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We study the application of Taylor’s frozen hypothesis to the pressure fluctuations in
turbulent channels by means of spatio-temporal data from direct numerical simulations
with large computational domains up to the friction Reynolds number Reτ = 2000. The
applicability of the hypothesis is quantitatively verified by comparing the wavenumber
and Taylor (frequency) premultiplied spectra of the pressure fluctuations at each distance
y from the wall. Using the local mean velocity U( y) for the hypothesis leads to a large
difference between both spectra with a value of O(50 %) for its maximum from the wall
to y/h ≈ 0.2, where h is the channel half-depth. Alternatively, the convection velocity of
the pressure fluctuations Cp( y), originally defined by Del Álamo & Jiménez (J. Fluid
Mech., vol. 640, 2009, pp. 5–26) as a function of y, is investigated and adopted for
the hypothesis. It is nearly equal to U( y) from y+ = 20 to the channel centre, where
y+ = yuτ /ν, in which uτ and ν represent the friction velocity and kinematic viscosity,
respectively. For y+ ≤ 20, Cp( y) is almost constant with a value of around 12uτ . Applying
Cp( y) for the hypothesis decreases the difference between both spectra down to a value of
O(10 %) for its maximum from the wall to y/h ≈ 0.2. Finally, the difference between the
pressure wavenumber and frequency premultiplied spectra near the wall is reduced further
via applying a wavenumber-dependent convection velocity. This wavenumber-dependent
convection velocity is the linear combination of the convection velocities of the turbulent
structures associated with the pressure field weighted by their relative contributions to the
pressure variance.
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1. Introduction

Taylor’s frozen hypothesis (TH) (Taylor 1938) is usually invoked to infer the spatial
features from temporally single-point measurements for the turbulent quantity φ. In
principle, the hypothesis postulates that the turbulence is frozen over the measurement
period, and the turbulent structures associated with φ propagate with convection velocity
UT , which is known as the Taylor convection velocity (Hussain, Jeong & Kim 1987).
The hypothesis (Taylor 1938) indicates that the time derivative of φ is proportional to its
derivative in the streamwise direction such that (Hussain et al. 1987)

∂φ

∂t
= −UT

∂φ

∂x
. (1.1)

Here, t and x represent the time and streamwise direction, respectively. For wall-bounded
shear flows, the following question arises: ‘which is the value of Taylor convection velocity
that can be applied for the hypothesis?’. In the original idea by Taylor (1938), the bulk
velocity Ub (constant across the boundary layer) was taken to represent Taylor convection
velocity UT (Romano 1995), which is expressed as TH-Ub hereafter.

The Taylor convection velocity can also be represented by the local mean velocity U( y)
(depending only on the distance from the wall y) which yields a better agreement between
time and space results (Romano 1995), which is expressed as TH-U . TH-U has been
studied extensively for the streamwise velocity fluctuations in wall-bounded flows (Favre,
Gaviglio & Dumas 1957, 1958; Morrison, Bullock & Kronauer 1971; Piomelli, Balint &
Wallace 1989; Cenedese & Romano 1991; Romano 1995; Chung & Mckeon 2010; LeHew,
Guala & McKeon 2011).

Even though TH-U is applicable at some locations from the wall, it is not applicable
in high-shear regions of the flow (Lin 1953). Therefore, another convection velocity is
investigated. In this paper, the convection velocity Cφ( y) derived by Del Álamo & Jiménez
(2009) (it is also defined as the overall or average convection velocity) is studied, which is
expressed as TH-Cφ .

Quantitatively, the accuracy of the convection velocity can be determined by the
difference between the streamwise wavenumber and time series spectra (Monty & Chong
2009; Squire et al. 2017). If the difference tends to zero, the convection velocity can be
applied for the hypothesis. Otherwise, it is better to use a convection velocity that is a
function of both location y and scale (wavenumbers). The convection velocity, in this case,
is referred to as the scale-dependent convection velocity (Del Álamo & Jiménez 2009;
Monty & Chong 2009). For the streamwise velocity fluctuations, large-scale structures
(associated with low wavenumbers) centred at distances far from the wall penetrate the
near-wall region and possess convection velocities of the order of bulk velocity (Jiménez,
Del Álamo & Flores 2004; Del Álamo & Jiménez 2009; Monty & Chong 2009; Chung &
Mckeon 2010; Wu, Baltzer & Adrian 2012). The same tendency was indicated in the outer
layer for large-scale structures (Dennis & Nickels 2008; Chung & Mckeon 2010; Wu et al.
2012).

The convection velocity depends also on the turbulent quantity φ under consideration
(Kim & Hussain 1993). In this study, the convection velocity of the pressure fluctuations
in channel flow is studied.

1.1. Pressure field

1.1.1. Wall pressure: Taylor’s hypothesis and scale-dependent convection velocity
For the wall pressure, the local mean velocity U( y = 0) cannot represent Taylor
convection velocity UT or TH-U is not true. Therefore, the convection velocity
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was computed. Experimentally, UT was found to be approximately 0.8 times the
free-stream velocity (Willmarth & Wooldridge 1962; Blitterswyk & Rocha 2017). It has
also been determined via direct numerical simulation (DNS) of turbulent channel flow
as 0.72Ucl by Choi & Moin (1990) and Jeon et al. (1999), 0.75Ucl by Kim & Hussain
(1993) and 0.819Ucl by Hu, Morfey & Sandham (2002), where Ucl is the centreline
velocity. However, applying the above computed convection velocity for all flow scales
(wavenumbers) is open to discussion because the wall pressure field is correlated with
turbulent structures across the turbulent boundary layer (Kim 1989). The wall pressure is
correlated with small-scale structures from the near-wall region (Kim, Choi & Sung 2002;
Ghaemi & Scarano 2013; Luhar, Sharma & Mckeon 2014) and large-scale structures from
the outer region (Thomas & Bull 1983; Kobashi & Ichijo 1990). In addition, Ahn, Graham
& Rizzi (2010) extended the attached eddy model presented by Townsend (1976) to predict
the wall pressure from attached self-similar eddies in the logarithmic region. Accordingly,
it is not surprising that the wall pressure adopts a scale-dependent convection velocity for
spatio-temporal conversion.

Willmarth & Wooldridge (1962) investigated the wall pressure convection velocity as
a function of streamwise separation in a smooth-wall turbulent boundary layer. They
concluded that the convection speed varies from approximately 0.56U∞ to an asymptotic
value of approximately 0.83U∞ for zero and large streamwise separations, respectively,
where U∞ is the free-stream velocity. They indicated that the higher convection speed
is associated with large-scale eddies, whereas the lower convection speed is related to
small-scale eddies. Bull (1967) later extended the analysis presented by Willmarth &
Wooldridge (1962). He indicated precisely that a high-wavenumber family contributes to
the wall pressure field with sources in the transition region above the viscous sublayer,
and by another family with wavelength greater than about twice the boundary layer
thickness with sources in the outer layer. Subsequent studies by Wills (1970) regarding the
wavenumber–frequency spectrum of the wall pressure and Blake (1970) regarding smooth-
and rough-wall turbulent boundary layers support the previous findings of Willmarth &
Wooldridge (1962) and Bull (1967).

Panton & Linebarger (1974) constructed a theoretical model that estimates wall pressure
spectra in turbulent boundary layers based on the assumption that the turbulence mean
shear term of the pressure Poisson equation dominates wall pressure fluctuations. Based
on the findings of this model, they discussed the scaling of the scale-dependent convection
velocity. Alongside inner and outer scaling of the wall pressure scale-dependent
convection velocity, Panton & Linebarger (1974) hypothesized that the scale-dependent
convection velocity exhibits an overlap region that corresponds to k−1

x and is related to
the structures in the overlap region, where kx is the streamwise wavenumber. Based on
the analysis of the coherence spectrum, Farabee & Casarella (1991) estimated the wall
pressure convection velocity as a function of the frequency and streamwise separation.
They inferred that the mid-frequency range (100 ≤ ωδ/uτ ≤ 0.3Reτ ) originates from
the overlap region (50 ≤ y+ ≤ 0.2Reτ ), where Reτ (= δuτ /ν) is the friction Reynolds
number and ω and δ are the frequency and boundary layer thickness, respectively. This is
generally consistent with the proposition of Panton & Linebarger (1974). Later, Leclercq
& Bohineust (2002) proposed via their model a logarithmic variation of scale-dependent
convection velocity with frequency beyond ωδ/uτ ≈ 50.

Recent experimental studies by Salze et al. (2014), Hu & Herr (2016), Joseph
(2017) and Blitterswyk & Rocha (2017) are consistent with the abovementioned early
findings regarding the scale-dependent convection velocity. Further, numerical studies
also addressed the scale-dependent convection velocity for the wall pressure from either
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DNS (Choi & Moin 1990; Jeon et al. 1999; Bernardini & Pirozzoli 2011) or large eddy
simulation (Viazzo, Dejoan & Schiestel 2001) with their results in general agreement with
the experimental studies. However, such numerical studies have been performed at low
Reynolds numbers. This limitation of the literature is among the motivations for the current
study.

For the dependence of the convection velocity on the spanwise wavenumber, Kim &
Hussain (1993) addressed it at a low Reynolds number from DNS. They showed that there
is a strong dependence on the spanwise wavenumber but a rather weak dependence on
the streamwise wavenumber. The dependence of the convection velocity on the spanwise
wavenumber was also examined to some extent from the modelling study by Luhar et al.
(2014). They obtained the pressure field in pipe flow in terms of the resolvent analysis
at Reynolds numbers up to Reτ = 5000. A linear model was suggested based on the
first singular response mode that was found to dominate the velocity field at a definite
wavenumber–frequency combination. According to their model, they showed that modes
with equal streamwise and azimuthal wavenumbers dominate the wall pressure field and
propagate with velocities depending logarithmically on their size in agreement with Panton
& Linebarger (1974). However, Luhar et al. (2014) did not present propagations of other
different wall pressure scales.

1.1.2. Static pressure: Taylor’s hypothesis and scale-dependent convection velocity
In wall-bounded flows, the static pressure is defined as the pressure across the boundary
layer. There is an apparent lack of studies that verify the local mean velocity U( y) for the
convection velocity. One of the main reasons for this shortage is the difficulty inherent
in measuring the pressure inside the flow field. Such measurements are difficult because
the turbulent pressure fluctuations are subtle and can be distorted easily by ambient noise
and probe intrusion (Tsuji et al. 2007; Naka et al. 2015). Tsuji et al. (2007) performed the
first successful attempt to measure the static pressure within the turbulent boundary layer.
The fundamental statistical quantities of the pressure, such as the mean, root mean square
and power spectra, were investigated. Naka et al. (2015) used a similar probe to investigate
spatio-temporal pressure–velocity correlations in the turbulent boundary layer. However,
neither of the above two experimental studies discussed the application of TH-U to the
static pressure.

From DNS in turbulent channel flow, Kim & Hussain (1993) addressed the application
of Taylor’s hypothesis of the pressure fluctuations at a low Reynolds number of Reτ = 180
where they computed the pressure convection velocity across the channel. They found
that it is nearly equal to the local mean velocity U( y) above y+ ≈ 20. Between the
wall and y+ ≈ 20, the convection velocity has a constant value of approximately 0.75
times the centreline velocity. Since that time, no research has been done, from DNS, for
the convection velocity of the static pressure in wall-bounded flows. Therefore, we were
motivated to examine it for the static pressure.

Kim & Hussain (1993) and Luhar et al. (2014) examined the scale-dependent convection
velocity of static pressure. From DNS, Kim & Hussain (1993) showed that it is only
significant close to the wall with a stronger dependence on the spanwise wavenumber.
They assigned that to the existence of structures with distinct spanwise scales within this
region. Luhar et al. (2014), in their model, obtained the pressure field for motions with
equal streamwise and azimuthal wavenumbers in pipe flow. They showed results for only
two modes. Visual inspection of their figures 10(d) and 11(d) indicates that these two
modes propagate with almost invariant velocities up to y+ ≈ 10 and 40, respectively, with
larger velocity associated with the mode of the smaller wavenumber. Then, the convection
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velocities of the two modes coincide with the local mean velocity up to the pipe centre.
However, Luhar et al. (2014) did not present the propagations of other different scales of
static pressure.

1.2. Present contributions
In the first part of this study, we aim to answer the ongoing question about the value
of Taylor convection velocity, as a function of wall distance, that can be applied for
the hypothesis based on a comparison between the wavenumber and Taylor (frequency)
premultiplied spectra. Both spectra are obtained from the same time series DNS
datasets at Reynolds numbers up to Reτ = 2000, where Reτ = huτ /ν. Here, h is the
channel half-depth and uτ and ν represent the friction velocity and kinematic viscosity,
respectively. The wall-normal locations and the wavenumber range where both spectra
match each other are quantitively indicated. We examine both the local mean velocity
U( y) and the average convection velocity defined by Del Álamo & Jiménez (2009)
Cp( y) for the hypothesis, i.e. TH-U and TH-Cp. In the next part of this study, we
discuss the difference between the wavenumber and frequency premultiplied spectra at
any wall-normal location for any wavenumber range. The discussion is considered from the
viewpoint of the turbulent structures associated with the pressure field. Then, a convection
velocity that depends on both wall distance and scale is investigated and used in estimating
the pressure spectra. Such velocity considers the convection velocities of the turbulent
structures according to their contributions to the pressure variance.

Therefore, high-fidelity time series DNS datasets have been prepared to support
such analysis of the pressure fluctuations in turbulent channel flow. The DNS datasets
cover friction Reynolds numbers of Reτ = 180, 500 and 2000. This paper is organized
as follows. Section 2 describes the DNS datasets utilized in the analysis. Section 3
describes the analytical methods for Taylor’s hypothesis. The results of the convection
velocity as a function of the distance from the wall are discussed in § 4. Section 5
addresses the classification and propagation of the pressure-relevant structures to obtain
the scale-dependent convection velocity for the pressure field. Finally, we present our
conclusions in § 6.

2. Turbulent channel flow database

The present analysis mainly needs spatio-temporal data from DNS of fully developed
turbulent flow between two parallel planes. In this study, the three cases of R180 (Reτ =
180), R500 (Reτ = 500) and R2000 (Reτ = 2000) in table 1 were newly carried out
to obtain the spatio-temporal pressure field. In table 1, three Reynolds numbers of
approximately Reτ = 1000 (R1000) by Mehrez et al. (2019a), 4000 (R4000) by Mehrez,
Yamamoto & Tsuji (2019b) and 8000 (R8000) by Kaneda & Yamamoto (2021) are also
listed. In these three cases, high-resolution time series data were not obtained. Only their
wavenumber spectra are used to discuss the spectral analysis of the pressure field in §§ 4
and 5.

For all DNS databases, the coordinate system is (x, y, z), where x, y and z represent
the streamwise, wall-normal and spanwise coordinates, respectively. The computational
domain sizes in the streamwise, wall-normal and spanwise directions are denoted as
Lx, Ly and Lz, respectively. The flow was driven by a constant mean pressure gradient,
and periodic boundary conditions were applied in the streamwise (x) and spanwise (z)
directions, and no-slip/no-penetration boundary conditions were applied at the wall. The
corresponding velocity fluctuations in the three directions are given by ui, where i = 1, 2, 3
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or (u, v, w). The mean velocities in the three directions are expressed as Ui, where
i = 1, 2, 3 or (U, V, W). The instantaneous velocities are given by ut

i, which has mean
and fluctuating parts, and pt is the total pressure. For convenience, throughout the paper, a
plus sign (+) indicates that the variable is scaled in wall units, where the friction velocity
uτ is the velocity scale and the viscous length ν/uτ represents the length scale. In addition,
the wall pressure fluctuations are symbolized as pw to discriminate them from the static
pressure fluctuations p (pressure across the channel).

As mentioned above, new DNSs were performed for the cases of R180, R500 and
R2000 with large computational domains, Lx × Lz = (25.6 × 9.6)h or (8π × 3π)h, and
the four-dimensional spatio-temporal data of the pressure fields are obtained to analyse
Taylor’s hypothesis. The DNS uses a Fourier-spectral method in the wall-parallel, x and
z directions, and a second-order-accurate finite-difference method in the wall-normal,
y direction. Alias errors associated with the pseudo-spectral method are removed using the
3/2 rule. Poisson’s equation for the pressure is solved using a tridiagonal matrix algorithm
in Fourier space. The grid spacing is uniform in the streamwise and spanwise directions
and is refined near the wall in the y direction to account for the large velocity gradient
there. Hence, a hyperbolic tangent algebraic equation is applied for the grid spacing in the
y direction. Table 1 shows the grid resolutions in the wall-parallel plane (�x+, �z+), the
grid resolution at the wall �y+

w and the grid resolution at the centre of the channel �y+
c .

Table 1 also provides the wave modes for the streamwise and spanwise directions (Nx, Nz)
and the collocation points for the wall-normal direction Ny.

In the time integration for case R2000, the pressure and the other terms are
time-advanced via the implicit Euler and second-order-accurate Adams–Bashforth
methods, respectively. Alternatively, for cases R180 and R500, the viscous term is
time-advanced via the Crank–Nicolson method, and the other terms are time-advanced as
for case R2000. The simulation was run using a time step of �t+ = 0.18 (�t+ = �tu2

τ /ν)

for cases R180 and R500 and �t+ = 0.0277 for the higher Reynolds number of R2000. The
total time integration lengths T+ normalized by the Reynolds number (T+/Reτ = Tuτ /h)

to obtain stable statistical results are summarized in table 1. The numerical accuracy of
the present DNS database is confirmed via a comparison of statistical results with the
previous DNS database under equivalent Reτ conditions of Reτ = 180 and 2000 (Kim,
Moin & Moser 1987; Hoyas & Jiménez 2006; Bernardini, Pirozzoli & Orlandi 2014; Lee
& Moser 2015; Yamamoto & Tsuji 2018).

The four-dimensional spatio-temporal data of the pressure field are stored with a regular
time interval �t+st (�t+st = �tstu2

τ /ν). The values of �t+st are presented in table 1. The
�t+st varies in each case but it is sufficiently smaller than the Kolmogorov time scale in
wall units (≡(ε+)−1/2 ≥ 1.9, where ε is the energy dissipation rate per unit mass).

3. Analytical method for frozen turbulence hypothesis

3.1. Convection velocity
In this study, the average or overall convection velocity Cφ( y) is estimated as (Del Álamo
& Jiménez 2009)

Cφ( y) = −〈(∂φ/∂t)(∂φ/∂x)〉
〈(∂φ/∂x)2〉 . (3.1)

972 A15-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

69
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.692


A. Mehrez, Y. Yamamoto and Y. Tsuji

Here, the angle brackets 〈 〉 denote ensemble averaging. Adopting the same definition as
in Del Álamo & Jiménez (2009), we consider the ω–kx spectrum as

Ψφφ(kx, y, kz, ω) = 〈φ̃(kx, y, kz, ω)φ̃∗(kx, y, kz, ω)〉. (3.2)

Here, the asterisk denotes the conjugate and kz is the spanwise wavenumber. Note that we
use a tilde to denote the Fourier transform with respect to the two homogeneous directions
(x and z) and time (t). A carat (̂) is used for spatial Fourier coefficients that have only been
transformed with respect to x and z but retain an explicit temporal dependence.

From the ω–kx spectrum, the scale-dependent convection velocity cφ(kx, y, kz)
(time-averaged phase velocity of each spatial mode) is defined as

cφ(kx, y, kz) = − 1
kx

∫
Ωω

ωΨφφ(kx, y, kz, ω) dω∫
Ωω

Ψφφ(kx, y, kz, ω) dω
. (3.3)

Here, the frequency range Ωω ∈ [2π/TN, π/�tst] based on the wash-out time (TN ≈
Lx/Ub) and the time interval �tst is adapted. In this study, the total time integration length
T+ in table 1 is divided into overlapping time segments T+

N (with 50 % overlap; see Choi
& Moin 1990), and the spectra were averaged over all time segments.

The overall or average convection velocity Cφ( y) is also computed equivalently to (3.1)
over ranges Ωkx and Ωkz of streamwise and spanwise wavenumbers, respectively, as (see
Del Álamo & Jiménez (2009) for detailed derivation)

Cφ( y) =
∫
Ωkz

∫
Ωkx

cφ(kx, y, kz)|φ̂(kx, y, kz)|2k2
x dkx dkz∫

Ωkz

∫
Ωkx

|φ̂(kx, y, kz)|2k2
x dkx dkz

. (3.4)

3.2. Taylor spectra
Integrating equation (3.2) with respect to ω yields the two-dimensional (2-D) spectra in
the wall-parallel plane E2D

φφ(kx, y, kz), which are discussed in § 5, as

E2D
φφ(kx, y, kz) =

∫
Ωω

Ψφφ(kx, y, kz, ω) dω. (3.5)

In a like manner, the one-dimensional (1-D) wavenumber spectra in the streamwise
direction Eφφ(kx, y) (or streamwise spectra), and frequency spectra Eφφ(ω, y) are obtained
as

Eφφ(kx, y) =
∫

Ωω

∫
Ωkz

Ψφφ(kx, y, kz, ω) dkz dω, (3.6)

Eφφ(ω, y) =
∫

Ωkz

∫
Ωkx

Ψφφ(kx, y, kz, ω) dkx dkz. (3.7)

In TH, the frequency spectra defined by (3.7) are converted to the streamwise wavenumber
spectra via Taylor convection velocity UT as

EF
φφ(kF

x , y) = UTEφφ(ω, y). (3.8)

Here, EF
φφ(kF

x , y) is called Taylor spectra (or frozen ω-spectra), which are functions of the
Taylor wavenumber kF

x = ω/UT .
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Taylor’s frozen hypothesis of pressure fluctuations

Similarly, the frozen kx-spectra EF
φφ(ωF, y) are obtained from the streamwise spectra

defined by (3.6) via UT as

EF
φφ(ωF, y) = (1/UT)Eφφ(kx, y). (3.9)

Here, ωF = kxUT is known as the Taylor frequency.

4. Results of Taylor’s hypothesis for pressure fluctuations

4.1. Taylor’s frozen hypothesis with local mean velocity U( y) (TH-U)
TH-U is verified here by comparing the streamwise spectra Epp(kx, y) (equation (3.6)) to
the frozen ω-spectra EF

pp(k
F
x , y) (equation (3.8)) with the local mean velocity U( y) applied

for UT . Even though the local mean velocity is quite small close to the wall, we apply
it in computing the frozen ω-spectra in (3.8). This serves to determine the wall-normal
locations where the local mean velocity is not appropriate for UT . The contour plots of
the premultiplied 1-D streamwise spectra k+

x E+
pp = kxEpp/(ρ

2u4
τ ) and frozen ω-spectra

kF+
x EF+

pp = kF
x EF

pp/(ρ
2u4

τ ) for the pressure fluctuations for R500 and R2000 are shown
in figures 1(a-i) and 1(b-i), respectively. The spectra are plotted versus the streamwise
wavelength and the distance from the wall.

In addition to the contour plots of the streamwise and frozen ω-spectra, we present the
contour maps for the difference between them in figure 1(ii) at the same Reynolds numbers.
The difference (relative error) between the two spectra Dpp(kx, y) is defined as (Del Álamo
& Jiménez 2009)

Dpp(kx, y) = kx
EF

pp(kx, y) − Epp(kx, y)

max[kxEpp(kx, y)]
. (4.1)

It is noted that when computing Dpp(kx, y), a cubic spline interpolation scheme is applied
for the frozen ω-spectra to enable matching with the streamwise spectra.

Like the velocity fluctuations discussed in previous studies (e.g. Monty & Chong 2009;
Wu et al. 2012; Squire et al. 2017), the contour lines of the streamwise and frozen ω-spectra
of the pressure field do not perfectly overlap each other for some regions normal to the wall.
For the streamwise velocity fluctuations, Monty & Chong (2009) indicated differences
between both spectra in the region below y+ = 50 for streamwise wavelengths λx > 4h.
But for the pressure field, the situation is different. From figures 1(a-i) and 1(b-i), we can
discriminate three regions between the wall and channel centre based on the comparison
between both spectra. The first region is the near-wall region below y+ ≈ 20. Within this
region, the contour lines of the streamwise spectra are completely different from those
of the frozen ω-spectra. While the contour lines of the streamwise spectra tend to be
vertical, indicating that the spectral energy of the pressure fluctuations resides in turbulent
structures of nearly the same length scales (Jiménez & Hoyas 2008), the contour lines of
the frozen ω-spectra are inclined to the wall. This behaviour of the frozen ω-spectra comes
from the very small values of the local mean velocities in the near-wall region, which
cannot reflect the convective nature of the pressure field. Hence, TH-U cannot be applied
within this region as the difference between both spectra is quite large (O(±50 %)), as
shown in figures 1(a-ii) and 1(b-ii).

The second region extends from y+ ≈ 20 to y+ ≈ 100 ( y/h ≈ 0.2) for R500 in
figure 1(a-i) and to y+ ≈ 400 ( y/h ≈ 0.2) for R2000 in figure 1(b-i). Generally, the
streamwise and frozen ω-spectra appear qualitatively similar. Within this range of
Reynolds numbers, both spectra indicate the existence of only the inner peak reported in
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Figure 1. Results of TH-U . (i) Contour lines of the premultiplied streamwise spectra kxEpp/(ρ
2u4

τ ) (filled,
black contour lines) and frozen ω-spectra kF

x EF
pp/(ρ

2u4
τ ) (open, cyan contour lines) of the pressure fluctuations

versus y+ and the wavelength for (a) R500 and (b) R2000. In (a-i), the contour lines correspond to the values
[0.2 : 0.2 : 2.8], and they indicate the values [0.2 : 0.2 : 3.8] in (b-i). In (i), the black and blue cross marks
denote the peaks of the streamwise and frozen ω-spectra, respectively. (ii) Contour lines of the difference
Dpp(kx, y) between the streamwise spectra and frozen ω-spectra for (a) R500 and (b) R2000. Black and blue
colours correspond to positive and negative Dpp(kx, y), respectively. In (i) and (ii), the dashed red line indicates
the wall-normal height y+ = 20 and the grey line indicates the wall-normal distances y+ = 100 in (a) and 400
in (b). In (a,b), the yellow circles indicate the ridges of the streamwise spectra with a streamwise wavelength
of λxr ( y).

previous studies (Luhar et al. 2014; Tsuji, Marusic & Johansson 2016; Mehrez et al. 2019a).
For both spectra, the streamwise wavelength associated with the inner peak is λ+xpeak

≈ 250.
However, its location varies slightly among the spectra. For the streamwise spectra, it
is located at approximately y+

peakT
= 25, while the frozen ω-spectra suggest its location

around y+
peakF

= 21. In addition, it is noted that the contour lines of the streamwise and
frozen ω-spectra match each other in the short-wavelength regime. In the long-wavelength
regime, a slight difference between the two contour plots can be discerned. The short- and
long-wavelength regimes are roughly discriminated in the figures based on the ridges of
the streamwise spectra that indicate the peaks of the spectra at the various wall-normal
locations (highlighted using yellow circles). The streamwise wavelength associated with
the ridge of the streamwise spectra at each wall-normal location is denoted by λxr( y). It
is worth mentioning that the relative error Dpp(kx, y) in this second region is of O(±5 %).
However, it seems to increase with Reynolds number, as observed in figures 1(a-ii) and
1(b-ii).
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Figure 2. Results of TH-U . Profiles of the premultiplied streamwise spectra kxEpp/(ρ
2u4

τ ) (solid curve) and
frozen ω-spectra kF

x EF
pp/(ρ

2u4
τ ) (dotted curve) of the pressure fluctuations versus the wavelength for R2000 at

(a–c) different wall-normal locations.

The third region starts at y+ ≈ 100 ( y/h ≈ 0.2) and 400 ( y/h ≈ 0.2) for R500 and
R2000, respectively, and ends at the centre of the channel. The relative error between the
two spectra almost vanishes, even for the higher Reynolds number R2000 (figure 1b-ii).
The contour lines of the streamwise and frozen ω-spectra overlap each other perfectly.
Accordingly, TH-U is applicable in this region.

The behaviour indicated in the previous paragraphs may be perceived more clearly in
figure 2, which shows the premultiplied streamwise spectra and frozen ω-spectra versus the
wavelength at three locations normal to the wall for R2000. The three locations shown in
the figure represent the three regions described in the previous paragraphs. At y/h ≈ 0.2,
as shown in figure 2(c), a perfect consistency between the two spectra can be observed
as they collapse quite well. However, this perfect overlap between the two spectra is only
observed for short wavelengths at y+ ≈ 70 in figure 2(b). The spectra are different for long
wavelengths. In addition, it is noted that the peak of the streamwise spectrum is attenuated
relative to that of the frozen one.

In figure 2(a), the frozen ω-spectrum in the viscous sublayer at y+ ≈ 5 is shifted to
shorter wavelengths than the streamwise spectrum. For the case of the velocity field, Squire
et al. (2017) pointed out that this shift is attributed to a violation of TH-U where the
velocity fluctuation intensity is high.

The results in figures 1 and 2 indicate that TH-U can be applied to the pressure field
in channel flows above y/h ≈ 0.2. Between y+ ≈ 20 and y/h ≈ 0.2, TH-U is invalid
for structures with wavelengths larger than approximately the ridges of the premultiplied
spectra. Such structures seem to propagate with velocities that differ from the local mean.
Generally, this deviation from TH-U does not exceed 5 % within this region, but it
increases with Reynolds number. Finally, in the near-wall region up to y+ ≈ 20, TH-U is
invalid where the maximum error of O(50 %). Therefore, the average pressure convection
velocity Cp( y) is estimated.

4.2. Taylor’s frozen hypothesis with average (overall) convection velocity Cp( y) (TH-Cp)
The results for the pressure average convection velocity Cp( y) (computed using (3.4))
are shown in figure 3 for R180, R500 and R2000. In the figure, Cp( y) is plotted versus the
distance from the wall in inner and outer scaling in figures 3(a) and 3(b), respectively. Also
shown in the figure is the local mean velocity at the same Reynolds numbers. The results
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Figure 3. The average convection velocity of the pressure fluctuations C+
p ( y) for R180 (black), R500 (blue)

and R2000 (brown) in (a) inner and (b) outer scaling for the wall distance. In the two panels, the local
mean velocity U+( y) is plotted versus the distance from the wall for R180 (triangles), R500 (squares) and
R2000 (circles). (c) The difference between the average convection velocity of the pressure fluctuations and
the local mean velocity C+

p ( y) − U+( y) for R180 (black), R500 (blue) and R2000 (brown) in outer scaling
for the wall distance. The inset shows the difference C+

p ( y) − U+( y) in inner scaling for the wall distance.
(d) The average convection velocities of the pressure fluctuations C+

p ( y) (brown), streamwise velocity C+
u ( y)

(red), wall-normal velocity C+
v ( y) (magenta) and spanwise velocity C+

w ( y) (green), and the local mean velocity
U+( y) (open circles) for R2000 are plotted versus the distance from the wall in logarithmic scale. The average
convection velocity of the streamwise velocity C+

u ( y) (filled circles) at Reτ = 950 from Del Álamo & Jiménez
(2009) is plotted versus y+. The subscript φ in the y-axis label C+

φ stands for p, u, v and w.

of Cp( y) are generally consistent with those of Kim & Hussain (1993) at Reτ = 180. From
the wall up to y+ ≈ 10, the average convection velocity is larger than the mean velocity,
being nearly constant with values of approximately 11.40uτ –12.05uτ (0.55Ucl–0.66Ucl).
Geng et al. (2015) reported the Reynolds number dependence trend close to the wall upon
estimating the convection velocities of the velocity fluctuations in channels. In their study,
the convection velocities of the velocity components at Reτ = 205 overestimated those at
Reτ = 932.

In addition, our result (0.66Ucl) for R180 is smaller than the value reported by Kim &
Hussain (1993), which was 0.75Ucl at the same Reynolds number. This difference between
the two values may be assigned to the difference between the method used here to compute
the convection velocity and the method used in the aforementioned study. Del Álamo &
Jiménez (2009) indicated that (3.4) weights Cp( y) towards the convection velocities of
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high wavenumbers (containing higher spectral energy). However, Kim & Hussain (1993)
computed the convection velocity from the space–time correlation using a time delay of
�t+ = 18, a value which they indicated to be too large for the high wavenumbers. Kim
& Hussain (1993) examined the dependence of the convection velocity on the time delay
�t+ = 3, 18 and 27. The convection velocity in their study was found to change by about
18 % between �t+ = 3 and 27 close to the wall (at y+ ≈ 5). Accordingly, it is inferred that
Cp( y) computed in this study is smaller than that provided by Kim & Hussain (1993) for
locations close to the wall. For the same reasons, the reported average convection velocity
of the wall pressure is smaller than that indicated by Choi & Moin (1990) and Jeon et al.
(1999) (0.72Ucl at Reτ = 180). From y+ ≈ 10 to y+ ≈ 20, the present convection velocity
Cp( y) increases very slightly until it becomes equal to U+( y) at y+ ≈ 20, as shown in
figure 3(a) for R180 and R2000. Beyond this location, the average convection velocity is
consistent with the local mean velocity, being slightly smaller than U+( y).

The difference between the pressure average convection velocity C+
p ( y) and the local

men velocity U+( y) is shown in figure 3(c) for R180, R500 and R2000. The difference is
presented across the channel. It is clear in the figure that the difference is significant close
to the wall which emphasizes that the local mean velocity is not applicable for representing
Taylor convection velocity. Above the position y+ ≈ 20, the difference between C+

p ( y) and
U+( y) is small where it approaches a value of around −0.7 in wall units for the different
Reynolds numbers.

Superimposing the pressure average convection velocity on the local mean velocity
helps to estimate the locations of the effective pressure field sources (Bull 1967; Blake
1970; Schewe 1983). For the wall pressure, Schewe (1983) indicated that the pressure
convection velocity is equal to the local mean velocity at y+ = 21, whereas Kim (1989)
and Kim & Hussain (1993) estimated a higher location of y+ ≈ 23. Our results suggest
the wall-normal location of y+ ≈ 19.5 for R180 and R2000 in close agreement with the
aforementioned estimate by Schewe (1983). As pointed out by Kim (1989), it is inferred
that the main contribution to the wall pressure comes from vortex-like structures, which
are centred at y+ ≈ 20 in the near-wall region (Kim et al. 1987).

The average convection velocity of the pressure fluctuations C+
p ( y) is now compared

with the convection velocities of the three velocity components at the same Reynolds
number. The results are displayed in figure 3(d) for R2000. The average convection
velocities of the pressure and velocity fields C+

φ ( y), where φ represents p, u, v and w,
are plotted versus the distance from the wall. The average convection velocities of the
three velocity components are computed using the scheme presented by Del Álamo &
Jiménez (2009), which we apply here to the pressure field (equation (3.4)). However,
the scale-dependent convection velocities of the three velocity components are computed
from the momentum equations derived by Del Álamo & Jiménez (2009) (their (2-11),
(2-12), (2-13)) rather than the time series DNS dataset. Saving the time series data for
the three velocity components in addition to the pressure field for our higher Reynolds
number R2000 using the large computational domain (Lx × Lz = (25.6 × 9.6)h) requires
a massive storage capacity (approximately 250 TB/turbulent field). Thus, for convenience,
the time series dataset was saved only for the pressure field. For the velocity fluctuations,
time realizations were saved at unequal time intervals.

The average convection velocity of the streamwise velocity in figure 3(d) matches that
presented by Del Álamo & Jiménez (2009) at a lower Reynolds number of Reτ = 950
which is also included in figure 3(d) for comparison. In addition, the current investigation
of the average convection velocities of the three velocity components agrees with the
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previous results presented by Kim & Hussain (1993) and Geng et al. (2015) at their
lower Reynolds numbers of Reτ = 180 and up to 932, respectively. The average convection
velocities of the three velocity components agree with each other remarkably well in the
viscous sublayer below y+ ≈ 5. They are almost constant with a value of around 9uτ .
Beyond y+ ≈ 5, the convection velocities also increase slightly with the distance from the
wall. Thus, the average convection velocity of the streamwise velocity seems to match
the local mean velocity beyond y+ ≈ 15, whereas the other two velocity components have
convection velocities that match the local mean velocity beyond y+ ≈ 20.

The larger values of the average convection velocities of the velocity fluctuations than
the local mean velocity in the near-wall region originate from the footprint of large-scale
structures, especially in the viscous sublayer. For u fluctuations, eddies with λx ≥ 2h and
λz ≥ 0.4h contribute to the convection velocity in the near-wall region and propagate
with a uniform velocity scaled with the bulk velocity (Del Álamo & Jiménez 2009).
From the recent input–output approach developed by Liu & Gayme (2020) to estimate the
convection velocity based on the linearized Navier–Stokes equations, a range of large-scale
structures was quantified with dimensions y+ ∼ λ+z ∼(λ+x )2/3. They inferred that these
structures are self-similar in the cross-plane and retain a wall-normal coherence with an
inclination to the wall consistent with the attached eddy hypothesis of Townsend (1976).

Remarkably, the average convection velocity of the pressure field C+
p ( y) is larger than

the convection velocities of the three velocity components close to the wall (figure 3d).
This larger value of the pressure convection velocity is consistent with the global features
of the pressure fluctuations, as indicated by Poisson’s equation for the pressure (Willmarth
1975; Kim 1989). Sillero, Jiménez & Moser (2014) showed that pressure correlation
retains a stronger correlation in the wall-normal direction than velocity correlations.
From Poisson’s pressure equation analysis by Green’s function, Jiménez & Hoyas (2008)
identified two mean structures concerned with the pressure fluctuations. The first one
is an energetic localized structure in the near-wall and logarithmic regions, while the
second one is a large-scale structure O(h) that extends across the entire flow thickness.
Sillero et al. (2014) quantified the first and second structures in terms of strong and
weak correlations, respectively. Therefore, the convection velocity of the pressure field
is elevated in the near-wall region with multiple scale contributions. Pressure-relevant
structures are discussed in § 5.

We investigated the average pressure convection velocity Cp( y) across the entire flow.
The frozen ω-spectra EF

pp(k
F
x , y) in (3.8) are computed from Cp( y) which is applied for

UT . The results of TH-Cp are shown in figure 4. In comparison with figure 1, the collapse
between both spectra in the near wall-region below y+ = 20 is improved significantly
and the difference between them decreased to a value of O(10 %) for its maximum. This
improvement is expected from figure 3(c) for the difference between Cp( y) and U( y).
As indicated in figures 4(a-ii) and 4(b-ii), the difference exists around the ridges of the
streamwise spectra and for larger scales. On the other hand, the small difference between
the two velocities for the region above y+ = 20 does not have an impact on the computed
frozen ω-spectra as their values are the same as in figure 1. Therefore, above y+ = 20,
TH-Cp yields the same results as TH-U , as shown in figure 4.

Based on the above observations, the average convection velocity Cp( y) is better
for representing the Taylor convection velocity for the pressure fluctuations compared
with the local mean velocity. However, it is difficult to compute it from numerical
simulations especially when Reynolds number increases. Besides, it cannot be obtained
from experiments for static pressure. Therefore, we define a simply modelled convection
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Figure 4. Results of TH-Cp. Same as figure 1. However, the contour lines of the frozen spectra are indicated
by red colour.

velocity for the pressure field CM
p ( y) derived from both the local mean velocity U( y) and

average convection velocity Cp( y). It is discussed in the next subsection.

4.3. Taylor’s frozen hypothesis with modelled convection velocity CM
p ( y) (TH-CM

p )
The modelled convection velocity is defined as

CM
p ( y) =

{
U(y+ = 20) 0 ≤ y+ < 20,

U( y) 20 ≤ y+ ≤ h+.
(4.2)

In this model, above y+ = 20, the local mean velocity is adopted for the convection
velocity. Below this position, the convection can be regarded as constant with a value
that equals the local mean velocity at y+ = 20. For this velocity, Taylor’s hypothesis is
defined as TH-CM

p and is considered in both wavenumber and frequency spaces.

4.3.1. Wavenumber space
The frozen ω-spectra EF

pp(k
F
x , y) in (3.8) are computed from CM

p ( y) which is applied for
UT . According to (4.2), we present the results for the region below y+ = 20. Specifically,
figures 5(a) and 5(b) show the comparison between the streamwise spectra kxEpp/(ρ

2u4
τ )

and the frozen ones kF
x EF

pp/(ρ
2u4

τ ) for R500 and R2000, respectively. The same results are
obtained as in figure 4 where around the ridges of the streamwise spectra and for larger
scales, the difference between both spectra still exists.
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Figure 6. Results of TH-CM
p . (a) The profiles of the premultiplied streamwise kxEpwpw/(ρ2u4

τ ) =
kx Epp(kx, y = 0)/(ρ2u4

τ ) (solid curve) and frozen kF
x EF

pwpw
/(ρ2u4

τ ) = kF
x EF

pp(k
F
x , y = 0)/(ρ2u4

τ ) (dotted
curve) spectra of the wall pressure fluctuations versus the streamwise wavelength in inner scaling λ+x for R500
(blue) and R2000 (brown). The top horizontal axis is the streamwise wavelength in outer scaling λx/h for
R2000. The two dashed vertical lines correspond to λ+xin

= 250 and λxout /h = 1 (λ+xout
= 2000 for R2000).

(b) The difference between the streamwise and frozen ω-spectra of the wall pressure Dpwpw (kx) = Dpp(kx, y =
0) at R500 (blue) and R2000 (brown). The yellow circle in (a) indicates the ridge of the streamwise spectrum
for R2000.

This is further clarified in figure 6(a), where the wall pressure premultiplied streamwise
and frozen spectra are displayed (streamwise spectrum: k+

x E+
pwpw

= kx Epp(kx, y =
0)/(ρ2u4

τ ); frozen spectrum: kF+
x EF+

pwpw
= kF

x EF
pp(k

F
x , y = 0)/(ρ2u4

τ )). The two dashed
lines shown in the figure are associated with the two length scales λ+xin

= 250 and
λxout/h = 1 (for R2000). We define these length scales upon our analysis of the wall
pressure structures classification in § 5. Several notes can be derived from the figure. First,
both spectra, streamwise and frozen, peak at the same length scale of λ+xr

(y = 0) ≈ 250,
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/(
ρ

2
u τ2

ν
)

Figure 7. Results of TH-CM
p . Wall pressure frequency spectra Epwpw (ω)/(ρ2u2

τ ν) = Epp(ω, y = 0)/(ρ2u2
τ ν)

(dashed) and frozen kx-spectra EF
pwpw

(ωF)/(ρ2u2
τ ν) = EF

pp (ωF, y = 0)/(ρ2u2
τ ν) (solid) versus ων/u2

τ for
R500 (blue), R2000 (brown), R4000 (green) and R8000 (magenta). Wall pressure spectra at Reτ = 1760,
2100 and 3883 from Tsuji et al. (2007) are shown in grey. The two solid, vertical grey lines correspond
to ων/u2

τ = 0.013 and 0.189, while the two dashed ones correspond to ων/u2
τ = ωinν/u2

τ and ωoutν/u2
τ

with ωin = (2π/λxin )C
M
pw

and ωout = (2π/λxout )C
M
pw

, where CM
pw

= CM
p ( y = 0), λ+xin

= 250 and λxout /h = 1
(λ+xout

= 2000 for R2000).

which equals the length scale of the inner peak of the premultiplied spectra shown in
figure 1(i) that occurs at y+

peakT
≈ 25. This indicates that specific structures dominate the

pressure field from the wall to y+ ≈ 25. Second, the frozen spectrum’s peak exaggerates
the streamwise one’s peak, although both spectra peak at the same length scale. Third, an
opposed behaviour for the large-scale structures is observed where an underestimation of
the frozen spectrum with respect to the streamwise one can be discerned. These differences
between the spectra arise from the various structures that contribute to the wall pressure
fluctuations and propagate with different convection velocities as clarified in § 5. This
yields a relative error Dpwpw(kx) = Dpp(kx, y = 0) between the spectra of O(10 %) for its
maximum value as shown in figure 6(b).

4.3.2. Frequency domain
To test the application of TH-CM

p further, a comparison with the experimental wall
pressure results of Tsuji et al. (2007) is performed. For this, we move to the frequency
domain. Figure 7 presents the frequency spectrum of the wall pressure Epwpw(ω) =
Epp(ω, y = 0) (equation (3.7)) for R500 and R2000. In addition, figure 7 presents the
results of the frozen kx-spectrum (equation (3.9) with CM

p ( y) applied for UT ) for the

972 A15-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

69
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.692


A. Mehrez, Y. Yamamoto and Y. Tsuji

wall pressure EF
pwpw

(ωF) = EF
pp(ω

F, y = 0) for cases R500, R2000, R4000 and R8000. The
frequency spectrum of the wall pressure for a turbulent boundary layer at Reτ = 1760, 2100
and 3883 from Tsuji et al. (2007) is also shown in the figure. All spectra are normalized
with the inner variables uτ and ν, and are presented as functions of ων/u2

τ . Thus, the
collapse of the spectra is observed in the high-frequency range for all Reynolds numbers.
This indicates that near-wall-region structures dominate the wall pressure fluctuations
within this frequency range (Farabee & Casarella 1991; Tsuji et al. 2007).

Instead of observing the power-law spectrum ω−1.0 predicted by Bradshaw (1967),
Tsuji et al. (2007) inferred the existence of a power-law spectrum corresponding to
ω−0.7 within the frequency range of 0.013 ≤ ων/u2

τ ≤ 0.189. This frequency range is
presented in figure 7. Tsuji et al. (2007) concluded that the wall pressure spectra with
an exponent of (−1.0) occur only at high Reynolds numbers (Reτ ≈ O(106)), which
were examined later by Klewicki, Priyadarshana & Metzger (2008). Our DNS results
in figure 7 indicate that both frequency and frozen kx-spectra exhibit ω−0.7 spectra over
the frequency range ωoutν/u2

τ ≤ ων/u2
τ ≤ ωinν/u2

τ for R2000. The bounds ωin and ωout
correspond to the two length scales λxin and λxout in figure 6 such that ωin = (2π/λxin)C

M
pw

and ωout = (2π/λxout)C
M
pw

, where CM
pw

= CM
p ( y = 0). It is noted that R500 exhibits ω−0.7

spectra over a very narrow range. The reasoning behind this narrow range is clarified later
in the discussion about classifying the wall pressure structures in § 5.

Using the modelled convection velocity for the wall pressure allows ω−0.7 spectra to
be identified within our DNS for R4000, consistent with the experimental results at the
nearly same Reynolds number. As expected, the spectral region corresponding to ω−0.7

spectra bounded by ωin and ωout increases with Reynolds number. On the other hand, for
the higher Reynolds number, R8000, the slope increases slightly towards (−1.0), although
we do not reach the theoretical slope discussed by Bradshaw (1967). Panton, Lee & Moser
(2017) also observed an increase in the slope of the wall pressure spectrum for their high
Reynolds number of Reτ = 5200.

In the low-frequency range, there is a difference between the experimental boundary
layer results and the channel results from DNS at the same Reynolds number. In figure 7,
the results of channel flow of R2000 (dashed brown line from present DNS) and the results
of boundary layer at Reτ = 2100 from Tsuji et al. (2007) are almost at the same Reynolds
number. Despite that, there is no collapse between both spectra in the low-frequency range.
The low-frequency range of the spectra is associated with structures from the outer layer
(Farabee & Casarella 1991). As a result, this difference is expected since the outer layer
large-scale structures in boundary layers (with outside potential field) are different from
those in turbulent channels (Sillero et al. 2014), and they affect the pressure statistics
(Panton et al. 2017). Besides, for the channel DNS results, there is an obvious difference
in the low-frequency range between frequency and frozen kx-spectra for either R500 (solid
and dashed blue lines) or R2000 (solid and dashed brown lines). Since both spectra
(frequency and frozen kx-spectra) are at the same Reynolds number (either Reτ = 500 or
2000) for the same flow field (channel) from the same dataset (DNS), the only reasoning
we have here is applying Taylor’s hypothesis with the convection velocity CM

pw
.

In summary, TH-CM
p is better than TH-U in the near-wall region below y+ = 20.

However, TH-CM
p produces an error of O(10 %) for its maximum value, and it increases

with Reynolds number. Also, TH-CM
p produces an error of O(5 %) for its maximum in the

region between y+ = 20 and y/h = 0.2 for structures with wavelengths associated with the
ridges of the premultiplied streamwise spectra and larger ones (same as TH-U according

972 A15-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

69
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.692


Taylor’s frozen hypothesis of pressure fluctuations

to (4.2)). Therefore, in the next section, we examine the scale-dependent convection
velocity for the conversion between time and space domains.

5. Scale-dependent convection velocity for pressure fluctuations (from the wall to
y/h = 0.2)

It was found from the previous section that a difference between the streamwise and
frozen spectra occurs for some wavelengths. For the streamwise velocity fluctuations,
Del Álamo & Jiménez (2009) indicated that the difference between both spectra is
associated with large-scale structures of wavelengths (λx, λz) ≥ (2h, 0.4h). They indicated
that such structures propagate with velocities scaled with the bulk velocity Ub. The
question is: ‘does the difference between both spectra for the pressure field occur for the
same “large-scale” structures?’. From three-dimensional two-point correlation analysis
in physical space, Sillero et al. (2014) indicated that the pressure correlations differ
from those of streamwise velocity fluctuations and resemble those of spanwise and
wall-normal velocity components. Additionally, from proper orthogonal decomposition,
Jiménez (2018) indicated that the pressure is dominated by structures different from those
of u fluctuations. Hence, the large-scale structures defined by Del Álamo & Jiménez (2009)
for u fluctuations cannot be employed for the pressure, and we should provide a clear
definition for large-scale structures of the pressure fluctuations.

The classifications of the pressure structures can be performed by addressing the scaling
of the 2-D pressure spectra. After that, we address the propagation of each class of pressure
structures. Then, the appropriate scale-dependent convection velocity for the pressure field
is proposed by considering the velocities of the different classes of structures.

5.1. Pressure structure classification
Here, we discuss the 2-D spectrum of the wall pressure in the wall-parallel plane
E2D

pwpw
(kx, kz) = E2D

pp (kx, y = 0, kz). The premultiplied 2-D spectrum of the wall pressure
kxkzE2D

pwpw
/(ρ2u4

τ ) is plotted versus the streamwise and spanwise wavelengths in inner and
outer scaling in figures 8(a) and 8(b), respectively. Following Jiménez & Hoyas (2008),
the contour lines of R500 and R2000 are shown, where the contour lines are normalized
with their maxima for each Reynolds number. As seen in the figure and as documented
previously (Jiménez & Hoyas 2008; Luhar et al. 2014), the 2-D pressure spectra are mostly
aligned along the equilateral line λz = λx. Further, the spectral energy of the wall pressure
is relevant to length scales different from those of u fluctuations at y+ = 15 (close to the
wall).

In figures 8(a) and 8(b), R500 and R2000 contour lines that collapse with each other
are highlighted using thick colours. In figure 8(a), the collapse of the contour lines of
the spectra for R500 and R2000 is noted for small-scale structures bounded by λ+x ≤ λ+xin

and λ+z ≤ λ+zin
upon normalizing the wavelengths with the inner variables, where λ+xin

=
λ+zin

≈ 250. Thus, we define the ‘inner’ streamwise and spanwise separation length scales
as λ+xin

= 250 and λ+zin
= 250, respectively. The inner separation length scales are selected

at this value, which indicates the streamwise wavelength λ+xr
( y = 0) = 250 associated

with the ridge of the premultiplied 1-D spectrum (figure 6a). With the alignment of the
premultiplied 2-D spectrum along λz = λx, it is indicated that λ+xin

= λ+zin
= λ+xr

( y = 0) =
250. Selecting the inner separation length scales (λ+xin

, λ+zin
) with this value guarantees

including all length scales with their spectra collapsing with each other for the two
Reynolds numbers. In figure 8(a), the collapse of the spectra is observed at different
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Figure 8. Contour lines of the premultiplied 2-D spectra of the wall pressure kxkzE2D
pwpw

/(ρ2u4
τ ) =

kxkzE2D
pp (kx, y = 0, kz)/(ρ

2u4
τ ) versus the streamwise and spanwise wavelengths in (a) inner and (b) outer

scaling for R500 (blue) and R2000 (brown). The diagonal dashed-dotted line is related to λz = λx. The top
and right axes in (a) are the wavelengths in outer scaling corresponding to R2000. Contour lines in (a) and (b)
correspond to the values {0.05, 0.1, 0.3, 0.5, 0.7} and {0.02, 0.04, 0.06, 0.1, 0.15, 0.6}, respectively,
times the maximum of the contours at each Reynolds number. In (a), the two dashed vertical lines correspond
to λ+xin

= 250 and λxout /h = 1 (λ+xout
= 2000 for R2000) and the two horizontal ones correspond to λ+zin

= 250
and λzout /h = 1 (λ+zout

= 2000 for R2000). The yellow circle in (a) represents the ridge of the premultiplied 1-D
streamwise wall pressure spectrum kxEpwpw/(ρ2u4

τ ). In (b), the dashed vertical and horizontal lines are related
to λxout /h = 1 and λzout /h = 1, respectively. The symbols: ‘S’, ‘I’ and ‘L’ denote the small-, intermediate- and
large-scale regions, respectively.

length scales for the different values of the contour lines. When the spectral density
decreases (low value of the contour lines), the streamwise and spanwise wavelengths
at which the contours overlap each other increase. The ‘inner’ separation length scales
(λ+xin

, λ+zin
), chosen at this value of λ+xr

( y = 0) = 250, match the collapse of both strong
spectral densities (high values of the contour lines) and weak ones (low values of the
contour lines).

In figure 8(b), with the outer scaling of the coordinates, a collapse between the spectra
is noted for large-scale structures. Such outer scaling of the spectra is achieved for
streamwise and spanwise length scales larger than approximately h. Accordingly, the
‘outer’ streamwise and spanwise separation length scales are defined as λxout = λzout = h.
It is noted that the collapse of the spectra for large-scale structures occurs for small spectral
densities (low values of the contour lines). Figure 8(b) shows that contour lines associated
with 0.6 do not overlap for the two Reynolds numbers. That is why different contour levels
are shown in figure 8(b) compared with figure 8(a).

Based on the abovementioned observations, we can classify the structures associated
with the wall pressure into three categories based on their wall-parallel length scales:
(1) small-scale structures with λx ≤ λxin and λz ≤ λzin , (2) large-scale structures with
λx ≥ λxout and λz ≥ λzout and (3) intermediate-scale structures at other length scales. Such
classifications are like that proposed by Farabee & Casarella (1991) in the frequency
domain. However, we classify the structures based on their sizes in the wall-parallel plane,
as shown in figure 8(a). Additionally, the large-scale structures defined here agree with
the quantification of the pressure structures indicated previously by Jiménez & Hoyas
(2008) and confirmed by Sillero et al. (2014). However, both previous studies did not
discriminate between small- and intermediate-scale structures as they considered them
one class. Besides, the previous study by Mehrez et al. (2019a) indicated such separation
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Figure 9. As figure 8 except that the results are shown at y+ = 100. The yellow circle in (a) represents the
ridge of the premultiplied 1-D streamwise pressure spectrum kxEpp/(ρ

2u4
τ ) at y+ = 100.

scales for large-scale structures based on the analysis of the higher-order moments of the
pressure field in turbulent channel flow.

It is worth mentioning that the intermediate-scale structures for streamwise wavelengths
between λxin and λxout are associated with the ω−0.7 spectra of the frequency spectra shown
in figure 7. When Reynolds number decreases, this range of length scales decreases as well.
That is why R500 exhibits ω−0.7 spectra over a narrow range in figure 7.

We now extend the concept of structure classification from the 2-D spectra to the static
pressure fluctuations. In the first step, we determine the separation length scales (λxin, λzin)

and (λxout , λzout). The ridge of the premultiplied 1-D spectra of the pressure k+
x E+

pp(kx, y)
is examined for (λxin, λzin), and h is examined for (λxout , λzout). Hence, we can identify the
three types of structures.

Figure 9 is the same as figure 8, except that the results are shown for the pressure field
at y+ = 100. In figure 9(a), the inner separation length scales are determined as λ+xin

(y+ =
100) = λ+zin

(y+ = 100) = λ+xr
(y+ = 100) where the collapse of the spectra is discerned.

In this regard, λxin and λzin increase with the distance from the wall y. Accordingly,
the range of length scales of the small-scale structures increases with the distance from
the wall y. However, the outer separation length scales (λxout , λzout) are almost invariant
when normalized by h with the collapse of the spectra in figure 9(b). This means that the
large-scale structures reside over the same range of length scales as for the wall pressure.

The classification of structures adopted here is not interpreted in any physical space.
However, the pressure structure classification in Fourier space presented here seems
relevant to the physical structures addressed in previous studies (Kobashi & Ichijo 1990;
Ahn et al. 2010; Ghaemi & Scarano 2013; Mehrez et al. 2019a,b). The connection between
pressure structure classification employed in the present study and pressure structures in
physical space is of significance and will be considered in the future.

Once we have classified the pressure structures, it is significant to address their
contributions to the spectral energy of the pressure field. We discuss that in the next
subsection.

5.2. Structures’ contributions to the pressure variance

We identify the contribution of each class of structures to the pressure variance 〈 p+2〉
between the wall and y/h = 0.2. The contribution from each class to the spectral energy of
the wall pressure (wall pressure variance 〈 p+2

w 〉 = 〈 p2
w〉/(ρ2u4

τ )) is shown in figure 10(a)
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Figure 10. (a) Wall pressure variance 〈 p+2

w 〉 versus Reynolds number from the present DNS (yellow squares)
and from Lee & Moser (2015) (red stars). Wall pressure variance associated with small-scale 〈 p+2

w 〉|S (green
circles), intermediate-scale 〈 p+2

w 〉|I (blue triangles) and large-scale 〈 p+2

w 〉|L (red diamonds) structures. Solid
red and green lines are the relations presented by Farabee & Casarella (1991), 〈 p+2

w 〉 = 6.5 + 1.86 ln(Reτ /333),
and Sillero et al. (2013), 〈 p+2

w 〉 = −9.5 + 2.31 ln(Reτ ), respectively. The dashed cyan line is the fit of 〈 p+2

w 〉|I
with Reynolds number, 〈 p+2

w 〉|I = −9.5 + 2.03 ln(Reτ ). (b) Pressure variance 〈 p+2 〉 versus the distance from
the wall for R500 (blue), R1000 (red), R2000 (brown) and R4000 (green). The panel displays the total pressure
〈 p+2 〉 (solid), small-scale 〈 p+2 〉|S (dotted), intermediate-scale 〈 p+2 〉|I (dashed) and large-scale 〈 p+2 〉|L
(dashed-dotted) pressure variances. The dashed cyan line is the logarithmic slope Ap = 2.511.

for various Reynolds numbers. This is determined by computing the variance of the
wall pressure associated with each category. The wall pressure variances associated with
small-, intermediate- and large-scale structures are denoted by 〈 p+2

w 〉|S, 〈 p+2

w 〉|I and
〈 p+2

w 〉|L, respectively. The figure also shows the total wall pressure variance 〈 p+2

w 〉. The
wall pressure variance results of Lee & Moser (2015) are also included. As shown in
figure 10(a), the intermediate-scale structures seem to maintain a higher contribution
to the wall pressure variance than the small- and large-scale structures for the different
Reynolds numbers. For instance, the relative contributions to the total wall pressure
variance from the small-scale (〈 p+2

w 〉|S/〈 p+2

w 〉), intermediate-scale (〈 p+2

w 〉|I/〈 p+2

w 〉) and
large-scale (〈 p+2

w 〉|L/〈 p+2

w 〉) structures for R2000 are approximately 16 %, 73 % and 11 %,
respectively. It is noted that when Reynolds number increases, the contribution from the
intermediate-scale class increases, while the contributions from the other two classes are
nearly invariant.

With their large contribution to the wall pressure variance, the intermediate-scale
structures are mainly responsible for the logarithmic dependence of the total wall pressure
variance with Reynolds number. The Reynolds number dependence of the total wall
pressure variance 〈 p+2

w 〉 is indicated in figure 10(a) where it maintains a logarithmic
relation with Reynolds number (Willmarth 1975). Farabee & Casarella (1991) derived the
following relation between 〈 p+2

w 〉 and Reynolds number: 〈 p+2

w 〉 = 6.5 + 1.86 ln(Reτ /333)

for Reτ > 333, based on integrating the frequency spectra from ω+ = 100Reτ to ω+ =
0.3Reτ . They assumed ω−1 spectra within this frequency range. The relation presented
by Farabee & Casarella (1991), 〈 p+2

w 〉 = 6.5 + 1.86 ln(Reτ /333), and the fit of the wall
pressure variance from DNS channel flow presented by Sillero, Jiménez & Moser (2013),
〈 p+2

w 〉 = −9.5 + 2.31 ln(Reτ ), are shown in figure 10(a). The current results are clearly
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consistent with the fit presented by Sillero et al. (2013). Deviation from the relation
of Farabee & Casarella (1991) is attributed to their different flow field of the turbulent
boundary layer. The 〈 p+2

w 〉|I results are fitted for the different Reynolds numbers to yield
〈 p+2

w 〉|I = −9.5 + 2.03 ln(Reτ ).
The contributions from small-, intermediate- and large-scale structures to the static

pressure variance are denoted by 〈 p+2

w 〉|S, 〈 p+2

w 〉|I and 〈 p+2

w 〉|L, respectively. They
are shown in figure 10(b) for the different Reynolds numbers. In general, the
intermediate-scale structures are the main contributors to the pressure variance. However,
the contributions from small- and large-scale structures are of the same order of magnitude
close to the wall and in the outer region. For wall-normal locations around the variance
peak, the contribution from small-scale structures is larger than that from large-scale ones.

One significant feature of the total pressure variance 〈 p+2〉 is its logarithmic variation
with the distance from the wall (Sillero et al. 2013; Tsuji et al. 2016). Such logarithmic
variation can be fitted using the following relation:

〈 p+2〉 = Ap ln( y/h) + Bp, (5.1)

where Ap = 2.511 and Bp = 0.3951 (Mehrez et al. 2019a). It is indicated in the figure that
the intermediate-scale structures are responsible for inducing such logarithmic behaviour.
Figure 10(b) shows that 〈 p+2〉|I varies logarithmically with y with the same slope of Ap.

Based on the current classification of the structures, it is claimed here that the
intermediate-scale structures are the main contributors to the pressure spectral energy.
Besides, they provide a connection between two intrinsic features of the pressure field
in wall-bounded flows. The first feature is associated with the logarithmic variation of
the wall pressure variance with Reτ (figure 10a). The second is associated with the
logarithmic variation of the static pressure with the distance from the wall (figure 10b).
This conclusion accommodates the analysis by Panton et al. (2017). They addressed the
static pressure correlations in the inner and outer regions. From such correlations, they
derived the logarithmic variation of the wall pressure variance with Reynolds number.

A note mentioned here is related to the effect of the computational domain size on the
employed classification of the pressure structures. The computational domain size does
not have an impact on the results. As shown in figure 8(b), the contour lines of the 2-D
spectra reside in weak spectral densities for the large-scale structures. Comparing the
results for two simulations with different computational domains at the same Reynolds
number of Reτ = 2000 (results not shown here) yields nearly the same contribution to the
spectral energy as from large-scale structures. This generally agrees with the conclusion
of Lozano-Durán & Jiménez (2014) who obtained the same statistics of the pressure field
with different computational domains. However, the effect of the computational domain
on the convection velocity is unknown. Therefore, we evaluate the convection velocity of
the pressure large-scale structures corresponding to 12h in the streamwise direction with a
computational domain size of 25.6h in that direction.

The length-scale ranges of the three types of pressure structures have been identified.
We now address their propagation from the wall to the position of y/h = 0.2.

5.3. Propagation of small-, intermediate- and large-scale structures

5.3.1. Scale-dependent convection velocity cp(λx, y, λz)

The scale-dependent convection velocity of the pressure field at a definite location from
the wall cp(λx, y, λz) is obtained using (3.3). It is worth emphasizing that cp(λx, y, λz)
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Figure 11. Filled contour lines represent the scale-dependent convection velocity normalized by the modelled
convection velocity CM

p ( y) for R2000 at (a) the wall, cpw (λx, λz)/CM
pw

= cp(λx, y = 0, λz)/CM
p ( y = 0);

(b) y+ = 25, cp(λx, y+ = 25, λz)/CM
p (y+ = 25); and (c) y+ = 100, cp(λx, y+ = 100, λz)/CM

p (y+ = 100). In
each panel, the two brown contour lines represent the premultiplied 2-D spectra of the pressure kxkzE2D

pp /(ρ2u4
τ )

plotted versus the streamwise and spanwise wavelengths for R2000. They correspond to the values {0.2, 0.6}
times the maximum of the contours at each wall-normal location. The diagonal dashed-dotted line is related to
λz = λx.

is the first application of the scheme of Del Álamo & Jiménez (2009) for the pressure
fluctuations where the time series dataset is used.

The scale-dependent convection velocity of the wall pressure cpw(λx, λz) = cp(λx, y =
0, λz) is shown in figure 11(a) versus the streamwise and spanwise wavelengths for R2000.
The wall pressure scale-dependent velocity is normalized by the wall pressure modelled
convection velocity CM

pw
. In addition, two contour lines of the premultiplied 2-D spectrum

of the wall pressure kxkzE2D
pwpw

/(ρ2u4
τ ) are shown.

In figure 11(a), the wall pressure convection velocity cpw(λx, λz) is strongly dependent
on the streamwise length scale with nearly the same order of significance as its dependence
on the spanwise length scale. This is different from the conclusion of Kim & Hussain
(1993) who showed that the dependency on the spanwise wavenumber is stronger than that
on the streamwise wavenumber. Upon checking the dependency of the convection velocity
on the streamwise wavenumber, Kim & Hussain (1993) divided the flow field into eight
quasi-spaced streamwise wavenumber modes and then averaged the convection velocity
along the spanwise direction for each streamwise Fourier mode. The same procedure
was performed to evaluate the dependency of the convection velocity on the spanwise
wavenumber. As pointed out by Del Álamo & Jiménez (2009), the convection velocity
presented by Kim & Hussain (1993) was computed for wavelengths of λx ≤ πh and
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λz ≤ (π/3)h. Therefore, averaging the convection velocity along the spanwise direction
leads to an inappropriate conclusion since fewer spanwise wavenumber modes are included
in the averaging scheme. As shown in figure 11(a), the dependence is strong in both
directions.

The contour lines of cpw(λx, λz) in figure 11(a) are similar in shape to the contour lines
of the scale-dependent convection velocities of vorticity fluctuations (figure 2 in Liu &
Gayme 2019) and u fluctuations (figure 4 in Liu & Gayme 2020) in the viscous sublayer
at y+ = 5. However, the dependence of the convection velocity of u fluctuations on λx
and λz is observed only for structures larger than λx ≥ 2h and λz ≥ 0.4h (Liu & Gayme
2020). The same is discerned for vorticity fluctuations (Liu & Gayme 2019). But for the
wall pressure, our results in figure 11(a) show that there is a wide range of length scales
propagating with a velocity larger than CM

pw
. This also signifies the difference between the

pressure-relevant structures from those of u fluctuations. According to our classification
for the wall pressure structures, the small-scale ones are the structures that propagate with
velocities of O(CM

pw
). Structures that belong to the intermediate- and large-scale classes

possess different velocities from CM
pw

, signifying a high degree of dependency of the
convection velocity on the wavelengths.

Figures 11(b) and 11(c) show the contour lines of the scale-dependent convection
velocity cp(λx, y, λz) at y+ = 25 and 100, respectively. Both figures also show the
contour lines of the premultiplied 2-D spectra. The scale-dependent convection velocity
cp(λx, y, λz) is normalized by the modelled convection velocity CM

p ( y) at the two
corresponding locations. Both figures 11(b) and 11(c) indicate that the convection
velocities of the intermediate- and large-scale structures depend on both λx and λz, as
the contour lines show a high gradient with the length scales. In contrast, small-scale
structures propagate with approximately the modelled convection velocity CM

p ( y) at the
two locations in figures 11(b) and 11(c). However, the range of small-scale structure
length scales, defined by (λxin, λzin), increases as we move from the wall, which means
a wider range of length scales that propagate with the modelled convection velocity. This
behaviour of propagation is also like that of velocity and vorticity fluctuations (Del Álamo
& Jiménez 2009; Liu & Gayme 2019, 2020) far from the wall. But for the pressure,
different structures are related.

5.3.2. Scale-dependent convection velocity averaged along z direction cp(λx, y)
To observe the propagation of the three types of structures across the channel, the
scale-dependent convection velocity cp(λx, y) averaged along the spanwise direction is
displayed in figure 12 for R2000. The three panels in each of figures 12(i) and 12(ii)
represent cp(λx, y) for the three types of structures with the normalization by uτ and
CM

p ( y), respectively. It is noted that in the first step, we separate the structures into the
three types. Then, we average the scale-dependent convection velocity along the spanwise
wavenumber for a fixed λx according to (3.4). The scale-dependent convection velocities
of small-, intermediate- and large-scale structures are denoted by cS

p(λx, y), cI
p(λx, y) and

cL
p(λx, y), respectively. Note that according to the pressure field classification, the range

of intermediate-scale structures contains all the streamwise wavelengths resolved from the
present DNS datasets.

Results of the small-scale structures in figure 12(a-i) (the smallest scale is 65 in wall
units) suggest that they propagate with a constant velocity at each wall-normal location,
where the contour lines of cS+

p (λx, y) are almost horizontal. Besides, small-scale structures
tend to propagate with the modelled convection velocity at each wall-normal location,
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Figure 12. The scale-dependent convection velocity as a function of the streamwise wavelength cp(λx, y)
versus λx and y for (a) small-scale (cS

p(λx, y)), (b) intermediate-scale (cI
p(λx, y)) and (c) large-scale (cL

p(λx, y))
structures for R2000. In (i) cp(λx, y) is normalized by the friction velocity uτ . In (ii), cp(λx, y) is normalized by
the modelled convection velocity CM

p ( y). The solid lines represent the inner and outer separation length scales
in (a) and (c), respectively, and the dashed one corresponds to y+ = 400( y/h = 0.2). In (a), the smallest
wavelength corresponds to λ+x = 65. The inset represents the convection velocity of the intermediate-scale
structures cI

p(λx, y) presented for the different ranges of λx.
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as anticipated in figure 12(a-ii). Accordingly, we do not expect any deviation from TH-CM
p

for small-scale structures between the wall and y/h = 0.2. On the other hand, large-scale
structures with large wavelengths are propagating with a nearly constant velocity. As
shown in figure 12(c-ii), this invariant scale-dependent convection velocity is larger than
the modelled convection velocity.

For the intermediate-scale structures in figures 12(b-i) and 12(b-ii), their propagation
depends significantly on their size. The contour lines are nearly vertical, indicating a
gradient in the convection velocity with the streamwise wavelength. This gradient in the
scale-dependent convection velocity is extended from the wall up to y/h ≈ 0.2. Then,
the propagation is achieved with the modelled convection velocity. It is noted that the
significant change of cI

p(λx, y) with λx occurs for the streamwise wavelengths between λxin

and λxout . To clarify further, the contour lines of cI
p(λx, y) are presented for λx ≤ λxin ,

for λxin < λx < λxout and for λx ≥ λxout in figures 12(b-ii-1), 12(b-ii-2) and 12(b-ii-3),
respectively. For λx ≤ λxin , the convection velocity cI

p(λx, y) is of O(CM
p ). This means that

the propagation is achieved with nearly the same velocity as that of small-scale structures
cS

p(λx, y). On the other hand, the convection velocity cI
p(λx, y) with λx ≥ λxout is behaving

like that of large-scale structures cL
p(λx, y). It adopts a nearly constant ratio of around

(1/1.2) with respect to cL
p(λx, y) (results not shown here for brevity). This means that the

intermediate-scale structures for λx ≥ λxout are propagating uniformly but with a smaller
velocity compared with the velocity of the large-scale structures.

The scale-dependent convection velocity for the wall pressure intermediate-scale
structures cI

pw
(λx) = cI

p(λx, y = 0) is displayed in figure 13(a) for R500 and R2000. The
results are shown only for λx between λxin and λxout since the high gradient in the
convection velocity is discerned between these two wavelengths. With the normalization
by the friction velocity uτ , the convection velocity cI

pw
(λx) follows a linear relation with

the logarithm of the streamwise wavelength in the form

cI+
pw

(λx) = Acpw ln(λ+x ) + Bcpw , λxin < λx < λxout . (5.2)

The coefficients Acpw and Bcpw are evaluated by fitting the results of cI
pw

(λx) which yields
Acpw ≈ 2.3 and Bcpw ≈ 0.08. Then, the convection velocity depends logarithmically on
the wavelength as hypothesized by Panton & Linebarger (1974), which was emphasized
later (Choi & Moin 1990; Luhar et al. 2014), based on the existence of the overlap
region. Panton & Linebarger (1974) derived the following relation for the wall pressure
scale-dependent convection velocity: cI+

pw
(λx) = 1/κ ln(λ+x /(2π)) + B, where κ and B are

the coefficients of the mean velocity profile (their values are taken here as κ = 0.42 and
B = 5.6; Luhar et al. 2014). As shown in figure 13(a), the relation of Panton & Linebarger
(1974) overestimates this fit in (5.2). However, the slopes of the two relations are nearly
equal, Acpw ≈ 1/κ .

The scale-dependent convection velocity of the intermediate-scale structures cI
p(λx, y)

for the static pressure is displayed in figure 13(b) at selected locations from y+ = 25 to
y+ = 200 ( y/h = 0.1). The results are shown only for λx between λxin( y) and λxout at each
wall distance y. For the static pressure, cI

p(λx, y) also varies logarithmically with λx as

cI+
p (λx, y) = Acp( y) ln(λ+x ) + Bcp( y), λxin < λx < λxout . (5.3)

The coefficients Acp( y) and Bcp( y) are also evaluated by fitting the results of cI
p(λx, y)

which yields Acp ≈ 1.8, 0.57 and Bcp ≈ 3.2, 14 for y+ = 25 and y+ = 200, respectively.
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Figure 13. The scale-dependent convection velocity as a function of the streamwise wavelength for
intermediate-scale structures cI

p(λx, y) versus λx for pressure for R500 (square) and R2000 (circle) at (a) the
wall y+ = 0, cI

pw
(λx) = cI

p(λx, y = 0), and (b) selected locations from the wall. In (a), the solid green line is
the logarithmic fit cI+

pw
(λx) = Acpw ln(λ+x ) + Bcpw , with Acpw ≈ 2.3 and Bcpw ≈ 0.08 and the dashed cyan line

is the relation of Panton & Linebarger (1974) c+
pIw

(λx) = 1/κ ln(λ+x /(2π)) + B, with κ = 0.42 and B = 5.6.
(b) The solid lines are the logarithmic fittings cI+

p (λx, y) = Acp ( y) ln(λ+x ) + Bcp ( y) with slopes Acp ≈ 1.8, 1.5,
1.25, 1.04, 0.89, 0.77, 0.66 and 0.57 and intercepts Bcp ≈ 3.2, 5.2, 7.5, 9.3, 10.8, 12, 13 and 14 at selected
locations from y+ = 25 to y+ = 200, respectively. In (a,b), the dashed vertical line corresponds to λxout /h = 1
(λ+xout

= 2000 for R2000).

Clearly, the value of Acp( y) decreases as we depart the wall. Travelling away from the
wall leads to a decrease in the velocity gradient, signifying that the tendency toward the
modelled convection velocity is approached.

For the large-scale structures, figure 14 presents cL
p(λx, y) at the same locations as

in figure 13. In figure 14(a), the results show that the convection velocity of the wall
pressure large-scale structures cL

pw
(λx) = cL

p(λx, y = 0) increases until it reaches a constant
value. Upon scaling with the centreline velocity, it can be observed that large-scale
structures with length scales larger than nearly 3h have a uniform convection velocity
of 0.82Ucl. This value is very close to that obtained by Willmarth & Wooldridge (1962)
for large-scale structures of wall pressure in boundary layers (0.83U∞). The same scaling
is also presented for the static pressure in figure 14(b) indicating the correlation between
the wall and static pressure through the large-scale structures.

Now, we examine the scale-dependent convection velocity for each class of pressure
structures. The scale-dependent convection velocity is used to obtain the streamwise
spectra from the frequency spectra.

5.3.3. Streamwise spectra from frequency spectra using cp(λx, y)
The pressure spectra computed from the frequency spectra Epp(ω, y) are obtained using
the scale-dependent convection velocity cp(kx, y). In this case, the pressure spectra are
expressed as the ‘corrected’ spectra, in the terminology of Del Álamo & Jiménez (2009).
The ‘corrected’ spectra are determined as (Del Álamo & Jiménez 2009; Squire et al. 2017)

Ec
pp(k

c
x, y) = Epp(ω, y)|dω/dkc

x |. (5.4)

The ‘corrected’ wavenumber is kc
x = ω/cp(kc

x, y). Hence, the group velocity dω/dkc
x is

computed as dω/dkc
x = cp(kc

x, y) + kc
x(dcp(kc

x, y)/dkc
x).
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Figure 14. The scale-dependent convection velocity as a function of the streamwise wavelength for large-scale
structures cL

p(λx, y) versus λx for pressure for R500 (square) and R2000 (circle) normalized by the centreline
velocity Ucl. The locations are same as in figure 13. In (a,b), the dashed horizontal line corresponds to 0.82Ucl.
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Figure 15. Same as figure 6(a) for R2000. The magenta, green and cyan curves represent the ‘corrected’
premultiplied spectrum of the wall pressure using (5.4) for (a) small-scale (using cS

p(λx, y)), (b)
intermediate-scale (using cI

p(λx, y)) and (c) large-scale (using cL
p(λx, y)) structures, respectively.

We now obtain the ‘corrected’ spectra for each class of pressure structures.
The velocities substituted in (5.4) for small- and large-scale structures are invariant
as cS

p(λx, y) = CM
p ( y) and cL

p(λx, y) = 0.82Ucl, respectively. For intermediate-scale
structures, cI

p(λx, y) is indicated as (referring to figures 12 and 13)

cI+
p (λx, y) =

⎧⎪⎨
⎪⎩

cS+
p (λx, y) λx ≤ λxin,

Acp( y) ln(λ+x ) + Bcp( y) λxin < λx < λxout ,

cL+
p (λx, y)/1.2 λx ≥ λxout .

(5.5)

Figure 15 is a replot of figure 6(a) for the wall pressure with adding the ‘corrected’
spectrum. Results for R2000 are only presented, while the same tendency was obtained for
R500. In figure 15(a), there is no difference between the frozen spectrum and ‘corrected’
one for small-scale structures since the same velocity is employed. Except near λ+xin

, the
‘corrected’ spectrum of the intermediate-scale structures matches well the streamwise
spectrum. The same is observed for the large-scale structures in figure 15(c). Figure 16
shows the same tendency for the static pressure at y+ = 55 for R2000. Accordingly,
considering the propagation of each class of pressure structures can effectively predict
the premultiplied spectrum. Note that the discontinuity of the ‘corrected’ spectrum of the
intermediate-scale structures at the separation length scales λxin and λxout in figures 15(b)
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Figure 16. Same as figure 15. The results are for static pressure at y+ = 55 for R2000.

and 16(b) arises from the discontinuous convection velocity and its derivative at these
length scales (according to (5.4)).

It is now our intention to produce a continuous ‘corrected’ spectrum at each distance
from the wall while considering the propagation of each class of pressure structures as
well as their contributions to the pressure spectral energy. The scale-dependent convection
velocity of each class of pressure structures represents the convection velocity of the
pressure structure at that scale. Accordingly, the most reliable and natural way for blending
the velocities of the three classes together is to consider their contributions to the pressure
spectral energy. Therefore, we define a ‘corrected’ scale-dependent convection velocity
cc

p(k
c
x, y) that comprises the convection velocities of the three classes of the pressure

structures. Specifically, it is the linear combination of the convection velocities of the
three classes weighted by their contributions to the pressure energy. It is indicated as

cc
p(λ

c
x, y) = Fs( y)cS

p(λ
c
x, y)︸ ︷︷ ︸

weighted convection velocity
of small scales

+ F1( y) cI
p(λ

c
x, y)|λc

x≤λxin
+ F2( y) cI

p(λ
c
x, y)|λxin <λc

x<λxout
+ F3( y) cI

p(λ
c
x, y)|λc

x≥λxout︸ ︷︷ ︸
weighted convection velocity of intermediate scales

+ FL( y) cL
p(λc

x, y)︸ ︷︷ ︸
weighted convection velocity
of large scales

. (5.6)

The weights {FS( y), F1( y), F2( y), F3( y), FL( y)} in (5.6) represent the relative
contributions to the pressure variance from the small-scale (FS( y) = 〈 p+2〉|S/〈 p+2〉),
intermediate-scale (F1( y)=〈 p+2〉|I,λx≤λxin , λz>λzin

/〈 p+2〉, F2( y)=〈 p+2〉|I, λxin<λx<λxout
/

〈 p+2〉,F3( y) = 〈 p+2〉|I, λx ≥ λxout , λz < λzout/〈 p+2〉) and large-scale (FL( y) = 〈 p+2〉|L/

〈 p+2〉) structures defined in § 5.2. However, the relative contribution from the
intermediate-scale structures is divided into F1( y), F2( y) and F3( y) as indicated in
figure 17(a). With reference to (5.5), the ‘corrected’ convection velocity cc

p(λ
c
x, y) can be

indicated as

cc
p(λ

c
x, y) = [Fs( y) + F1( y)] CM

p ( y)

+ F2( y)(Acp( y) ln(λc+
x ) + Bcp( y))

+ [FL( y) + F3( y)/1.2](0.82Ucl). (5.7)
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Figure 17. (a) The relative contributions from the different scales of the pressure structures to the
pressure variance. (b) The scale-dependent convection velocity of small-scale cS
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x, y = 0) structures and the
‘corrected’ scale-dependent convection velocity cc

pw
(λc

x) = cc
p(λ

c
x, y = 0) for the wall pressure.
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Figure 18. Same as figures 15 and 16 for R500 and R2000. The ‘corrected’ spectra are computed using the
‘corrected’ convection velocity cc

p(λ
c
x, y) and (5.7).

The ‘corrected’ scale-dependent convection velocity cc
p(λ

c
x, y) defines a velocity that

depends on the streamwise wavelength. It is shown in figure 17(b) for the wall pressure,
cc

pw
(λc

x) = cc
p(λ

c
x, y = 0). It simply comprises the convection velocities of the three types

of pressure structures in one scale-dependent convection velocity. This convection velocity
cc

pw
(λc

x) and its derivative dcc
pw

/dkc
x are continuous. This guarantees, by (5.4), the obtained

‘corrected’ spectrum to be continuous as well. Hence, using a continuous convection
velocity is better than using a discontinuous one such that we obtain a continuous spectrum
by (5.4).

The results of the ‘corrected’ spectra are shown for R500 and R2000 for the wall
pressure and static pressure at y+ = 55 in figures 18(a) and 18(b), respectively, upon
applying cc

p(λ
c
x, y). The ‘corrected’ spectra match well the streamwise spectra. The

difference between the premultiplied streamwise and ‘corrected’ spectra tends to zero for
all streamwise wavelengths except around the peak where it has a maximum value of
O(5 %).

A note to be mentioned here is that the robustness of the current ‘corrected’
scale-dependent convection velocity cc

p(λ
c
x, y) depends on the convection velocities of the

turbulent structures as well as the weights indicated in (5.7). How these weights change
across the channel for the different Reynolds numbers is of significance. These details will
be reported elsewhere.
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6. Conclusion

The first objective of this study was to investigate the convection velocity, as a function
of the wall distance, associated with Taylor’s hypothesis of the pressure fluctuations
based on the comparison between the streamwise wavenumber and Taylor (frequency)
spectra. The second objective was to discuss the convection velocity as a function of both
scale and wall distance at the wall-normal positions where the difference between both
spectra is significant. For such objectives, DNSs of fully developed channel flow of a
large computational domain (25.6h × 9.6h) in the wall-parallel plane were implemented
at friction Reynolds numbers of 180, 500 and 2000 based on the channel half-depth h,
friction velocity uτ and kinematic viscosity ν.

The advantage of the current study is that the frozen hypothesis was studied by
comparing frequency and streamwise wavenumber spectra from the same DNS database
for Reτ ≤ 2000. Using the local mean velocity for the hypothesis leads to a large difference
between both spectra with a value of O(50 %) for its maximum value from the wall to
y/h ≈ 0.2. Alternatively, the convection velocity of the pressure fluctuations, originally
defined by Del Álamo & Jiménez (2009) as a function of the wall distance y, is investigated
and adopted for the hypothesis. Its value nearly equals the local mean velocity from
y+ = 20 to the channel centre. From the wall to y+ = 20, it is almost constant with a
value 12uτ which is equal to the local mean velocity at y+ = 20.

This convection velocity can well predict the streamwise spectra from temporal
measurements of the pressure field above the wall-normal location y/h ≈ 0.2. Below
that position, the maximum difference between the streamwise and frequency spectra
was of O(10 %) and it increases with Reynolds number. To address this difference,
the pressure field structures were classified into small-, intermediate- and large-scale
structures based on the scaling of the premultiplied 2-D spectra. Large-scale structures
had length scales larger than h in the wall-parallel plane. Small-scale structures had
length scales smaller than the local ridges of the premultiplied 1-D streamwise spectra.
Intermediate-scale structures did not qualify as either small or large. The present study
verified that intermediate-scale structures are those that mainly dominate the contributions
to the pressure variances across the channel. Logarithmic variation of the wall pressure
variance with Reτ as well as logarithmic variation of the static pressure with the distance
from the wall are associated with these structures.

Small-scale structures propagated closely with the local mean velocity. Intermediate-
scale structures propagated with velocities that depend logarithmically on their size for
some range of their length scales. However, this dependence decreased gradually until
the convection velocity became consistent with the local mean velocity at y/h ≈ 0.2. The
convection velocity of the large-scale structures approached a constant value of 0.82Ucl.
Based on the propagation of the three classes of structures, a scale-dependent convection
velocity was proposed by weighting the convection velocities of the three classes. The
weight functions are the relative contributions of the three classes to the pressure variance.
Hence, the obtained spectra from such weighted scale-dependent convection velocity
overlap well the wavenumber spectra.
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