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Control of roughness-induced transition in
supersonic flows by local wall heating strips
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Isolated-roughness-induced transitions controlled by local wall heating strips are studied
via direct numerical simulation and BiGlobal linear stability analysis. The transition
mechanisms are studied first with different wall temperatures. The separated shear
layer–counter-rotating vortex system is found to be the main source for transitions.
Symmetric and antisymmetric modes are observed in the wake, and the former is
dominant. The local wall heating strip can delay the transition, and this effect is
enhanced with higher heating temperature, wider strip and a combination of upstream
and downstream control strips. The upstream strip lifts up the inlet flow and weakens the
wake system in an indirect manner. The antisymmetric mode gradually vanishes, while
the symmetric mode always exists but becomes weaker. The downstream strip exhibits
a more effective transition delay by directly weakening the separated shear layer and
vortex system in the wake. Vorticity transport analysis suggests that the downstream
strip increases dissipation for streamwise vorticity and transfers it into wall-normal and
spanwise vorticity. BiGlobal analyses indicate that the downstream strip shows less
influence on the peak growth rate of the symmetric mode but significantly shrinks its
unstable region. Analyses of the disturbance energy production indicate that the upstream
strip wakens the wall-normal and spanwise shear at the same time, but the downstream
strip mainly wakens the wall-normal one. More simulations are performed with different
roughness heights, point-source disturbance and different roughness shapes. The results
show that the current method remains effective enough in delaying transitions at a wide
range of conditions.

Key words: transition to turbulence, supersonic flow, instability control

† Email address for correspondence: huanghexia@nuaa.edu.cn

© The Author(s), 2024. Published by Cambridge University Press 999 A16-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:huanghexia@nuaa.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.564&domain=pdf
https://doi.org/10.1017/jfm.2024.564


Z. Liu, H. Huang, H. Tan and M. Liu

1. Introduction

Boundary transition is common in aeronautical and astronautical systems and is generally
accompanied by increases in skin friction drag and aeroheating (Fu & Wang 2013; Zhao
et al. 2022). The mechanism of transition is complex, and it can occur via different
paths and be impacted by different influencing factors. A crucial factor is the surface
roughness because it has a significant influence on the transition onset position. Thus,
understanding roughness-induced transitions and developing efficient control methods are
important topics in fluid dynamics and aerospace science.

The roughness-induced transition is strongly related to the geometry and flow
parameters. In particular, the physical height of the roughness element is an important
parameter (Schneider 2008). When the roughness height k is much smaller than the
boundary layer thickness δ, the roughness is considered small, and the transition is mainly
induced by the inherent instability in the boundary layer, such as Tollmien–Schlichting
waves (White 2006) and Mack modes (Mack 1984), and the small roughness influences
only the evolution of these modes. When k/δ is approximately 0.5, the roughness is
considered moderate. In this case, the roughness severely distorts the flow profiles and
gives rise to the formation of new flow structures. According to previous studies, the
typical flow features include flow separation upstream of the roughness, separation shock,
a separated shear layer detached from the top of the roughness and a vortex system in the
wake region. These different structures may introduce additional instability modes that are
absent in an undisturbed boundary layer, resulting in rapid increases in disturbances and
ultimately leading to the final breakdown to transition.

Previous studies have investigated the physical mechanisms and dominant instability
sources in roughness-induced transitions. In the upstream separation region, a horseshoe
vortex is generated around the leading edge of the roughness and then develops into a
pair of streamwise vortices in the roughness wake. Separation shock is the main instability
source in hypersonic roughness-induced transitional flow past a cylinder-shaped roughness
element (Duan & Xiao 2017), and Subbareddy, Bartkowicz & Candler (2014) noted that
the interaction between the upstream vortex and separation shock is also important. The
separated shear layer shedding from the top of the roughness element has been found
to induce inflection points in the velocity profiles and cause instabilities (Hamed et al.
2016). In the roughness flow wake, the counter-rotating vortex pair shedding from the
top of the roughness element is an important flow. This pair of vortices strongly rolls up
the low-velocity fluids from the wall and thus distorts the boundary layer and bends the
separated shear layer. Muppidi & Mahesh (2012) noted that the interaction between the
separated shear layer and counter-rotating vortex pair triggers disturbances in the shear
layer and causes the breakdown to turbulence. Subbareddy et al. (2014) noted that this
interaction also contributes substantially to the hypersonic roughness-induced transition.
A similar conclusion was reported by Shrestha & Candler (2019): the separated shear
layer–counter-rotating vortex pair system is the main reason for the transition past a
diamond-shaped roughness.

Stability analysis is an effective tool for further elucidation of the stability characteristics
in the roughness wake flow. Using BiGlobal stability analysis and three-dimensional
parabolized stability equations, De Tullio et al. (2013) noted that the main instability
modes in the wake past a supersonic square roughness are the symmetric (varicose) and
the antisymmetric (sinuous) modes, the former showing a higher growth rate and greater
amplification. In addition, they noted that symmetric instability is induced by the whole
separated shear layer, while antisymmetric instability is related to the spanwise shear layer.
Lu et al. (2021, 2022b) reported similar results in which symmetric modes dominate the
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transition for squared roughness in a Mach 2.25 supersonic flow, but the antisymmetric
mode is also a reflection of the shear layer rather than only the spanwise component.
However, the type of dominant instability is related to the inflow conditions and roughness
shape. Balakumar & Kegerise (2016) and Lu et al. (2022a) reported that the most unstable
instability is symmetric when a diamond roughness interacts with two-dimensional inflow
disturbances and antisymmetric when the inflow disturbance becomes three-dimensional.
For an oblique roughness element at Mach 4.8, Groskopf & Kloker (2016) noted that the
tilt varicose mode shows a larger amplification near the roughness, while the tilt sinuous
mode is dominant in the far wake.

In addition to the geometric parameters, the wall temperature is another important factor
in transition. Generally, wall heating can destabilize the first mode and stabilize the second
mode. For roughness-induced transitions, both Redford, Sandham & Roberts (2010) and
Bernardini, Pirozzoli & Orlandi (2012), Bernardini et al. (2014) found that the transition
behaviour depends strongly on the wall temperature. Therefore, they proposed transition
maps by correlating the wall temperature with several modified roughness Reynolds
numbers. However, they focused mainly on the transition onset positions and criteria and
did not discuss how the wall temperature influences the instability modes in the transition
processes.

The control of roughness-induced transitions has attracted considerable interest. Several
control methods have been proposed for modifying the flow profiles in the wake region.
One approach is to place another roughness element behind the first roughness element
(Kobayashi et al. 1995; Sharma et al. 2014; Suryanarayanan et al. 2017). Using this
method, the distortion caused by the first element in the wake region can be counteracted
by the second element. However, this method has the limitation that it requires special
roughness geometries. Another method is based on the shielding effect (Kuester et al.
2014; Kuester & White 2015) by lowering the roughness around the higher roughness.
Suryanarayanan et al. (2020) confirmed that the shielding effect can effectively suppress
the isolated-roughness-induced transition in subsonic flows. Lu et al. (2020a,b) further
analysed the upstream and downstream shielding effects in transonic boundary layers in
detail and noted that the upstream and downstream control mechanisms are different.
In addition to the above passive control methods, active transition control approaches
have been developed. Wall blowing is used to control laminar–turbulent breakdown
induced by first-mode disturbance (Sharma et al. 2019; Kneer, Guo & Kloker 2021)
and square/diamond-roughness-induced transitions (Lu et al. 2021, 2022a). Local wall
cooling/heating is another widely used control method. It is reported to have significant
influences on first- and second-mode-induced transitions in high-speed flows (Zhao et al.
2018).

As mentioned above, wall temperature is an important factor that influences
roughness-induced transitions. However, there are no relevant studies on whether local
wall heating or cooling can control the roughness-induced transition. Therefore, this
investigation investigates the roughness-induced transition in a supersonic flow controlled
by local wall heating strips using direct numerical simulation (DNS) and BiGlobal linear
stability analysis. The study strategy is as follows. We first study the transition mechanism
of isolated-roughness-induced transitions in detail and further investigate the effect of wall
temperature on transitions. On this basis, local wall heating strips located both upstream
and downstream of the roughness zone are studied to identify the differences in the role
of transition control, combined with different wall heating temperatures, strip widths and
strip locations. Finally, transition control scenarios with different roughness heights, a
point-source disturbance hole and different roughness shapes are considered and studied
to examine the credibility of the proposed transition control method.
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The rest of this paper is arranged as follows. The numerical methods are described
in § 2, and the computational details including the set-up of the physics problem and a
grid sensitivity study are presented in § 3. The numerical results are then presented and
discussed, with the mechanisms for the roughness-induced transition under different wall
temperatures in § 4, the transition control mechanisms analysed in § 5 and other transition
control cases in § 6. Finally, the study is concluded in § 7.

2. Numerical methods

2.1. Direct numerical simulation
For the present DNS, the governing equation is the fully three-dimensional Navier–Stokes
equation for unsteady compressible flows, i.e.

∂Q
∂t

+ ∂F j

∂xj
= ∂F j,ν

∂xj
, (2.1)

where t is time, xj is the Cartesian coordinate in the j direction and Q, F j and F j,ν represent
the vectors of the conserved variables, convective fluxes and viscous fluxes, respectively.
These are defined as

Q =
⎡
⎣ ρ

ρui
ρe

⎤
⎦ , F j =

⎡
⎣ ρuj

ρuiuj + pδij
(ρe + p) uj

⎤
⎦ , F j,ν =

⎡
⎣ 0

σij
σijui + qj

⎤
⎦ , (2.2a–c)

with

e = p
(γ − 1) ρ

+ u2
i

2
, σij = μ

(
∂uj

∂xi
+ ∂ui

∂xj

)
− 2

3
μδij∇ · u, qj = μ

cp

Pr
∂T
∂xj

. (2.3a–c)

Here, δij is the Kronecker delta, u = [u, v, w]T is the velocity vector, p is the pressure, ρ is
the density and cp is the specific heat. The viscosity μ is calculated using Sutherland’s law.
The governing equations are closed by the state equation of a perfect gas. The specific heat
ratio γ , gas constant R and Prandtl number Pr are set to 1.4, 287 and 0.72, respectively.
The velocities are non-dimensionalized by the streamwise free-stream velocity u∞, and
the other variables are non-dimensionalized by the corresponding free-stream values. The
reference length is Lref = 0.001 m.

The governing equation is solved on a body-fitted grid using the finite-difference DNS
code OpenCFD developed by Li, Fu & Ma (2010). The third-order Runge–Kutta method
(Jiang & Shu 1996) is used for time advancement. For spatial discretization, the convective
flux vectors are computed by a seventh-order WENO-SYMBO scheme (Martín et al. 2006)
with Steger–Warming splitting (Steger & Warming 1981). The viscous flux vectors are
computed using the eight-order central difference method.

2.2. BiGlobal linear stability analysis
The flow variables q = [ρ, u, v, w, T]T can be split into the mean flow q̄ and the small
disturbance q′, i.e.

q(x, y, z, t) = q̄(x, y, z) + q′(x, y, z, t). (2.4)

By substituting equation (2.4) into the Navier–Stokes equation, subtracting the mean
flow and ignoring the nonlinear terms, we obtain the governing equation of the small
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disturbance, namely the linearized Navier–Stokes (LNS) equation:

Γ
∂q′

∂t
+ A

∂q′

∂x
+ B

∂q′

∂y
+ C

∂q′

∂z
+ Dq′

= H xx
∂2q′

∂x2 + H yy
∂2q′

∂y2 + H zz
∂2q′

∂z2 + H xy
∂2q′

∂x∂y
+ H xz

∂2q′

∂x∂z
+ H yz

∂2q′

∂y∂z
, (2.5)

where Γ , A, B, C , D, H xx, H yy, H zz, H xy, H xz and H yz are matrices that contain only the
base flow variables. The non-zero elements in these matrices are listed in Appendix A.

For a steady flow that changes sharply in the wall-normal and spanwise directions
but slowly in the streamwise direction, we obtain its local stability characteristics by
introducing the quasi-parallel flow assumption, i.e. the mean flow variation in x is
negligible. Therefore, the small disturbance part can be expressed as

q′(x, y, z, t) = q̂( y, z) ei(αx−ωt) + c.c., (2.6)

where q̂ is the shape function, α = αr + iαi is the complex streamwise wavenumber, ω is
the angular frequency and c.c. is the complex conjugate. The real part αr is the streamwise
wavenumber and the imaginary part αi represents the disturbance’s spatial growth rate.
The corresponding streamwise wavelength and physical frequency are defined as

λx = 2π

αr
, f = ω

2π
. (2.7a,b)

Substituting equation (2.6) into (2.5), the LNS equation reduces to a polynomial
eigenvalue problem:

(L0 + αL1 + α2L2)q̂ = 0, (2.8)

with

L0 = D − iωΓ + B
∂

∂y
+ C

∂

∂z
− H yy

∂2

∂y2 − H zz
∂2

∂z2 − H yz
∂2

∂y∂z
,

L1 = i
(

A − H xy
∂

∂y
− H xz

∂

∂z

)
,

L1 = H xx.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.9)

The above equation is discretized using the fourth-order central difference method in the
y and z directions. At the wall, the Dirichlet condition is applied:

û = v̂ = ŵ = T̂ = 0, y = 0, (2.10)

and ρ̂ is solved for directly. A non-reflecting condition (Chang 2004) is used in the far
field, and a periodic condition is adopted for the two lateral boundaries. By solving
this eigenvalue problem at a given frequency ω using the two-level orthogonal Arnoldi
algorithm (Zhu 2005), we obtain the complex streamwise wavenumber α and the shape
function q̂.

3. Computational detail

The physical problem studied here is a supersonic flow past a smooth-edge isolated
roughness element on an isothermal flat plate. The flow parameters mainly refer to
the DNS study of Pirozzoli, Grasso & Gatski (2004). The free-stream Mach number
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x

y

z

Periodic boundary

Far field

Upstream/downstream

heating strip

Isothermal

no-slip
 wall

Sponge

region

Supersonic

outlet

Figure 1. Computational domain.

Shape kr (mm) σ (mm−1) r (mm) α (rad)

Square 0.127 9.07 1.02 0
Square low 0.122 9.07 1.02 0
Square high 0.133 9.07 1.02 0
Diamond 0.127 9.07 1.02 π/4

Table 1. Shape parameters for two roughness elements.

is M∞ = 2.25, the free-stream unit Reynolds number formed with the free-stream
density, free-stream velocity and free-stream viscosity is Re∞ = 2.5 × 107 m−1 and the
free-stream static temperature is T∞ = 169.44 K.

The computational domain is depicted in figure 1. The roughness element has a square
shape and is placed at xr = 101.6 mm. At this station, the thickness of the laminar flat-plate
boundary layer is δr = 0.444 mm. The roughness element is defined by the following
function:

yr(x, z) = kr

4

{
tanh

[
σ

( r
2

− x1

)]
+ tanh

[
σ

( r
2

+ x1

)]}
×

{
tanh

[
σ

( r
2

− z1

)]
+ tanh

[
σ

( r
2

+ z1

)]}
, (3.1)

with
x1 = (x − xr) cos α − z sin α, z1 = (x − xr) sin α + z cos α. (3.2a,b)

Here, kr is the maximum height of the roughness element and α, σ and r are shape
parameters. In this study, square roughness elements with different heights and a diamond
roughness element are considered, and their detailed shape parameters are listed in table 1.

The computational domain consists of a well-resolved region and a sponge region. The
former has a size of Lx × Ly × Lz = 150δr × 28.6δr × 10δr and the latter has a length of
50δr. The inflow domain is at x = xr − 50δr. A steady laminar profile is imposed at the
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inlet boundary. This profile is obtained by solving the following similarity equations for
the compressible laminar boundary layer (White 2006):

d
dη

(
ρμ

ρ∞μ∞
d2f
dη2

)
+ f

d2f
dη2 = 0,

d
dη

(
ρμ

ρ∞μ∞
dg
dη

)
+ Pr f

dg
dη

+ Pr (γ − 1) M2
∞

ρμ

ρ∞μ∞

(
d2f
dη2

)2

= 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.3)

with

df
dη

= u
u∞

, g = T
T∞

, η = u∞√
2ξ

∫ y

0
ρ dy, ξ =

∫ x

0
ρ∞u∞μ∞ dx (3.4a–d)

and

f (0) = df
dη

∣∣∣∣
η=0

= 0, g(0) = Tw

T∞
, lim

η→+∞
df
dη

= lim
η→+∞ g = 1. (3.5a–c)

At the outflow domain, a supersonic outlet boundary (Pirozzoli et al. 2004) is applied:
second-order extrapolation is imposed for all variables except in the subsonic region of
the boundary layer, where the pressure is set as the value of the first grid point where the
local Mach number is greater than one. For the upper far-field boundary, a non-reflecting
boundary condition (Pirozzoli et al. 2004) is imposed. Periodic conditions are set for the
two lateral domains.

The wall is set to be isothermal, and different wall temperatures and upstream or
downstream wall heating control strips are considered. Within the control strip, the wall
temperature Tw is set to a constant value; in the control strip, the wall temperature is set
as the heating temperature Tstrip. The control strip is placed at different locations (xstrip),
and its width is Lstrip = 10kr or 20kr. In addition, the heating temperature Tstrip is also a
factor considered in this study. The detailed flow parameters for all cases considered in this
study are tabulated in table 2. Here, the wall temperature and heating strip temperature are
expressed as the ratio of the wall temperature to the turbulence adiabatic wall temperature
Taw = 322 K (same as in Pirozzoli et al. (2004) and Lu et al. (2021)), which is computed
according to Taw = T∞[1 + rturb(γ − 1)M2∞/2], with rturb = 0.89 being the turbulent
recovery factor.

The naming scheme for the cases is described below. The first character indicates the
type of roughness element: S (square) and D (diamond). In the cases without control strips,
this first character is followed by a subscript that represents the temperature of the wall.
In the transition control cases, the subscript of the first character indicates the location
of the control strip. The second character L and its subscript denote the width of the
control strip. The third character T and its subscript describe the heating temperature of
the control strip. Then, the naming string is terminated, trailed by a character L (indicating
the lower roughness height kr = 0.122 mm), trailed by a character H (indicating the higher
roughness height kr = 0.133 mm) or trailed by a character P (indicating the unsteady point
source wall disturbance).

In this study, a multi-frequency point source is used to excite a wide spectrum of
disturbances through a blowing–suction hole on the wall. This disturbance hole takes the
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Case Tw/Taw (xstrip − xr)/δr Lstrip/kr Tstrip/Taw kr (mm) Adis nx × ny × nz

S0.9 0.9 — — — 0.127 — 1400 × 104 × 258
S1.0 1.0 — — — 0.127 — 1400 × 104 × 258
S1.1 1.1 — — — 0.127 — 1400 × 104 × 258
S1.2 1.2 — — — 0.127 — 1400 × 104 × 258
S−6L10T2.0 1.0 −6 10 2.0 0.127 — 1500 × 104 × 258
S−6L10T2.5 1.0 −6 10 2.5 0.127 — 1500 × 104 × 258
S−6L20T2.0 1.0 −6 20 2.0 0.127 — 1550 × 104 × 258
S−10L10T2.0 1.0 −10 10 2.0 0.127 — 1540 × 104 × 258
S−10L20T2.0 1.0 −10 20 2.0 0.127 — 1590 × 104 × 258
S6L10T2.0 1.0 6 10 2.0 0.127 — 1450 × 104 × 258
S6L10T2.5 1.0 6 10 2.5 0.127 — 1450 × 104 × 258
S6L20T2.0 1.0 6 20 2.0 0.127 — 1500 × 104 × 258
S10L20T2.0 1.0 10 20 2.0 0.127 — 1500 × 104 × 258
S±6L10T2.0 1.0 ±6 10 2.0 0.127 — 1550 × 104 × 258
S±6L20T2.0 1.0 ±6 20 2.0 0.127 — 1650 × 104 × 258
S1.0L 1.0 — — — 0.122 — 1400 × 104 × 258
S−6L20T2.0L 1.0 −6 20 2.0 0.122 — 1550 × 104 × 258
S6L20T2.0L 1.0 6 20 2.0 0.122 — 1500 × 104 × 258
S1.0H 1.0 — — — 0.133 — 1400 × 104 × 258
S−6L20T2.0H 1.0 −6 20 2.0 0.133 — 1550 × 104 × 258
S6L20T2.0H 1.0 6 20 2.0 0.133 — 1500 × 104 × 258
S1.0P 1.0 — — — 0.127 0.002 1400 × 104 × 258
S−6L20T2.0P 1.0 −6 20 2.0 0.127 0.002 1550 × 104 × 258
S6L20T2.0P 1.0 6 20 2.0 0.127 0.002 1500 × 104 × 258
D1.0 1.0 — — — 0.127 — 1400 × 104 × 258
D−6L20T2.0 1.0 −6 20 2.0 0.127 — 1560 × 104 × 258
D6L20T2.0 1.0 6 20 2.0 0.127 — 1510 × 104 × 258

Table 2. Details of all cases in this paper.

form of (Groskopf & Kloker 2016; Kneer et al. 2021)

ρv = AdisΘ(x, z)
M∑

m=1

cos
(m

8
ω0t

)
, (3.6)

with

Θ(x, z) = −3

[
1 −

√
(x − xc)2 + (z − zc)2

Rdis

]4

+ 4

[
1 −

√
(x − xc)2 + (z − zc)2

Rdis

]3

,

(3.7)

where Adis is the disturbance amplitude, M is the number of disturbances and ω0 is the
fundamental angular frequency. In this study, Adis = 0.002, M = 50 and ω0 = 1703 kHz
are used. The choice of ω0 is shown in detail in § 6.2. The disturbance hole is centred at
(xc, zc) with xc − xr = −40δr and zc = 0. The radius of the hole is Rdis = 4kr.

In all cases, the grid resolution for the well-resolved region is 
x+
max × 
y+

w × 
z+
max =

14.5 × 0.95 × 6.5. In the roughness and heating strip regions, the streamwise grid is
further refined to 
x+ = 6.4 to better simulate the flow field. The grid numbers for all
cases are also shown in table 1. The grid resolution in this study is basically the same as
those used in the DNS of a turbulent boundary layer by Pirozzoli et al. (2004) and Li et al.
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Case Pirozzoli et al. (2004) Li et al. (2009) Sharma et al. (2019) S1.0 S1.0,fine

M∞ 2.25 2.25 2.0 2.25 2.25

x+

max 14.50 14.10 33.90 14.50 7.50

y+

w 1.05 1.10 0.85 0.95 0.85

z+

max 6.56 6.60 7.58 6.50 5.50

Table 3. Summary of the grid resolution and sensitivity study.

(2009), and it is much finer than that of the DNS of oblique-mode breakdown transition
by Sharma et al. (2019) (see table 3). A fine grid with 
x+

max × 
y+
w × 
z+

max = 7.5 ×
0.85 × 5.5 and nx × ny × nz = 2480 × 122 × 304 is used to evaluate the grid sensitivity.
Figure 2(a) plots the time- and spanwise-averaged skin friction coefficient Cf for cases
S1.0 and S1.0,fine. The DNS results from Lu et al. (2021) and the empirical correlation of
White (2006) for the fully turbulent boundary layer are shown for reference:

Cf = 0.455
S2 ln−2

[
0.06

S
Re∞x

μ∞
μw

√
T∞
Tw

]
, (3.8)

with

S =
√

Taw/T∞ − 1
arcsin(A) + arcsin(B)

, (3.9)

A = 2a2 − b√
4a2 + b2

, B = b√
4a2 + b2

, (3.10a,b)

a =
√

γ − 1
2

M2∞
T∞
Tw

, b = Taw

Tw
− 1. (3.11a,b)

From the comparison, we can see that the Cf distributions in cases S1.0 and S1.0,fine
only have slight differences, and are both in good agreement with the reference value
of Lu et al. (2021). In the turbulent region, the DNS results correspond well to the
empirical correlation. In addition, the width of the computational domain Lz is referenced
to the study of Pirozzoli et al. (2004) and Lu et al. (2021). To verify whether Lz
is sufficiently large, two-point correlation in the spanwise direction is analysed. The
correlation coefficient for a quantity q is defined as (Pirozzoli et al. 2004)

Rqq(Lc) =
nz−1∑
k=1

q′
kq′

k+kc
, kc = 0, 1, . . . , nz − 1, (3.12)

where Lc = kcLz/nz is the distance between two points. Figure 2(b) plots the correlation
coefficients at y = kr and two different streamwise locations x − xr = 60δr or 95δr. The
correlation coefficients for u, v and w at the two positions decrease rapidly within
Lc < 0.1Lz and approach nearly zero beyond that distance. This means that the two-point
correlation functions are sufficiently decorrelated over a distance Lz/2, thus ensuring that
the computational domain in the spanwise direction is sufficiently wide to capture the flow
fluctuation. Overall, the results confirm that the current grid resolution, computational
domain and numerical methods are accurate enough to simulate the roughness-induced
transition process.
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Figure 2. Results of (a) validation and grid sensitivity study and (b) spanwise correlation coefficients at
y = kr for case S1.0.

(a)

(b)

5

0 0.2 0.4 0.6 0.8 1.0

0

–5

z/
δ r

u/u∞

0 0.001 0.002 0.003 0.004

0 20 40 60 80 100

0 20 40 60 80 100

Cf
5

0

–5

z/
δ r

(x – xr)/δr

Figure 3. (a) Instantaneous streamwise velocity at y = 0.5kr and (b) time-averaged skin friction coefficient
Cf at the wall for case S1.0.

4. Mechanisms for the square roughness-induced transition

4.1. General flow features
The typical flow features in roughness-induced transitions were investigated through case
S1.0. Figures 3(a) and 3(b) plot the instantaneous u at y = 0.5kr and the time-averaged Cf
at the wall, respectively. From the velocity contours, we can find two evident high-speed
streaks past the roughness element. The streaks first remain stable until they begin to
break down at x − xr ≈ 22δr. Then, high-speed patterns appear in the streaks as well as in
the low-speed region between the streaks. As the flow develops further downstream, the
high-speed region expands in the spanwise direction, and a clear turbulent wedge appears.
From the averaged Cf contours, the roughness element first induces a high-wall-shear
region. In the roughness wake region, the Cf distribution exhibits a behaviour similar to
that of the velocity distribution. The wall shear in the two streaks is greater. As the flow
develops to the breakdown position, Cf sharply increases and gradually expands in the
spanwise direction.
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Control of roughness-induced transition in supersonic flows

According to previous studies (De Tullio et al. 2013; Lu et al. 2021), the
roughness-induced transition at a supersonic Mach number is mainly induced by the
instabilities in the wake region. Figure 4 shows different cross-stream slices in the wake
region of case S1.0. Here, the contours of the Q criterion are plotted, which is defined as

Q = −1
2

[(
∂u
∂x

)2

+
(

∂v

∂y

)2

+
(

∂w
∂z

)2
]

− ∂u
∂y

∂v

∂x
− ∂u

∂z
∂w
∂x

− ∂v

∂z
∂w
∂y

, (4.1)

with the reference value Qref = u2∞/L2
ref . At x − xr = 6δr, we observe two pairs of

vortices. The pair on the outside is the horseshoe vortex that is formed by the side of the
roughness. The pair closest to the z = 0 plane is the counter-rotating vortex created by the
separated shear layer above the roughness. The Q criterion states that the counter-rotating
vortex is much stronger than the horseshoe vortex. The isolines of the streamwise velocity
indicate that the boundary layer is strongly distorted by the counter-rotating vortex and is
concentrated on the top region of the roughness element. The isolines of local shear, which
is defined as

us =
√(

∂u
∂y

)2

+
(

∂u
∂z

)2

, (4.2)

show that the distorted boundary layer generates a strong shear layer above the roughness
element, and slight velocity fluctuations are observed in this region. As the flow develops
downstream, the strength of the vortices decreases, and the boundary layer distortion
also decreases; the separated shear layer remains strong and is gradually bent by
the counter-rotating vortex. Moreover, the velocity fluctuations become much stronger,
and the resulting distribution is highly consistent with that of the high-shear region.
This phenomenon indicates that the interaction between the separated shear layer and
counter-rotating vortex generates a high-shear region above the roughness element, thus
leading to an increase in disturbance amplitude.

To further investigate the instability in the roughness wake region, spectral analysis was
used. As shown in figure 4, six different probes are adopted in the flow field to record the
flow fluctuation, where probes 1, 3 and 5 are placed in the core of the counter-rotating
vortex and probes 2, 4 and 6 are placed in the high-shear region at the z = 0 plane.
Figure 5 shows the spectral analysis results of the streamwise velocity fluctuations at
these probes. Here, the dimensional physical frequency is non-dimensionalized to the
Strouhal number St based on u∞ and Lref . The six probes clearly confirmed the presence
of a dominant mode with St = 0.462 (f = 271 kHz). This phenomenon further indicates
that the dominant instability in the roughness wake results from the combination of the
counter-rotating vortex and the separation shear layer.

BiGlobal linear stability analysis was then applied to case S1.0. In this study, the
computational grid for BiGlobal analysis is the same as that used for DNS. Figure 6 shows
the instability characteristic at x − xr = 10δr with the dominant frequency St = 0.462.
Figure 6(a) plots a part of the eigenvalue spectrum. We can observe two evident unstable
modes (marked by red and blue), and the real part of the shape function of the streamwise
velocity (ûr) is shown for the two modes in figures 6(b) and 6(c), respectively. For the mode
in figure 6(b), the growth rate −αi is large, and its shape function ûr shows a symmetric
pattern with respect to the z = 0 plane. For the mode in figure 6(c), the growth rate −αi
is low, and its shape function ûr shows an antisymmetric pattern with respect to the z = 0
plane. In addition, the distributions of the two modes are located above the roughness
element, corresponding to the distributions of velocity fluctuations and the high-shear
region in figure 4(d).
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Figure 4. Slices of case S1.0 at (a,b) x − xr = 6δr, (c,d) x − xr = 10δr and (e, f ) x − xr = 14δr coloured by
(a,c,e) Q criterion and (b,d, f ) streamwise velocity fluctuation. The grey solid curves in (a,c,e) and (b,d, f ) are
isolines of streamwise velocity and local shear value, respectively. The black dashed curve is the outline of the
roughness element.
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Figure 5. The spectral analysis results of streamwise velocity fluctuation at (a) probes 1, 3 and 5 and (b)
probes 2, 4 and 6 for case S1.0.

Figure 7 further plots the growth rate and amplification factor N at different streamwise
positions and frequencies. Here, the N factor is calculated integrally in the streamwise
direction for each frequency St as (Groskopf & Kloker 2016)

N(St, x) =
∫ x

x0

−αi(x) dx, (4.3)

where x0 is the start position for the integration. This operation is similar to that of
the traditional linear stability theory and has also been used in BiGlobal analysis of
roughness-induced transitions (Groskopf & Kloker 2016). For the symmetric mode, its
maximum growth rate is approximately −αiLref ≈ 1.1 and is located in the region
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ûr/|û|max
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Figure 6. BiGlobal analysis results at x − xr = 10δr with St = 0.462 for case S1.0: (a) eigenvalue spectrum
and the real part of the shape function û for the (b) symmetric mode and (c) antisymmetric mode. The grey
solid curves are isolines of the streamwise velocity. The black dashed curve is the outline of the roughness
element.

5.5δr < x − xr < 7.5δr with 0.49 < St < 0.58. For the antisymmetric mode, the
maximum growth rate is only approximately 0.3. In addition, the antisymmetric mode
becomes stable at x − xr > 18δr. This phenomenon indicates that the symmetric mode
has a higher growth rate and a wider unstable region than the antisymmetric mode. The
maximum amplification factor of the symmetric mode exceeds 6 at x − xr > 21δr within
0.41 < St < 0.51. However, because of the much lower growth rate, the N factor of the
antisymmetric mode is lower than that of the symmetric mode at the same streamwise
location and frequency. Because the antisymmetric mode is almost stable at x − xr > 16δr,
the amplification factor in this region has almost no growth. The above analysis further
confirms that the symmetric mode is much stronger than the antisymmetric mode and is
therefore responsible for the final transition to turbulence.

Through the amplification factor, we can determine the most unstable mode, which has
the maximum N factor. Figure 8 shows the growth of the streamwise velocity fluctuation
from DNS and compares it with the most unstable symmetric (St = 0.477, f = 280 kHz)
and antisymmetric (St = 0.366, f = 215 kHz) modes. The amplitude of the symmetric
mode is clearly much larger than that of the antisymmetric mode and shows much better
agreement with the DNS. In addition, the most unstable frequency identified by BiGlobal
analysis is very close to that identified by the spectral analysis. Overall, the above results
indicate that BiGlobal linear stability analysis can simulate the evolution of the instability
in the wake region with reasonable accuracy.

4.2. Wall temperature effects
The wall temperature effect is studied through comparisons between cases S0.9, S1.1 and
S1.2. Figure 9(a–d) first shows the general instantaneous flow features for the three cases.
For examining if the transition occurs in case S1.2, the computation is performed on
a longer well-resolved domain with Lx = 310δr and nx = 3240, and the sizes and grid
numbers in wall-normal and spanwise directions are not changed. Note that figure 9(d) is
the spatial continuation of figure 9(c).

Clearly, compared to case S1.0, a lower wall temperature results in an earlier transition
to turbulence, while a higher wall temperature significantly delays the transition. For case
S0.9, the streaks become stronger and quickly break down at x − xr ≈ 15δr. For case S1.1,
the strength of the streaks decreases, and the breakdown position moves downstream to
x − xr ≈ 45δr. When Tw increases to 1.2Taw in case S1.2, the high-speed streaks further
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Figure 7. (a,b) Growth rate and (c,d) amplification factor of the (a,c) symmetric mode and
(b,d) antisymmetric mode at different frequencies and streamwise positions for case S1.0.
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Figure 8. Comparison of streamwise velocity fluctuation amplitudes between DNS and symmetric and
antisymmetric modes from BiGlobal analysis for case S1.0.

weaken and remain steady in the short computational domain, and the breakdown finally
occurs at x − xr ≈ 190δr. Figure 9(e,f ) further plots the time- and spanwise-averaged Cf
and momentum thickness Reynolds number Reθ for these cases. It is clear that as the wall
temperature increases, the transition onset position is delayed significantly. Taking case
S1.0 as the baseline, the transition onset in case S0.9 moves upstream by approximately 7δr
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Figure 9. Instantaneous streamwise velocity at y = 0.5kr for (a) case S0.9, (b) case S1.1 and (c,d) case S1.2
and time- and spanwise-averaged (e) skin friction coefficient and ( f ) momentum thickness Reynolds number.

and that in case S1.1 moves downstream by approximately 15δr. In case S1.2, we scale the
horizontal axis to display the complete distribution of Cf (see the green label). Obviously,
Cf exhibits laminar behaviour in a long distance until it begins to increase sharply at
x − xr ≈ 190δr. A similar phenomenon is shown by the distribution of Reθ . However, the
rapid increase in Reθ occurs slightly later than that in Cf , indicating that the growth of the
boundary layer lags the increase in skin friction.

The reason why an increasing wall temperature can suppress the transition is discussed
below. Figure 10 shows the streamwise velocity on the z = 0 plane in the upstream region
of the roughness. Obviously, with a higher wall temperature, the inflow boundary layer
is lifted. Using the flow variables computed by the similarity equations (White 2006),
we can compute the roughness Reynolds number Rek = ρkUkkr/μk. Here, the subscript k
represents the quantity measured at y = kr in a smooth laminar boundary layer. For cases
S0.9, S1.0, S1.1 and S1.2, Rek are 522, 420, 342 and 282, respectively. This phenomenon
shows that a heating wall can significantly reduce the roughness Reynolds number and
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by the Q criterion. The grey solid curves on the left half are isolines of the streamwise velocity and the black
solid curves on the right half are isolines of the local shear value. The black dashed curve is the outline of the
roughness element.

suppress the transition. In addition, the streamlines in figure 10(b,d,f ) show that a heating
wall weakens the vortex system upstream of the roughness, and the separation region also
decreases.

The changes in the roughness wake region are shown in figure 11. A comparison
between cases S0.9 and S1.1 shows that a higher wall temperature significantly weakens the
strength of the horseshoe and counter-rotating vortex pairs in the wake region, reducing the
boundary layer distortion. Thus, the local shear strength decreases substantially, indicating
that the strength of the separated shear layer decreases. As discussed in § 4.1, the transition
induced by the roughness element is mainly caused by the interaction between the vortex
system and separated shear layer; therefore, a higher wall temperature may suppress the
instabilities in the roughness region and delay the transition.

Using BiGlobal linear stability analysis, the neutral curves of the symmetric and
antisymmetric modes at x − xr = 10δr are plotted in figure 12(a). Obviously, compared
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Figure 12. BiGlobal results for cases with different wall temperatures at x − xr = 10δr. (a) Neutral curves and
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with the baseline case S1.0, a lower wall temperature in case S0.9 results in a higher growth
rate and wider unstable region for the symmetric and antisymmetric modes. However,
a higher wall temperature significantly suppresses the unstable modes. For cases S1.1
and S1.2, for the symmetric mode, the growth rate decreases, and the unstable region
is narrowed. The antisymmetric mode is fully suppressed and becomes fully stable. In
addition, as Tw increases, the neutral curve moves towards the low-frequency region. The
frequency of the disturbance with the largest growth rate also decreases significantly. The
distributions of ûr are illustrated in figure 12(b–e) for the disturbance with the largest
growth rate at x − xr = 10δr. Although the wall temperature changes, the shape of the
unstable modes changes little compared with that in the baseline case S1.0. The peak
disturbance is still located in the separated shear layer region above the roughness element.
This phenomenon indicates that varying the wall temperature does not change the type of
dominant instability but rather only influences the growth rate and the unstable region.

5. Basic transition control cases

5.1. Upstream control
Having obtained an understanding of the flow features of the roughness-induced transition
and the main instability characteristics in the roughness wake region, as well as the
wall temperature effect on the transition, we now focus on transition control through
upstream and downstream wall heating strips. Figure 13(a–e) depicts the instantaneous
streamwise velocity distributions for cases with upstream control effects. We find that
with the upstream wall heating effect, the high-speed streaks in the wake region remain
stable over a longer distance compared with those in case S1.0. In case S−6L10T2.0, with a
control strip that has a width of Lstrip = 10kr and a heating temperature of Tstrip = 2.0Taw,
the breakdown of the wake moves downstream to x − xr ≈ 30δr. In case S−6L10T2.5,
as the temperature of the heating strip increases to Tstrip = 2.5Taw, the transition is
further delayed to x − xr ≈ 34δr. In case S−6L20T2.0, the width of the strip increases to
Lstrip = 20δr, and the transition moves further downstream to x − xr ≈ 36δr compared
with that in case S−6L10T2.0. In addition, the effect of the location of the control strip
was also studied. In cases S−10L10T2.0 and S−10L20T2.0, although the control strip has
been moved upstream to xstrip − xr = −10δr, the transition scenario shows only slight
differences compared with cases S−6L10T2.0 and S−6L20T2.0, respectively. The above
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Figure 13. Instantaneous streamwisse velocity at y = 0.5kr for (a) case S−6L10T2.0, (b) case S−6L10T2.5,
(c) case S−6L20T2.0, (d) case S−10L10T2.0 and (e) case S−10L20T2.0 and time- and spanwise-averaged ( f ) skin
friction coefficient and (g) momentum thickness Reynolds number.

comparison shows that the transition suppression is enhanced with a wider control strip
or a higher control temperature, and the location of the control strip weakly influences the
transition control effect. Figures 13( f ) and 13(g) plot the time- and spanwise-averaged Cf
and Reθ for the cases with upstream control strips, respectively. Generally, the comparison
of Cf shows that the upstream wall heating strip can suppress the transition, but the
suppression effect is not very significant, and the flow develops to full turbulence in all
the cases. The suppression effect is enhanced with increasing heating temperature and
width of the control strip. The location of the upstream control strip has little effect on the
transition onset position. The evolution of Reθ has a similar tendency to that of Cf .

The flow fields in the wake region are plotted in figure 14. Compared with the baseline
case S1.0, the main flow structure of the wake changes slightly with the upstream wall
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Figure 14. Slices of (a,b) case S−6L10T2.0, (c,d) case S−6L10T2.5 and (e, f ) case S−6L20T2.0 at x − xr = 10δr
coloured by (a,c,e) Q criterion and (b,d, f ) streamwise velocity fluctuation. The grey solid curves in (a,c,e) and
(b,d, f ) are isolines of streamwise velocity and local shear value, respectively. The black dashed curve is the
outline of the roughness element.

heating strip in case S−6L10T2.0. However, the vortex system and separation shear layer
become weaker. The distortion of the flow profile and the velocity fluctuations are also
diminished. As the heating temperature or width of the control strip increases, the strength
of the wake structure further decreases. Therefore, the interaction between the separation
shear layer and counter-rotating vortex is suppressed, and the instabilities in the wake
region are suppressed as well. As the transition is induced by the instabilities in the wake
region, the transition is delayed by the upstream wall heating strip.

Compared with the cases with a whole heating wall, the upstream wall heating strip
does not directly influence the flow structures in the roughness wake region but rather
influences the inflow boundary layers. Figure 15 plots the streamwise velocity distributions
in the z = 0 plane. The upstream wall heating strip can directly lift up the inflow, thereby
decreasing Rek and weakening the flow structure in the wake region. In addition, upstream
wall heating strips can weaken the flow separation in front of the roughness element.
Using DNS of the upstream wall heating strip but without the roughness element, the flow
parameters at x = xr and y = kr are listed in table 4. These parameters reveal that the local
Mach number, density and streamwise velocity decrease with increasing temperature. This
variation results in a lower Rek. In addition, Rek in cases S−6L10T2.0 and S−10L10T2.0 only
have a slight difference, and the difference between cases S−6L20T2.0 and S−10L20T2.0
is a little more obvious. However, these data are extruded from undisturbed laminar
boundary layer profiles; in the actual transition cases, the roughness element will hinder
the development of the flow and therefore the situation will be a little different.

To further investigate the effect of upstream wall heating on the instability in the
roughness wake region, BiGlobal linear stability analysis was performed. Figure 16 shows
part of the eigenvalue spectrum for cases S−6L10T2.0, S−6L10T2.5 and S−6L20T2.0 at
x − xr = 10δr with St = 0.462. In case S−6L10T2.0, we can still observe two obvious
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Figure 15. Streamwise velocity and streamlines in the z = 0 plane: (a,b) case S1.0, (c,d) case S−6L10T2.0 and
(e, f ) case S−6L20T2.0.

Case Mk ρk/ρ∞ uk/u∞ Tk/T∞ Rek

S−6L10T2.0 0.5934 0.5224 0.3639 1.9046 357
S−6L10T2.5 0.5694 0.4996 0.3567 1.9873 324
S−6L20T2.0 0.5565 0.4859 0.3531 2.0394 306
S−10L10T2.0 0.5996 0.5290 0.3658 1.8843 364
S−10L20T2.0 0.5695 0.5009 0.3566 1.9856 322

Table 4. Parameters of upstream control cases at x = xr and y = kr in an undisturbed laminar boundary layer.

unstable modes, namely the symmetric (marked in blue) and antisymmetric (marked in
red) modes. However, compared with the results of case S1.0 in figure 6(a), the growth rate
−αi significantly decreases and the streamwise wavenumber αr increases slightly. In case
S−6L10T2.5, as the heating temperature increases, the growth rate of the symmetric mode
further decreases, and the antisymmetric mode vanishes. In case S−6L20T2.0, the width of
the strip increases, the symmetric mode is also suppressed and the antisymmetric mode
vanishes. This phenomenon indicates that the upstream wall heating strip can effectively
suppress both the symmetric and antisymmetric modes.

The results for the growth rate and amplification factor for the symmetric mode are
presented in figure 17. Compared with the results for case S1.0 in figure 7(a), the maximum
growth rate in case S−6L10T2.0 is significantly lower, but the unstable region becomes
larger. In case S−6L10T2.5, as Tstrip increases to 2.5 Taw, the maximum growth rate is
further suppressed, but the symmetric mode maintains a growth rate of −αiLref ≈ 0.4 for a
long distance. In case S−6L20T2.0, Lstrip increases to 20kr; however, although the maximum
growth rate further decreases, the symmetric mode still has a clearly unstable growth rate
over a long distance. From the distributions of the amplification factor, its maximum value
for the cases with upstream control strips achieves a similar level of approximately 5–5.5
before the final breakdown to turbulence. In addition, the unstable mode with the largest
growth rate or amplification factor is shifted to the lower-frequency region compared with
the case S1.0.
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Figure 16. Eigenvalue spectrum at x − xr = 10δr with St = 0.462 for (a) case S−6L10T2.0,
(b) case S−6L10T2.5 and (c) case S−6L20T2.0.
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Figure 17. (a–c) Growth rate and (d–f ) amplification factor for the symmeyric mode of (a,d) case
S−6L10T2.0, (b,e) case S−6L10T2.5 and (c, f ) case S−6L20T2.0 at different frequencies and streamwise positions.

As discussed by De Tullio et al. (2013), the growth of the symmetric mode is mainly due
to the wall-normal and spanwise components of the local shear layer. To analyse this effect,
the contributions of the wall-normal and spanwise shear components to the production of
the disturbance kinetic energy in the cases with upstream wall heating strips are analysed.
The production term is computed as

P =

Py︷ ︸︸ ︷
−ρ̄Re(ûv̂†)

∂ ū
∂y

Pz︷ ︸︸ ︷
−ρ̄Re(ûŵ†)

∂ ū
∂z

. (5.1)

Here, † represents the complex conjugate, Re denotes the real part and Py and Pz
indicate the production terms caused by the wall-normal and spanwise shear, respectively.
The distributions of Py for the most amplified modes are shown in figure 18, with the
reference value defined as Pref = ρ∞u∞|û|2max/Lref . Here, the most amplified mode is
selected by the mode that has the largest N factor in figure 17(d–f ). These modes have
frequencies St = 0.392, 0.359 and 0.342 for cases S−6L10T2.0, S−6L10T2.5 and S−6L20T2.0,
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Figure 18. Production term Py of disturbance kinetic energy at (a,d,g) x − xr = 3δr, (b,e,h) x − xr = 6δr and
(c, f,i) x − xr = 9δr for (a–c) case S−6L10T2.0, (d–f ) case S−6L10T2.5 and (g–i) case S−6L20T2.0. The grey solid
curves are isolines of the streamwise velocity. The black dashed curve is the outline of the roughness element.

respectively. At the three different streamwise locations, Py always has a positive effect,
although the magnitude of Py gradually decreases downstream. This indicates that the
wall-normal shear always contributes to the growth of the symmetric mode. In addition,
as the suppression effect caused by the wall heating strip increases, the peak value of Py
decreases significantly. This means that the wall heating strip can weaken the contributions
of the wall-normal shear to the growth of the symmetric mode.

Figure 19 further plots the distributions of Pz. Compared with Py at the same position, Pz
shows a different behaviour. That is, Py has clear negative peaks at the first two streamwise
locations. This shows that spanwise shear retards the growth of the symmetric mode
in the near-roughness region. However, different results are obtained for x − xr = 9δr.
Term Pz has a positive distribution at x − xr = 9δr for case S−6L10T2.0, although the
peak value of Pz is much smaller than that of Py. This indicates that spanwise shear
accelerates the growth of the symmetric modes in the downstream region. However, this
positive contribution becomes weaker when the transition suppression increases in cases
S−6L10T2.5 and S−6L20T2.0, as shown in figure 19( f ,i). In particular, the positive peak
is less intense than the negative peak in figure 19(i). The above results indicate that the
upstream wall heating strip can also suppress the contribution of the spanwise shear to the
growth of the symmetric mode.

5.2. Downstream control
The downstream control effect is studied below. The instantaneous streamwise velocities
at y = 0.5kr are shown in figure 20(a–d). In case S6L10T2.0, the high-speed streaks remain
steady until x − xr > 36δr, which is later than that in the upstream control case for the
same heating temperature and strip width. As the heating temperature Tstrip increased to
2.5Taw, the transition further decreased to x − xr ≈ 42δr. The effect of the strip width is
also studied. As shown by the DNS result, the wake structure in case S6L20T2.0 remains
stable at a longer distance than that in the other cases. This indicates that a wider strip has
a much more significant transition-delaying effect. The strip location is studied through
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Figure 19. Production term Pz of disturbance kinetic energy at (a,d,g) x − xr = 3δr, (b,e,h) x − xr = 6δr and
(c, f,i) x − xr = 9δr for (a–c) case S−6L10T2.0, (d–f ) case S−6L10T2.5 and (g–i) case S−6L20T2.0. The grey solid
curves are isolines of the streamwise velocity. The black dashed curve is the outline of the roughness element.

case S10L20T2.0, in which the breakdown position of the streaks is much earlier than
that in case S6L20T2.0. This indicates that later wall heating in the downstream position
may weaken the transition suppression effect. Generally, compared with the cases with
an upstream control strip (figure 13), we find that the downstream control strip is much
more effective at suppressing the transition, but the location of the strip should be close to
the roughness element. Figures 20(e) and 20( f ) plot the time- and spanwise-averaged Cf
and Reθ distributions for cases with downstream control strips, respectively. Generally,
downstream wall heating has little influence on the flow upstream of the roughness
element. Downstream of the roughness element, the heating strip causes sharp increases
in Cf and Reθ . Behind the heating strip, the values of Cf and Reθ recover to the laminar
level. Then, the sharp and continuous increases in Cf and Reθ indicate the final transition
to turbulence. According to the distribution of Cf , cases S6L10T2.0 and S6L10T2.5 exhibit
full turbulence, and the flow in case S6L20T2.0 is still in the transitional region. In addition,
there are almost no differences in the distributions of Cf and Reθ between cases S1.0 and
S10L20T2.0.

As discussed in §§ 4.2 and 5.1, a whole heating wall or an upstream wall heating strip
can weaken the flow structure in the roughness wake and therefore delay the transition.
To study the influence of the downstream wall heating strip on the wake region, slices
at x − xr = 10δr are presented in figure 21. Clearly, compared with the upstream control
case with the same Tstrip and Lstrip, the shape and strength of the wake vortex system
in the downstream control case change slightly, but the counter-rotating vortex pair is
pushed away from the z = 0 plane, and the isolines of streamwise velocity show that the
boundary layer distortion weakens. The local shear layer indicates that the strength of
the separated shear layer decreases. Therefore, the interaction between the vortex and the
separated shear layer weakens, resulting in lower streamwise velocity fluctuations. The
comparison also shows that a higher Tstrip or a larger Lstrip in the downstream control strip
can more effectively reduce the separation shear layer and suppress the development of the
velocity fluctuation. However, when a wide strip moves downstream, the boundary layer
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Figure 20. Instantaneous streamwise velocity at y = 0.5kr for (a) case S6L10T2.0, (b) case S6L10T2.5,
(c) case S6L20T2.0 and (d) case S10L20T2.0 and time- and spanwise-averaged (e) skin friction coefficient and
( f ) momentum thickness Reynolds number.

distortion and vortex system become strong, therefore resulting in a high-strength shear
layer and high-amplitude streamwise velocity fluctuations.

The discussion in § 5.1 also shows that the transition suppression effect in upstream
control cases occurs through lifting the inflow boundary layer rather than by directly
changing the wake structure. However, the downstream control strip has different
mechanisms. Figure 22 shows the streamwise vorticity ωx = ∂w/∂y − ∂v/∂z at z = 0.3δr,
with the reference value defined as ωref = u∞/Lref . In case S1.0, the streamwise vortex
retains a relatively large strength in the wake region. In case S6L10T2.0, the wall heating
strip lifts up the streamwise vortex and pushes it away from the wall. This lift-up
effect compresses the streamwise vortex in the wall-normal direction and weakens it
considerably in the downstream region. As Tstrip increases to 2.5Taw, the lifting effect
is enhanced, and the streamwise vortex is further weakened. For a wider control strip,
this effect becomes much more obvious, and the streamwise vortex further becomes weak.
However, when the wide strip moves downstream, the situation is different. Because the
flow has developed at a longer distance, the boundary layer has grown thick enough, and
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Figure 21. Slices of (a,b) case S6L10T2.0, (c,d) case S6L10T2.5, (e, f ) case S6L20T2.0 and (g,h) case S10L20T2.0
at x − xr = 10δr coloured by (a,c,e,g) Q criterion and (b,d, f,h) streamwise velocity fluctuation. The grey solid
curves in (a,c,e,g) and (b,d, f,h) are isolines of the streamwise velocity and local shear value, respectively. The
black dashed curve is the outline of the roughness element.

the lifting up to the streamwise vortex becomes much weaker. Thus, although ωx has a
lower peak value, it remains moderate for a sufficiently long distance.

The weakening of the streamwise vortex may originate from different mechanisms.
For further investigation, we use vorticity transport analysis according to the following
equation:

∂

∂t

(
1
2
ω2

i

)
+ u · ∇

(
1
2
ω2

i

)
= ωiω · ∇ui + ν

[
∇2

(
1
2
ω2

i

)
− |∇ωi|2

]
. (5.2)

Here, ω = [ωx, ωy, ωz]T is the vorticity vector. The production term is Pi = ωiω · ∇ui =∑
j Pij, its component Pii = ω2

i ∂ui/∂xi indicates the stretch of ωi and Pij = ωiωj∂ui/∂xj

represents the transfer from ωj to ωi. The dissipation term is Di = ν|∇ω2
i |.

The distributions of the production term Pxx, Pyx, Pzx and dissipation term Dx are shown
in figure 23 for cases S1.0 and S6L10T2.0. The results show that the wall heating strip causes
an evident peak in streamwise stretch production. This leads to a temporary increase in ωx,
as shown in figures 22(b). However, the distribution of Dx indicates that the wall heating
strip also causes a larger dissipation peak. We can also see that in case S1.0, Pyx or Pzx do
not show clear distributions. For S6L10T2.0, significant peaks are observed over the wall
heating strip region. The Pyx and Pzx peaks indicate that the transfer of ωx to ωy and ωz is
strong, significantly contributing to weakening the vortex system in the wake region.
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Figure 22. Contours of streamwise vorticity ωx at z = 0.3δr plane for (a) case S1.0, (b) case S6L10T2.0,
(c) case S6L10T2.5, (d) case S6L20T2.0 and (e) case S10L20T2.0.
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Figure 23. Contours of the vorticity transport term (a,b) Pxx, (c,d) Dx, (e, f ) Pyx and (g,h) Pzx at z = 0.3δr for
(a,c,e,g) case S1.0 and (b,d, f,h) case S6L10T2.0.

From the formulation of Dx, the local wall heating strip may increase Dx by enhancing
the viscosity or enhancing the gradient of ωx. To find which way is more important, we plot
the kinematic viscosity ν and the derivatives of streamwise vorticity ∂ωx/∂x, ∂ωx/∂y and
∂ωx/∂z for cases S1.0 and S6L10T2.0 in figure 24. The yellow circle symbol in each panel
represents a probe where Dx has the peak value. Comparing the viscosity in figures 24(a)
and 24(b), we can see that the wall heating strip causes a large region of high viscosity, but
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Figure 24. Contours of the (a,b) kinematic viscosity and (c,d) streamwise, (e, f ) wall-normal and
(g,h) spanwise derivatives of the streamwise vorticity in (a,c,e,g) case S1.0 and (b,d, f,h) case S6L10T2.0.

at the location of the yellow probe, the viscosity does not have very obvious differences
in the two cases. Next, we focus on the gradients of ωx. In figure 24(c,d), ∂ωx/∂x is near
zero at the probe in case S1.0, and significant peaks are observed over the wall heating strip
region in case S6L10T2.0. In figure 24(e,f ), ∂ωx/∂y has a small value at the probe in case
S1.0, but a much larger peak value is observed over the wall heating strip region in case
S6L10T2.0, and this peak region is very similar to the distribution of Dx in figure 23(b).
In figure 24(g,h), ∂ωx/∂z has similar values at the probe in cases S1.0 and S6L10T2.0, and
this value is much smaller than that of ∂ωx/∂y. Overall, the above analysis indicates that
the wall heating affects the transportation of ωx mainly through causing gradients in the
wall-normal direction.

BiGlobal analysis is conducted to further investigate the instability characteristics in
the cases with downstream wall heating strips. A part of the eigenvalue spectrum at
St = 0.462 is plotted in figure 25. For case S6L10T2.0, symmetric and antisymmetric
modes are observed, and their growth rates are lower than those in case S1.0. However,
compared with the upstream control case S6L10T2.0, the symmetric mode in case S6L10T2.0
is further suppressed, but the growth rate of the antisymmetric mode is stronger. In
addition, the streamwise wavenumbers also clearly decrease. When Tstrip increases to
2.5Taw, the symmetric and antisymmetric modes still exist in the downstream control
case, while the antisymmetric mode vanishes in the corresponding upstream control case.
As Lstrip increases to 20δr, the two modes are still unstable, although their growth rate is
further reduced, and the antisymmetric mode approaches the stable region. In addition, the
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Figure 25. Eigenvalue spectra at x − xr = 10δr with St = 0.462 for (a) case S6L10T2.0, (b) case S6L10T2.5 and
(c) case S6L20T2.0.

streamwise wavenumber decreases. Overall, we can summarize that the downstream strip
suppresses the transition by mainly stabilizing the symmetric mode, and the antisymmetric
mode is affected less strongly.

The results for the growth rate and amplification factor for the symmetric mode are
shown in figure 26. Compared with those in the upstream control cases, the growth rates
in the downstream control cases had larger peak values, but the unstable region narrowed
significantly. In particular, for S6L10T2.0, the maximum growth rate is greater than 1.2,
which is nearly 1.5 times greater than that for S−6L10T2.0. However, behind the peak
region, the growth rate quickly decreases to a much lower value as the flow develops
downstream. Therefore, the N factor needs a long distance to increase to approximately
6, as shown in figure 26(d). In case S6L10T2.5, the maximum growth rate remains at a
value of 1.2, but the unstable region further narrows, and the growth rate behind the
control strip decreases. Therefore, a longer distance is needed to induce the transition.
This is also confirmed by the amplification factor distributions in figure 26(e), which
shows that the N factor increases to approximately 6 at x − xr ≈ 40δr. In case S6L20T2.0,
a wider control strip has a much stronger stabilization effect. The maximum growth rate
decreases to approximately 1.0, and the unstable region also becomes narrower. Therefore,
the transition is delayed further downstream. However, the maximum amplification factor
in this case reaches approximately 6.7 in front of the transition, which is slightly larger than
the value of approximately 6.0 in cases S6L10T2.0 and S6L10T2.5. This difference may be
due to the neglect of the non-parallel effect in the roughness wake region in the BiGlobal
linear stability analysis.

The effects of wall-normal and spanwise shears on the disturbance production of
symmetric modes in cases with downstream wall heating strips are analysed below. The
results are shown at St = 0.407, 0.375 and 0.359 for cases S6L10T2.0, S6L10T2.5 and
S6L20T2.0, respectively. Similar to the upstream control cases, figure 27 shows that Py
always has a positive effect on the growth of symmetric modes. The main difference is that
the peak value of Py in the downstream control case is lower than that in the corresponding
case with the upstream control effect. This indicates that the downstream wall heating strip
has a stronger suppressive effect on the contribution of wall-normal shear to disturbance
growth; therefore, the transition is delayed further downstream.

The effects of the spanwise shear are analysed through the distributions of Pz in
figure 28. Generally, Pz has clear negative distributions at x − xr = 3δr. However, the
negative peak values gradually decrease as Tstrip or Lstrip increases. At the second position
of x − xr = 6δr, neither the positive nor negative values are pronounced. This changes
at x − xr = 9δr. At this position, Pz shows clear position peaks in the separated shear
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Figure 26. (a–c) Growth rate and (d–f ) amplification factor for the symmetric mode of (a,d) case S6L10T2.0,
(b,e) case S6L10T2.5 and (c, f ) case S6L20T2.0 at different frequencies and streamwise positions.
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Figure 27. Production term Py of disturbance kinetic energy at (a,d,g) x − xr = 3δr, (b,e,h) x − xr = 6δr and
(c, f,i) x − xr = 9δr for (a–c) case S6L10T2.0, (d–f ) case S6L10T2.5 and (g–i) case S6L20T2.0. The grey solid
curves are isolines of the streamwise velocity. The black dashed curve is the outline of the roughness element.

layer region, showing that the spanwise shear layer clearly contributes to the growth of
the symmetric mode. Compared with the upstream control cases, the wall-normal shear
contributes less to the growth of the symmetric mode in the downstream control cases,
while the spanwise shear contributes more. This indicates that the upstream wall heating
strip weakens the wake vortices and the separation shear layer as a whole; thus, the
contributions of the wall-normal and spanwise shear are both weakened. By contrast, the
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Figure 28. Production term Pz of disturbance kinetic energy at (a,d,g) x − xr = 3δr, (b,e,h) x − xr = 6δr and
(c, f,i) x − xr = 9δr for (a–c) case S6L10T2.0, (d–f ) case S6L10T2.5 and (g–i) case S6L20T2.0. The grey solid
curves are isolines of the streamwise velocity. The black dashed curve is the outline of the roughness element.

downstream wall heating strip mainly wakens the wall-normal component of the local
shear layer; thus, Py is weakened significantly, but Pz is less influenced. However, the
peak positive value of Py is much greater than that of Pz; therefore, the contribution of
wall-normal shear is more important.

5.3. Combination of upstream and downstream controls
This section further investigates the transition control effect through the combination
of upstream and downstream wall heating strips for cases S±6L10T2.0 and S±6L20T2.0.
Figure 29 first plots the instantaneous streamwise velocity for the two cases. In case
S±6L10T2.0, the breakdown position is located at x − xr ≈ 46δr, corresponding to a
delay of approximately 16δr and 10δr compared with cases S−6L10T2.0 and S6L10T2.0,
respectively. In case S±6L10T2.0, with two wide control strips, the flow is fully stabilized
in the whole computational domain, and no transition is observed. Therefore, we can
conclude that the combination of upstream and downstream strips more efficiently
suppresses the roughness-induced transition than the use of single upstream or downstream
wall heating strips.

The flow structures in the roughness wake region are analysed in figure 30.
Generally, with the combined upstream and downstream strips, the horseshoe vortex and
counter-rotating vortex pairs become much weaker. Thus, the boundary layer distortion
is relaxed, and the separation shear layer becomes weaker. As a result, the interaction
between the vortex system and separation shear layer and the increase in the streamwise
velocity fluctuations in the wake region are significantly reduced.

Furthermore, BiGlobal linear stability analysis is performed at St = 0.462 and
x − xr = 10δr for the two cases (figure 31). In case S±6L10T2.0, symmetric and
antisymmetric modes can still be found. Compared with cases S−6L10T2.0 and S6L10T2.0,
the two modes have lower growth rates. In particular, the growth rate of the antisymmetric
mode is relatively low and is very close to zero. This means that the antisymmetric mode is
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Figure 29. Instantaneous streamwise velocity at y = 0.5kr for (a) case S±6L10T2.0 and (b) case S±6L20T2.0.
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streamwise velocity and local shear value, respectively. The black dashed curve is the outline of the roughness
element.

nearly fully suppressed in this case. In case S±6L20T2.0, only a very weak symmetric mode
is observed, and its growth rate is much lower than that in cases S−6L10T2.0 and S6L10T2.0.

6. Results under other conditions

In § 5, we analysed the mechanisms of isolated-roughness-induced transitions controlled
by upstream/downstream wall heating strips in detail. In this section, simulations were
performed for several different conditions, including different roughness heights, unsteady
point-source wall disturbances and different roughness shapes.

6.1. Transition control at different roughness heights
Cases with different roughness heights kr are discussed first. Figure 32(a–f ) plots the
instantaneous streamwise velocity at y = kr (note that kr varies for different cases). As seen
in figure 32(a,d), with a lower or higher kr, the transition position is either significantly
delayed or promoted compared to the baseline case S1.0. This phenomenon indicates that
the roughness height is a key factor in the roughness-induced transition. However, the
upstream/downstream heating strips still considerably suppress the transition. In case
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Figure 31. Eigenvalue spectra at x − xr = 10δr with St = 0.462 for (a) case S±6L10T2.0 and
(b) case S±6L20T2.0.

S−6L20T2.0L, the breakdown appears at x − xr ≈ 68δr, which shows an approximately
33 − δr delay to case S1.0L. Furthermore, when a downstream strip is employed, the flow
is fully laminar, and no transition is observed. For a higher kr, the upstream control effect
becomes weak, delaying the breakdown position from x − xr ≈ 20δr to x − xr ≈ 33δr.
However, the downstream control strip is still efficient enough, which delays the
breakdown position to x − xr ≈ 65δr. This behaviour is similar to that in case S6L20T2.0.

Figure 32(g,h) plots the time- and spanwise-averaged Cf and Reθ for these cases.
Generally, the wall heating strip causes similar sudden increases in Cf under different
kr. Then, it is observed that Cf first departs from the laminar value in case S1.0H. When
an upstream or downstream control strip is employed, the position at which Cf begins to
increase sharply is delayed. With a lower kr, the transition onset position in the no-control
case is first delayed, and the upstream or downstream control strip becomes more effective.
A similar tendency was also found in the development of Reθ . Overall, for different kr,
both the upstream and downstream wall heating strips exhibit a considerable delay in the
transition, and this effect becomes stronger at lower kr. This phenomenon can be attributed
to the fact that a higher roughness element may severely distort the local boundary layer
and increase its thickness, increasing the distance between the wall and the separation
shear layer and counter-rotating vortex pair. As a result, the wall heating strip has a smaller
influence on the inflow boundary layer and the vortex system in the roughness wake region.

6.2. Transition control with point-source disturbances
Under real conditions, various types of disturbances may exist in the boundary layer.
Therefore, three additional cases are simulated with a point-source disturbance hole on
the wall (3.6). Here, the dimensional angular frequency is computed as ω0 = 2πf0, where
f0 = 271 kHz is the dominant frequency identified by the spectral analysis in case S1.0
(see § 4.1). With the disturbance hole, a wide spectrum of disturbances with multiple
frequencies and a large number of spanwise wavenumbers can be excited. Figures 33(a)
and 33(b) show the normalized amplitude for the disturbance time signal and the spanwise
spectral content, respectively. With the disturbance hole, a multi-frequency time signal
is obtained, and the disturbance with the fundamental wavenumber β0 = 2π/Lz has
the largest amplitude. The two-dimensional mode with β = 0 is approximately half the
amplitude of the oblique mode with β = β0.
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Figure 32. Instantaneous streamwise velocity at y = 0.5kr for (a) case S1.0L, (b) case S−6L20T2.0L,
(c) case S6L20T2.0L, (d) case S1.0H, (e) case S−6L20T2.0H and ( f ) case S6L20T2.0H and time- and
spanwise-averaged (g) skin friction coefficient and (h) momentum thickness Reynolds number.

Figure 34(a–c) plots the instantaneous streamwise velocity at y = kr for the cases with
point-source disturbances. Compared with case S1.0 without the additional disturbance, we
can see that the breakdown position in case S1.0P is promoted upstream, but this effect is
not very large. This indicates that under the current situation, the roughness element causes
a much larger perturbation than the point-source disturbance hole. Furthermore, when a
wall heating strip is employed upstream of the roughness element in case S−6L20T2.0P,
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Figure 33. (a) Normalized disturbance time signal at (xc, zc) and (b) normalized disturbance amplitude at
different spanwise wavenumbers at x = xc.

the breakdown position is delayed to x − xr ≈ 36δr, which is very similar to that in case
S−6L20T2.0. When a wall heating strip is employed downstream of the roughness element
in case S6L20T2.0P, the delay of the breakdown is much more significant, but is weaker
than that in case S6L20T2.0.

Figure 34(d,e) plots the time- and spanwise-averaged Cf and Reθ for these cases.
Generally, the wide spectrum of the pulsing disturbance slightly promotes the transition
onset position in case S1.0P, which corresponds well with the streamwise velocity
distribution. In case S−6L20T2.0P, the transition occurs at x − xr ≈ 36δr, which is slightly
ahead of that in case S−6L20T2.0. This indicates that the upstream wall heating strip still
has a considerable transition control effect. In the downstream control case S6L20T2.0P,
the distributions of Cf and Reθ indicate that the transition occurs at x − xr ≈ 60δr, which
is approximately 10δr ahead of that in case S6L20T2.0. However, the disturbance amplitude
Adis = 0.002 is close to the value used in the point-source-disturbance-initiated transition
scenario of Kneer et al. (2021) and is much larger than the order of 10−4 and 10−7 in the
roughness-induced transition scenario of Groskopf & Kloker (2016). Overall, the upstream
and downstream strips still have evident transition control effects.

Slices at x − xr = 10δr for the three cases with point-source disturbances are shown in
figure 35. In case S1.0P, the main flow feature is similar to that in case S1.0, and the main
difference is that the point-source disturbance pulsing induces a weak vortex above the
roughness element. As a result, the shear strength in the separation shear layer increases.
In addition, the streamwise velocity fluctuation in case S1.0P is much larger than that
in case S1.0. This is due to the enhancement of the local shear strength, and due to the
point-source disturbance resulting in a higher initial disturbance level in the boundary
layer. In cases S−6L20T2.0P and S6L20T2.0P, the distributions of the vortices, streamwise
velocity and shear strength are almost the same as those without point-source disturbances,
but the streamwise velocity fluctuations become stronger significantly. This leads to an
early transition and a weak transition control effect. This phenomenon also indicates that
in the two transition control cases, the point-source disturbance hole mainly influences the
transition process by providing a higher initial disturbance amplitude.

6.3. Transition control for diamond roughness elements
The transition control cases for a diamond-shaped roughness element are shown below.
Figure 36(a–c) plots the instantaneous streamwise velocity at y = 0.5kr for cases D1.0,
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Figure 34. Instantaneous streamwise velocity at y = 0.5kr for (a) case S1.0P, (b) case S−6L20T2.0P and
(c) case S6L20T2.0P and time- and spanwise-averaged (d) skin friction coefficient and (e) momentum thickness
Reynolds number.

D−6L20T2.0 and D6L20T2.0. The effect of the roughness shape on the roughness-induced
transition can be evaluated through a comparison between figures 36(a) and 3(a). Clearly,
the breakdown position in case D1.0 is x − xr ≈ 36δr, which shows an approximately
13 − δr delay to case S1.0. When the upstream wall heating strip is employed, the streaks
in the wake remain stable over longer distances, and breakdown finally occurs near the end
of the computational domain (x − xr ≈ 86δr). When the downstream wall heating strip is
employed, the transition is fully suppressed, and the flow is laminar. Similar phenomena
are found in the Cf and Reθ distributions in figures 36(d) and 36(e), respectively. In the
baseline case D1.0, the diamond roughness element causes a higher overshoot in Cf than
the square one in case S1.0. Then, Cf recovers to a laminar state until the transition occurs
at x − xr ≈ 36δr. For case D−6L20T2.0, Cf and Reθ depart from the laminar value at a
farther downstream position. In case D6L20T2.0, Cf and Reθ always remain laminar.

To further investigate the differences between the diamond and square roughness
elements, slices at x − xr = 10δr for the three diamond roughness element cases are shown
in figure 37. Compared with the same location for case S1.0 in figures 4(c) and 4(d), we
can see that the vortex pair in case D1.0 is closer to the wall and farther from the z = 0
plane. Hence, the counter-rotating vortex pair leads to less extrusion to the separation
shear layer, and the boundary layer distortion is moderate. As a result, the shear strength
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Figure 35. Slices of (a,b) case S1.0P, (c,d) case S−6L20T2.0P and (e, f ) case S6L20T2.0P at x − xr = 10δr
coloured by (a,c,e) Q criterion and (b,d, f ) streamwise velocity fluctuation. The grey solid curves in (a,c,e)
and (b,d, f ) are isolines of the streamwise velocity and local shear value, respectively. The black dashed curve
is the outline of the roughness element.

is lower, and the streamwise velocity fluctuation is weaker. In addition, the distributions of
the shear layer and streamwise velocity fluctuations are flatter and closer to the roughness
element. When an upstream wall heating strip is employed, the counter-rotating vortex pair
is significantly weakened and moves farther from the z = 0 plane. As a result, the boundary
layer distortion is relaxed, and the shear strength and streamwise velocity fluctuation are
lower. When a downstream wall heating strip is employed, the vortex pair becomes weaker
and farther from the z = 0 plane and is lifted up by the wall heating strip. According to the
streamwise isolines and shear strength, the boundary layer distortion and separation shear
layer are further weakened compared with those in the upstream control case.

7. Conclusion

The transition delay effects of upstream and downstream wall heating strips with different
heating temperatures, widths and locations on the isolated-roughness-induced transition
are studied using DNS and BiGlobal linear stability analysis.

The flow features and transition mechanisms past a squared shape roughness element
in a supersonic boundary layer are investigated first. The roughness element generates
high-speed streaks in the roughness wake region, after which breakdown first occurs in
the streaks. The DNS results further confirm that the interaction between the separated
shear layer and counter-rotating vortex system is the main unstable source for transition.
BiGlobal analysis revealed two unstable modes in the wake, i.e. the symmetric and
antisymmetric modes, and the former generally exhibited a much larger amplification
factor and therefore contributed more to the final transition. The wall temperature effect
is studied and for a whole heating wall, the transition is delayed, while it is enhanced
at the cooling wall. BiGlobal analysis indicated clear weakness in the symmetric and
antisymmetric modes as the wall temperature increased. The antisymmetric unstable mode
disappears first, and the growth rate of the symmetric mode decreases gradually.
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Figure 36. Instantaneous streamwise velocity at y = 0.5kr for (a) case D1.0, (b) case D−6L20T2.0 and
(c) case D6L20T2.0 and time- and spanwise-averaged (d) skin friction coefficient and (e) momentum thickness
Reynolds number.

With the upstream wall heating strip, the transition is delayed. This delaying effect is
enhanced by increasing the temperature or width of the control strip, but it is not sensitive
to the location of the control strip. The upstream wall heating diminishes the strength of
vortex structures in the wake by lifting the inlet boundary layer. BiGlobal analysis revealed
that the wake instability is significantly modified. Both the symmetric and antisymmetric
modes are suppressed, and the latter disappears as the heating temperature or strip width
increases. For the symmetric mode, the peak growth rate is significantly reduced, but it
remains at a relatively moderate level over a long distance. The analysis of disturbance
energy production indicates that the upstream heating strip simultaneously weakens the
contributions of wall-normal and spanwise shear to the growth of the symmetric mode.

With the downstream wall heating strip, the delay in transition is more significant. This
effect is due to mechanisms different from those of upstream control. The downstream wall
heating strip directly influences the vortex system in the wake and weakens the separated
shear layer. Vorticity transportation analysis indicates that this weakening occurs through
increasing the dissipation of the streamwise vorticity and transferring it to wall-normal and
spanwise vorticities. BiGlobal analysis demonstrated that wake instabilities are suppressed
but that the impact is quite different. Both unstable modes are observed even if the heating
temperature and strip width increase, but the symmetric mode is still dominant. Although
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Figure 37. Slices of (a,b) case D1.0, (c,d) case D−6L20T2.0 and (e, f ) case D6L20T2.0 at x − xr = 10δr coloured
by (a,c,e) Q criterion and (b,d, f ) streamwise velocity fluctuation. The grey solid curves in (a,c,e) and
(b,d, f ) are isolines of the streamwise velocity and local shear value, respectively. The black dashed curve
is the outline of the roughness element.

the peak growth rate of the symmetric mode is high, its unstable region becomes much
smaller, and thus the symmetric mode needs a longer distance to induce transition. The
production of disturbance energy shows that the downstream wall heating strip mainly
weakens the wall-normal component and the spanwise component is less influenced. The
combination of upstream and downstream wall heating strips is further studied. Results
show that this combination makes much more efficient suppression effects on transition
than a single upstream or downstream wall heating strip.

With the understanding of transition control mechanisms, simulations are further
performed on different roughness heights, point-source disturbances and diamond
roughness elements to check the extensibility of the current transition control method. The
results show that the transition delay effect becomes obvious at a lower roughness height
but becomes weaker at a higher one. This because a higher roughness element leads to the
separation shear layer and counter-rotating vortex pair being farther away from the wall.
Therefore, the wall heating strip has smaller influences on the inflow boundary layer and
the vortex system in the roughness wake region. Within the point-source disturbance hole,
the transition delay effect is weakened, which comes from the enhancement of the initial
disturbance amplitude caused by the disturbance hole. The diamond roughness element
leads to a later transition than the square one, and the transition delay effects become much
more obvious. Overall, the local wall heating strip remains effective enough in delaying
isolated-roughness-induced transitions at a wide range of conditions.
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Appendix A. Formulation of the matrices in LNS equations

The matrices in LNS equations only contain the mean flow q̄ and derivatives, and the
Prandtl number Pr and the specific heat cp and cv . Here, only the non-zero elements are
given below:

Γ (1, 1) = 1, Γ (2, 2) = Γ (3, 3) = Γ (4, 4) = ρ̄, Γ (5, 5) = cvρ̄, (A1)

A(1, 1) = ū, A(1, 2) = ρ̄, A(2, 1) = RT̄, A(2, 2) = ρ̄ū − 4
3

∂μ̄

∂x
,

A(2, 3) = −∂ ū
∂y

, A(2, 4) = −∂ ū
∂z

, A(2, 5) = ρ̄R + 2
∂μ̄

∂T̄

(
1
3
∇ · ū − ∂ ū

∂x

)
,

A(3, 2) = 2
3

∂μ̄

∂y
, A(3, 3) = ρ̄ū − ∂μ̄

∂y
, A(3, 5) = −∂μ̄

∂T̄

(
∂ ū
∂y

+ ∂v̄

∂x

)
,

A(4, 2) = 2
3

∂μ̄

∂z
, A(4, 4) = ρ̄ū − ∂μ̄

∂y
, A(3, 5) = −∂μ̄

∂T̄

(
∂ ū
∂z

+ ∂w̄
∂x

)
,

A(5, 2) = p̄ + 4μ̄

(
1
3
∇ · ū − ∂ ū

∂x

)
, A(5, 3) = −2μ̄

(
∂ ū
∂y

+ ∂v̄

∂x

)
,

A(5, 4) = −2μ̄

(
∂ ū
∂z

+ ∂w̄
∂x

)
, A(5, 5) = cvρ̄ū − 2

cp

Pr
∂μ̄

∂x
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

B(1, 1) = v̄, B(1, 3) = ρ̄, B(2, 2) = ρ̄v̄ − ∂μ̄

∂y
, B(2, 3) = 2

3
∂μ̄

∂x
,

B(2, 5) = −∂μ̄

∂T̄

(
∂ ū
∂ ȳ

+ ∂v̄

∂ x̄

)
, B(3, 1) = RT̄, B(3, 2) = −∂μ̄

∂x
,

B(3, 3) = ρ̄v̄ − 4
3

∂μ̄

∂y
, B(3, 4) = −∂μ̄

∂z
, B(3, 5) = ρ̄R + 2

∂μ̄

∂T̄

(
1
3
∇ · ū − ∂v̄

∂y

)
,

B(4, 3) = 2
3

∂ ū
∂z

, B(4, 4) = ρ̄v̄ − ∂μ̄

∂y
, B(4, 5) = −∂μ̄

∂T̄

(
∂v̄

∂ z̄
+ ∂w̄

∂ ȳ

)
,

B(5, 2) = −2μ̄

(
∂ ū
∂ ȳ

+ ∂v̄

∂ x̄

)
, B(5, 3) = p̄ + 4μ̄

(
1
3
∇ · ū − ∂v̄

∂y

)
,

B(5, 4) = −2μ̄

(
∂v̄

∂ z̄
+ ∂w̄

∂ ȳ

)
, B(5, 5) = cvρ̄v̄ − 2

cp

Pr
∂μ̄

∂y
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A3)
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C(1, 1) = w̄, C(1, 4) = ρ̄, C(2, 2) = ρ̄w̄ − ∂μ̄

∂z
, C(2, 4) = 2

3
∂μ̄

∂x
,

C(2, 5) = −∂μ̄

∂T̄

(
∂ ū
∂ z̄

+ ∂w̄
∂ x̄

)
, C(3, 3) = ρ̄w̄ − ∂μ̄

∂z
, C(3, 4) = 2

3
∂μ̄

∂y
,

C(3, 5) = −∂μ̄

∂T̄
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∂v̄

∂ z̄
+ ∂w̄

∂ ȳ

)
, C(4, 1) = RT̄, C(4, 2) = −∂μ̄

∂x
, C(4, 3) = −∂μ̄

∂y
,

C(4, 4) = ρ̄w̄ − 4
3

∂μ̄
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, C(4, 5) = ρ̄R + 2

∂μ̄
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(
1
3
∇ · ū − ∂w̄

∂z

)
,

C(5, 2) = −2μ̄

(
∂ ū
∂ z̄

+ ∂w̄
∂ x̄

)
, C(5, 3) = −2μ̄

(
∂v̄

∂ z̄
+ ∂w̄

∂ ȳ

)
,

C(5, 4) = p̄ + 4μ̄

(
1
3
∇ · ū − ∂w̄

∂z

)
, C(5, 5) = cvρ̄w̄ − 2

cp

Pr
∂μ̄

∂z
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)

D(1, 1) = ∇ · ū, D(1, 2) = ∂ρ̄

∂x
, D(1, 3) = ∂ρ̄

∂y
, D(1, 4) = ∂ρ̄

∂z
,

D(2, 1) = ∇ū · ū + R
∂T̄
∂x

, D(2, 2) = ρ̄
∂ ū
∂x

, D(2, 3) = ρ̄
∂ ū
∂y

, D(2, 4) = ρ̄
∂ ū
∂z

,

D(2, 5) = ∂

∂x

(
ρ̄R + 2

3
∂μ̄

∂T̄
∇ · ū

)
− ∇ ·

[
∂μ̄

∂T̄

(
∇ū + ∂ū

∂x

)]
,

D(3, 1) = ∇v̄ · ū + R
∂T̄
∂y

, D(3, 2) = ρ̄
∂v̄

∂x
, D(3, 3) = ρ̄

∂v̄

∂y
, D(3, 4) = ρ̄

∂v̄

∂z
,

D(3, 5) = ∂

∂y

(
ρ̄R + 2

3
∂μ̄

∂T̄
∇ · ū

)
− ∇ ·

[
∂μ̄

∂T̄

(
∇v̄ + ∂ū

∂y

)]
,

D(4, 1) = ∇w̄ · ū + R
∂T̄
∂z

, D(4, 2) = ρ̄
∂w̄
∂x

, D(4, 3) = ρ̄
∂w̄
∂y

, D(4, 4) = ρ̄
∂w̄
∂z

,

D(4, 5) = ∂

∂z

(
ρ̄R + 2

3
∂μ̄

∂T̄
∇ · ū

)
− ∇ ·

[
∂μ̄

∂T̄

(
∇w̄ + ∂ū

∂z

)]
,

D(5, 1) = (cv∇T̄ + RT̄∇) · ū, D(5, 2) = cvρ̄
∂T̄
∂x

, D(5, 3) = cvρ̄
∂T̄
∂y

, D(5, 4) = cvρ̄
∂T̄
∂z

,

D(5, 5) = ρ̄R∇ · ū + ∂μ̄

∂T̄

[
2
3
(∇ · ū)2 − J ū : (J ū + J T

ū)

]
− cp

Pr

μ̄,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A5)

H xx(2, 2) = 4
3
μ̄, H xx(3, 3) = μ̄, H xx(4, 4) = μ̄, H xx(5, 5) = cp

Pr
μ̄, (A6)

H xx(2, 2) = μ̄, H yy(3, 3) = 4
3
μ̄, H xx(4, 4) = μ̄, H xx(5, 5) = cp

Pr
μ̄, (A7)

H zz(2, 2) = μ̄, H zz(3, 3) = μ̄, H zz(4, 4) = 4
3
μ̄, H zz(5, 5) = cp

Pr
μ̄, (A8)
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H xy(2, 3) = μ̄

3
, H xy(3, 2) = μ̄

3
, (A9)

H xz(2, 4) = μ̄

3
, H xz(4, 2) = μ̄

3
, (A10)

H yz(3, 4) = μ̄

3
, H xz(4, 3) = μ̄

3
, (A11)

where J represents the Jacobian matrix of the variable at the subscript position.
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