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Abstract

We extend the group-theoretic construction of local models of Pappas and Zhu [Local
models of Shimura varieties and a conjecture of Kottwitz, Invent. Math. 194 (2013),
147–254] to the case of groups obtained by Weil restriction along a possibly wildly
ramified extension. This completes the construction of local models for all reductive
groups when p > 5. We show that the local models are normal with special fiber reduced
and study the monodromy action on the sheaves of nearby cycles. As a consequence, we
prove a conjecture of Kottwitz that the semi-simple trace of Frobenius gives a central
function in the parahoric Hecke algebra. We also introduce a notion of splitting model
and use this to study the inertial action in the case of an unramified group.
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1. Introduction

A local model is a projective scheme over the ring of integers of a p-adic field E which is supposed
to étale locally model the integral structure of a Shimura variety with parahoric level structure.
The theory of local models for Shimura varieties of PEL type was developed in [RZ96]. There were
subsequent refinements studied mostly on a case by case basis by Faltings, Görtz, Haines, Ngô,
Pappas, and Rapoport, among others. Pappas and Zhu [PZ13] give a new construction of local
models which, unlike previous constructions, is purely group-theoretic, that is, it does not rely on
any particular representation of G. They build their local models inside degenerations of affine
Grassmannians, extending constructions of Beilinson, Drinfeld, Gaitsgory, and Zhu to mixed
characteristic. This allows them to employ powerful techniques from geometric representation
theory. In particular, the coherence conjecture of Pappas and Rapoport, proved in [Zhu14], plays
a crucial role in understanding the geometry of their local models.

Specifically, [PZ13] associates a local model to triples (G,P, µ) where G is a connected
reductive group over a p-adic field F , P is a parahoric (level) subgroup of G(F ), and {µ} is a
geometric conjugacy class of cocharacters of G. Their approach requires an assumption on the
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group G, that it splits over a tamely ramified extension of F . If G is absolutely simple, this is a
mild assumption which is always satisfied if G is simply connected or adjoint and p > 5. However,
it is easy to construct non-absolutely simple groups which do not satisfy this tameness hypothesis
by taking a wildly ramified extension K/F and considering the Weil restriction ResK/FG of any
reductive group G over K. Furthermore, these sorts of groups arise naturally in the theory of
Shimura varieties whenever one works over a field other than Q. For example, Hilbert modular
varieties are associated to the group ResL/QGL2 for a totally real field L/Q.

In this paper, we extend Pappas and Zhu’s construction to groups of the form ResK/FG
where G is any connected reductive group over K which splits over a tame extension of K.
If p > 5, then any group G′/F is isogenous to a product of groups of this form and so this
completes the construction of local models except when p = 2 or 3 (see Remark 4.2.3). In the
case where G = GLn or GSp2g, these local models were constructed and studied in [PR03, PR05].
If K/F is a tame extension, our local models agree with those constructed by Pappas and Zhu
(see Proposition 4.2.4). Our construction is partially inspired by the splitting models introduced
in [PR05].

Let P be a parahoric subgroup of G(K) = (ResK/FG)(F ), and let {µ} be a geometric
conjugacy class of cocharacters of ResK/FG. Denote by E the minimal field of definition (reflex
field) of {µ}. The (generalized)1 local model M(µ) is a projective scheme over the ring of integers
OE of E. Our first main result is the analogue of [PZ13, Theorem 8.1].

Theorem 1.0.1. Suppose that p - |π1(Gder)|. Let kE be the residue field of OE . The scheme
M(µ) is normal. The special fiber M(µ) ⊗ kE is reduced, normal, and Frobenius split. Each
irreducible component of M(µ)⊗ kE is Cohen–Macaulay.

As in [PZ13], one can also identify the special fiber as a union of affine Schubert varieties in
an affine flag variety (see Theorem 4.3.2 for a precise statement). The main ingredients in the
proof of Theorem 1.0.1 are the coherence conjecture of Pappas and Rapoport proved in [Zhu14]
and a product formula which is also found in [Zhu14]. The tameness hypothesis in [PZ13] appears
in their construction of a certain global affine Grassmannian inside which the local models are
built. The affine Grassmannians and affine flag varieties which appear in [PZ13] are mixed
characteristic versions of now familiar constructions in the theory of the geometric Langlands
correspondence. In this same spirit, we adapt their construction to take into account the Weil
restriction from K/F building on ideas of Beilinson and Drinfeld in equal characteristic [BD].
We now discuss this construction in some detail since the other arguments of [PZ13] carry over
mostly formally to our situation.

Assume for simplicity that K/F is totally ramified. In [PZ13, § 4], they associate to the pair
(G,P) over K a parahoric or Bruhat–Tits group scheme G over A1

OK = SpecOK [u]. The group
G is a smooth affine group scheme with connected fibers which is reductive over (Gm)OK and
‘parahoric’ at u= 0. This allows them to define a degeneration GrG,OK of the affine Grassmannian
GrG over K whose special fiber is an affine flag variety over the residue field k0 of OK which is
determined by P (up to some choices). This is a mixed characteristic version of constructions of
Gaitsgory and Beilinson–Drinfeld. Note that we have specialized Pappas and Zhu’s family GrG,X
to SpecOK via u 7→ $, where $ is a uniformizer of K. In our situation, we desire a degeneration
of GrResK/FG over F to OF whose special fiber is again an affine flag variety determined by P.

1 This refers to the fact that we do not assume here that the cocharacter µ is minuscule. We will usually omit the
adjective ‘generalized’ later on.
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Geometrically GrResK/FG is [K : F ]-copies of the affine Grassmannian for G and so we are
reminded of the BD-Grassmannian [BD, Ric16] in equal characteristic which degenerates d copies
of the affine Grassmannian to a single affine Grassmannian. Our construction combines a mixed
characteristic version of the BD-Grassmannian with the construction from [PZ13].

Choose a uniformizer $ of K. Let Q(u) be the minimal polynomial for $ over F . Our version

of GrG,OK from [PZ13] will be a moduli space Gr
Q(u)
G over OF of G-bundles over A1

OF with a
trivialization away from Q(u) = 0. When p is invertible, Q(u) decomposes geometrically into
a disjoint union of [K : F ]-divisors and this gives rise to GrResK/FG. Over the residue field k
of OF , however, the roots of Q(u) ‘collide’ and we see an affine flag variety for the completion
of G at kJuK which by construction will be a parahoric group scheme P[ over kJuK. There is a
technical subtlety related to the construction of the Bruhat–Tits group scheme G. The parahoric
group scheme in [PZ13] is defined over A1

OK , whereas it is important that we have a moduli
problem over OF . Using that the group G/K is tame, we are able to arrange that G is in fact
defined over A1

OF . This is done in § 3.
If E is the reflex field of {µ}, then the local model MG(µ) is defined to be the closure of the

affine Schubert variety S(µ) ⊂ (GrResK/FG)E in (Gr
Q(u)
G )OE . Since MG(µ) is defined by Zariski

closure, it does not have a simple moduli space description. However, the interpretation as a

subvariety of Gr
Q(u)
G allows us to prove many nice properties of MG(µ) as in Theorem 1.0.1.

This connection with the affine Grassmannian also allows us to study the sheaf of nearby cycles
RΨ(ICµ) in § 5.2 Whenever MG(µ) étale locally describes the structure of an integral model of
a Shimura variety, one then obtains results for the nearby cycles sheaf for the Shimura variety
with parahoric level structure.

Assume for simplicity of statement that µ is a minuscule cocharacter. Our group scheme G
gives rise to a group G[ := Gk((u)) where k is residue field of F and a parahoric group scheme

P[ := GkJuK. For any Fq ⊃ kE , we can view the semi-simple trace of Frobenius τ ss
RΨ(Q`)

as an

element of the parahoric Hecke algebra Hq(G[,P[) of bi-P[(Fq((u)))-equivariant, compactly
supported locally constant Q`-valued functions on G[(Fq((u))).

Theorem 1.0.2 (Kottwitz’s conjecture). The semi-simple trace of Frobenius on the sheaf of
nearby cycles RΨ(Q`) of MG(µ) → SpecOE gives a central function in the parahoric Hecke
algebra Hq(G[,P[).

See § 5.3 and Theorem 5.3.3 for more details and a more general statement. The proof of this
theorem follows a strategy of [HN02] and [Gai01] to prove a commutativity constraint on the
nearby cycles (see Theorem 5.2.1).

If F̃ is an extension of F over which ResK/FG becomes split, then we show that the
inertial action of I

F̃
on the the nearby cycles is unipotent, generalizing results of [GH07] (see

Theorem 5.3.1). Moreover, when the parahoric is very special in the sense of [Zhu15, Definition
6.1] and G is an unramified group over K, we describe the sheaf of nearby cycles as a convolution
product (see Theorem 5.4.1 for a precise statement). We also give a conjectural description of
the action of IE . This generalizes a conjecture of [PR03] in the case of G = GLn or G = GSp2g.
The key tool is an affine Grassmannian version of the splitting models introduced in [PR05].
These are closely related to the convolution Grassmannians from geometric Langlands.

We now give a brief overview of the rest of this paper. In § 2 we introduce local models
in the special case where K/F is totally ramified and G is an unramified group over F .

2 When µ is minuscule, S(µ) is smooth and so ICµ is the constant sheaf Q` up to a shift.
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In this case, the constructions more closely resemble those of [Gai01]. In § 3 we do the technical

work of constructing the parahoric (or Bruhat–Tits) group scheme G over OF [u] attached to the

group G/K and a parahoric subgroup of G(K). In § 4 we construct the local models associated to

the conjugacy class {µ} and prove the main theorem (Theorem 1.0.1) on their geometry. We also

prove the ind-representability of the affine Grassmannian Gr
Q(u)
G and show that it is ind-proper.

Our proof is different from that of [PZ13] and follows a strategy introduced in [Ric16]. In the

final section (§ 5) we study the nearby cycles on local models. To do this, we introduce a number

of auxiliary affine Grassmannians including versions of convolution and BD-Grassmannians, and

what we call splitting Grassmannians which generalize the splitting models of [PR05].

1.1 Notation

Let F denote a finite extension of Qp with ring of integers O. We will always take K to be a

finite extension of F and K0 to be the maximal subfield of K unramified over F . We will use

$ to denote a uniformizer of K. Set d = [K : F ]. Let k denote the residue field of O and k0/k

the residue field of K0. We will denote the minimal polynomial of $ over K0 by Q(u). For any

OK0-algebra R, we will take R̂Q(u) to be the Q(u)-adic completion of R[u].

Unless stated otherwise, G will be a connected reductive group over K which splits over a

tame extension of K. We will fix such a tame extension K̃ in § 3. We use µ to denote a fixed

cocharacter of ResK/FG and denote its conjugacy class by {µ}. We will use E for the reflex field

of {µ} inside a fixed algebraic closure F of F . Parahoric subgroups will be denoted P∗, and, in

an abuse of notation, we will use the same symbol for the corresponding parahoric group scheme.

On the other hand, parabolic subgroup (schemes) will be denoted by P∗.

For any connected reductive group H over a field κ, Hder will denote the derived subgroup

and Had the adjoint quotient.

2. Unramified groups

In this section we study local models for groups of the form ResK/FG where G is an unramified

group defined over F . For simplicity, we will also assume that K/F is totally ramified. This is

special case of what we consider in the rest of the paper. The unramified case illustrates the

main conceptual points without as many of the technical difficulties. The construction in this

section closely resembles the equal characteristic construction in [Gai01]. In Proposition 2.3.8 we

compare with the more general construction given in § 4.

2.1 Preliminaries

Let H be any connected reductive group over a field κ. The affine Grassmannian GrH is the

moduli space of isomorphism classes of H-bundles on the formal unit disc SpecRJuK together

with a trivialization over the punctured unit disc SpecR((u)) where R is any κ-algebra. As a

functor on κ-algebras, GrH is represented by an ind-projective scheme over Specκ.

Let {µ} denote a geometric conjugacy class of cocharacters of H. The smallest field of

definition of {µ} inside a fixed algebraic closure κ of κ is called the reflex field of µ. Here

we denote it by κ{µ}. The affine Schubert variety SH(µ) associated to {µ} is a closed finite

type subscheme of (GrH)κ{µ} . It is the reduced closure of an orbit for the positive loop group

L+H := H(κJuK) acting on GrH .

More generally, one can associate to any facet a in the building B(Hκ((u)), κ((u))) an affine

flag variety Fla, an ind-projective scheme over κ (cf. [PR08, § 1] or [Ric16, § 2.1]). Assume for the
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moment that κ is algebraically closed. If TH is a maximal split torus of H, then the Iwahori–Weyl
group is given by

W̃ := W̃ (H,TH , κ((u))) = NH(TH)(κ((u)))/TH(κJuK).

It fits into an exact sequence3

0→ X∗(TH)→ W̃ →W (H,TH)→ 1,

where W (H,TH) is the ordinary Weyl group. The Iwahori–Weyl group is discussed in a more
general setting in § 3.2.

If Ha is the parahoric group scheme over κJuK associated to a, then the positive loop group
L+Ha is the functor on κ-algebras defined by

L+Ha : R 7→ Ha(RJuK).

The loop group L+Ha acts on Fla and its orbits are indexed by the double cosets Wa\W̃/Wa

where Wa = (Ha(κJuK) ∩NH(TH)(κ((u))))/TH(κJuK) (cf. [Ric16, Proposition 2.2]).

Definition 2.1.1. For any w ∈ W̃ , let Sa
w be the associated closed affine Schubert variety in Fla.

Recall that

(Fla)red =
⋃

w∈Wa\W̃/Wa

Sa
w.

At the level of κ-points, this is related to the Bruhat–Tits decomposition for H(κ((u))).

2.2 Mixed characteristic affine Grassmannians
Let G be an unramified reductive group (quasi-split and split over an unramified extension)
over F , and let a be a facet of the building B(G,F ). Assume, furthermore, that the closure of
a contains a hyperspecial vertex. (This assumption will be dropped in § 3 when we consider the
general case.) Hyperspecial vertices exist since G is unramified. Note that when a is a chamber
(i.e., when a corresponds to an Iwahori subgroup) the closure always contains a hyperspecial
vertex.

Pick a hyperspecial vertex x0 in the closure of a. The point x0 corresponds to a connected
reductive group scheme G0 over SpecO whose generic fiber is G. Furthermore, there is a unique
parabolic Pk ⊂ Gk such that

Pa := {g ∈ G0(O) | g ∈ Pk(k)}
is the parahoric subgroup associated to a. Define G := G0 ⊗O O[u], the constant extension.
Observe that if we take G[ := Gk((u)) then GkJuK is a reductive model of G[ and the parabolic Pk
defines a parahoric subgroup

Pa[ := {g ∈ G(kJuK) | g mod u ∈ Pk(k)}

of G[ corresponding to a facet a[ of B(G[, k((u))). In particular, there is an affine flag variety
Fla[ over k associated to a[ as in § 2.1. In § 3.3 we recall the general procedure from [PZ13] for
producing a[ from a.

3 The first inclusion is given by λ 7→ λ(u). This agrees with the conventions of [PZ13] and [Ric16].
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In the function field setting, [Gai01, § 2.2.1] constructs a deformation of the affine flag variety
to the affine Grassmannian generalizing constructions of Beilinson and Drinfeld. Specifically,
there is an ind-projective scheme FlX over A1

k whose fiber at 0 is an affine flag variety (for
Iwahori level) for a group G[ and whose generic fiber is the product G[/B[ ×GrG[ . Our goal is
to construct a deformation of Fla[ to SpecO whose generic fiber is a product G/PF ×GrResK/FG

for some parabolic PF of G.

Definition 2.2.1. Let P be a parabolic subgroup scheme of G. If E is a G-bundle on an O-scheme
X, then a reduction of E to P is a pair (Q, i) where Q is P -bundle on X and i : G ×P Q ∼= E is
an isomorphism.

Example 2.2.2. If G = GLn and B is a Borel subgroup then a reduction of a vector bundle V
over X to B is same as a filtration of V whose graded pieces are line bundles on X. If V is
trivial, then a reduction to B the same as a full flag.

Choose a parabolic subgroup P ⊂ G which lifts Pk ⊂ Gk.

Definition 2.2.3. Let Q(u) ∈ O[u] be the minimal polynomial of $ over F . For any O-algebra
R, define

Fl
Q(u)
G (R) := {isomorphism classes of triples (E , β, ε)},

where E is a G-bundle over R[u], β is a trivialization of E|Spec(R[u])[1/Q(u)], and ε is a reduction of

E mod u to P . If Pk = Gk, then Fl
Q(u)
G is the moduli of pairs (E , β) which we denote by Gr

Q(u)
G .

Remark 2.2.4. The analogy with the Beilinson and Drinfeld Grassmannian [BD] arises from
the fact that over F the polynomial Q(u) corresponds to [K : F ] distinct points whereas on the
special fiber Q(u) ≡ u[K:F ]. The bundle together with a reduction to P is similar to the definition
FlX from [Gai01, § 2.2.1].

Remark 2.2.5. We have assumed that K/F is totally ramified. In the general case, if K0/F is
the maximal unramified subextension, then one does the construction over K0 and then takes
the étale Weil restriction from OK0 to O. All of our main results easily reduce to the totally
ramified case.

There is also a ‘local’ version of Gr
Q(u)
G .

Definition 2.2.6. For any O-algebra R, let R̂Q(u) denote the Q(u)-adic completion of R[u].
Define

Gr
Q(u), loc
G (R) := {iso-classes of pairs (E , β)},

where E is a G-bundle over R̂Q(u) and β is a trivialization of E|
Spec R̂Q(u)[1/Q(u)]

.

The natural map of functors Gr
Q(u)
G → Gr

Q(u),loc
G given by completion at Q(u) is an

equivalence. This follows from the Beauville–Laszlo descent lemma for G-bundles (see [Lev13,

Theorem 3.1.8] or [PZ13, Lemma 6.1]). We will use the two moduli Gr
Q(u),loc
G and Gr

Q(u)
G

interchangeably.
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Example 2.2.7. Let M0 := O[u]n be the trivial rank-n vector bundle over A1
O. A Q(u)-lattice

in M0[1/Q(u)] with coefficients in an O-algebra R is a projective R[u]-submodule M ⊂ (M0 ⊗
R)[1/Q(u)] such that M [1/Q(u)] = (M0⊗R)[1/Q(u)]. When G = GLn, Gr

Q(u)
GLn

is the moduli space

of Q(u)-lattices in M0[1/Q(u)]. The ind-scheme structure on Gr
Q(u)
GLn

is given by the subfunctors

of lattices lying between Q(u)−NM0 and Q(u)NM0 for N > 0. See [Lev13, § 10.1] for more details.

Proposition 2.2.8. The functor Fl
Q(u)
G is represented by an ind-scheme which is ind-projective

over SpecO. Furthermore,

(i) the generic fiber Fl
Q(u)
G [1/p] is isomorphic to (GF /PF )×GrResK/FGF over SpecF ;

(ii) the special fiber Fl
Q(u)
G ⊗O k is isomorphic to the affine flag variety Fla[ corresponding to

the group G[ over k((u)) and the facet a[ determined by Pk.

Proof. The forgetful map Fl
Q(u)
G → Gr

Q(u)
G is relatively representable and projective. The ind-

scheme Gr
Q(u)
G can be shown to be ind-projective by choosing a faithful representation G→ GLn

which induces a closed immersion Gr
Q(u)
G ↪→ Gr

Q(u)
GLn

(see [Lev13, Proposition 10.1.13]).
By functorialities on G-bundles with respect to Weil restriction [Lev13, Theorem 2.6.1], the

affine Grassmannian GrResK/FGK is naturally isomorphic to ResK/F GrGK . Since Q(u) ≡ u[K:F ]

mod mO, Fl
Q(u)
G ⊗O k is exactly the affine flag variety Fla[ associated to Pk as in [Gai01, § 1.1.3].

For (i), observe that when p is invertible, Q(u) and u define disjoint divisors on A1
F . Thus, for

any F -algebra R and any (ER, βR, εR) ∈ Fl
Q(u)
G (R) the trivialization βR induces a trivialization

of ER mod u. Thus, εR is a reduction to PF on a trivial bundle, that is, an R-point of GF /PF .
Over a splitting field L for Q(u) over F , the pair (E , β) is a G-bundle on A1

L trivialized away
from the [K : F ] = d roots of Q(u). It is a standard fact that if D =

∐
16i6dDi is a union of

pairwise disjoint divisors then there is an equivalence between bundles with trivialization away
from D and d-tuples of bundles with trivializations away from Di, respectively (see [Zhu14, § 6.2]
or the proof of Proposition 4.1.6). Thus, over L, we get [K : F ]-copies of the affine Grassmannian
GrG centered at the roots of Q(u). One concludes by Galois descent. 2

Remark 2.2.9. The idea that local models should live in spaces like Fl
Q(u)
G goes back to work

of [PR03, HN02]. Without the Weil restriction (so K = F ), these sorts of deformations were
constructed in [PZ13] and our presentation is a reformulation of theirs in this special case.
In [Lev13, § 10], we constructed a deformation of GrGk to GrResK/FG which is the special case
where Pk = Gk, that is, when a is a hyperspecial vertex.

Next we discuss the ‘loop group’ which acts on Fl
Q(u)
G . Define a pro-algebraic group over

SpecO by

L+,Q(u)G(R) := lim
←−
N

G(R[u]/Q(u)N ) = G(R̂Q(u)).

For any N > 1, the functor R 7→ G(R[u]/Q(u)N ) is represented by the smooth affine group
scheme Res(O[u]/Q(u)N )/OG.

Using the local description (Definition 2.2.6) of Gr
Q(u)
G , we see that L+,Q(u)G acts on pairs

(E , β) by changing the trivialization. In the same way, L+,Q(u)G acts on Fl
Q(u)
G in such away that

the forgetful map Fl
Q(u)
G → Gr

Q(u)
G is equivariant.
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Proposition 2.2.10. The action of L+,Q(u)G is nice in the sense of group actions on ind-

schemes [Gai01, Appendix A], that is, Fl
Q(u)
G = lim−→Zi where Zi are finite type closed subschemes

of Fl
Q(u)
G which are stable under the action of L+,Q(u)G and such that action of L+,Q(u)G on each

Zi factors through Res(O[u]/Q(u)Ni )/OG for some Ni � 0.

Proof. The ind-scheme structure on Fl
Q(u)
G is compatible with the ind-scheme structure on Gr

Q(u)
G

so we can reduce to the case of Gr
Q(u)
G . One then reduces to GLn using a faithful representation

of G. The description of Gr
Q(u)
GLn

in terms of Q(u)-lattices from Example 2.2.7 makes it clear that
the action is nice. See [Lev13, Proposition 10.2.9] for details. 2

The ind-scheme Fl
Q(u)
G has a canonical point over SpecO given by the trivial bundle with its

trivialization and reduction to P which we denote by 1
Fl
Q(u)
G

.

Definition 2.2.11. Let L+,Q(u)P be the stabilizer of 1
Fl
Q(u)
G

in L+,Q(u)G. By Proposition 2.2.10,

L+,Q(u)P is a closed subgroup of L+,Q(u)G.

Proposition 2.2.12. Let L+,Q(u)P be as above. Then we have isomorphisms

(L+,Q(u)P)k ∼= L+Pa[ and (L+,Q(u)P)F ∼= L+ResK/FG

compatible with the isomorphisms in Proposition 2.2.8.

Proof. For any k-algebra R, we have

L+,Q(u)G(R) = GkJuK(RJuK)

where GkJuK is a hyperspecial maximal parahoric for the group G[ = Gk((u)). For g ∈ L+,Q(u)G(R)

let g ∈ G(R) be the reduction modulo u. Then g lies in L+,Q(u)P(R) if and only if gPkg
−1 = Pk

where Pk is the parabolic of Gk defining a[. Thus, g ∈ NGk(Pk) = Pk and so g ∈ L+Pa[(R).
On the generic fiber, we have (L+,Q(u)P)F ∼= (L+,Q(u)G)F . Furthermore,

L+,Q(u)G(R) = G(R̂Q(u))

for any F -algebra R. As in the proof of Proposition 2.2.8, we work over a splitting field L of
Q(u) so Q(u) =

∏d
i=1(u−$i) in L. For any L-algebra R, we have

G(R̂Q(u)) ∼=
∏
i

G(RJu−$iK) =
∏

ψ:K→L

L+G(R)

and we conclude by Galois descent. 2

2.3 Local models
Fix a geometric cocharacter µ of ResK/FG. Let E denote the reflex field of the conjugacy
class {µ}.

Definition 2.3.1. Let SResK/FG(µ) ⊂ (GrResK/FG)E be the closed affine Schubert variety
associated to {µ}, and let 1GF /PF denote the closed point of GF /PF corresponding to PF . Then
the local model MP (µ) associated to {µ} is the Zariski closure of 1GF /PF × SResK/FG(µ) in

(Fl
Q(u)
G )OE . It is a flat projective scheme over SpecOE .
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Remark 2.3.2. In § 4, we change notation and denote our local models by MG(µ) to indicate a
dependence on a certain ‘parahoric’ group scheme G which is different from the G appearing in
this section. Both constructions produce the same local models by Proposition 2.3.8.

We now state the main theorem on the geometry of local models.

Theorem 2.3.3. Suppose that p - |π1(Gder)|. Then the scheme MP (µ) is normal. In addition, the
special fiber MP (µ) is reduced, and each geometric irreducible component of MP (µ) is normal,
Cohen–Macaulay, and Frobenius split.

As in [PZ13], Theorem 2.3.3 will follow from identifying the special fiber of MP (µ) with a
union of affine Schubert varieties in Fla[ indexed by the so-called λµ-admissible set. We briefly

recall the definition. For more detail, see [PZ13, § 9.1] or [PRS13, § 4.3]. Let W̃ [ be the Iwahori–
Weyl group of the split group Gk((u)) which sits in an exact sequence

0→ X∗(T
[)→ W̃ [

→W → 0

where T [ is any k((u))-split maximal torus of Gk((u)) and W is the absolute Weyl group of

(Gk((u)), T
[).

Definition 2.3.4. Let λ ∈ X∗(T [). An element w̃ ∈ W̃ [ is λ-admissible if w̃ 6 twλ for some
w ∈ W where twλ is translation by w · λ. The set of λ-admissible elements is denoted Adm(λ).
If Wa[ ⊂W is the subgroup associated to a[, then define

Adma[(λ) = Wa[ Adm(λ)Wa[ ⊂ W̃ [.

The generic fiber of MP (µ) is stable under L+ResK/FG and so by flatness considerations

MP (µ) is stable under L+,Q(u)P. In particular, set-theoretically the special fiber is the union of
orbits for the action of L+Pa[ on Fla[ , that is, affine Schubert varieties. The theorem below gives
a scheme-theoretic description of the special fibers in terms of affine Schubert varieties.

Let F̆ be maximal unramified extension of F in F with ring of integers Ŏ. Let T denote a
fiberwise maximal torus of G contained in P which splits over Spec Ŏ[u]. Let T ⊂ G denote the
specialization at u 7→ $ and let T [ := Tk((u)). Then we can identify

X∗(T ) = X∗(T
[)

as the cocharacters of T over Spec Ŏ[u] where T is split. Choose a Borel subgroup B ⊂ G.
There exists µ′ ∈ {µ} such that µ′ is valued in (ResK/FT )F and such that µ′ = (µ′ψ)ψ:K→F with
µ′ψ ∈ X∗(T ) B-dominant. Define

λµ =
∑

ψ:K→F

µ′ψ ∈ X∗(T ) = X∗(T
[).

Note that the conjugacy class of λµ does not depend on the choice of B.

Theorem 2.3.5. Suppose that p - |π1(Gder)|. Then

MP (µ)⊗OE k =
⋃

w̃∈Adma[ (λµ)

Sa[

w̃ .
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Theorem 2.3.3 follows from Theorem 2.3.5. The fact that MP (µ) is normal with reduced
special fiber follows from Theorem 2.3.5 (cf. [PZ13, p. 221] or the discussion after Theorem 4.2.7).

Remark 2.3.6. He [He13] shows that
⋃
w̃∈Adma[ (λ)

Sa[

w̃ is Cohen–Macaulay when λ is minuscule

and G[ is unramified. Thus, if λµ is minuscule (which is usually not the case) then MP (µ)
is in fact Cohen–Macaulay. Otherwise, it is open question whether the whole local model is
Cohen–Macaulay.

In this section, we will show the inclusion
⋃
w̃∈Adma[ (λµ)

Sa[

w̃ ⊂MP (µ). The reverse inclusion

is an application of the coherence conjecture of Pappas and Rapoport combined with a product
formula (Proposition 4.3.8). The argument is essentially the same as in the ramified case and so
we leave it until § 4.3.

The extremal elements in Adm(λµ) under the Bruhat order are given by tλ′ where λ′ is in
the Weyl group orbit of λµ. The cocharacter λ′ defines a k-point sλ′ of Fla[ whose orbit closure is

Sa[
tλ′

. Since MP (µ) is stable under L+,Q(u)P, to prove the inclusion
⋃
w̃∈Adma[ (λµ)

Sa[

w̃ ⊂ MP (µ),

it suffices to show that sλ′ is the reduction of a point of SResK/FG(µ).

Proposition 2.3.7. Let Ẽ be a finite extension of F̆ which contains a splitting field for K
over F . There exists a point

sλ′ : SpecO
Ẽ
→MP (µ)

mapping the closed point to sλ′ .

Proof. Let µ = (µψ)
ψ:K→Ẽ

with µψ ∈ X∗(T ) = X∗(T
[). Since λ′ is in Weyl group orbit of λµ,

there exist cocharacters µ′ψ ∈ X∗(T [) in the Weyl group orbit of µψ such that λ′ =
∑

ψ µ
′
ψ.

Since we have chosen T ⊂ P, there is a natural map

Gr
Q(u)
T → Fl

Q(u)
G .

We briefly recall the construction of sλ′ ⊂ Gr
Q(u)
T (O

Ẽ
) which is essentially the same as in [Lev13,

Proposition 10.2.9]. Since T is a split torus over O
Ẽ

, an element of Gr
Q(u)
T (O

Ẽ
) is the same as

a homomorphism from X∗(T ) to category of line bundles on X := A1
O
Ẽ

with trivialization away

from divisor D defined by Q(u). Over O
Ẽ

, Q(u) =
∏
ψ:K→Ẽ

(u−$ψ). Let Dψ denote the divisor

defined by u−$ψ. The point sλ′ is given by the map which assigns to any χ ∈ X∗(T ) the line
bundle ⊗ψOX(−Dψ)〈χ,µψ〉 with its canonical trivialization over X −D. 2

We now relate the construction from this section to the more general construction which
we carry out in § 4. Let Ga be the parahoric group scheme over O[u] associated to a in § 3. In
this setting, we can be more explicit about the construction. Namely, Ga is constructed as the
dilation of G := G0 ⊗O O[u] along the closed subscheme P ⊂ G0 = (G)|u=0. Let ia denote the
natural homomorphism Ga→ G. Then ia[1/u] is an isomorphism and ia|u=0 factors through P .

Proposition 2.3.8. There is a closed immersion

Θ : Fl
Q(u)
Ga → Fl

Q(u)
G

which is an isomorphism on special fibers and such that the image of the generic fiber (Fl
Q(u)
Ga )F

is 1GF /PF ×GrResK/FG.
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Proof. First, we construct Θ. Let (E ′, β′) ∈ Fl
Q(u)
Ga (R). Consider the G-bundle E = (ia)∗(E ′) with

trivialization β = (ia)∗(β
′). Define Θ(E ′, β′) = (E , β, ε) where ε is the reduction to P of E|u=0

induced by the factorization
(Ga)|u=0→ P → G.

The fact that Θk is an isomorphism follows from comparing the two different descriptions of
the affine flag variety. On the left, we have a moduli space of Pa[-bundles with trivialization and
on the right the moduli of triples (E , β, ε) as in [Gai01]. The equivalence of these two descriptions
is implicit in, for example, [PR08]. It can be deduced from the fact that both are isomorphic to
the fpqc quotient LG[/L+Pa[ (see [PR08, § 0]).

On the generic fiber, we consider the local description as in Definitions 2.2.6 or 4.1.2 so

we see that (Fl
Q(u)
Ga )F only depends on the completion of Ga along Q(u). Furthermore, ia is an

isomorphism when restricted to completion of F [u] along Q(u). Thus,

(Fl
Q(u)
Ga )F ∼= (Gr

Q(u)
G )F ∼= GrResK/FG.

It is easy to check that for any F -algebra R and any (E ′, β′) ∈ Fl
Q(u)
Ga (R) the reduction to P in

Θ(E ′, β′) is the trivial one. Since both sides are ind-proper, Θ is a closed immersion. 2

3. Parahoric group schemes

In this section we construct the ‘Bruhat–Tits’ group schemes G over the two-dimensional base
SpecOK0 [u] which will be used in the construction of local models in § 4. The group G extends
G/K in the sense that Gu7→$,K is isomorphic to G. Furthermore, G will be reductive when
restricted to SpecOK0 [u, u−1]. The specialization Gu7→$,OK will be a parahoric group scheme
which is given as input into the construction. The completion at u on the special fiber Gk0JuK
will also be a parahoric group scheme. Although the argument is the same, the key difference in
our construction from [PZ13] is that given G/K (a tame group) we construct G over OK0 [u] as
opposed to over OK [u]. This is important so that in § 4 we can define a moduli problem over OF .

Let K/F be a finite extension and choose a uniformizer $ of K. Let G be a connected
reductive group over K which splits over a tamely ramified extension. Choose a tame extension
K̃/K which splits G. Let K̃0 denote the maximal unramified over K subextension of K̃0. After
possibly enlarging K̃, we can assume that

– G
K̃0

is quasi-split;

– K̃/K is Galois;

– there is a uniformizer $̃ of K̃ such that $̃ẽ = $

as in [PZ13, § 2.a]. Set ẽ := [K̃ : K̃0]. If k̃ is the residue field of K̃, then let Õ0 = W (k̃)⊗W (k0)OK0 .

3.1 Reductive group schemes over OK0[u, u−1]
Let K0 ⊂ K be the maximal unramified over F subextension of K. We will now construct a
group scheme G over OK0 [u, u−1] which extends G in the sense that its base change

G⊗OK0
[u,u−1] K, u 7→ $

is isomorphic to G. The construction is essentially the same as in [PZ13, § 3] except that we
realize the tame descent over SpecOK0 [u, u−1] instead of over SpecOK [u, u−1]. We highlight the
main points of the argument.
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Consider the diagram

Spec Õ0[v]

u7→vẽ
��

Spec K̃
v 7→$̃
oo

��
SpecOK0 [u] SpecKu7→$

oo

As in [PZ13, § 3.2.1], the action of Γ := Gal(K̃/K) on K̃ can be extended to an action on Õ0[v]
over OK0 [u]. The left vertical map is finite flat of degree ẽ and étale away from u = 0.

Remark 3.1.1. Another difference between this setup and that of [PZ13] is that kernel of the
map OK0 [u, u−1]→ K is generated by the minimal polynomial Q(u) of $ over K0 as opposed
to u−$.

Proposition 3.1.2. Let (G,A, S, P ) be a rigidification of G (see [PZ13, Definition 1.7]). There
exists a quadruple (G,A, S, P ) over SpecOK0 [u, u−1] where G is a connected reductive group, A
is a split torus of G, S is a torus containing A which becomes split over Õ0[u, u−1], and P is a
parabolic subgroup scheme containing M := ZG(A), which extends the rigidification (G,A, S, P ).

The construction is identical to [PZ13, § 3.3]. We recall the key points which will be relevant
later. The first step is to extend a quasi-split form G∗ of G to a quasi-split group G∗ over
SpecOK0 [u, u−1]. Let H denote a split form of G over OK0 . Then G defines a cohomology class
[c] ∈ H1(Γ,Aut(H

K̃
)). Let [c∗] denote the image of [c] in H1(Γ,Out(H)) where Out(H) denotes

the outer automorphism group of H. A choice of pinning of H over OK0 (and hence over K)
defines a splitting of the map Aut(H

K̃
) → Out(H). Under this splitting, [c∗] defines a pinned

quasi-split group G∗ over K which becomes isomorphic to G over K̃0 (with an appropriate choice
of pinning).

The outer automorphisms extend to automorphisms of the (pinned) split group over
Õ0[v, v−1]; in particular, [c∗] lifts to a class in H1(Γ,Aut(HÕ0[v,v−1]

)). This class defines a

reductive (pinned) quasi-split group G∗ over SpecOK0 [u, u−1] which extends G∗.
The difficult part which is carried out in [PZ13, § 3.3.2] is constructing G from G∗. This is

done by ‘unramified’ descent from Õ0[u, u−1] to OK0 [u, u−1]. Let K̆ be the maximal unramified
extension of K. Since G is an inner form of G∗ and G

K̃0

∼= G∗
K̃0

, it is given by a class

[c′] ∈ H1(Ẑ, G∗ad(K̆)). If we choose a Frobenius element σ ∈ Gal(K̆/K), then the cohomology
class [c′] can be represented by a cocycle given by an inner automorphism Int(g) of G∗

K̆
. The key

observations [PZ13, 2.10] and [PZ13, 2.14] say that we can choose [c′] and Int(g) in a controlled
way. To state this precisely, we need to introduce some more notation.

Definition 3.1.3. If (G,A, S, P ) is a rigidification of G, then set M := ZG(A), a Levi subgroup
of G. Set T := ZG(S) ⊂M a maximal torus since S

K̃0
is a maximal K̃0-split torus of a quasi-split

group.

The quasi-split form G∗ of G contains a corresponding Levi subgroup M∗ with maximal
torus T ∗.

Proposition 3.1.4. Let M ′∗ denote the Levi subgroup of G∗ad corresponding to M∗. There exists

a unique class [crig] valued in NM ′∗(T
∗
ad)(K̆) whose image is [c] under

H1(Ẑ, NM ′∗(T
∗
ad)(K̆))→ H1(Ẑ,M ′∗(K̆))→ H1(Ẑ, G∗ad(K̆)).
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Furthermore, we have an isomorphism

ρ : M∗ad
∼−→
∏

ResEi/KPGLmi

such that the image of Int(g) in M∗ad is given by
∏
gi where the gi = nri(ωi) (see the discussion

before [PZ13, Proposition 2.14]).

Proof. See [PZ13, Propositions 2.10 and 2.14]. 2

Remark 3.1.5. The precise form of the cocycle in Proposition 3.1.4 is important not just for the
construction of G. It also important that Int(g) acts on T ∗ through the relative Weyl group of
(G∗, S∗). This will allow us to compare apartments of G and G∗ under different specializations.

(Sketch of the) proof of Proposition 3.1.2. The groups M∗ and T ∗ extend naturally to subgroups
M∗ and T ∗ of G∗, and similarly for G∗ad. Let Ŏ0 denote the ring of integers of the maximal
unramified over K0 subfield of K̆. The goal then is to produce a lift of [crig] from Proposition 3.1.4
to H1(Ẑ, NM ′∗(T

∗
ad)(Ŏ0[u, u−1])). Using the exact sequence [PZ13, (3.5)]

1→ Z∗→ N ′
∗
→ N∗ad→ 1

and some computations with the Brauer group, one is reduced to showing that the composition

H1(Ẑ, N∗ad(Ŏ0[u, u−1]))→ H1(Ẑ,M∗ad(Ŏ0[u, u−1]))→ H1(Ẑ,M∗ad(K̆))

is surjective. Exactly as in [PZ13, § 3.3.3], the group Mad is anisotropic and hence isomorphic to
a product of Weil restrictions of central division algebras. The same constructions from [PZ13,
§§ 5.3.1 and 5.3.3] produce the desired classes in H1(Ẑ, N∗ad(Ŏ0[u, u−1])). 2

3.2 Iwahori–Weyl group
Recall that for a split pair (H,TH) over a complete discretely valued field κ, the Iwahori–Weyl
group is given by NG(TH)(κ)/T (Oκ) which has as a quotient the absolute Weyl group W0(H,TH).
This can be generalized to non-split groups as well.

Definition 3.2.1. Let κ be a discretely valued field with perfect residue field. Let G′ be a
connected reductive group over κ and S′ a maximal κ-split torus. The relative Weyl group
W0(G′, S′) is given by NG′(S

′)(κ)/ZG′(S
′)(κ). The Iwahori–Weyl group W (G′, S′, κ) is defined

to be

NG′(S
′)(κ)/M1

where M1 is the unique parahoric subgroup of ZG′(S
′).

For G′ quasi-split, one can say a bit more about the structure of W (G′, A′, κ). The centralizer
of S′ is a maximal torus T ′ := ZG′(S

′). The unique parahoric subgroup scheme T ′ of T ′ is the
connected component of the Néron lft model of T ′ (see [BLR90, § 10], [PR08, § 3.b]).

Proposition 3.2.2. Assume T ′ splits over a Galois extension κ̃ with Γ := Gal(κ̃/κ) of order
prime to p. If T̃ ′ is the split model for T ′κ̃ over Oκ̃ with the induced action of Γ then the unique

parahoric subgroup scheme T ′ is isomorphic to the connected component of (ResOκ̃/Oκ T̃ ′)Γ.

2575

https://doi.org/10.1112/S0010437X1600765X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1600765X


B. Levin

Proof. By [Edi92, Proposition 3.4], (ResOκ̃/Oκ T̃ ′)Γ is a smooth group scheme over SpecOκ whose

generic fiber is T ′. By [BLR90, Proposition 4], the connected component of the identity is the

same as that of the Néron lft model for T ′. 2

We now take κ = k((u)) where k is algebraic closed. Take I := Gal(κ/κ), W̃ ′ := W (G′, S′, κ),

and W ′0 := W0(G′, S′). Then there is an exact sequence

0→ X∗(T
′)I → W̃ ′→W ′0→ 0 (3.2.2.1)

where X∗(T )I denotes the coinvariants (see [PZ13, (9.14)]).4 More precisely, the Kottwitz

homomorphism (see [HR08, Lemma 5]) identifies T (κ)/T (Oκ) with X∗(T )I . If λ ∈ X∗(T )I ,

then tλ will denote translation by λ considered as an element of W̃ ′.

When G′ is simply connected W̃ ′ is a Coxeter group and so has a length function and a

Bruhat order. For any G′, W̃ ′ has the structure of a quasi-Coxeter group (see [PZ13, § 9.1.1])

and so the Bruhat order can be extended to W̃ ′. We will denote this partial ordering by 6.

Bruhat–Tits theory associates to any connected reductive group G′ over κ the (extended)

building B(G′, κ) on which G′(κ) acts and to any pair (G′, S′) an apartment A(G′, S′, κ). For G′

simply connected, the parahoric subgroups of G′(κ) are exactly the stabilizers of the facets of

B(G′, κ). If a′ is a facet of B(G′, κ), we denote corresponding parahoric by Pa′ . There is a unique

parahoric group scheme over Oκ associated to a′ which, in an abuse of notation, we also denote

by Pa′ . It is a smooth affine group scheme with geometrically connected fibers.

The Iwahori–Weyl group W̃ ′ acts on the apartment A(G′, S′, κ). If a′ is a facet of A(G′, S′, κ),

then set

W ′a′ := (NG′(S
′)(κ) ∩ Pa′)/T (Oκ) ⊂ W̃ ′.

If G′ is simply connected, Wa′ is the stabilizer of a′ in W̃ ′.

To any µ′ ∈ X∗(T ′) one can associate a W ′0-orbit Λµ′ in X∗(T )I (see [PZ13, § 9.1.2] or the

discussion after [Ric16, Corollary 3.10]). Fix a κ-rational Borel B′ of G′ and let µ′ be the image

in X∗(T )I of the unique B′-dominant cocharacter in the orbit of µ′ under the absolute Weyl

group of (G′, T ′). Set Λµ′ = W ′0 ·µ′. This is independent of the choice of B′ and only depends on

the Weyl group orbit of µ′.

We take the opportunity here to define the µ′-admissible set which was introduced by

Kottwitz and Rapoport.

Definition 3.2.3. For µ′ ∈ X∗(T ′), define the µ′-admissible set

Adm(µ′) = {w ∈ W̃ ′ | w 6 tλ for some λ ∈ Λµ′}.

If a′ is a facet of the apartment A(G′, S′, κ), define

Adma′(µ′) = W ′a′ Adm(µ′)W ′a′ .

Note that Λµ′ and hence Adm(µ′) only depend on the geometric conjugacy class of µ′.

4 The inclusion X∗(T
′)I ↪→ W̃ ′ is chosen to be compatible with the Kottwitz homomorphism as in [PZ13]. This is

the same normalization as in § 2.1 in the split case.
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3.3 Parahoric group schemes
The input into the construction of a local model for ResK/FG includes a parahoric subgroup
or equivalently a facet a in the Bruhat–Tits building B(ResK/FG,F ). There is a natural
isomorphism of the (extended) Bruhat–Tits buildings

B(ResK/FG,F ) ∼= B(G,K)

(see, for example, [Pra01, p. 172]). Thus, a parahoric subgroup of (ResK/FG)(F ) is the same as
a parahoric subgroup of G(K). Fix a facet a of B(G,K).

The special fibers of local models naturally live in affine flag varieties which are associated
groups over F((u)) where F is a finite field. We would now like to associate to G and a (up to
some choices) a pair (G[, a[) where G[ is a connected reductive group over k0((u)) and a[ is a
facet of B(G[, k0((u))).

Choose a maximal K-split torus A ⊂ G such that a is in the apartment A(G,A,K) in
B(G,K). Also fix a rigidification (G,A, S, P ) over K [PZ13, Definition 1.7]. Let G∗ be the pinned
quasi-split group over OK0 [u, u−1] constructed in § 3.1. Let K̆ be the completion of the maximal
unramified extension of K with residue field k0. As in [PZ13, § 4.1.2], one can identify

A(G∗
K̆
, S∗

K̆
, K̆) = A(G∗

k0((u))
, S∗

k0((u))
, k0((u))) (3.3.0.1)

equivariantly for the action of the unramified Galois group and compatible with identifying the
Iwahori–Weyl groups for (G∗

k0((u))
, S∗

k0((u))
) and (G∗

K̆
, S∗

K̆
) (see Proposition 3.3.1 below).

Let (G,A, S, P ) be the rigidified group over SpecOK0 [u, u−1] constructed in Proposition 3.1.2
whose specialization at u 7→ $ is (G,A, S, P ). There is another interesting specialization of
SpecOK0 [u, u−1] given by base changing to k0((u)). Define

(G[, A[, S[, P [) := (G,A, S, P )k0((u)). (3.3.0.2)

Let T = ZG(S) (respectively, T [ = ZG(S[)) be a maximal torus of G (respectively, G[).

Proposition 3.3.1. Let I be the inertia subgroup of Γ = Gal(K̃/K).

(i) There is a natural I-equivariant isomorphism

X∗(T
[) ∼= X∗(T ).

(ii) Let W̃ be the Iwahori–Weyl of the pair (GK̆ , SK̆), and W̃ [ the Iwahori–Weyl group of

(G[
k0((u))

, S[
k0((u))

). Then there is a natural isomorphism

W̃ [ ∼= W̃

which is compatible with the induced isomorphism X∗(T
[)I ∼= X∗(T )I considered as

subgroups of W̃ [ and W̃ , respectively.

We include a proof of the above proposition at the end of the section after we introduce some
auxiliary group schemes and notation.

We now construct a facet a[ of A(G[, A[, k0((u))) associated to a. Let σ denote a generator
for Gal(K̆/K) (considered also as a generator for Gal(k0/k0)). Unramified descent gives

A(G,A,K) = A(GK̆ , SK̆ , K̆)σ and A(G[, A[, k0((u))) = A(G[
k0((u))

, S[
k0((u))

, k0((u)))σ.
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Over Ŏ0[u, u−1], the pairs (G,S) and (G∗, S∗) are isomorphic and hence also over both K̆ and
k0((u)). Under the identification of apartments, the σ-action becomes the action of Int(g)σ.
As conjugation by g is given by an element in the Iwahori–Weyl group, it is a consequence of
(3.3.0.1) that

A(GK̆ , SK̆ , K̆)σ = A(G∗
K̆
, S∗

K̆
, K̆)Int(g)σ

= A(G∗
k0((u))

, S∗
k0((u))

, k0((u)))Int(g)σ

= A(G[
k0((u))

, S[
k0((u))

, k0((u)))σ.

Hence, we can identify A(G,A,K) = A(G[, A[, k0((u))) through (3.3.0.1).

Definition 3.3.2. Let (G,A, S, P ) be as in Proposition 3.1.2. If a is a facet of A(G,A,K), then
define a[ to be the image of a under the above identification. We denote by Pa the parahoric
group scheme over OK associated to a and Pa[ the parahoric group scheme over k0JuK associated
to a[.

The following theorem is the analogue of [PZ13, Theorem 4.1] in our setting.

Theorem 3.3.3. There is a unique, smooth, affine group scheme G → Spec(OK0 [u]) with
connected fibers and with the following properties.

(i) The group scheme G extends G from Spec(OK0 [u, u−1]).

(ii) The base change of G along SpecOK → Spec(OK0 [u]) given by u 7→ $ is the parahoric
group scheme Pa for G.

(iii) The base change of G along Spec k0JuK→ A1
OK0

given by reduction modulo mK0 followed

by u-adic completion is the parahoric group scheme Pa[ for G[.

Proof. We highlight the key points of the construction from [PZ13, § 4.2.2] since all the arguments
carry over to our situation as well. Their construction generalizes the construction of the Bruhat–
Tits schemes from [BT84]. Step (a) handles the case where G is split. In this case, one constructs
G overOK0 [u] using the theory of schematic root datum as in [BT84, § 3] given by a. If a contains a
hyperspecial vertex, one could also follow the argument of [Yu] which constructs G using dilations
from the split form of G over OK0 [u]. This is used to show that the group constructed using
schematic root datum is affine.

Step (b) considers the case when G is quasi-split and splits over the totally tame
extension obtained by adjoining an ẽth root of $. From step (a), one has a smooth affine
group scheme Ha over SpecOK0 [v]. One then constructs G as the ‘connected component’ of
(ResOK0

[v]/OK0
[u]Ha)

γ0=1 where γ0 generates the inertia subgroup of Gal(Γ = K̃/K). The fixed
points form a smooth subgroup scheme since the order of γ0 is prime to p.

Finally, as in [BT84], the general case (step (c)) is handled by unramified descent from
the quasi-split case. The key point is to show that the unramified descent datum ∗σ on G∗

for Õ0[u, u−1] over OK0 [u, u−1] which gives G as a form of G∗ extends to the Bruhat–Tits
group scheme G∗ constructed in step (b). This boils down to an integrality statement for ∗σ on
G∗
K̃0((u))

which follows from the unramified descent argument from [BT84, 1.2.7] using that a lies

in A(G,A,K) and so is fixed by Frobenius. 2

We record a few other properties of G from Theorem 3.3.3.
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Proposition 3.3.4. (i) The group scheme GÕ0[u,u−1]
is quasi-split.

(ii) The centralizer T := ZG(S) is a fiberwise maximal torus.

(iii) Let T [ = T
k̃0((u))

. The group scheme T Õ0[u,u−1]
extends to a smooth affine group scheme T

over Õ0[u] mapping to GÕ0[u,u−1]
such that T

k̃0JuK is the connected Néron lft model of T [.

Proof. For (i), G is isomorphic to G∗ over Õ0[u, u−1] which is quasi-split by construction. For (ii),
one can check the condition after étale base change to Õ0[u, u−1] where T becomes isomorphic
to T ∗ which is a tame descent of a maximal split torus of the split group (H,TH) over Õ0[v, v−1].

For (iii), we refer to the construction on [PZ13, pp. 178–179] in the quasi-split case. Let H
be the construction for the split form of G. Then G is constructed from the smooth affine group
scheme G′ := (ResÕ0[v]/Õ0[u]

H)Γ. If TH is a split torus of H, then

T ′ = (ResÕ0[v]/Õ0[u]
TH)Γ ⊂ G′

is a smooth closed group scheme. If Z is the complement of the connected component of (T ′)u=0

which contains the identity section, then T can be defined to be T ′ − Z in the same way that
G is constructed from G′ on [PZ13, p. 179]. Since the connected component of (T ′)u=0 certainly
maps to the connected component of G′u=0, the natural inclusion T → G′ factors through G. 2

Proof of Proposition 3.3.1. Let T be as above and let N := NG(T ). Set T [ = T k0((u)) and N [ :=

Nk0((u)). For (i), both T and T [ are defined by tame descent from a split torus TH . Under the
identification of the two tame Galois groups, descent is given by the same representation of Γ.

For (ii), one can compare the Iwahori–Weyl groups W̃ [ and W̃ with the Iwahori–Weyl group
of the pair (GK̆((u)), SK̆((u))) (for the u-adic valuation). Consider the map

N(OK̆ [u, u−1])/T (OK̆ [u])→ N(K̆((u)))/T (K̆JuK). (3.3.4.1)

The left-hand side has specialization maps to both W̃ [ and W̃ . We claim that (3.3.4.1) is an
isomorphism, as are the two specializations. The quotient T (OK̆ [u, u−1])/T (OK̆ [u]) is naturally
isomorphic to X∗(TH)I and so we get an isomorphism on affine parts.

The Weyl group scheme W := N/T is finite étale over SpecOK̆ [u, u−1] and becomes constant

over SpecOK̆ [v, v−1] where ve = u. For the quasi-split pairs (GK̆ , SK̆) and (G[
k0((u))

, S[
k0((u))

),

the relative Weyl group is given by the I-invariant elements of the absolute Weyl group.
There is an I-equivariant isomorphism between W (k0((v))) and W (K̃). 2

4. Ramified local models

In this section we construct local models for the group ResK/FG and prove the main theorem
(Theorem 4.2.7) on their geometry. We first build a deformation of an affine flag variety to mixed
characteristic using the Bruhat–Tits group G over A1

OK0
from the previous section and discuss

its basic properties. The local models arise as flat projective closed subschemes of this mixed
characteristic flag variety. The main theorem is deduced from the coherence conjecture of Pappas
and Rapoport which was proven in [Zhu14].

4.1 Affine flag varieties
Let G be a smooth affine group scheme over Spec(OK0 [u]) with connected fibers, for example, G
as in Theorem 3.3.3. Let Q(u) ∈ OK0 [u] generate the kernel of the map OK0 [u]→ K given by
u 7→ $.
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Definition 4.1.1. For any OK0-algebra R, define

Fl
Q(u)
G,0 (R) := {iso-classes of pairs (E , β)},

where E is a G-bundle over R[u], and β is a trivialization of E|Spec(R[u])[1/Q(u)]. If G is a reductive

group scheme, then we write Fl
Q(u)
G,0 as Gr

Q(u)
G,0 .

There is also a ‘local’ version of Fl
Q(u)
G,0 , defined next.

Definition 4.1.2. For any OK0-algebra R, let R̂Q(u) denote the Q(u)-adic completion of R[u].
Define

Fl
Q(u),loc
G,0 (R) := {iso-classes of pairs (E , β)},

where E is a G-bundle over R̂Q(u) and β is a trivialization of E|
Spec R̂Q(u)[1/Q(u)]

.

Proposition 4.1.3. The natural map of functors

Fl
Q(u)
G,0 → Fl

Q(u),loc
G,0

given by completion at Q(u) is an equivalence.

Proof. This follows from [PZ13, Lemma 6.1] which generalizes the Beauville–Laszlo descent
lemma to the group G over the two-dimensional base OK0 [u]. There they work with completion
at u− r for some r ∈ R, but the proof is the same for completion at Q(u). 2

From now on, we will use the two descriptions given in Definitions 4.1.1 and 4.1.2

interchangeably and will use Fl
Q(u)
G,0 to denote either moduli problem.

Proposition 4.1.4. The functor Fl
Q(u)
G,0 is represented by an ind-scheme of ind-finite type over

SpecOK0 .

Proof. By [PZ13, Corollary 11.7], there exists a closed immersion i : G → GLn such that the
fppf quotient GLn/G is represented by a smooth quasi-affine scheme. A standard argument as

in [Gai01, Appendix] or [Lev13, Proposition 10.1.13] says that the induced map i∗ : Fl
Q(u)
G,0 →

Gr
Q(u)
GLn,0

is a locally closed immersion. The functor Fl
Q(u)
GLn,0

is represented by an ind-scheme of
ind-finite type via its description in terms of Q(u)-lattices in Example 2.2.7. 2

Define a pro-algebraic group over SpecOK0 by

L+,Q(u)G(R) := lim
←−G(R[u]/Q(u)N ) = G(R̂Q(u)).

For any N > 1, the functor R 7→ G(R[u]/Q(u)N ) is represented by the smooth affine group

scheme Res(OK0
[u]/Q(u)N )/OK0

G. Using the local description (Definition 4.1.2) of Fl
Q(u)
G,0 , we see

that L+,Q(u)G acts on Fl
Q(u)
G,0 by changing the trivialization.

The functor L+,Q(u)G is a version of the positive loop group; there is also a version of the
loop group. For any OK0-algebra R, if R̂Q(u) denotes the Q(u)-adic completion of R[u], then

LQ(u)G is the functor given by

R 7→ G(R̂Q(u)[1/Q(u)]). (4.1.4.1)
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As in [Zhu14, § 6.2.4], LQ(u)G is represented by a formally smooth ind-scheme over OK0 , but we
will not use this fact. There is a natural map

LQ(u)G(R)→ Fl
Q(u)
G,0 (R) (4.1.4.2)

which assigns to g ∈ G(R̂Q(u)[1/Q(u)]) the trivial G-bundle E0
G over Spec R̂Q(u) with trivialization

over Spec R̂Q(u)[1/Q(u)] given by g.

Proposition 4.1.5. There exist finite type closed subschemes {Zi} of Fl
Q(u)
G,0 with lim−→i

Zi =

Fl
Q(u)
G,0 such that each Zi is stable under the action of L+,Q(u)G, and the action of L+,Q(u)G on

Zi factors through Res(OK0
[u]/Q(u)N )/OG for some N � 0 (i.e., the action is nice in the sense of

[Gai01, §A.3]).

Proof. Using the locally closed immersion i∗ : Fl
Q(u)
G,0 ↪→ Gr

Q(u)
GLn,0

from the proof of Proposition

4.1.4, it suffices to show that the action of L+,Q(u)GLn on Fl
Q(u)
GLn,0

= Gr
Q(u)
GLn

is nice. Let M0 =
(OK0 [u])n from Example 2.2.7. As in [Lev13, Theorem 10.1.17], we have

Gr
Q(u)
GLn

= lim−→XQ(u),N

where XQ(u),N (R) is the set of R[u]-module quotients of

(Q(u)−N (M0 ⊗OK0
R))/(Q(u)N (M0 ⊗OK0

R))

which are R-projective. Each XQ(u),N is L+,Q(u)GLn stable and the action is through a finite
type quotient. 2

Proposition 4.1.6. The generic fiber (L+,Q(u)G)K0 is isomorphic to the positive loop group
L+ResK/K0

G. Furthermore, there is an isomorphism

(Fl
Q(u)
G,0 )K0

∼= GrResK/K0
G

identifying the action of (L+,Q(u)G)K0 with the action of L+ResK/K0
G.

Proof. One can give an algebraic proof as in [Lev13, Proposition 10.1.6]. However, we give a
moduli-theoretic description of the isomorphism. We construct the isomorphism over a splitting
field E for Q(u) and then conclude by Galois descent from L to K0.

For each K0-embedding ψ : K → L, let Dψ be the divisor on A1
L defined by u − ψ($). Set

D :=
⋃
ψDψ. If (E , β) is a G-bundle trivialized away from D, we can construct for each ψ a

G-bundle Eψ together with a trivialization βψ on the complement of Dψ by gluing the trivial
bundle on A1

L −Dψ and E|A1
E−

⋃
ψ′ 6=ψ Dψ′

via the trivialization β of E on the intersection. In fact,

this process defines an equivalence of categories between pairs (E , β) and tuples {(Eψ, βψ)}ψ.
The inverse is given by gluing the Eψ|A1

L−
⋃
ψ′ 6=ψ Dψ′

along A1
L − D with gluing data given by

{β−1
ψ′ ◦ βψ}. This is a standard argument used in the study of BD/convolution Grassmannians

(see, for example, [Gai01, Proposition 5]).
Let LJu−$ψK denote the completion of A1

L along Dψ and let Gψ denote the base change of
G to LJu−$ψK. If GrGψ is the (twisted) affine Grassmannian of Gψ, the equivalence induces an
isomorphism

(Fl
Q(u)
G,0 )L ∼=

⊕
ψ:K→L

GrGψ .
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Using the behavior of bundles under Weil restriction, we have an isomorphism GrResK/K0
G
∼=

ResK/K0
GrGK (see [Lev13, § 2.6]).

It suffices then to show that Gψ ∼= G ⊗K,ψ LJu −$ψK. Since both G and Gψ are defined by

descent datum for the group Γ = Gal(K̃/K), it suffices to give a Γ-equivariant LJu−$ψK-algebra
isomorphism

Õ0[v]⊗K0 LJu−$ψK ∼= K̃ ⊗K,ψ LJu−$ψK. (4.1.6.1)

The left-hand side is naturally isomorphic to the (vẽ − $ψ)-adic completion of (K̃0 ⊗K0 L)[v].
The isomorphism (as in [PZ13, § 6.2.6]) is given by

v 7→
(
$̃ ⊗

(
1 +

u−$ψ

$ψ

)1/ẽ)
.

One can check that this map is Γ-equivariant. This gives the desired isomorphism Gψ ∼= G⊗K,ψ
LJu− ψ($)K which induces an isomorphism

(Fl
Q(u)
G,0 )L ∼=

⊕
ψ:K→L

Gr(G⊗K,ψL).

Similarly, the loop group (L+,Q(u)G)K0 over L is identified with the completion of G along D
which decomposes as a product of the completions of Gψ along each Dψ. 2

Remark 4.1.7. In the proof of Proposition 4.1.6, we chose an ẽth root of (1 + (u− ψ($))/ψ($))
in LJu − $K. To be consistent with calculations in § 4.2, we fix the choice to be the ẽth root
whose constant term is 1.

Proposition 4.1.8. The special fiber (L+,Q(u)G)k0 is isomorphic to L+Pa[ , where Pa[ is the
parahoric group scheme over Spec k0JuK associated to the facet a[ from Definition 3.3.2.
Furthermore, there is an isomorphism

(Fl
Q(u)
G,0 )k0

∼= FlP
a[

identifying the action of (L+,Q(u)G)k0 with the action of L+Pa[ .

Proof. The special fiber only depends on G over k0JuK which by Theorem 3.3.3 is isomorphic to
Pa[ . Since Q(u) ≡ u[K:K0] over k0, we have for any k0-algebra R,

L+,Q(u)G(R) = Pa[(RJuK) = L+Pa[(R).

The description of (Fl
Q(u)
G,0 )k0 from Definition 4.1.2 is exactly the same as the affine flag variety

FlP
a[

(see § 2.1). 2

As a consequence of Propositions 4.1.6 and 4.1.8, both the special and generic fiber of Fl
Q(u)
G,0

are ind-projective. We will show later that Fl
Q(u)
G,0 is in fact ind-projective (see Theorem 4.2.11).

A local model for ResK/FG should be a flat projective scheme over the ring of integers O of F
(or, more generally, the reflex field over F ). However, the unramified extension K0/F is harmless
which is why we have ignored it thus far and chosen to work over OK0 . Define

Fl
Q(u)
G := ResOK0

/O Fl
Q(u)
G,0 and L+,Q(u)G := ResOK0

/OL
+,Q(u)
0 G.
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The following proposition summarizes the results of this section as applied to Fl
Q(u)
G .

Proposition 4.1.9. The functor Fl
Q(u)
G is an ind-scheme of finite type over SpecO with an

action of L+,Q(u)G. The generic fiber is equivariantly isomorphic to GrResK/FG, and the special

fiber is equivariantly isomorphic to Resk0/k FlP
a[

.

Proof. This is an immediate consequence of Propositions 4.1.6 and 4.1.8 together with the

behavior of affine Grassmannians under Weil restriction [Lev13, § 2.6]. 2

4.2 Local models

We are now ready to define local models for ResK/FG. Let (ResK/FG,P, {µ}) be a triple where

P is a parahoric subgroup of ResK/FG and {µ} is a geometric conjugacy class of cocharacters.

Let a be the facet of B(G,K) associated to P as discussed at the beginning of § 3.3. Choosing

a rigidification (G,A, S, P ) of G such that a is in the apartment A(G,A,K), we constructed in

Proposition 3.1.2 an extension G of G to SpecOK0 [u, u−1].

Specializing G at k0((u)) gave rise to the pair (G[, A[) as well as a facet a[ of the apartment

A(G[, A[, k0((u))). Finally, let G denote the Bruhat–Tits group scheme over OK0 [u] from

Theorem 3.3.3. The conjugacy class {µ} has a minimal field of definition E of F called the reflex

field. The conjugacy class {µ} defines an affine Schubert variety SResK/FG(µ) ⊂ (GrResK/FG)F
defined over E as in § 2.1 with H = ResK/FG. Let OE be the ring of integers of E.

Definition 4.2.1. The local model MG(µ) associated to the triple (ResK/FG,P, {µ}) is the

closure of

SResK/FG(µ) ⊂ (GrResK/FG)E ∼= (Fl
Q(u)
G )E

in (Fl
Q(u)
G )OE .

We now make a few remarks about MG(µ).

Remark 4.2.2. In § 2 we denoted the local model by MP (µ) to indicate a dependence on a

parabolic subgroup (determined by the parahoric). In this case, the parahoric P determines the

group scheme G and so we indicate the dependence on G with a subscript. The two constructions

agree under the hypotheses of § 2 by Proposition 2.3.8.

Remark 4.2.3. In the introduction we stated that we construct local models for any triple

(G′,P ′, µ′) as long as p > 5. So far, we have only dealt with groups G′ of the form ResK/FG

where G is tamely ramified. For p > 5, the simply connected cover G̃′ of G′ is always a product

of groups of this form. There is a subtlety in that µ′ may not lift to G̃′. In this case, one can

translate SG′(µ
′)E ⊂ (GrG′)E into (Gr

G̃
)E which is the neutral connected component of GrG′

and define the local model MG̃(µ′) to be the closure of the translation of SG′(µ
′)E in Fl

Q(u)

G̃
.

The special fiber of MG̃(µ′) will then satisfy Theorem 4.2.7. This strategy can also be used to

define alternative local models when p | π1(Gder), but we will not pursue that here.

Proposition 4.2.4. When K/F is tamely ramified, the local model MG(µ) is isomorphic to the

local model constructed in [PZ13].
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Proof. For simplicity, assume K/F is totally tame of degree e. After possibly making an
unramified base change, we can choose a uniformizer $K of K such that $e

K = $F is a
uniformizer of F . Consider the map Ψ : A1

OF → A1
OF given by u 7→ Q(u) + $F . Define G′

to be the Weil restriction ResΨG along the finite flat map Ψ. Using the behavior of bundles
under Weil restriction, we have a natural isomorphism

Fl
Q(u)
G
∼= GrG′,$F

where the right-hand side is the affine Grassmannian associated to G′ defined in [PZ13, § 6.2.6].
It suffices then to check that G′ is isomorphic to the Bruhat–Tits group scheme in [PZ13, § 4.3].
This follows either from looking at the construction carefully or alternatively from checking that
G′ has the characterizing properties given in [PZ13, Theorem 4.1]. 2

Remark 4.2.5. The local model MG(µ) does not depend on the choice of uniformizer $. The
argument is similar to the proof of Proposition 4.2.4, though the details are more tedious.
To compare the constructions for two uniformizers, $ and $′, one has to compare group schemes
obtained after Weil restriction along Ψ,Ψ′ : A1

OF → A1
OF where Ψ(u) = Q(u) and Ψ′(u) = Q′(u)

respectively, Q(u) and Q′(u) being the minimal polynomials of $ and $′ over F .

Proposition 4.2.6. The scheme MG(µ) is flat and projective over SpecOE .

Proof. We follow the strategy from [Ric16, § 2.5]. The scheme MG(µ) is flat over SpecOE by
construction and both fibers are proper. The generic fiber of MG(µ) is the affine Schubert variety
SResK/FG(µ) which is geometrically connected. By [Ric16, Lemma 1.21], if the special fiber of
MG(µ) is non-empty, then MG(µ) is proper. Non-emptiness of the special fiber is a consequence
of Corollary 4.2.9 (where we construct special points of MG(µ)(k)). Projectivity follows from

properness using the existence of a locally closed immersion i∗ : Fl
Q(u)
G → Gr

Q(u)
GLn

as in the proof

of Proposition 4.1.4 and the fact that Gr
Q(u)
GLn

is ind-projective. 2

If kE is the residue field of E then define

MG(µ) := MG(µ)kE

a closed subscheme of the affine flag variety Resk0/k FlP
a[

over kE . The main theorem of this

section is that MG(µ) is a union of affine Schubert varieties defined by a certain admissible set
(Theorem 4.3.2). As a consequence, we will see that MG(µ) is reduced and normal, and each
geometric component is Cohen–Macaulay.

Theorem 4.2.7. Suppose that p - |π1(Gder)|. Then the scheme MG(µ) is normal. In addition, the
special fiber MG(µ) is reduced, and each geometric irreducible component of MG(µ) is normal,
Cohen–Macaulay and Frobenius split.

We begin with a few reductions. Clearly, it is enough to check Theorem 4.2.7 after base-
changing to OĔ where Ĕ is the completion of the maximal unramified extension of E. Since
the generic fiber of MG(µ) is an affine Schubert variety, it is normal [PR08, Theorem 0.3].
As in [PZ13, Proposition 9.2], one is reduced to showing that MG(µ) ⊗kE k is reduced, normal
and each irreducible component is Cohen–Macaulay.
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Recall that T is a maximal torus of G. Fix a representative µ ∈ {µ} which is valued in
(ResK/FT )F . For every embedding φ : K0 ⊂ Ĕ, µ defines a cocharacter µφ ∈ X∗(ResK/K0

T ).
It is not hard to see that

MG(µ)Ĕ
∼=
∏
φ

MG,0(µφ)⊗K0,φ Ĕ

where MG,0(µψ) are local models for the group ResK/K0
G. Thus, for the proof of Theorem 4.2.7,

we can assume that F = K0. We make this assumption for the remainder of the section.
We would now like to construct points in the special fiber MG(µ). To do this, we consider

the subgroup T ⊂ G from Proposition 3.3.4 which is a ‘Bruhat–Tits group scheme’ for the
maximal torus T ⊂ G over OĔ [u, u−1]. Let TH = T

K̃
be the split torus on which Γ acts. Recall

that TOĔ [v,v−1]
∼= (TH)OĔ [v,v−1] where u 7→ vẽ. More specifically, T is the ‘neutral connected

component’ of

T ′ := ResOĔ [v]/OĔ [u](TH ⊗OĔ [v])γ (4.2.7.1)

where γ is a generator the inertia subgroup I ⊂ Γ which acts on the split torus TH and sends v
to ζv where ζ is a primitive ẽth root of unity.

Recall the Kottwitz homomorphism

κT : T (k((u)))→ X∗(TH)I

discussed in more detail in § 3.2. Implicitly, we are identifying X∗(T k((u))) with X∗(TH)
equivariantly for the action of I. A cocharacter µ′ ∈ X∗(ResK/FT ) is equivalent to a tuple
(µ′ψ) ∈ ∏ψ:K→F X∗(Tψ). We would like to take the ‘sum’ of the µ′ψ. However, they do not lie

canonically in the same group, so for each ψ : K → F , choose an embedding ψ̃ : K̃ → F which
extends ψ. We have an isomorphism

(TH)⊗
K̃,ψ̃

F ∼= Tψ

and so we can think of µ′ψ as a cocharacter of TH . Let µ′ψ be the image of µ′ψ in X∗(TH)I .

The image µ′ψ is independent of the choice ψ̃. Define

λµ′ :=
∑
ψ

µ′ψ ∈ X∗(TH)I .

The following generalizes [PZ13, Lemma 9.8]. The proof is somewhat technical and is considerably
simpler when the group G is unramified. The reader who is only interested in unramified groups
should refer to Proposition 2.3.7 instead.

Proposition 4.2.8. Let Ẽ ⊂ F be a finite extension of F which contains a Galois closure of K̃
over F . Choose µ′ ∈ X∗(ResK/FT ). Then there exists a morphism

sµ′ : SpecO
Ẽ
→ LQ(u)T

such that

(i) (sµ′)Ẽ ∈ (LQ(u)T )(Ẽ) = (LResK/FT )(Ẽ) lies in the same L+ResK/FT orbit as the point
induced by µ′ : (Gm)

Ẽ
→ (ResK/FT )

Ẽ
;

(ii) κT ((sµ′)k) ≡ λµ′ in X∗(TH)I .
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Proof. We give a proof based on [Zhu14, Proposition 3.4]. As in that proposition, the split
case is quite a bit simpler (see Proposition 2.3.7). We first construct sµ′ over O

Ẽ
valued in T ′

(see (4.2.7.1)).
Let γ denote a generator for the inertia group I as above. Fix an embedding Õ0 → Ẽ.

An O
Ẽ

-point of LQ(u)T ′ is the same as a γ-fixed point in

TH(Ô
Ẽ

[u]
(Q(u))

[1/Q(u)]⊗Õ0[u]
Õ0[v]) = TH(Ô

Ẽ
[v]

(Q(u))
[1/Q(u)]),

where we are taking Q(u)-adic completions.
For any embedding ψ : K → Ẽ, let $ψ denote the image of the uniformizer $ of K. Choose

$̃ψ ∈ Ẽ such that $̃ẽ
ψ = $ψ (or equivalently ψ̃ : K̃ → Ẽ extending ψ). Define

xi,ψ := ζiv − $̃ψ ∈ ÔẼ [v]
(Q(u))

[1/Q(u)]

which is a unit since
∏ẽ
i=1 xi,ψ = u−$ψ. Also, we have

γ(xi,ψ) = xi+1,ψ (4.2.8.1)

with xi+ẽ = xi.

Let µ′ = (µ′ψ)
ψ:K→Ẽ

where µ′ψ ∈ X∗(Tψ). Using the choice of embedding ψ̃ : K̃ → F , we

think of µ′ψ ∈X∗(TH). There is a point sµ′ ∈ TH(Ô
Ẽ

[v]
(Q(u))

[1/Q(u)]) such that for any character

χ : TH → Gm,

χ(sµ′) =
∏

ψ:K→Ẽ

ẽ∏
i=1

x
〈γi(χ),µ′ψ〉
i,ψ .

Since γ is acting on v and on TH (but not on Ẽ), sµ′ is γ-invariant and so defines an element
of LQ(u)T ′(O

Ẽ
). An identical argument as in the last paragraph on [Zhu14, p. 20] with k((u1))

replaced by Ẽ shows that sµ′ factors through the connected component LQ(u)T .
Next, we show that sµ′ satisfies properties (i) and (ii). To compute (sµ′)Ẽ , we have to unravel

the isomorphism (LQ(u)T )
Ẽ
∼=
∏
ψ:K→Ẽ

LT
ψ,Ẽ

. Explicitly,

(LQ(u)T )(Ẽ) = T (
̂̃
E[u](Q(u))[1/Q(u)])

=
⊕
ψ

T (Ẽ((u−$ψ)))

=
⊕
ψ

TH(
̂̃
E[v](u−$ψ)[1/(u−$ψ)])γ=1

=
⊕
ψ

TH((K̃ ⊗K,ψ Ẽ)((u−$ψ)))γ=1 (4.2.8.2)

where the last equality is from (4.1.6.1). Using ψ̃, we get an isomorphism

TH((K̃ ⊗K,ψ Ẽ)((u−$ψ)))γ=1 ∼= TH(Ẽ((u−$ψ))).

For any two embeddings ψ and ψ′, define

zψi,ψ′ := ζi
(
$̃ψ

(
1 +

u−$ψ

$ψ

)1/ẽ)
− $̃ψ′ .
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Then the ψ-component of χ(sµ′)Ẽ is given by

∏
ψ′:K→Ẽ

ẽ∏
i=1

(zψi,ψ′)
〈γi(χ),µ′

ψ′ 〉 ∈ Ẽ((u−$ψ))×.

As an element of ẼJu−$ψK, zψi,ψ′ is a unit when ψ 6= ψ′ and when ψ′ = ψ but i 6= ẽ (the second

claim uses the choice of ẽth root). Furthermore, zψẽ,ψ vanishes to order 1. Thus, the ψ-component

of χ(sµ′)Ẽ is a unit times (u−$ψ)〈χ,µ
′
ψ〉 as expected.

Finally, we consider sµ′ over the residue field k̃ of O
Ẽ

. Over k̃, xi,ψ = xi,ψ′ for all ψ′ : K→ Ẽ,
so

χ(sµ′)k =
ẽ∏
i=1

(ζiv)〈γ
i(χ),λµ′ 〉

where λµ′ =
∑

ψ µ
′
ψ. This is exactly the norm of λµ′(v) from T (k̃((v))) to T (k̃((u))) which

maps to λµ′ under κT using the explicit description of the Kottwitz homomorphism ([Kot97,
§ 7], [Zhu14, p. 20]). 2

If w is an element of the Iwahori–Weyl group of G[, then let Sa[
w denote the corresponding

locally closed orbit in FlP
a[

.

Corollary 4.2.9. Let λµ′ =
∑

ψ µ
′
ψ where µ′ψ ∈W ·µψ where W is the absolute Weyl group of

(G,T ). Let λ
′

denote the image of λµ′ in X∗(T )I . Then

Sa[

t
λ
′ ⊂MG(µ)

where t
λ
′ is the translation element in the Iwahori–Weyl group W̃ (G[, T [).

Proof. By Proposition 4.3.1, MG(µ) is preserved by the action of L+Pa[ so it suffices to

show that a single point of Sa[
t
λ
′ is contained in MG(µ). Let sµ′ ∈ LQ(u)T (O

Ẽ
) be as in

Proposition 4.2.8 applied to µ′ = (µ′ψ) ∈ X∗(ResK/FT ). Since µ′ is conjugate to µ in ResK/FG,
(sµ′)Ẽ ∈ SResK/FG(µ). Thus,

(sµ′)k ∈MG(µ)(k)

and property (ii) of Proposition 4.2.8 guarantees that (sµ′)k is also in Sa[
t
λ
′ . 2

Remark 4.2.10. The analogue of Corollary 4.2.9 in the function field case is [Ric16, Lemma 3.12].
The proof given in [Ric16] is considerably simpler. A similar argument in mixed characteristic
should work if ResK/FG is tamely ramified. It was not clear if the same argument can be adapted
to the case where K/F is wildly ramified.

We no longer assume that K0 = F .

Theorem 4.2.11. Fl
Q(u)
G is ind-projective.

Proof. We follow the argument from [Ric16, § 2.5]. We can reduce immediately to the case of
K0 = F . We can replace F by a finite unramified extension such that G and hence G[1/u]
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becomes quasi-split. We saw in Proposition 4.2.6 that MG(µ) is projective. Let J be the set of
Gal(F/F )-orbits of conjugacy classes of cocharacters of ResK/FG. Every δ ∈ J defines a closed

subscheme Sδ ⊂ Fl
Q(u)
G which geometrically is the union of the SResK/FG(µ) for µ ∈ δ. Let Mδ

be the flat closure of Sδ in Fl
Q(u)
G . The Mδ are projective since all MG(µ) are. The claim then is

that
(Fl

Q(u)
G )red =

⋃
δ∈J

Mδ.

The union of the Sδ contains all F -points of Fl
Q(u)
G and so covers the reduced generic fiber.

By Corollary 4.2.9,
⋃
δ∈JMδ contains the closed L+Pa[-orbits of all translation elements tλ in the

Iwahori–Weyl group. This contains all k-points of Fl
Q(u)
G . This proves the inclusion (Fl

Q(u)
G )red ⊂⋃

δ∈JMδ. This other inclusion is clear. 2

4.3 Line bundles and the coherence conjecture
In this subsection we identify the special fiber of MG(µ) with a union of affine Schubert varieties
inside an affine flag variety (Theorem 4.3.2). The strategy of the proof is the same as in [PZ13,
§ 9]. The inclusion of the affine Schubert varieties in MG(µ) is elementary (though somewhat
technical) and follows from Proposition 4.2.8. One then constructs an ample line bundle onMG(µ)
and shows an equality of Hilbert polynomials. In [PZ13] the equality of Hilbert polynomials is a
deep fact which follows from the coherence conjecture of Pappas and Rapoport proven in [Zhu14].
In our context, we combine the coherence conjecture for the group G[ with the product formula
(Proposition 4.3.8) to deduce the desired equality.

Proposition 4.3.1. The scheme MG(µ) is invariant under the action of L+,Q(u)G. In particular,
MG(µ)red is a union of affine Schubert varieties of FlP

a[
.

Proof. Since both MG(µ) and L+,Q(u)G are flat over SpecOE , this follows from the fact that
MG(µ)E is stable under (L+,Q(u)G)E . 2

The idea going back to [PR03, PR05] is that the special fiber should be determined by the
‘sum’ of the components of {µ} over the embeddings of ψ : K → F . To define this sum, choose
a Borel subgroup B of GF which contains TF . Let µ be the unique representative of {µ} valued
in TF such that for every embedding ψ : K → F the component µψ is B-dominant. Define

λµ :=
∑

ψ:K→F

µψ.

The conjugacy class of λµ is independent of choice of B.
We are now ready to state the theorem identifying the special fiber of MG(µ). Recall the

λµ-admissible set Adma[(λµ) introduced by Kottwitz and Rapoport (see Definition 3.2.3).

Theorem 4.3.2. Suppose that p - |π1(Gder)|. As a closed subscheme of FlP
a[

, we have⋃
w∈Adma[ (λµ)

Sa[

w = MG(µ).

Remark 4.3.3. The set Adma[(λµ) only depends on the geometric conjugacy class of λµ so the
right-hand side in Theorem 4.3.2, like the left-hand side, is determined only by {µ}.
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We begin by constructing an ample line bundle on MG(µ). Consider the case of G = GLn.
Let M0 = (O[u])n be as in Example 2.2.7. For any Q(u)-lattice M of M0[1/Q(u)] with coefficients
in R, define

det
R

(M) := det
R

(Q(u)−N (M0 ⊗R)/M)⊗R det
R

((M0 ⊗R)/Q(u)N (M0 ⊗R))

for N � 0. See [Lev13, 10.1.15–17] for more detail.

Definition 4.3.4. Define a line bundle LQ(u)
det on Gr

Q(u)
GLn

by

M 7→ det
R

(M)

for any M ∈ Gr
Q(u)
GLn

(R) (using the description of Gr
Q(u)
GLn

from Example 2.2.7).

Remark 4.3.5. The line bundle LQ(u)
det is defined in the same way as the determinant line bundle

on the ordinary affine Grassmannian GrGLn . It is not hard to see that LQ(u)
det is an ample line

bundle from the description of Gr
Q(u)
GLn

as an ind-scheme from Example 2.2.7.

Let us briefly recall a few facts about line bundles on ordinary affine Grassmannians.
Let H be a connected reductive group over an algebraically closed field κ. The affine
Grassmannian GrGLn is the moduli space of ‘lattices’ in κ((u))n and is equipped with a canonical
ample line bundle, the determinant line bundle Ldet (see [Fal03, p. 42]).

Let Lie(H) denote the Lie algebra of H. Define LH,det on GrH to be the pullback of Ldet

under the natural map
Ad : GrH → GrGL(Lie(H)).

More generally, if P is a parahoric group scheme over κJuK, then Lie(P) is a finite free κJuK-
module. We define LP,det on FlP to be the pullback of Ldet under

Ad : FlP → GrGL(Lie(P)).

Proposition 4.3.6. Let P be a parahoric group scheme over κJuK such that G′ := Pκ((u)) splits
over a tamely ramified extension. Assume that char(κ) - |π1(G′der)|. Then LP,det is ample on FlP .

Proof. The determinant line bundle is translation invariant by LG′(κ) ([Fal03, p. 43] or [Lev13,
Lemma 10.3.2]) so it suffices to show that LP,det restricted to the neutral connected component
Fl0P is ample. Let G′der be the derived subgroup of G′ and let Pder be the corresponding parahoric
for G′der. By [PR08, Proposition 6.6],

(Fl0Pder
)red
∼= (Fl0P)red

so we can reduce to the case where G′ is semi-simple.
Let G̃′→ G′ denote the simply connected cover of G′. Let P̃ be the corresponding parahoric

for G̃′. By [PR08, § 6.a], especially equations (6.7) and (6.11), we have

FlP̃
∼= Fl0P

using also that FlP̃ is connected [PR08, Theorem 5.1]. Thus, we are reduced to the case where
G′ is simply connected.
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Then G′ ∼=
∏

ResFi/κ((u))G
′
i where Fi = κ((vi)) are tamely ramified extensions of κ((u)) and

G′i are absolutely simple and simply connected. One can then reduce to the case of G′ = G′i.
Choose an Iwahori subgroup I contained in P. If S is the set of vertices of the affine Dynkin
diagram of G′, then P = PI for some non-empty subset of I ⊂ S. In this case, we have Pic(FlPI )

∼=
ZL(εi)

I where the coefficient on L(εi) is the degree of the line bundle restricted to the projective
line Pi which is the image of PS−i/I (see [PR08, Proposition 10.1] or the discussion after [Zhu14,
Theorem 2.3]).

We just have to check that LG′,det is ample on Pi. When I = S, this is a consequence of [Zhu14,
Lemma 4.2]. For a general parahoric, we have

Pi ⊂ PI−i/PI ⊂ FlPI .

Let PI−i denote the special fiber of the parahoric PI−i. As in the proof of [Zhu14, Lemma 4.2], PI
defines a maximal proper parabolic PI of the reductive quotient MI−i := Pred

I−i. We can identify
PI−i/PI with MI−i/PI . The determinant line bundle on FlPI restricted to MI−i/PI is isomorphic
to the determinant line bundle on the Grassmannian of dimκ LiePI subspaces LieMI−i which is
ample. 2

Now we return to our Bruhat–Tits group scheme G. Let V = LieG a finite projective O[u]-
module. By [Ses58], V is a free O[u]-module. The adjoint representation induces a natural map

Ad : Fl
Q(u)
G → Gr

Q(u)
GL(V) .

Hence we have a natural line bundle

LQ(u)
G := Ad∗(LQ(u)

det )

given by pulling back the determinant line bundle.

Proposition 4.3.7. The line bundle LQ(u)
G is ample on Fl

Q(u)
G . Furthermore, under the

isomorphism

(Fl
Q(u)
G )F

∼=
∏

ψ:K→F

GrGψ,F

from Proposition 4.1.6 we have (LQ(u)
G )F

∼=�ψ:K→F (LG,det)ψ,F .

Proof. Since Fl
Q(u)
G is ind-projective (Theorem 4.2.11), we can check ampleness on fibers. On the

special fiber,

(LQ(u)
G )k = LP

a[
,det

under the isomorphism from Proposition 4.1.8 which is ample by Proposition 4.3.6.

The second statement of the Proposition will imply that LQ(u)
G is ample on the generic fiber as

well. The product decomposition for (LQ(u)
G )F reduces immediately to the case where G = GLn.

The ind-scheme (Gr
Q(u)
GLn

)F is a moduli space of Q(u)-lattices in M0 = F [u]n (Example 2.2.7).
The product decomposition

(Gr
Q(u)
GLn

)F
∼=

∏
ψ:K→F

(GrGLn)ψ,F
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is induced by the decomposition

(Q(u)−NM0/Q(u)M0) ∼=
⊕
ψ

((u− ψ($))−NM0/(u− ψ($))NM0)

for all positive integers N . One computes directly that LQ(u)
det

∼= �ψ:K→FLdet as in [Lev13,
Proposition 10.1.19]. 2

If X is a projective scheme over a field κ and L is a line bundle, then h0(X,L) is defined to
be the κ-dimension of H0(X,L).

Proposition 4.3.8. Let H be a split connected reductive group over a field κ with Borel
subgroup BH . Suppose that char(κ) - |π1(Hder)|. Then

h0(SH(µ+ µ′),L⊗nH,det) = (h0(SH(µ),L⊗nH,det))(h
0(SH(µ′),L⊗nH,det))

for any BH -dominant cocharacters µ and µ′ of H.

Proof. Under the hypothesis on π1(Hder), the Schubert varieties and LH,det are all defined over
SpecZ by [Fal03] (see also the discussion in [PR08, §§ 8.e.3, 8.e.4]), and H1(SH(λ),LH,det) = 0 for
all cocharacters λ since SH(λ) is Frobenius split in finite characteristic. Thus, we can reduce to
the case of characteristic 0. In this setting, it is originally due to [FL06, Theorem 1]. A geometric
proof is given in [Zhu09, Theorem 1.2.2]. 2

Remark 4.3.9. The product formula in Proposition 4.3.8 plays a role like that of the coherence
conjecture of Pappas and Rapoport when the group is defined by Weil restriction. For an
unramified group and certain maximal parahorics, one only needs the product formula to prove
Theorem 4.3.2 as in [Lev13].

Proof of Theorem 4.3.2. Set APa[ (λµ) :=
⋃
w∈Adma[ (λµ)

Sa[
w . We first show that

APa[ (λµ) ⊂MG(µ). (4.3.9.1)

Since MG(µ) is L+Pa[-stable, it suffices to show that Sa[
w ⊂ MG(µ) for w an extremal element

in Adma[(λµ) under the Bruhat order. Representatives for the extremal elements in Adma[(λµ)
are given by the translations tλ′ where λ′ is in the W -orbit of λµ (see [Ric16, Corollary 3.11]).
The inclusion (4.3.9.1) follows from Corollary 4.2.9.

Let L := LQ(u)
G be the ample line bundle on MG(µ) from Proposition 4.3.7. To show that

APa[ (λµ) = MG(µ)

it suffices to show that
h0(APa[ (λµ),L⊗nk ) = h0(MG(µ),L⊗nk )

for all n� 0. By flatness, for n� 0,

h0(MG(µ),L⊗nk ) = h0(MG(µ)F ,L⊗nF ).

Let H be the split form of G. Furthermore, MG(µ)F =
∏
ψ:K→F SHF (µψ) and so by

Proposition 4.3.7,

h0(MG(µ)F ,L⊗nF ) =
∏

ψ:K→F

h0(SHF (µψ),L⊗ndet,H).

2591

https://doi.org/10.1112/S0010437X1600765X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1600765X


B. Levin

The product formula (Proposition 4.3.8) implies that∏
ψ:K→F

h0(SHF (µψ),L⊗ndet,H) = h0(SHF (λµ)F ,L⊗ndet,H) = h0(SGF (λµ)F ,L⊗ndet,G).

Finally, we appeal to the coherence conjecture of Pappas and Rapoport for the group G (which is
tamely ramified) in the form given in [PZ13, (9.19)] (the conjecture is proven in [Zhu14]) which
says that

h0(APa[ (λµ),L⊗nk ) = h0(SG(λµ)F ,L⊗ndet,G)

for n� 0. 2

Remark 4.3.10. Theorem 4.3.2 implies that the irreducible components of MG(µ) are in bijection

with extremal elements in Adma[(λµ). Thus, MG(µ) is equidimensional and the number of
components is equal to the size of W0,a[\W0/W0,λµ by [Ric16, Corollary 3.11] where W0,λµ is the
stabilizer of the image of λµ in X∗(T )I .

5. Nearby cycles

5.1 Setup and constructions
In this section we study the sheaves of nearby cycles of the local models we have constructed.
This extends work of [Gai01, HN02, PZ13]. We show, in particular, Theorem 5.3.3 (the Kottwitz
conjecture) and the unipotence of the monodromy action (Theorem 5.3.1). In § 5.4 we introduce
splitting models when G is unramified and a is very special. In this situation, we are able to give
a more explicit description of the sheaf of nearby cycles, generalizing results of [PR03, PR05].

To simplify notation, we will assume that K/F is totally ramified (i.e., K0 = F ). Everything
we say holds in the situation where K/F is not totally ramified using that MG(µ)OK0

is a product
of local models for the group ResK/K0

G.
Our notation and setup will be as in [PZ13, §§ 10.1.1 and 10.1.2] unless otherwise indicated.

We refer the reader there for background on perverse sheaves and nearby cycles. In particular,
X = A1

O = SpecO[u] and
P = G ×X Spec(OJtK) with u 7→ t

is a group scheme over OJtK. We define FlP to be the ‘twisted’ affine flag variety over SpecO
parametrizing P-bundles trivialized away from t = 0. Note that PF JtK is a parahoric group scheme
for the group GF ((t)) and PkJtK is the parahoric group scheme Pa[ from Definition 3.3.2. For any
O-algebra κ, we will use Pκ to denote the base change PκJtK. For any finite field k′ ⊃ k, we have

Pk′ = (Pa[)k′ .

Remark 5.1.1. The field K does not play a a role in the definition of FlP which is essentially the
same as in [PZ13, § 10.1.2]. In particular, [PZ13, Lemma 10.4] concerning the ICw holds in our
situation as well.

We now define the main object of study in this section.

Definition 5.1.2. Define Fµ to be the intersection cohomology sheaf on the generic fiber
MG(µ)E . The nearby cycles sheaf of Fµ is denoted

RΨµ := RΨMG(µ)(Fµ).
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Since the nearby cycles functor preserves perversity, RΨµ is a perverse sheaf on (MG(µ))k
with an action of Gal(F/E). The main theorem (Theorem 5.2.1) in this section will be the
commutativity constraint on RΨµ.

Proposition 5.1.3. The perverse sheaf RΨµ on MG(µ)k admits a natural (L+P)k = (L+Pa[)k-
equivariant structure as perverse sheaves on (FlP)k which is compatible with the Galois action
of Gal(F/E) (see [PZ13, Lemma 10.2] for a more precise statement).

Proof. The proof is the same as in [PZ13, Lemma 10.2], except that one replaces the jet group
L+
nG by the quotient of L+,Q(u)G given by

L+,Q(u)
n G(R) = G(R[u]/Q(u)n)

which is represented by a smooth affine group over SpecO. 2

As in [PZ13, Definition 10.3], we will use PervL+PkE
(FlPkE ×kEE,Q`) to denote the

category of (L+P)k-equivariant sheaves on (FlP)k with a compatible action of Gal(F/E).
By Proposition 5.1.3, RΨµ is an object of PervL+PkE

(FlPkE ×kEE,Q`).

The following are generalizations of the constructions from [PZ13, § 10.2] which, in turn, are
mixed characteristic versions of constructions from [Gai01, BD].

Definition 5.1.4. Let D be the divisor on X defined by Q(u) = 0 and D0 the divisor defined
by u = 0. For any O-scheme S, we define

Gr
BD,Q(u)
G (S) = {iso-classes of pairs (E , β)}

where E is a G-bundle on X × S and β is a trivialization of E|XS\(D∪D0),

Gr
Conv,Q(u)
G (S) = {iso-classes of (E , E ′, β, β′)}

where E , E ′ are two G-bundles on X×S, β is a trivialization of E|XS\D, and β′ is an isomorphism
of E ′|XS\D0

∼= E|XS\D0
, and

Gr
Conv′,Q(u)
G (S) = {iso-classes of (E , E ′, β, β′)}

where E , E ′ are two G-bundles on X×S, β is a trivialization of E|XS\D0
, and β′ is an isomorphism

of E ′|XS\D ∼= E|XS\D.

We will now describe the fibers of each of the above constructions in turn.

Proposition 5.1.5. Let Gr
BD,Q(u)
G,F and Gr

BD,Q(u)
G,k denote the generic and special fibers respecti-

vely of Gr
BD,Q(u)
G . We have natural isomorphisms

Gr
BD,Q(u)
G,F

∼= GrPF ×Fl
Q(u)
G,F and Gr

BD,Q(u)
G,k

∼= GrPk
∼= FlP

a[
.

Proof. The isomorphism on the special fiber is clear since D∪D0 = D0 on A1
k. The isomorphism

on the generic fiber follows from the gluing argument used in the proof of Proposition 4.1.6
(see also [Gai01, Proposition 5]). 2
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There is a natural map

m : Gr
Conv,Q(u)
G → Gr

BD,Q(u)
G

sending (E , E ′, β, β′) to (E ′, ββ′). Similarly, there is a natural map

m′ : Gr
Conv′,Q(u)
G → Gr

BD,Q(u)
G

defined by the same formula.

Recall that for Pk a parahoric group scheme over kJuK, the twisted product GrPk ×̃GrPk is

the quotient LPk×L
+Pk GrPk of the ind-scheme LPk×GrPk . It sits in the convolution diagram

GrPk ×GrPk
p
←− LPk ×GrPk

q−→ GrPk ×̃GrPk → GrPk (5.1.5.1)

where both p and q are L+Pk-torsors (hence formally smooth). The twisted product GrPk ×̃GrPk
represents the functor defined in [Gai01, Lemma 1].

Proposition 5.1.6. Both m and m′ become isomorphisms over F . We have natural

isomorphisms

Gr
Conv,Q(u)
G,k

∼= GrPk ×̃GrPk and Gr
Conv′,Q(u)
G,k

∼= GrPk ×̃GrPk

such that m⊗O k and m′⊗O k induce the convolution diagram GrPk ×̃GrPk → GrPk (see [PZ13,

(10.2), (10.3)]).

Proof. We prove that mF is an isomorphism. An analogous argument works for m′F . Over

F , D and D0 are disjoint divisors. We construct the inverse to mF as follows. For any

(E ′, α′) ∈ (Gr
BD,Q(u)
G )F (R), define E to be the bundle onXR defined by gluing the trivial bundle on

XR\D to E ′XR\D0
with gluing data given by α′. The bundle E comes equipped with a trivialization

β over XR\D and an isomorphism β′−1 : E|XR\D ∼= E ′|XR\D.

Over k, we have D0 = D and so Gr
Conv,Q(u)
G,k represents the same functor as GrPk ×̃GrPk

(see [Gai01, Lemma 1]). 2

Proposition 5.1.7. All three functors Gr
BD,Q(u)
G ,Gr

Conv,Q(u)
G , and Gr

Conv′,Q(u)
G are represented

by ind-schemes over SpecO which are ind-proper.

Proof. One can prove that Gr
BD,Q(u)
G is ind-proper using the same argument which showed that

Gr
Q(u)
G was ind-proper (see Theorem 4.2.11).

Consider the projection map p : Gr
Conv,Q(u)
G → Gr

Q(u)
G defined by the forgetful map

(E , E ′, β, β′) 7→ (E , β).

The map p is a fibration with fibers isomorphic to GrP . That is, fppf-locally Gr
Conv,Q(u)
G is a

product of GrP and Gr
Q(u)
G and hence ind-proper. The same argument works for Gr

Conv′,Q(u)
G

using the natural projection p′ onto GrP with fibers isomorphic to Gr
Q(u)
G . 2
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5.2 A commutativity constraint

Let w ∈ W̃ = W̃ [ as in § 3.3. There is an affine Schubert variety Sw ∈ (GrP)O′ where F ′ is an

unramified extension of F with residue field k′. Assume k′ ⊃ kE and let E′ denote the unramified

extension of E with residue field k′. We denote the intersection cohomology sheaf on Sw by ICw

which satisfies [PZ13, Lemma 10.2].

The main theorem of this section is a version of [PZ13, Theorem 10.5].

Theorem 5.2.1. There is a canonical isomorphism

cF : ICw,k ?RΨµ
∼−→ RΨµ ? ICw,k

of perverse sheaves on GrPk . In addition, this isomorphism respects the Gal(F/E′) action on

both sides.

As in [PZ13, § 10.2], Theorem 5.2.1 is a consequence of the following identities involving the

constructions from the previous subsection.

Proposition 5.2.2. Assume ICw,k is defined over k′. We have canonical isomorphisms in the

category PervL+Pk′ (GrPk′ ×k′E′,Q`):

(1) RΨ
Gr

BD,Q(u)
G,OE′ (ICw,E′ �Fµ)

∼−→ RΨµ ? ICw,k′ ;

(2) RΨ
Gr

BD,Q(u)
G,OE′ (ICw,E′ �Fµ)

∼−→ ICw,k′ ? RΨµ.

Proof. The proof is essentially the same as the proof of [PZ13, Proposition 10.7], replacing their

constructions by the ones from the previous subsection. We highlight the main points. For (1), we

regard ICw,E′� Fµ as a sheaf on Gr
Conv,Q(u)
G,E′ via the isomorphism m⊗OE′ and the isomorphism

from Proposition 5.1.5. By Proposition 5.1.6, m ⊗O k′ is the convolution diagram. Since m is

proper and vanishing cycles commute with proper pushforward, it suffices to give an isomorphism

RΨ
Gr

Conv,Q(u)
G,OE′ (ICw,E′ �Fµ)

∼−→ RΨµ×̃ICw,k′ (5.2.2.1)

where RΨµ×̃ICw,k′ is the twisted product of L+Pk′-equivariant sheaves.

As in [PZ13, Proposition 10.7], Gr
Conv,Q(u)
G,OE′

is the twisted product G̃r
Q(u)

G ×L+
nP GrP ,

where G̃r
Q(u)

G is the smooth cover of Gr
Q(u)
G obtained by adding a trivialization of E over

the nth infinitesimal neighborhood of D0. Since the support of ICw,E′ �Fµ is finite type,

for some n sufficiently large ICw,E′ �Fµ is supported on G̃r
Q(u)

G ×L+
nP Sw ⊂ Gr

Conv,Q(u)
G,OE′

. The

isomorphism (5.2.2.1) follows since the formation of nearby cycles commutes with smooth base

change combined with [PZ13, Lemma 10.4].

The argument for (2) is similar using Gr
Conv′,Q(u)
G,OE′

. In this case, we work with G̃rP defined

by adding trivialization along the nth infinitesimal neighborhood of D. Then L+P is replaced by

the completion of G at Q(u) (L+,Q(u)G from the discussion after Proposition 4.1.4). Otherwise,

all the details are the same. 2
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5.3 Monodromy of the nearby cycles
In this subsection we derive some consequences of Theorem 5.2.1. For the most part, the proofs
are the same as in [PZ13] where we refer the reader for details.

Let F̃ be a Galois closure of K̃/F in F . Since ResK/FG splits over F̃ , for any {µ} the reflex

field E is a subfield of F̃ . Let

IE = ker(Gal(F/E)→ Gal(k/kE))

which is the ‘monodromy’ group. We first study the action of the inertia group I
F̃

on RΨµ.

Set M̃G(µ) := MG(µ)
F̃

. Define

R̃Ψµ = RΨM̃G(µ) ICµ

where ICµ is the intersection cohomology sheaf on S(µ). Then R̃Ψµ is the same as RΨµ with

the Galois action restricted to Gal(F/F̃ ), since the pullback of Fµ to M̃G(µ)
F̃

is ICµ.
Recall the notion of very special facet introduced in [Zhu15]. A facet a ∈ B(ResK/FG,F ) is

very special if it is special and remains special over the completion of the maximal unramified
extension of F (equivalently over the maximal unramified subextension of F̃ /F ).

Theorem 5.3.1. The action of I
F̃

on the nearby cycles RΨµ is unipotent. Assume that a ∈
B(ResK/FG,F ) is a very special vertex. Then the action of I

F̃
on the nearby cycles RΨµ is

trivial.

Proof. For the first statement, the proof of [PZ13, Theorem 10.9] only uses the commutativity
constraint and the theory of central sheaves on affine flag varieties. Given Theorem 5.2.1, the
proof goes through as written there. The second statement is the same as [PZ13, Proposition
10.12] and the proof is the same. 2

Remark 5.3.2. When G = GLn and µ is a Shimura (minuscule) cocharacter, Theorem 5.3.1 was
proven in the case of a special vertex in [PR03, § 7]. In addition, they give an explicit description
of the action of IE on RΨµ. We will study the monodromy action in more detail in the next
section.

Finally, we consider the semi-simple trace of Frobenius on RΨµ. We refer to [PZ13, § 10.4.1]
and [HN02, § 3.1] for details. Recall that G[ = Gk((u))) and Pk = GkJuK, a parahoric group

scheme. For any Fq ⊃ k, we let Hq(G[, P [) be the Hecke algebra of bi-Pk(FqJuK)-invariant,
compactly supported locally constant Q`-valued functions on G[(Fq((u))) which is an algebra
under convolution. Then the semi-simple trace defines a map

τ ss : PervL+PkE
(FlPkE ×kE E,Q`)→ Hq(G[,Pk)

for any Fq ⊃ kE .

Theorem 5.3.3. If Fq ⊃ kE , then τ ss
RΨµ

is in the center of Hq(G[, P [).

Proof. The theorem follows from Theorem 5.2.1 as in [HN02, § 8]. 2

When G is split and µ is a Shimura cocharacter, this is known as the Kottwitz conjecture.
It was proven in [HN02] for GLn and GSp2g.
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5.4 Unramified groups and splitting models
In this subsection we assume G is an unramified group over K (i.e., quasi-split and split over an
unramified extension) as in § 2. Let K ′ be a unramified extension which splits G. We also assume
that a is a hyperspecial vertex of B(G,K). Note that in this case ResK/FG is quasi-split and a,
considered as a vertex of B(ResK/FG,F ), is very special in the sense of [PZ13, § 10.3.2].

Let F̃ ⊂ F be a Galois closure of K ′ in F over which ResK/FG becomes split. Fix an ordering

of the F -embeddings ψi : K→ F̃ of which there are d = [K : F ]. By Proposition 5.3.1, the inertia

group I
F̃

acts trivially on R̃Ψµ.
Let H be the split form of G defined over OF , that is, HK′

∼= GK′ . Since G is unramified and

a is very special, the special fiber Gr
Q(u)
G ⊗ k ∼= GrHk . Also, for any embedding ψi, we have an

isomorphism H
F̃
∼= G

F̃ ,ψi
. If µ is geometric cocharacter of ResK/FG, let µi be the ψi-component

of µ considered as a cocharacter of H. Let {µi} denote the conjugacy class of µi.
The following theorem determines RΨµ with the Galois action restricted to Gal(F/F̃ ).

Theorem 5.4.1. Let ICµi be the intersection cohomology sheaf on SH(µi) ⊂ GrHk . Then we
have a natural isomorphism

R̃Ψµ
∼= ICµ1 ? ICµ2 ? · · · ? ICµd

where ? denotes the convolution product on GrHk .

When G = GLn or GSp2g and µ is minuscule, Theorem 5.4.1 is proven in [PR05, Theorem
13.1]. Our proof follows a similar strategy. We first introduce a version of the splitting models
of Pappas and Rapoport [PR05]. For each embedding ψi : K → F , let $i := ψi($) where $ is
the fixed uniformizer of K. Set X̃ = A1

O
F̃

, and let Di ⊂ X̃ be the principal divisor defined by
u−$i = 0.

Definition 5.4.2. Define the splitting Grassmannian Split
Q(u)
H by the following functor on

O
F̃

-algebras:

Split
Q(u)
H (R) := {iso-classes of d-tuples (Ei, αi)}

where Ei is an H-bundle on X̃R and αi : (Ei)X̃R−Di ∼= (Ei+1)
X̃R−Di for 1 6 i 6 d− 1, and αd is a

trivialization of Ed along X̃R −Dd.

Proposition 5.4.3. The functor Split
Q(u)
H is represented by an ind-scheme over SpecO

F̃
which

is ind-proper.

Proof. The proof is the same as the proof of Proposition 5.1.7. 2

There is a natural map

m̃ : Split
Q(u)
H → (Gr

Q(u)
G )O

F̃

given by {(Ei, αi)} 7→ (E1, (αdαd−1 · · ·α1)|XR−D).

Proposition 5.4.4. The morphism m̃ induces an isomorphism on generic fibers over F̃ . There
is a natural isomorphism

(Split
Q(u)
H )

k̃
∼= GrH

k̃
×̃GrH

k̃
×̃ · · · ×̃GrH

k̃
,

where the right-hand side is the d-fold convolution product, such that m̃k : (Split
Q(u)
H )

k̃
→ GrH

is the d-fold multiplication map.
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Proof. The argument as the same as in Proposition 5.1.6. 2

The proof of Theorem 5.4.1 follows the same lines as the proof of [PR05, Theorem 13.1].

Proof of Theorem 5.4.1. We first observe that G
X̃
∼= H

X̃
since a is a hyperspecial vertex of

B(G,K), so we will work entirely with H.
By Proposition 5.4.4, m̃

k̃
gives d-fold convolution. Since m̃ is ind-proper (or proper if we

restrict to the preimage of MG(µ)), it suffices then to show that

RΨ(m̃∗
F̃

(ICµ)) ∼= ICµ1 �̃ ICµ2 �̃ · · · �̃ ICµd .

Recall the diagram

LHd−1

k̃
×GrH

k̃

p

vv

q

((
GrH

k̃
× · · · ×GrH

k̃
GrH

k̃
×̃ · · · ×̃GrH

k̃

(5.4.4.1)

The twisted product is defined as the unique (up to canonical isomorphism) sheaf
ICµ1 �̃ · · · �̃ ICµd such that

q∗(ICµ1 �̃ · · · �̃ ICµd) = p∗(ICµ1 � · · ·� ICµd).

One can deform diagram (5.4.4.1) to a diagram

Split
Q(u),∞
H

p̃

vv

q̃

&&

GrH,ω1 × · · · ×GrH,ωd Split
Q(u)
H

(5.4.4.2)

over SpecO
F̃

where GrH,ωi is the affine Grassmannian for H centered at u−$i and Split
Q(u),∞
H

is defined below.
Let D̂i denote the completion of X̃ along Di. Then Split

Q(u),∞
H is the ind-scheme which

represents the functor of isomorphism classes of {(E1, α1), (Ei, αi, γi)i>2} with {(Ei, αi)} ∈
Split

Q(u)
H and γi a trivialization of Ei along the completion of D̂i−1. The map q̃ is the obvious

one. The map p̃ is defined by

{(E1, α1), (Ei, αi, γi)i>2} 7→ {(Ei, γ∗i+1αi)i6d−1, (Ed, αd)}

where γ∗i+1 is the restriction of γi+1 to the punctured formal disc D̂i[1/(u−$i)]. Compare this

definition to that of G̃rG,X on [PZ13, p. 232].
Since nearby cycles commute with smooth base change5 and RΨGrH,$i IC

µi,F̃
= IC

µi,k̃
with

the trivial Galois action, by the same argument as in the proof of Theorem 5.2.1 (or [PZ13,
Proposition 10.7]), we are reduced to showing that

q̃∗
F̃

(m̃∗
F̃

(ICµ))) ∼= p̃∗
F̃

(IC
µ1,F̃
� · · ·� IC

µd,F̃
). (5.4.4.3)

5 The morphisms q̃ and p̃ are not smooth as written. However, for any particular µ, all the relevant sheaves are

supported on the finite type closed subschemes. Working over the support of ICµ, we can replace Split
Q(u),∞
H

by a finite type smooth torsor where we take trivializations only over nth infinitesimal neighborhoods for some
sufficiently large n.
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If we let θ : (Gr
Q(u)
G )

F̃
∼=
∏
i GrH

F̃
,ωi be the isomorphism from Proposition 4.1.6, the composition

(θ◦m̃
K̃

)({(Ei, αi)}) = {(Fi, βi)} where Fi is the completion of Ei along Di and βi = αdαd−1 . . . αi

is a trivialization along D̂i[1/(u − $i)]. Note that each αj is defined on D̂i[1/(u − $)] and,

for i 6= j, αj is defined on D̂i so αdαd−1 . . . αi+1 defines a trivialization of Ei+1 along D̂i.

For {(E1, α1), (Ei, αi, γi)i>2} in (Split
Q(u),∞
H )

F̃
, the composition αdαd−1 . . . αi+1 differs from γi+1

by an element of L+
ωiHF̃

. Thus, the p̃
F̃

differs from the composition θ◦m̃
F̃
◦q̃
F̃

by multiplication by

the product
∏
i L

+
ωiHF̃

. Since each ICµi is L+
ωiHF̃

-equivariant the two pullbacks are isomorphic,

which implies (5.4.4.3). 2

Finally, we would like to state a conjecture on the action of IE on RΨµ. The geometric Satake

equivalence [MV07] for Hk is an equivalence of tensor categories

Sk : PervL+Hk
GrHk

∼−→ RepQ`
(H∨)

sending ICλ to Vλ, the representation of H∨ with highest weight λ. Furthermore, Sk is realized

by taking (hyper)cohomology. It suffices then to determine the action of IE on

H∗(R̃Ψµ) = Vµ1 ⊗ Vµ2 ⊗ · · · ⊗ Vµd . (5.4.4.4)

As G is unramified, the inertia subgroup IF of Gal(F̃ /F ) acts through a subgroup of the

permutation group on the embeddings {ψi}. Furthermore, IE is the subgroup of IF of those

σ ∈ Sd such that µσ(i) = µi. This group has a natural permutation action on Vµ1⊗Vµ2⊗· · ·⊗Vµd
which we call ρ.

As in [PR03, Remark 7.4], we have

Vµ1 ⊗ Vµ2 ⊗ · · · ⊗ Vµd =
⊕

λ6µ1+···+µd

Mλ ⊗ Vλ (5.4.4.5)

where H∨ acts trivially on Mλ. Thus, ρ decomposes as⊕
λ6µ1+···+µd

ρλ ⊗ idVλ

where ρλ acts on Mλ.

The following conjecture was made by Pappas and Rapoport in [PR03, Remark 7.4] for GLn.

Conjecture 5.4.5. There is a decomposition

RΨµ
∼=

⊕
λ6µ1+···µd

Mλ ⊗ ICλ

where Mλ is the constant sheaf associated to the vector space Mλ in (5.4.4.5). The action of IE
is trivial on ICλ and is isomorphic to ρλ on Mλ.

Remark 5.4.6. When K/F is tamely ramified, Conjecture 5.4.5 is a consequence of [PZ13,

Theorem 10.23]. It may be possible to prove the conjecture by adapting the proof of [PZ13,

Theorem 10.18] to our setting, but we do not attempt to do so here.
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d’une donnée radicielle valuée, Publ. Math. Inst. Hautes Études Sci. 60 (1984), 197–376.
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