
states that this expansion is always nontrivial, i.e., it is never the case that Sa2 is
definable in Za1 . This was proven by Cobham [4] for the case where Sa1 , Sa2 ⊆ N

and extended to the more general case Sa1 , Sa2 ⊆ Nd by Semënov [12].
It is also known that the theory of (Z, <,+, Sa1 , Sa2 ) is never decidable. For the

case Sa1 = Va1 , Sa2 = Va2 this was proven by Villemaire [14], and the more general
case where Sa1 = Va1 was shown by Bès [1]. Both of these authors also show that
in the respective cases, the resulting structure defines the multiplication function on
N and hence cannot have a decidable theory. However, in [9], multiplication is not
shown to be definable in (Z, <,+, Sa1 , Sa2 ). Theorem A thus demonstrates that a
departure from Villemaire and Bès’ method is required for the most general result
by exhibiting for the first time a structure, namely (Z, <,+, aN1 , a

N

2 ), that defines
non-Presburger a1-automatic and a2-automatic sets and has an undecidable theory
but does not define the multiplication on Z. We will leave mostly open the question
of intermediate expansions, i.e., of characterizing for precisely which Sa1 , Sa2 the
structure (Z, <,+, Sa1 , Sa2 ) defines multiplication, for future work.

Theorem A follows from the conjunction of two new results, one number-theoretic
and one model-theoretic. The first is an application of a proposition of Schlickewei
and Schmidt [11]. Its full statement is quite technical, so we will defer discussion
of the exact proposition until Section 3, but in essence it provides a bound for
solutions to a particular form of equation involving a finitely generated multiplicative
subgroup of a number field that lie outside one of a finite number of hyperplanes. We
are able to use this result by noting that aN1 ∪ ··· ∪ aNn is a subset of such a subgroup,
namely the subgroup whose generators are {a1, ... , an}. From that, we derive:

Theorem B. Let E =
⋃
i a

N

i , where ai ∈ Z>1 for 1 ≤ i ≤ n, and let f : ZM → Z

be a Presburger-definable function. Then f(EM ) has zero natural density.

3To account for our convention of using Z as mentioned in the previous footnote, we elaborate: a set
S ⊆ Zd is k-automatic if φ(S) ∩ Nd is k-automatic, where φ is each of the 2d maps that flip the signs of
any subset of the coordinates.

4The set kN is not semilinear and thus cannot be Presburger-definable by Ginsburg and Spanier [7].
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UNDEFINABILITY OF MULTIPLICATION 3

In order to utilize Theorem B, we build on previous work by Friedman and
Miller [6]. There, they prove that when we add a predicate to the signature of an
o-minimal expansion R of the ordered real additive group, representing a set E such
that the image of E under any function definable in R has a small closure, then
every set definable in the resulting structure either has interior or is small. Here
“small” can refer to any of several sparseness conditions on subsets of the real line:
nowhere dense, Lebesgue-null, etc. In this paper, we produce a corresponding result
for expansions of the ordered group of integers. Here, by (Z, <,+, E)#, we mean
(Z, <,+, (S)) where S ranges over all subsets of powers of E.

Theorem C. Let I be any set-theoretic ideal on Z. Let E ⊆ Z be such that, for
everyM ∈ N and h : ZM → Z Presburger-definable, the image h(EM ) is in I. Then
every subset of Z definable in (Z, <,+, E)# either contains arbitrarily long pieces of
some arithmetic progression or lies in I.

Theorem C is a significant result in its own right, and it merits elaboration. Here
“S ⊆ Z contains arbitrarily long pieces of some arithmetic progression” means that
there exists N ∈ Z+ such that for any � ∈ Z+, there exist elements n1, ... , n� of S
such that ni = n1 + (i – 1)N for all 1 ≤ i ≤ �. This condition is a simultaneous
strengthening of two more common largeness conditions used in number-theoretic
literature. In particular, a set S satisfying the above contains arbitrarily long
arithmetic progressions, and it is piecewise syndetic. We additionally note that our
“arbitrarily long pieces of some arithmetic progression” condition is equivalent to
stating that for some S ′ ⊆ S, there exists a unary affine function f : Z → Z such
that f(S ′) is a thick set (hence, it is also a weakening of thickness).

On the other hand, note that we need not assume much about the particular
sparseness condition we wish to use; any set-theoretic ideal on Z will do. We need
only assume that subsets and finite unions of sparse sets are sparse. The obvious
choice is to use zero natural density, but there are other useful notions of sparseness
that give rise to the same dichotomy. The reason we are able to give such a general
statement instead of listing specific sparseness conditions as Friedman and Miller
did has to do with the fact that in the discrete setting, we have no reason to take the
topological closure of the image of E.

Theorem C has broader applications within the model theory of expansions
of Presburger arithmetic, but within our paper its application will be in proving
Theorem A. We will thus state here the proof of Theorem A using Theorems B and
C, with the rest of the paper devoted to proving Theorems B and C.

Proof of Theorem A. Let E = aN1 ∪ ··· ∪ aNn . By Theorem B, the image of EM

under any Presburger function h has zero natural density. Let I be the collection
of sets of zero natural density; this is a set-theoretic ideal. Thus, we may apply
Theorem C and conclude that every subset of Z definable in (Z, <,+, E)# either
contains arbitrarily long pieces of some arithmetic progression or has zero natural
density. Note that (Z, <,+, E)# defines the sets aNi for 1 ≤ i ≤ n. Then it suffices to
show that (Z, <,+, ·) defines some set that does not contain arbitrarily long pieces
of any arithmetic progression yet has positive natural density.

Let S ⊆ Z contain arbitrarily long pieces of the same arithmetic progression; then
as mentioned previously, S is piecewise syndetic. Thus it suffices to give an example
of a subset of Z (or N) that is arithmetical and has positive natural density but is
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4 CHRIS SCHULZ

not piecewise syndetic. The squarefree integers form such a set: it is not piecewise
syndetic (folklore), its natural density is 6

�2 by a famous 1885 theorem of Gegenbauer
[8], and it is defined by the formula ¬∃y, z : 1 < y ∧ y · y · z = x. 


§2. Preliminaries. Throughout, N denotes the natural numbers, which by our
convention comprise all nonnegative integers including zero. “Defines” refers to
definability by a first-order formula without parameters, although note that this
makes little difference in our scope; in the structures we will consider, any constant
is definable. We denote the cardinality of set A by |A|.

One of our main results uses the concept of the natural density of a subset of Z.
Natural density is typically defined for subsets of N, so it is worth explaining our
definition:

Definition 2.1. The upper natural density of a subsetA ⊆ Z is the limit superior:

lim sup
n→∞

|A ∩ {– n, – n + 1, ... , n – 1, n}|
2n + 1

.

The lower natural density of A is the limit inferior:

lim inf
n→∞

|A ∩ {– n, – n + 1, ... , n – 1, n}|
2n + 1

.

If these two expressions are equal, we refer to both as simply the natural density of
A, denoted d (A).

Note that for many A ⊆ N, the natural density of A as a subset of N is not equal
to its natural density as a subset of Z; rather, in general, the natural density of
such an A ⊆ N is equal to the natural density of A ∪ –A as a subset of Z. This
choice of convention is so that the natural density on Z may act as a finitely additive
probability measure. We thus check that the appropriate properties are satisfied, as
well as some other convenient properties.

Lemma 2.2. Let A,B,C ⊆ Z. Then all of the following hold:

(i) d (∅) = 0.
(ii) d (Z) = 1.

(iii) Let A,B be disjoint, with C = A ∪ B . If any two of A,B,C have a natural
density, so does the remaining set, and d (A) + d (B) = d (C ).

(iv) If d (A) = 0 and B ⊆ A, then d (B) = 0.
(v) If d (A) exists, then for all k ∈ Z, d (A+ k) = d (A), whereA+ k = {a + k :
a ∈ A}.

(vi) If d (A) exists, then for all 0 �= k ∈ Z, d (kA) = d (A)
k , where kA = {ka : a ∈

A}.
(vii) If A is Presburger-definable, then d (A) exists.

(viii) For k > 1, d (kN) = 0.

Proofs of these results are elementary and not qualitatively different from the
corresponding proofs over N. As such, they have been omitted.

We will make key use of a result of Schlickewei and Schmidt [11], so we use some
of their notational conventions in algebraic number theory. In particular, we will
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UNDEFINABILITY OF MULTIPLICATION 5

let ∗ denote the elementwise product of two tuples, i.e., (x1, ... , xn) ∗ (y1, ... , yn) =
(x1y1, ... , xnyn).

Schlickewei and Schmidt make key use of a height function for tuples of numbers
in an arbitrary number field. In this paper our only number field is Q, so we will
define the absolute and logarithmic height for Q only:

Definition 2.3. Let x = ( a1
b , ... ,

an
b ) ∈ Qn be a tuple of rational numbers such

that a1, ... , an, b ∈ Z, with b > 0 and gcd(a1, ... , an, b) = 1. Then the absolute
multiplicative height H is given by H (x) = max{|a1|, ... , |an|, b}. The logarithmic
height h(x) is equal to logH (x).

§3. A sparseness result on sets of powers. We begin by recalling (viii) in Lemma
2.2, namely that for any k ∈ Z>1, we have d (kN) = 0. Moreover, (v), (vi), and (iii)
give us that if we shift, scale, or take the union of multiple such sets, respectively,
the result will still have zero natural density. The goal of this section is to extend this
result to general Presburger-definable images of unions of sets of powers.

Note that this property is nontrivial; in fact, a set may be very sparse indeed yet
have a Presburger-definable image that is all of Z. One example: consider the set
S containing, for each i ∈ N, the numbers 1010i and 1010i + i . Clearly S has zero
natural density, and hence the observations of the previous paragraph also apply
to S. But the Minkowski difference S – S, i.e., the image of S2 under the function
(x, y) �→ x – y, contains every integer and hence has natural density 1. To state
that any Presburger-definable image of a set has zero density is a strictly stronger
sparseness condition. The remainder of this section will be focused on proving that
unions of sets of powers satisfy this sparseness condition.

We will use the following, which is Proposition A of [11] as applied to the rational
case:

Proposition 3.1. Let Γ ⊆ (Q∗)n be the subgroup of elements of (Q∗)n where each
component is a power of the corresponding ai . Then the set of all points y = x ∗ z ∈ Qn

with x ∈ Γ, z ∈ Qn, y · (1, ... , 1) = 1, andH (z)4n2 ≤ H (x) is contained in the union
of not more than 230n2

(32n2)n proper linear subspaces of Qn.

Using this proposition, we will now prove the following number-theoretic result:

Lemma 3.2. Let k1, ... , kn be nonzero rational numbers, and let a1, ... , an ∈ Z>1.
Then the set C of integers c for which there exist e1, ... , en ∈ N satisfying:

k1a
e1
1 + ··· + knaenn = c (1)

has zero natural density.

Proof. We will prove this claim via strong induction; first, assume n = 1. Then
C is simply the set {k1a

e
1 : e ∈ Z, e ≥ 0}, which clearly has zero natural density. For

the remainder of this proof we then assume n > 1 and assume the lemma is true
with n replaced by any smaller positive integer.

Let S be the set of all tuples (x, c) such that x is of the form (ae11 , ... , a
en
n ) for

e1, ... , en ∈ N and such that (1) holds. For S ′ ⊆ S we write �(S ′) for the projection
of S ′ onto the last coordinate, which is a subset of Z; in particular, �(S) = C .
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6 CHRIS SCHULZ

We will cover S by subsets and show that the projection of each subset has upper
natural density zero.

In particular, let S1 be the set of pairs (x, c) ∈ S such that H (( k1
c , ... ,

kn
c ))4n2 ≤

H (x), and let S2 = S \ S1. Proposition 3.1 gives us that there exist finitely many
proper linear subspaces of Qn such that for each (x, c) ∈ S1, x ∗ ( k1

c , ... ,
kn
c ) lies

in one of these subspaces. For each such subspace P we let SP denote the subset
containing (x, c) ∈ S1 such that x ∗ ( k1

c , ... ,
kn
c ) ∈ P.

Fix some P. Then there exists a nontrivial linear dependence that all points in P
satisfy; i.e., there exists a nonzero vector d = (d1, ... , dn) such that for all p ∈ P we
have d · p = 0. For each (x, c) ∈ SP we thus have that:

d1
k1

c
a
e1
1 + ··· + dn

kn
c
aenn = 0. (2)

Without loss of generality (reordering coordinates), we now assume dn �= 0.
Letting k′i = ki – di kidn gives us:

k′1a
e1
1 + ··· + k′n–1a

en–1
n–1 = c. (3)

If any k′i equals zero, that term may be disregarded; (3) then either simplifies to
0 = c (in which case there are no solutions) or else satisfies the conditions of the
lemma for fewer terms than n, allowing us to apply the inductive hypothesis and
conclude that �(SP) has zero natural density. Because �(S1) is a finite union of
�(SP), �(S1) also has zero natural density.

We now consider S2 and let h ∈ Z+; assume h > max ai . Let b be the smallest
positive integer such that k1b, ... , knb are all integers, let m = max{|k1|, ... , |kn|},
and let Sh ⊆ S2 contain only those (x, c) where h ≥ |c| > m.

Let (x, c) ∈ Sh . Then |ki |
c is at most 1 for each i, so H (( k1

c , ... ,
kn
c )) is the lowest

common denominator of the kic . Because bkibc is a ratio of two integers, we must have

that H (( k1
c , ... ,

kn
c )) | bc, in particular, H (( k1

c , ... ,
kn
c )) ≤ |bc|. Therefore |bc|4n2

>
H (x), and hence,

(bh)4n2
> H (x). (4)

Because x has positive integer components, H (x) is the maximum of these
components. Then (4) tells us that no component in x exceeds (bh)4n2

.
To summarize, if (x, c) ∈ Sh , then no component in x can exceed (bh)4n2

. Let N
be the number of such x; then by counting and noting that h > max ai , we achieve:

N ≤
n∏
i=1

⌈
logai (bh)4n2

⌉
≤ (5n2 log2(bh))n.

Now note that by (1), c may be uniquely determined by x, so it follows that |Sh | ≤
(5n2 log2(bh))n. Therefore |�(Sh)| ≤ (5n2 log2(bh))n as well. Thus,

lim sup
h→∞

|�(S2) ∩ {– h, ... , h}|
2h + 1

= lim sup
h→∞

|�(Sh)|
2h + 1
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UNDEFINABILITY OF MULTIPLICATION 7

≤ lim sup
h→∞

(5n2 log2(bh))n

2h + 1

= 0.

We conclude that the upper natural density of �(S2) is zero (it cannot be negative).
Therefore C = �(S) = �(S1) ∪ �(S2) also has zero natural density, concluding

the proof. 


This is not difficult to generalize to the condition on Presburger images that is the
goal of this section.

Theorem B. Let E =
⋃
i a

N

i , where ai ∈ Z>1 for 1 ≤ i ≤ n, and let f : ZM → Z

be a Presburger-definable function. Then f(EM ) has zero natural density.

Proof. By (iii) in Lemma 2.2, it will suffice to cover the image of f by sets of
zero natural density.

By Theorem 4.1 of [15], any Presburger-definable f is piecewise linear, in the
sense that its domain EM can be partitioned into finitely many sets such that the
restriction of f to each may be written as an affine function with rational coefficients.
Thus it suffices to show that the image of EM under an affine function with rational
coefficients has zero natural density, i.e., without loss of generality we may assume f
is affine with rational coefficients. In fact, we may further assume that the coefficients
are integers and that the constant term is zero, because multiplication or translation
by a constant integer does not affect whether the natural density of a set is zero
by (v) and (vi) of Lemma 2.2. Lastly, we may assume f actually depends on every
argument, as otherwise we may simply treat f as having a lower-dimensional domain.

The only case we need to consider in depth, then, is the case where f is a linear
function (with zero constant term) with nonzero integer coefficients. We write
f(x) = k1x1 + ··· + kMxM (here x = (x1, ... , xM )). Let (ji)i be a sequence of M
integers with 1 ≤ ji ≤ n. We note that there are only finitely many such sequences
(nM precisely). Then consider the subset S of the domain of f in which xi ∈ (aji )

N

for each i. We note that the domain of f, EM , is the union of these subsets over each
sequence (ji)i .

It suffices to show that f(S) = {k1x1 + ··· + kMxM : x ∈ S} has zero natural
density; but this is Lemma 3.2. 


§4. A dichotomy for certain expansions of Presburger arithmetic. In this section,
we aim to adapt a result of [6], in which the authors prove that an expansion of the
real ordered group (or any o-minimal expansion thereof) by a set E with sufficiently
sparse images gives rise to a dichotomy in the sparseness of its definable sets. Here
we will show a similar result for expansions of Presburger arithmetic on the integers.
Let E ⊆ Z.

The approach in [6], which we will largely replicate, is to perform quantifier
elimination in a certain infinitary logic by defining a collection of sets Sn. The
Boolean algebra generated by Sn is called Tn, and the union of these algebras
across all n ∈ N is closed under projections, the heart of the quantifier elimination
argument. Once this is proven, we note that a dichotomy for S1, after quantifiers
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8 CHRIS SCHULZ

are eliminated, gives rise to a corresponding dichotomy for all sets definable in
(Z, <,+, E), the main theorem of this section.

Because our approach is largely similar to that of [6], we will not waste too much
time rehashing their approach and will mainly discuss the parts in which our proofs
differ. Our approach deviates from theirs in two places. One, as our result is over
Z instead of an o-minimal structure, we need to use the cell decomposition over
Presburger arithmetic given in [3]. Two, the proof of one lemma is significantly
different due to the discrete setting.

The collectionsSn and Tn, as in [6], are defined to satisfy four simultaneous claims,
from which Theorem C will follow:

1. Tn is a Boolean algebra.
2. Every element of Tn is a finite union of elements of Sn.
3. The projection of a set in Sn+1 onto the first n coordinates is a set in Tn.
4. Suppose that A ∈ S1 does not contain arbitrarily long pieces of the same

arithmetic progression. Then there exist M and h : ZM → Z Presburger such
that A ⊆ h(EM ).

We will first define some notation previously used in [6]. For X ⊆ Zm+n and
u ∈ Zm, we let Xu denote the fiber {x ∈ Zn : (u, x) ∈ X}. We will also make use of
the diamond product of two sets of integers:

Definition 4.1. Given A ⊆ Zl × Zn and B ⊆ Zm × Zn, we let

A � B = {(x, y, z) ∈ Zl+m+n : (x, z) ∈ A ∧ (y, z) ∈ B}.

Let u ∈ Zl+n and v ∈ Zm+n be such that their last n coordinates agree; then 〈u, v〉
denotes the tuple (u1, ... , ul , v) ∈ Zl+m+n.

Finally, we define a notation for certain expansions of first-order structures on
the integers:

Definition 4.2. Given an integer subset E ⊆ Z, the notation (Z, <,+, E)#

denotes (Z, <,+, (S)), where S ranges over all subsets of Ek for k ∈ N.

Now we define Tn:

Definition 4.3. Given A ⊆ Zn, we say A ∈ Tn iff there exist m ∈ N, X ⊆ Zm+n

Presburger, and an indexed family (Pα)α∈I of subsets of Em such that A =⋃
α∈I

⋂
u∈Pα Xu .

Every Presburger subset of Zn is in Tn. Moreover, given m ∈ N, P ⊆ Em, and
Presburger functions f1, ... , fm : Zn → Z, the set

{x ∈ Zn : (f1(x), ... , fm(x)) ∈ P}

is in Tn, because it is the union of all sets of the form

{x ∈ Zn : f1(x) = u1 ∧ ··· ∧ fm(x) = um}

for (u1, ... , um) ∈ P.

Claim 4.4. Tn is a Boolean algebra.

Proof. Analogous to that of [6]. 
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UNDEFINABILITY OF MULTIPLICATION 9

We will need the concept of a weak cell in order to construct Sn. This concept was
introduced by [6] for the o-minimal case; the conversion to Presburger arithmetic is
straightforward.

Definition 4.5. A weak cell in Zn+1 is a set of one of the following forms:

(i) S × {t ∈ Z : t ≡ k (mod N )},
(ii) {(x, t) ∈ Zn+1 : x ∈ S,f(x) ≤ t, t ≡ k (mod N )},
(iii) {(x, t) ∈ Zn+1 : x ∈ S, t ≤ g(x), t ≡ k (mod N )},
(iv) {(x, t) ∈ Zn+1 : x ∈ S,f(x) ≤ t ≤ g(x), t ≡ k (mod N )},

where S ⊆ Zn and f, g : Zn → Z are Presburger and k,N ∈ Z.

Lemma 4.6. Let A,B ⊆ Zm × Zn+1 be weak cells. Then A � B is a weak cell in
Z2m+n+1.

Proof. As in [6], the proof is elementary and left to the reader. 


Now that weak cells have been defined, we define Sn analogously to Tn but with
the supposition that the Presburger set that gives rise to each member of Sn be a
weak cell.

Definition 4.7. For A ⊆ Zn+1, A ∈ Sn+1 iff there exist m ∈ N, a weak cell
C ⊆ Zm+n+1, and an indexed family (Pα)α∈I of subsets of Em such that A =⋃
α∈I

⋂
u∈Pα Cu . (We let S0 = P(Z0).)

We will refer to the sets in Sn+1 arising from each of the four different types of
weak cell as being of types (i) through (iv) accordingly.

The result that sets in Tn can be decomposed into sets in Sn is now trivial
but tedious; the main obstacle is to translate a basic syntactic notion into the
corresponding set-theoretic statement. This is called Lemma 2 in [6], and for
completeness we will state our version:

Lemma 4.8. Let C1, ... , Ck+1 ⊆ Zm × Zn, and let (Pα)α∈I be a family of subsets
of Zm. Then

⋃
α∈I

⋂
u∈Pα (C1 ∪ ··· ∪ Ck+1)u is equal to the union:

⋃
α∈I

⋂
u∈Pα

(C1 ∪ ··· ∪ Ck)u

∪
⋃
α∈I

⋂
u∈Pα

(Ck+1)u

∪
⋃
α∈I

⋃
Pα,1,Pα,2

⋂
(v,w)∈Pα,1×Pα,2

((C1 � Ck+1) ∪ ··· ∪ (Ck � Ck+1))(v,w),

where, for α ∈ I , {Pα,1, Pα,2} are the partitions of Pα into two sets.

Proof. As mentioned above, the proof is purely a tedious technicality. 


We can now establish:

Claim 4.9. Every element of Tn is a finite union of elements of Sn.
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Proof. As in [6], the result follows from Lemmas 4.6 and 4.8 via induction and
the cell decomposition of Cluckers given in [3]. Presburger cells in Cluckers’s paper
are weak cells by our definition, so any Presburger set may be partitioned into weak
cells. 


Next, we aim to show the following. Combined with the previous claim, this will
show that the collection of finite unions of sets in Sn is closed under projection:

Claim 4.10. The projection of a set in Sn+1 onto the first n coordinates is a set
in Tn.

Proof. This proof is significantly different from the corresponding portion of
[6], so we give it in full.

Let A ∈ Sn+1. Then there exist m ∈ N, a weak cell C ⊆ Zm+n+1, and an indexed
family (Pα)α∈I of subsets of Em such that A =

⋃
α∈I

⋂
u∈Pα Cu . In other words,

x′ ∈ Zn+1 is in A if and only if ∃α ∈ I : ∀u ∈ Pα : (u, x′) ∈ C . Therefore, x ∈ Zn is
in �A, the projection of A onto its first n coordinates, when ∃y ∈ Z : ∃α ∈ I : ∀u ∈
Pα : (u, x, y) ∈ C .

Our goal is to show that �A is in Tn. To do this, we need to show that x ∈ �A if
and only if ∃α ∈ I ′ : ∀u ∈ P′

α : φ(u, x) for some natural number m′, index set I ′,
indexed collection (P′

α)α∈I ′ of subsets of Em
′
, and Presburger formula φ with arity

m′ + n.
We split into cases based on the type of C (hence of A).

(i) In this case, C = B × {t ∈ Z : t ≡ k (mod N )} where B ⊆ Zm+n is Pres-
burger and k,N are constant integers. Then

x ∈ �A ⇐⇒ ∃y ∈ Z : ∃α ∈ I :

∀u ∈ Pα : (u, x, y) ∈ C ∧ y ≡ k (mod N )

⇐⇒ ∃y ∈ Z :

y ≡ k (mod N ) ∧ ∃α ∈ I : ∀u ∈ Pα : (u, x) ∈ B.

We no longer need to quantify over y, because this modular congruence can
always be satisfied:

⇐⇒ ∃α ∈ I : ∀u ∈ Pα : (u, x) ∈ B.

This condition is now in the required form.
(ii) In this case, C = {(x, t) ∈ Zn+1 : x ∈ B,f(x) ≤ t, t ≡ k (mod N )} where
B ⊆ Zm+n and f : Zm+n → Z are Presburger and k,N ∈ Z. Then

x ∈ �A ⇐⇒ ∃y ∈ Z : ∃α ∈ I : ∀u ∈ Pα : (u, x, y) ∈ C
⇐⇒ ∃y ∈ Z : ∃α ∈ I : ∀u ∈ Pα :

(u, x) ∈ B ∧ f(u, x) ≤ y ∧ y ≡ k (mod N )

⇐⇒ ∃α ∈ I : ∃y ∈ Z : ∀u ∈ Pα :

(u, x) ∈ B ∧ f(u, x) ≤ y ∧ y ≡ k (mod N ).

We claim that the condition y ≡ k (mod N ) is unnecessary. Note that if
there is some y with ∀u ∈ Pα : f(u, x) ≤ y, we can merely add 1 to y until
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it satisfies the modular equivalence condition, without affecting the order
condition. Therefore, the above is equivalent to

⇐⇒ ∃α ∈ I : ∃y ∈ Z : ∀u ∈ Pα : (u, x) ∈ B ∧ f(u, x) ≤ y
⇐⇒ ∃α ∈ I : [∀u ∈ Pα : (u, x) ∈ B]∧

[f(u, x) is bounded above for u ∈ Pα].

Because the values of f are integers, f is bounded above iff it has a maximum
value on the given domain:

⇐⇒ ∃α ∈ I : [∀u ∈ Pα : (u, x) ∈ B]∧
[∃v ∈ Pα : ∀u ∈ Pα : f(u, x) ≤ f(v, x)]

⇐⇒ ∃α ∈ I : ∃v ∈ Pα :

∀u ∈ Pα : (u, x) ∈ B ∧ f(u, x) ≤ f(v, x).

Now, note that we may let I ′ = {(α, v) : α ∈ I ∧ v ∈ Pα} and let P′
(α,v) =

Pα × {v}:

⇐⇒ ∃(α, v) ∈ I ′ : ∀(u, v) ∈ P′
(α,v) :

(u, x) ∈ B ∧ f(u, x) ≤ f(v, x).

This condition is now in the required form.
(iii) In this case, C = {(x, t) ∈ Zn+1 : x ∈ B, t ≤ g(x), t ≡ k (mod N )} where
B ⊆ Zm+n and g : Zm+n → Z are Presburger and k,N ∈ Z. Then

x ∈ �A ⇐⇒ ∃y ∈ Z : ∃α ∈ I : ∀u ∈ Pα : (u, x, y) ∈ C
⇐⇒ ∃y ∈ Z : ∃α ∈ I : ∀u ∈ Pα :

(u, x) ∈ B ∧ y ≤ g(u, x) ∧ y ≡ k (mod N )

⇐⇒ ∃α ∈ I : ∃y ∈ Z : ∀u ∈ Pα :

(u, x) ∈ B ∧ y ≤ g(u, x) ∧ y ≡ k (mod N ).

As in (ii), the condition y ≡ k (mod N ) is unnecessary, this time because we
can always decrease y until it is satisfied:

⇐⇒ ∃α ∈ I : ∃y ∈ Z : ∀u ∈ Pα :

(u, x) ∈ B ∧ y ≤ g(u, x)

⇐⇒ ∃α ∈ I : [∀u ∈ Pα : (u, x) ∈ B]∧
[g(u, x) is bounded below for u ∈ Pα].

Because the values of f are integers, f is bounded below iff it has a minimum
value on the given domain:

⇐⇒ ∃α ∈ I : [∀u ∈ Pα : (u, x) ∈ B]∧
[∃v ∈ Pα : ∀u ∈ Pα : g(u, x) ≥ g(v, x)]

⇐⇒ ∃α ∈ I : ∃v ∈ Pα : ∀u ∈ Pα :

(u, x) ∈ B ∧ g(u, x) ≥ g(v, x).
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We can now apply the same technique as in (ii) to put this condition in the
required form.

(iv) In this case, C = {(x, t) ∈ Zn+1 : x ∈ B,f(x) ≤ t ≤ g(x), t ≡ k (mod N )}
where B ⊆ Zm+n and f, g : Zm+n → Z are Presburger and k,N ∈ Z. Then

x ∈ �A ⇐⇒ ∃y ∈ Z : ∃α ∈ I : ∀u ∈ Pα : (u, x, y) ∈ C
⇐⇒ ∃y ∈ Z : ∃α ∈ I : ∀u ∈ Pα : (u, x) ∈ B

∧ f(u, x) ≤ y ∧ y ≤ g(u, x) ∧ y ≡ k (mod N )

⇐⇒ ∃α ∈ I : ∃y ∈ Z : ∀u ∈ Pα : (u, x) ∈ B
∧ f(u, x) ≤ y ∧ y ≤ g(u, x) ∧ y ≡ k (mod N ).

This is the most complex case. To fully analyze it, we introduce a predicate
�:

�k,N (a, b) ⇐⇒ ∃y ∈ Z : a ≤ y ∧ y ≤ b ∧ y ≡ k (mod N ).

The condition � is Presburger (given constant k and N). Now, again, the
above condition implies that f is bounded above and that g is bounded below
on the given domain. Therefore, f has a maximum and g a minimum on the
given domain, so the above condition is equivalent to

x ∈ �A ⇐⇒ ∃α ∈ I : �k,N (max
u∈Pα

f(u, x), min
u∈Pα

g(u, x))

⇐⇒ ∃α ∈ I : ∃v,w ∈ Pα : [∀u ∈ Pα : f(u, x) ≤ f(v, x)]∧
[∀u ∈ Pα : g(u, x) ≥ g(w, x)]∧
[�k,N (f(v, x), g(w, x))]

⇐⇒ ∃α ∈ I : ∃v,w ∈ Pα : ∀u ∈ Pα : f(u, x) ≤ f(v, x)∧
g(u, x) ≥ g(w, x)∧
�k,N (f(v, x), g(w, x)).

Now let I ′ = {(α, v, w) : α ∈ I ∧ v,w ∈ Pα} and let P′
α,v,w = Pα × {v} ×

{w}:

⇐⇒ ∃(α, v, w) ∈ I ′ : ∀(u, v, w) ∈ P′
α,v,w : f(u, x) ≤ f(v, x)

∧ g(u, x) ≥ g(w, x) ∧ �k,N (f(v, x), g(w, x)).

This condition is now in the required form. 


Now that we have proven the claims that give quantifier elimination, we introduce
the dichotomy for S1.

Claim 4.11. LetA ∈ S1. Suppose that A does not contain arbitrarily long pieces of
the same arithmetic progression; in other words, suppose that given N ′, k′ there exists
� such that no � consecutive terms of the sequence (N ′i + k′)i lie in A. Then there
exist M and h : ZM → Z Presburger such that A ⊆ h(EM ).

Proof. Let A be as given. By definition there existm ∈ N, a weak cellC ⊆ Zm+1,
and an indexed family (Pα)α∈I of subsets of Em such that A =

⋃
α∈I

⋂
u∈Pα Cu .

Assume that for each α the set
⋂
u∈Pα Cu is nonempty (otherwise we may remove
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it from I without affecting A). Moreover assume I is nonempty, as otherwise A is
empty and the claim trivially follows.

If A is of type (i), then A can be written as {t ∈ Z : t ≡ k (mod N )}. But then
A fails our additional assumption for (N ′, k′) = (N, k). If A is of type (ii), A is a
union of intersections of sets of the form {t ∈ Z : x ≤ t, t ≡ k (mod N )} for the
same k,N and varying numbers x; again, this is impossible because A will contain
all sufficiently high elements of the arithmetic progression for N ′ = N, k′ = k. The
case where A is of type (iii) is analogous.

Then A must be of type (iv); hence,

A =
⋃
α∈I

⋂
u∈Pα

{(x, t) ∈ Zm+1 : x ∈ B,

f(x) ≤ t ≤ g(x), t ≡ k (mod N )}u
=

⋃
α∈I

⋂
u∈Pα

{t ∈ Z : u ∈ B,f(u) ≤ t ≤ g(u), t ≡ k (mod N )}

for some B,f, g Presburger and k,N ∈ Z. We may remove the u ∈ B condition by
assuming each Pα is a subset of B. Then this is equivalent to

A =
⋃
α∈I

{t ∈ Z : max
u∈Pα

f(u) ≤ t ≤ min
u∈Pα

g(u), t ≡ k (mod N )}.

We denote the set {t ∈ Z : maxu∈Pα f(u) ≤ t ≤ minu∈Pα g(u), t ≡ k (mod N )} in
this cover by Aα .

Now note that there exists � such that no � consecutive terms of (Ni + k)i may
lie in A, hence in any Aα . Therefore minu∈Pα g(u) < maxu∈Pα f(u) + �N . By the
well-ordering principle, maxu∈Pα f(u) exists in the image f(Em). Therefore every
element of A is equal to an element of f(Em) plus a nonnegative integer less than
�N .

Let M = m + 1, and let e0, ... , e�N–1 be �N distinct elements of E. Define h :
ZM → Z as

h(x1, ... , xm+1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f(x1, ... , xm) + 0, if xm+1 = e0,
f(x1, ... , xm) + 1, if xm+1 = e1,

...
...

f(x1, ... , xm) + �N – 1, if xm+1 = e�N–1,

0, otherwise.

(Note that h is Presburger, because it is a composition of f with piecewise linear
functions.) Then h has the required property; i.e., as proven above, every element of
A is in h(EM ). 


Using this dichotomy, we are now at last able to prove Theorem C.

Theorem C. Let I be any set-theoretic ideal on Z. Let E ⊆ Z be such that, for
everyM ∈ N and h : ZM → Z Presburger-definable, the image h(EM ) is in I. Then
every subset of Z definable in (Z, <,+, E)# either contains arbitrarily long pieces of
some arithmetic progression or lies in I.
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Proof. Consider (Z, (Y )) where Y ranges over all elements of all Sk for k ∈ N.
We demonstrated earlier that preimages of subsets ofEk under Presburger functions
are in Tn, so in particular every such subset S is also in some Tn and thus by Claim
4.9 is a finite union of sets in Sn. We also demonstrated earlier that Presburger sets
are also in Tn. Therefore, every set definable in (Z, <,+, E)# is also definable in
(Z, (Y )). By combining Claims 4.4, 4.9, and 4.10, we see that in fact any subset of
Zn definable in (Z, (Y )) is a finite union of sets in Sn. We deduce that every subset S
of Z definable in (Z, <,+, E)# is a finite union of elements of S1. Call these elements
S1 through Sr .

Assume that such an S does not contain arbitrarily long pieces of the same
arithmetic progression. Then neither do S1 through Sr ; by Claim 4.11, each Si is
a subset of the image of EM for some M under some Presburger function h. Said
images, by assumption, lie in I; hence, so do any subsets thereof, and any finite
unions of subsets thereof. We conclude that S ∈ I. 
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